微分与积分中值定理及其应用

合集下载

微积分中的微分与微分中值定理

微积分中的微分与微分中值定理

微积分是数学中的一门重要分支,也是高等数学的基础课程之一。

微积分的研究对象涉及到函数的极限、连续性、导数、积分等内容。

微积分中的微分概念以及与之相关的微分中值定理是微积分理论的重要内容之一。

微分是微积分的基础概念之一,它指的是函数在某一点处的变化率。

具体来说,若函数$y=f(x)$在$x_0$处可导,则函数在$x_0$处的导数$f'(x_0)$即为函数在该点的微分。

微分可以看作是函数在某一点的局部线性近似,通过微分可以描述函数在某点的斜率以及近似的变化情况。

微分的概念是微积分中的关键,它是导数概念的先导。

微分中值定理是微分学中的重要定理之一,它是基于连续性与导数的基本性质而得出的。

微分中值定理的核心思想是通过函数的导数找到函数在某一区间内某一点的切线斜率与函数在此区间内任意两点连线斜率相等的点。

根据微分中值定理,若函数$f(x)$在区间$[a,b]$上连续,并且在区间$(a,b)$内可导,那么在区间$(a,b)$内一定存在一点$c(a<c<b)$,使得$f'(c)$等于函数在区间$[a,b]$的平均变化率$\frac{f(b)-f(a)}{b-a}$。

微分中值定理的重要性在于它使得我们可以通过求解导函数在某一区间内的零点来研究原函数的性质。

根据微分中值定理,如果某函数在某点的导数为零,则说明函数在该点附近的斜率相等;如果某函数在某区间内的导数始终大于零(或小于零),则说明函数在该区间上是递增(或递减)的。

基于微分中值定理,我们可以研究函数的最值点、驻点、拐点等重要特性。

微积分中的微分与微分中值定理是微积分理论的重要组成部分,它们是求解导数与研究函数性质的基础。

微分的概念通过对函数的局部线性近似描述了函数的变化情况,而微分中值定理则通过导数的性质来研究函数的性质,为进一步探索函数的极值、最值等提供了基础。

在实际应用中,微积分的概念与微分中值定理常常被用于求解函数的最优化问题,如优化经济学中的最大化与最小化问题,物理学中的最速下降与最接近问题,工程学中的最优设计问题等等。

微积分中的积分中值定理与极限定理的应用

微积分中的积分中值定理与极限定理的应用

微积分中的积分中值定理与极限定理的应用微积分是数学中的一个重要分支,它研究的是函数的导数和积分,以及两者之间的关系。

微积分在很多领域都有广泛的应用,比如物理、工程、经济学等。

在微积分中,积分中值定理和极限定理是非常重要的概念。

它们不仅是理论基础,而且在实际应用中也具有重要作用。

本文将重点介绍积分中值定理和极限定理的应用。

一、积分中值定理的应用积分中值定理是微积分中一条重要的定理,它是求解积分的一种方法。

在积分运算中,很多时候我们需要求解一个函数在一定区间的平均值。

这个平均值可以用积分中值定理来得到。

积分中值定理有两种形式:拉格朗日中值定理和柯西中值定理。

下面我们分别来介绍一下它们的应用。

1. 拉格朗日中值定理拉格朗日中值定理又称为第一中值定理,它是由法国数学家拉格朗日(Lagrange)在18世纪发现的。

该定理的表述如下:如果函数f(x)在区间[a,b]上连续,且在(a,b)内可导,那么存在一个点c∈(a,b),使得f(b)-f(a)=f'(c)(b-a)这里的c就是在区间[a,b]上的某个中间值。

我们可以通过拉格朗日中值定理来求一个函数在某个区间上的平均值。

例如,假设我们要求函数y=√x在区间[1,4]上的平均值。

首先,我们可以将该函数在该区间上的积分表示出来:∫1^4√xdx然后,我们可以用拉格朗日中值定理求出积分的值。

根据该定理,存在一个点c∈(1,4),使得:∫1^4√xdx=√4-√1/(4-1)=√3因此,y=√x在区间[1,4]上的平均值为√3。

2.柯西中值定理柯西中值定理是由法国数学家柯西(Cauchy)在19世纪发现的,它是拉格朗日中值定理的推广。

该定理的表述如下:如果函数f(x)和g(x)在区间[a,b]上连续,且在(a,b)内可导,且g(x)≠0,那么存在一个点c∈(a,b),使得(f(b)-f(a))/g(b)-g(a)=f'(c)/g'(c)这里的c仍然是在区间[a,b]上的某个中间值。

微积分中的中值定理及其应用

微积分中的中值定理及其应用

微积分中的中值定理及其应用在高等数学中,微积分是一个重要的分支,它是数学的基础之一。

微积分主要研究的是极限和导数、微分和积分等数学问题。

而在微积分中,中值定理是一个非常重要的定理,它不仅是微积分的基础,而且在数学和物理等领域中也有着广泛的应用。

一、中值定理的定义中值定理是微积分中的一个基本定理,它是关于连续函数的一个定理。

中值定理包括一系列的定理,其中最基本的是魏尔斯特拉斯中值定理,也就是:定理:设函数$f(x)$在闭区间$[a,b]$上连续,则存在$\xi\in(a,b)$,使得$f(\xi)=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$。

意义:对于一个连续函数$f(x)$,在闭区间$[a,b]$内必然存在一个取值$\xi$,使得$f(\xi)$等于其在该区间内的均值,也就是该区间内$f(x)$在$x$上的积分与该区间长度的比值。

二、中值定理的应用中值定理在微积分中应用非常广泛,它的应用主要有以下几个方面:1.函数极值:中值定理可以用来证明函数的极值。

具体来说,当$f(x)$在某个区间上连续并且在该区间的内部取得了极值,则一定存在一个中间点$\xi$,使得$f'(\xi)=0$。

2.导数的应用:中值定理在求解导数存在的问题时也有很大的作用。

根据中值定理,如果$f(x)$在区间$[a,b]$内可导,那么存在一个点$\xi$,使得$f(b)-f(a)=f'(\xi)(b-a)$。

这个公式常常被称为Lagrange中值定理,它可以用来证明导数的存在性,并且可用于证明很多导数相关的定理。

3.曲线长度:中值定理还可以用于计算曲线的长度。

具体来说,我们可以将曲线分成若干个线段,然后利用Lagrange中值定理来求每个线段的长度,最后将它们加起来即可得到整条曲线的长度。

4.牛顿迭代法:在求解方程的问题中,中值定理也有着很大的应用。

例如,可以利用中值定理来实现牛顿迭代法。

微分中的中值定理及其应用

微分中的中值定理及其应用

微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。

本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。

一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。

其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。

1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。

罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。

2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。

拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。

3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。

柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。

二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。

下面将介绍中值定理在实际问题中的应用案例。

1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。

微分中值定理与积分中值定理的内在联系

微分中值定理与积分中值定理的内在联系

微分中值定理与积分中值定理的内在联系
微分和积分是高等数学中最重要的基本概念,它们之间存在着密切的联系。

其中,微分中值定理和积分中值定理是非常重要的定理,它们之间存在着深刻的内在联系。

首先,微分中值定理是指在一定条件的情况下,可以将一定区间上的函数表达为函数在区间上的中点处的值乘以区间的长度,即:$$\int_a^bf(x)dx=f(c)(b-a)$$其中,f(x)表示函数,a
和b表示区间边界,c表示区间中点。

而积分中值定理是指在一定条件下,可以将一定区间上的函数表达为函数在区间上的某个点处的值乘以区间的长度,即:$$\int_a^bf(x)dx=f(c)(b-a)$$其中,f(x)表示函数,a和b表
示区间边界,c表示区间上的某个点。

从上述定理可以看出,微分中值定理和积分中值定理之间的内在联系就是:在满足同样条件的情况下,它们的表达式都是一样的,只是积分中值定理中的点可以是任意的点,而微分中值定理中的点只能是中点。

此外,微分中值定理和积分中值定理还有一个重要的联系,就是它们可以互相推导。

例如,将积分中值定理应用于微分中值定理,可以得出:在一定条件下,函数在区间上的某个点处的导数等于函数在区间上的中点处的值,
即:$$\frac{d}{dx}\int_a^bf(x)dx=f(c)$$从上述推导可以看出,
微分中值定理和积分中值定理之间存在着密切的内在联系,它们可以互相推导。

总之,微分中值定理和积分中值定理之间存在着密切的内在联系,它们可以互相推导,这也是它们最重要的特点。

它们的存在使我们能够更好地理解高等数学中的重要概念,从而更好地应用数学到实际生活中。

微分中值定理及其应用

微分中值定理及其应用

微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。

微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。

本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。

文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。

这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。

接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。

本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。

通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。

文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。

《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。

通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。

二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。

这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。

微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。

罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。

拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。

柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。

这些定理在实际应用中具有广泛的价值。

高等数学 中值定理及其应用

高等数学 中值定理及其应用

3. 积分中值定理及其应用
一、微分中值定理
定理1 (Fermat引理) 若函数f (x)在点x0处可导且
取得极值, 则 f (x0 ) 0.
定理2 (Rolle定理) 若函数 f (x) 满足: (1) 在闭区间[a,b] 上连续; (2) 在开区间(a,b)内可导; y
(3) f (a) f (b),
(2) 反证 假设x (0,1), 都有f (x) 2. 任取 t (0, ), 对 f (x)用拉格朗日中值定理知, c (t,), 使得
f (t) f (t) f ( ) f (c)(t ) 2(t ),
于是
f ( )
f (t)dt 2 (t )dt
0
0
2 1.
此与 f ( ) 1矛盾, 因此结论成立.
g(x) f ( ) f (x), x [0,1].
则g(x)在[0,1]上非负连续, 且g(0) f ( ) 0. 所以
1
1
0 0 g(x)dx f ( ) 0 f (x)dx,
于是 f ( ) 1, 故 (0,1). 由费马引理知f ( ) 0.
(2) (0,1), 使得f () 2.
sin x x x3 o( x3 ), 3!
lim x0
e
x
sin
x
x(1 x3
x)
x x2 x3 x3 o( x3 ) x(1 x)
lim
x0
lim
x0
x3 3
2!
o( x3 ) x3
3! x3
1. 3
2. 在等式或不等式证明中的应用 例1. 证明等式 arcsin x arccos x .
从而 x ln(1 x) x. 1 x

积分中值定理的改进和应用

积分中值定理的改进和应用

积分中值定理的改进和应用一、积分中值定理简介积分中值定理是微积分中的重要定理之一,主要描述了函数f(x)在区间[a,b]上的平均值与函数f(x)在[a,b]中的某一点c的函数值相等的关系。

根据积分中值定理,如果f(x)在[a,b]上连续,则存在至少一个点$c\\in[a,b]$,使得:$$ \\int_a^b f(x)dx = f(c)\\cdot(b-a) $$重要的是,使用了积分中值定理,我们可以非常简单地证明定积分的存在性并计算其值。

二、改进积分中值定理的改进主要是关于该定理的充分性,即是否能够在积分中值定理的条件下保证f(x)在[a,b]上连续。

对于一些特定情况的函数f(x),积分中值定理存在不充分的情况。

例如,我们考虑函数 $f(x)=\\sqrt{x}$,在区间[0,1]上,f(x)明显连续并且积分可计算。

直接应用积分中值定理,存在点 $c\\in[0,1]$,使得:$$ \\int_0^1 \\sqrt{x} dx = c\\cdot(1-0) $$则有 $\\sqrt{c}=\\frac{2}{3}$,即 $c=\\frac{4}{9}$。

但是我们可以看到,$f(x)=\\sqrt{x}$ 没有在点x=0处定义,因此积分中值定理在此情况下不充分。

为了有效地避免这种情况的出现,可以改进积分中值定理的条件。

一般的改进方式是引入曲线的概念,然后将积分中值定理的条件定为曲线的完整性。

三、引入曲线的概念对于一个连续的函数f(x),我们可以定义一个曲线y=f(x)。

本文我们默认f(x)在区间[a,b]上是单调递增的,因此函数的反函数f−1(y)存在且单调递增,从而可以将曲线y=f(x)在[a,b]上的一部分映射到[f(a),f(b)]上的一条弧线。

曲线的完整性指的是曲线中不剩余任何点的情况。

即,曲线上的点与曲线下的点之间不存在任何缺口或间隙。

根据这个定义,我们可以将积分中值定理的条件改为:存在一条从(a,f(a))到(b,f(b))的弧线,该弧线光滑且完整,且过点(c,f(c))。

微积分中的积分与平均值定理与中值定理

微积分中的积分与平均值定理与中值定理

微积分中的积分与平均值定理与中值定理微积分在数学中起着重要的作用,它涉及到了很多重要的定理和概念。

积分是微积分的一个重要概念,而平均值定理和中值定理则是积分的两个重要定理。

本文将重点介绍微积分中的积分以及平均值定理和中值定理的应用。

一、积分的概念积分是微积分中的一个重要概念,它的本质是对函数在某个区间上的累加。

对于一个函数f(x),其在区间[a, b]上的积分可以表示为∫[a, b]f(x)dx。

积分可以理解为曲线下面的面积,也可以理解为函数在某个区间上的累加和。

二、平均值定理的应用平均值定理是微积分中的一个重要定理,它给出了函数在某个区间上的平均值与函数在区间内某一点的函数值之间的关系。

根据平均值定理可以得到以下结论:1. 对于一个连续函数f(x),在闭区间[a, b]上必然存在一个点c,使得f(c)等于函数在[a, b]上的平均值。

即∫[a, b]f(x)dx = f(c) * (b - a)。

2. 平均值定理还可以应用于求解定积分问题。

如果我们知道函数f(x)在区间[a, b]上的平均值M,那么可以通过以下公式求得函数在该区间上的定积分:∫[a, b]f(x)dx = M * (b - a)。

三、中值定理的应用中值定理是微积分中的另一个重要定理,它给出了函数在一个区间上的平均斜率与函数在该区间内某一点的导数之间的关系。

根据中值定理可以得到以下结论:1. 对于一个可导函数f(x),在闭区间[a, b]上必然存在一个点c,使得函数在该点的导数等于函数在[a, b]上的平均斜率。

即f'(c) = (f(b) -f(a)) / (b - a)。

2. 中值定理可以应用于求解函数的零点或者极值。

如果我们知道函数f(x)在闭区间[a, b]上连续并且可导,且f(a)和f(b)异号,那么可以通过中值定理得到在区间[a, b]内存在至少一个点c,使得f(c)等于零。

四、应用举例下面通过几个例子来说明平均值定理和中值定理在实际问题中的应用:例题1:计算函数f(x) = x^2在区间[1, 3]上的平均值。

8-高等数学第八讲 微分积分中值定理和极值

8-高等数学第八讲 微分积分中值定理和极值

第八讲 微分与积分中值定理和函数极值§8.1 微分与积分中值定理一、知识结构 1、微分中值定理(1) 罗尔(Rolle )中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导;(iii))()(b f a f =,则在()b a ,内至少存在一点ξ,使得0=')(ξf .(2)拉格朗日(Lagrange)中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导,则在()b a ,内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.(3)柯西中值(Cauchy)定理 若函数)(x f 和)(x g 满足下列条件:(i) )(x f 和)(x g 在闭区间[]b a ,上连续; (ii) )(x f 和)(x g 在开区间()b a ,内可导,(iii))(x f '和)(x g '不同时为零; (iv))()(b g a g ≠, 则在()b a ,内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ.2、积分中值定理 (1)积分第一中值定理若函数)(x f 在[]b a ,上连续,则至少存在一点[]b a ,∈ξ,使得()⎰-=baa b f dx x f )()(ξ.(2)推广的积分第一中值定理若函数)(),(x g x f 在[]b a ,上连续,且)(x g 在[]b a ,上不变号,则至少存在一点[]b a ,∈ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ.3、积分第二中值定理 若函数)(x f 在[]b a ,上连续,(i)若函数)(x g 在[]b a ,上单调递减, 且0≥)(x g , 则存在[]b a ,∈ξ,使得⎰⎰=baadx x f a g dx x g x f ξ)()()()(.(ii)若函数)(x g 在[]b a ,上单调递增, 且0≥)(x g , 则存在[]b a ,∈η,使得⎰⎰=ba bdx x f b g dx x g x f η)()()()(.3、泰劳公式(微分中值定理的推广)麦克劳林公式 (1) 一元函数)(x f y =泰劳公式泰劳公式产生的背景: 将函数)(x f ()(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数) 近似的表示为关于)(0x x -的一个n 次多项式,由于多项式的算法是好算法,我们可以用关于)(0x x -的一个n 次多项式来求函数)(x f 在某点(()b a x ,∈)的近似值.定理1 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个余项)(x R n 之和:(x)R )x (x n!)(x f)x )(x (x f )f(x f(x)n n(n)+-++-'+=00000!11 ,其中()()()()101!1)(++-+=n n n x x n fx R ξ(拉格朗日型余项),这里ξ是属于x 与0x 之间的某个值.或, 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个当0x x →时的n )x (x 0-的高阶无穷小之和:()()nn(n)x x o )x (x n!)(x f)x )(x (x f )f(x f(x)000000!11-+-++-'+=其中()n )x (x o 0-为当0x x →时n)x (x 0-的高阶无穷小.(2)麦克劳林公式定理2 如果函数)(x f 在含有0的某个开区间()b a ,内具有直到1+n 阶地导数,则当()b a x ,∈时, )(x f 可以表示为x 的一个n 次多项式与一个余项)(x R n 之和:(x)R x n!)(x fx !)(f )x (f )f(f(x)n n(n)+++''+'+=022000 ,其中()()()11!1)(+++=n n n x n x fx R θ,(10<<θ).2、二元函数),(y x f z =的泰劳公式和麦克劳林公式 (1)泰劳公式定理3 如果函数),(y x f 在含有()00,y x 的某一领域内连续且有直到1+n 阶的连续偏导数,()k y h x ++00,为此邻域内任一点,则有()200000000100001,,,,2!11,,,1nn f(x h y k)f(x y )h k f(x y )h k f(x y )x y x y h k f(x y )h k f(x h y k)n!x y n !xy θθ+⎛⎫⎛⎫∂∂∂∂++=++++ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂+++++++ ⎪ ⎪∂∂+∂∂⎝⎭⎝⎭ 其中10<<θ,记号()()000000,,,y x kf y x hf )y f(x y k x h y x +=⎪⎪⎭⎫⎝⎛∂∂+∂∂, ()()()00200002002,,2,,y x f k y x hkf y x f h )y f(x y k x h yy xy xx ++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂, ……)y f(x yx kh C)y f(x y k x h pm pm pm p mp pmm00000,,--=∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∑,()k)y h f(x y k x h !n x R n n θθ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=+001,11)(, 10<<θ 称为拉格朗日型余项.(2)麦克劳林公式定理4 如果函数),(y x f 在含有()0,0的某一领域内连续且有直到1+n 阶的连续偏导数,()k h ,为此邻域内任一点,则有+⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=)f y y x x )f(y y x x )f(y)f(x 0,0!210,00,0,2()y)x f(y y x x !n )f(y y x x n!n nθθ,110,011+⎪⎪⎭⎫⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+,其中10<<θ.二、解证题方法1、微分中值定理例1 (山东师范大学2006年)设)(x P 为多项式函数,试证明:若方程0=')(x P 没有实根,则0=)(x P 至多有一个实根.证明 用反证法.因为)(x P 为多项式函数, 所以)(x P 在()+∞∞-,上连续并且可导. 如果0=)(x P 至少有两个实根, 不妨设为21ξξ<,则021==)()(ξξP P .在闭区间上用罗尔定理得,存在()21ξξη,∈,使得0=')(ηP . 这与方程0=')(x P 没有实根发生矛盾, 所以0=)(x P 至多有一个实根.例2 (河北大学2005年)设)(x f 可导,λ为常数,则)(x f 的任意两个零点之间必有0='+)()(x f x f λ的根.证明 不妨设)(x f 的任意两个零点为ηξ<. 令x e x f x F λ)()(=,则0==)()(ηξF F . 因为)(x F 在[]ηξ,上连续, 在()ηξ,内可导,且0==)()(ηξF F , 所以, 由罗尔定理得:存在()ηξ,∈x ,使得0=')(x F ,即0='+='xxe xf ex f x F λλλ)()()(,进而有0='+)()(x f x f λ, 所以()ηξ,∈x 是0='+)()(x f x f λ的根.例3(电子科技大学2002年))(x f 在[]10,上二次可导,010==)()(f f ,试证明:存在()10,∈ξ,使得()())(ξξξf f '-=''211.证明 因为)(x f 在[]10,上连续, )(x f 在()10,内可导, 且010==)()(f f ,所以由罗尔定理得:存在()10,∈ξ,使得0=')(ξf .令⎪⎩⎪⎨⎧=∈'=-101011x x ex f x g x ,),[,)()(. 因为)(x g 在[]10,上连续,在()10,内可导, 且()()01==g g ξ, 所以由罗尔定理知, 存在()1,ξξ∈', 使得()0='ξg ,即()())(ξξξf f '-=''211.例4(山东科技大学2005年)设()x f 在整个数轴上有二阶导数,且00=→xx f x )(lim,01=)(f ,试证明: 在()10,内至少存在一点β,使得()0=''βf .证明 因为()x f 在整个数轴上有二阶导数,所以()x f 在整个数轴上连续. 进而0lim )(lim )(lim)(lim )0(0000=⋅=⎥⎦⎤⎢⎣⎡==→→→→x x x f x x x f x f f x x x x . 又因为01=)(f , 所以函数在()10,内满足罗尔定理的条件, 进而存在()10,∈α,使得0=')(αf . 又因00000=-=-='→→xx f xf x f f x x )(l i m)()(l i m)(, 并且()x f '在[]α,0上连续, 在()α,0内可导, 所以()x f '在[]α,0上满足罗尔定理的条件, 进而存在()αβ,0∈,使得()0=''βf .例5(汕头大学2005年) 设()x f 在闭区间[]b a ,上有二阶导数,且)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 试证明: 存在()b a ,∈ξ,使得0='')(ξf .证明 由于)(x f 在[]b a ,上连续, 所以)(x f 在[]b a ,上取得最大值和最小值. 又因为)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值,所以存在()b a ,,∈21ξξ, 不妨设21ξξ<,使得()21ξξf f ),(是)(x f 在[]b a ,上的最大值和最小值. 进而()021='='ξξf f )(.由()x f 在闭区间[]21ξξ,上有二阶导数, 所以()x f '在闭区间[]21ξξ,上连续, 在开区间()21ξξ,内可导. 由罗尔定理知, 存在()21ξξξ,∈,使得0='')(ξf . 进而存在()b a ,∈ξ,使得0='')(ξf .例6(北京工业大学2005年)设)(x f 在()+∞∞-,上可导, 试证明:0=')(x f 当且仅当)(x f 为一常数.证明 (1)充分性 因为)(x f 为一常数C , 所以()0000==∆-=∆-∆+='→∆→∆→∆x x x xC C xx f x x f x f lim lim)(lim)(.(2)必要性对任意的()+∞∞-∈,,21x x , 不妨设21x x <. 显然()x f 在闭区间[]21x x ,上满足拉格朗日中值定理的条件, 所以存在()21x x ,∈ξ, 使得()()()()2121x f x f x x f -=-'ξ.因为()0='ξf , 所以()()21x f x f =. 进而)(x f 为一常数.例7(南京大学2001年)设)(x f 在()10,内可导, 且1<')(x f , ()10,∈x .令⎪⎭⎫⎝⎛=n f x n 1(2≥n ), 试证明n n x ∞→lim 存在且有限.分析 ()1111n m n m x x x x f f f n m n m εξ⎛⎫⎛⎫⎛⎫'-<⇐-=-=-⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()11111n f nmnmnmmξε'=-<-<=<.证明 对0>∀ε, 存在⎥⎦⎤⎢⎣⎡=11,εN ,当Nm n >>时, 有ε<=<-=-=-mnmn nmm n mn x x m n 111, 所以()()εξξ<=<-<-'=⎪⎭⎫ ⎝⎛-'=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-m nm n m n m n f m n f m f n f x x m n 111111111,进而由柯西收敛准则知, n n x ∞→lim 存在且有限.例8(华东师范大学2001年)证明: 若函数)(x f 在有限区域()b a ,内可导, 但无界,则其导函数)(x f '在()b a ,内必无界. 证明 用反证法 若函数)(x f '在()b a ,内有界, 则存在正数M ,使得M x f ≤')(,()b a x ,∈. 由拉格朗日中值定理得:⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+-≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=22)(22)()(b a f b a f x f b a f b a f x f x f ()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-'=2222b a f b a M b a f b a x f ξ,所以函数)(x f 在有限区域()b a ,内有界. 与已知矛盾.例9(天津工业大学2005年)设R x n ∈, ()1arctan -=n n ky y (10<<k ), 证明: (1)11-+-≤-n n n n y y k y y ; (2)n n y ∞→lim 收敛.证明 (1)令kx x f arctan )(=, ()+∞∞-∈,x ,则221xk k x f +=')(,于是k x f ≤')(,从而由拉格朗日中值定理得:()()1111---+-≤-'=-=-n n n n n n n n y y k y y f y f y f y y ξ)()(, 其中ξ介于1-n y ,n y 之间.(2)由(1)的递推关系知,011y y ky y nn n -≤-+,又因为级数∑∞=-101n ny y k收敛,所以由比较判别法知, 级数()∑∞=+-11n n n y y 绝对收敛,所以n n S ∞→lim 收敛, 其中()1111y y y yS k nk k k n -=-=+=+∑, 进而n n y ∞→lim 收敛.例10(湖南师范大学2004年)设)(x f 在),[+∞0上连续, 在()+∞,0内可导且00=)(f , )(x f '在()+∞,0内严格单调递增, 证明:xx f )(在()+∞,0内内严格单调递增.分析 关键是证明02>-'='⎪⎭⎫⎝⎛x x f x f x x x f )()()(. 证明 因为()[]000>'-'=⎥⎦⎤⎢⎣⎡---'=⎥⎦⎤⎢⎣⎡-'=-'ξf x f x x f x f x f x x x f x f x x f x f x )()()()()()()()(, 其中()+∞∈,0x , ()x ,0∈ξ, 所以xx f )(在()+∞,0内内严格单调递增.练习[1](辽宁大学2005年)设)(x f 在],[b a 上可导,且b x f a <<)(,1)(≠'x f . 证明: 方程x x f =)(在()b a ,内存在惟一的实根.[2] (南京农业大学2004年) 设函数)(x f 在]1,0[上可微, 0)0(=f , 当10<<x 时, 0)(>x f , 证明: 存在()1,0∈ξ,使得)1()1()()(2ξξξξ--'='f f f f .[3] (陕西师范大学2002年,武汉大学2004年) 设)(x f ,)(x g 是[]b a ,上的可导函数, 且0)(≠'x g . 证明: 存在()b a c ,∈使得)()()()()()(c g c f b g c g c f a f ''=--.[4] (西南师范大学2005年)设函数)(x f 在()+∞∞-,内可导,)(2)(x f x x f -=', 0)0(=f .证明: 42)(xex f -=,()+∞∞-∈,x .[5] (北京工业大学2004年)设函数)(x f 在0x 的某邻域)(0x N 内连续, 除0x 外可导,若l x f x x ='→)(lim 0,则)(x f 在0x 可导且l x f =')(0.[6] (辽宁大学2004年) 设函数)(x f 在()+∞∞-,内可导, 且0)0(>f ,1)(<≤'k x f ,证明: 方程x x f =)(有实根.[7] (厦门大学2004年) 设函数)(x f 在),[+∞a 上二阶可微, 且0)(>a f ,0)(<'a f , 当a x >时, 0)(<''x f . 证明: 方程0)(=x f 在),[+∞a 上有惟一的实根.[8] (北京化工大学2004年) 设函数)(x f 在]1,0[上连续, 在()1,0内可导,0)0(=f , 1)1(=f . 证明: 对于∀的正数a 和b , 存在()1,0,21∈ξξ, 使得()()b a f b f a +='+'21ξξ.[9] (中科院武汉物理与数学研究所2003年) 设函数)(x f 在闭区间[]b a ,上连续, 在开区间()b a ,内可微, 并且)()(b f a f =. 证明: 若函数)(x f 在闭区间[]b a ,上不等于一个常数, 则必有两点()b a ,,∈ηξ, 使得()0>'ξf , ()0<'ηf .[10] (中山大学2006年) 证明: 当0≥x 时, 存在()1,0)(∈x θ, 使得)(211x x x x θ+=-+, 并且)(lim 0x x θ+→和)(lim x x θ+∞→(答案:41)(lim 0=+→x x θ,21)(lim =+∞→x x θ ).2、积分中值定理例1(上海大学2005年)已知)(),(x g x f 在[]b a ,上连续,0>)(x f ,)(x g 不变号,求⎰∞→bann dx x g x f )()(lim.解 因为)(),(x g x f 在[]b a ,上连续, )(x g 在[]b a ,上不变号,所以由积分第一中值定理得⎰⎰=banb andx x g f dx x g x f )()()()(ξ,其中[]b a ,∈ξ. 又因为()0>ξf , 所以1=∞→nn f )(li m ξ,进而⎰⎰⎰=⎥⎦⎤⎢⎣⎡=∞→∞→baba n n bann dx x g dx x g f dx x g x f )()()(lim )()(limξ.例2(河北大学2005年)证明:dx xx dx xx ⎰⎰+≤+222211ππcos sin .分析0111222222≤+-⇐+≤+⎰⎰⎰dx xx x dx xx dx xx πππcos sin cos sin .证明 当⎥⎦⎤⎢⎣⎡∈4,0πx 时, 0≤-x x cos sin 在⎥⎦⎤⎢⎣⎡4,0π上不变号,当⎥⎦⎤⎢⎣⎡∈2,4ππx 时, 0≥-x x cos sin 在⎥⎦⎤⎢⎣⎡2,4ππ上不变号. 由推广的积分第一中值定理得:dx xx x dx xx x dx x x x ⎰⎰⎰+-++-=+-24242221cos sin 1cos sin 1cos sin ππππ()()dx x x dx x x ⎰⎰-++-+=242402cos sin11cos sin11πππηξ01121121121212222≤+--+-=+-++-=ξηηξ,其中⎥⎦⎤⎢⎣⎡∈40πξ,, ⎥⎦⎤⎢⎣⎡∈24ππη,, 进而dx xx dx x x ⎰⎰+≤+2220211ππcos sin .例3(电子科技大学2005年)设)(x f 在[]10,上可导,且⎰-=211221dx ex f f x)()(,证明: 存在()10,∈ξ,使得())(ξξξf f 2='.证明 令2)()(x e x f x F -=, []10,∈x . 由积分中值定理知, 存在⎪⎭⎫ ⎝⎛∈210,η,使得()⎰--=⎪⎭⎫ ⎝⎛-211122021dx ex f ef x)(ηη即()⎰--=211122)(2dx ex f ef xηη. 因为⎰-=2101221dx ex f f x)()(, 所以())(121f ef =-ηη, 进而()112--=ef ef )(ηη. 又因为112--==e f e f F )()()(ηηη, 111-=ef F )()(, 所以, 在区间[]1,η上由微分中值定理(罗尔)得:()0='ξF , 其中()1,ηξ∈. 因为222ξξξξξξ---'='ef ef F )()()(,所以())(ξξξf f 2='.例4(山东科技大学2004年)设()x f 在[]π,0上连续, 在()π,0内可导, 且()⎰-=ππππ1dx x f ef x)(,证明: 至少存在一点()πξ,0∈, 使得()()ξξf f ='.证明:令)()(x f ex F x-=,由()⎰-=ππππ1)(dx x f ef x和)()(πππf e F -=,得:()()⎰⎰⎰====----πππππππππππ111)()()(dx x F dx x f edx x f eef eF xx.由积分中值定理: ()()11()0()F F x dx F F ππππηηπ⎛⎫==-= ⎪⎝⎭⎰,其中⎥⎦⎤⎢⎣⎡∈πξ10,.在()πη,内应用微分中值定理(罗尔)得: 0=')(ξF ,其中()πηξ,∈.由)()(x f e x F x -=得: )()()(ξξξξξf e f e F '+-='--,所以()()ξξf f ='.例5(西安电子科技大学2003年)设()x f 在[]b a ,上二阶连续可导, 证明:存在()b a ,∈ξ使得()()()32412a b f b a f a b dx x f ba -''+⎪⎭⎫⎝⎛+-=⎰ξ)(. 证明: 由分部积分公式得⎰⎰⎰+++=baba ab b a dx x f dx x f dx x f 22)()()(()()⎰⎰++-+-=22)()(ba ab b a b x d x f a x d x f ()[]()()[]()⎰⎰++++'---+'---=bb a b ba ba ab a adxx f b x x f b x dx x f a x x f a x 2222)()()()(()()()⎰⎰++-'--'-⎪⎭⎫⎝⎛+-=b b a ba ab x d x f a x d x f b a f a b 22222)(2)(2()()()⎰++''-+⎥⎦⎤⎢⎣⎡'--⎪⎭⎫ ⎝⎛+-=2222)(22)(2ba aba a dx x f a x x f a xb a f a b()()⎰++''-+⎥⎦⎤⎢⎣⎡'--bba bb a dx x f b x x f b x 2222)(22)(()()()⎰⎰++''-+''-+⎪⎭⎫ ⎝⎛+-=b b a ba adx x f b x dx x f a x b a f a b 2222)(2)(22()()())(2)(2)(2222221积分中值定理⎰⎰++-''+-''+⎪⎭⎫⎝⎛+-=bba b a adx b x c f dx a x c f b a f a b()()[]312()()()248b a a bb a f fc f c -+⎛⎫''''=-++⎪⎝⎭介值性定理()()3()224b a a bb a f fc -+⎛⎫''=-+⎪⎝⎭, 其中c 介于21c c ,之间. 即()b a c ,∈. 3、泰劳公式(微分中值定理的推广)例1(西安电子科技大学2004年) 设)(x f 在[]1,0上有二阶导数,且满足条件a x f ≤)(,b x f ≤'')(,a 和b 为非负常数,证明不等式22)(b a x f +≤', )1,0(∈x .分析:要熟练运用Taylor 展开. 证明:在)1,0(∈x 处做Taylor 展开有21)1(2)()1)(()()1(x f x x f x f f -''+-'+=ξ,222)()()()0(x f x x f x f f ξ''+'-=上面两式相减有 22212)()1(2)()0()1()(x f x f f f x f ξξ''+-''--=',所以[]22)1(22)(22b a xx b a x f +≤+-+≤'.例2(陕西师范大学2003年,中国地质大学2004年)设函数f 在区间[]b a ,上有二阶导数且,0)()(='='-+b f a f 则必存在一点),(b a ∈ξ使得)()()(4)(2a fb f a b f --≥''ξ.分析:关键是做Taylor 展开. 证明:应用Taylor 公式,将)2(b a f +分别在b a 、点展开,注意0)()(='='-+b f a f ,故存在1ξ和2ξ,b b a a <<+<<212ξξ,使得212)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f a f b a f ξ,222)(21)(2⎪⎭⎫ ⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f b f b a f ξ.两式相减得: []0)()()(81)()(221=-''-''+-a b f f a f b f ξξ, 故[])()()(21)()()(4212ξξξf f f a f b f a b ''≤''+''≤--.其中 ⎩⎨⎧''<''''≥''=)()(,)()(,212211ξξξξξξξf f f f .例3(北京交通大学2005年)设函数)(x f 在区间),0(+∞内有二阶函数,0)(lim =+∞→x f x ,并当),0(+∞∈x 时,有1)(≤''x f . 证明:0)(lim ='+∞→x f x .分析:关键是做Taylor 展开.证明:要证明0)(lim ='+∞→x f x ,即要证明对任意的0>ε,存在0>A ,当A x >时有ε<')(x f . 利用Taylor 公式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+, ()h ,0∈ξ,即[]h f x f h x f hx f )(21)()(1)(ξ''--+='. 从而[]hx f h x f hhf x f h x f hh f x f h x f hx f 21)()(1)(21)()(1)(21)()(1)(+-+≤''+-+≤''--+='ξξ, 取ε<h , 因为0)(li m =+∞→x f x , 所以21)()(1lim )(lim0=⎭⎬⎫⎩⎨⎧+-+≤'≤+∞→+∞→h x f h x f hx f x x , 其中2)()(ε<-+x f h x f . 即0)(lim ='+∞→x f x .例4(上海大学2005年、中国科学院2007年)设函数)(x f 在[]20,上有1)(≤x f ,1)(≤''x f . 证明:2)(≤'x f .分析:关键是做Taylor 展开. 证明:在)2,0(∈x 处做Taylor 展开有212)()()()0(xf x x f x f f ξ''+'-=,22)2(2)()2)(()()2(x f x x f x f f -''+-'+=ξ,将上面两式相减有[]21224)()2(4)()0()2(21)(x f x f f f x f ξξ''+-''--=',所以[][][].21)1(211)2(411)(4)2()(4)0()2(21)(22222212≤+-+≤+-+≤''-+''++≤'x xx f x f x f f x f ξξ.例5(江苏大学2004年)已知函数)(x f 在区间()1,1-内有二阶导数,且0)0()0(='=f f , )()()(x f x f x f '+≤'', 证明:存在0>δ,使得在()δδ,-内0)(≡x f .分析:关键是做Taylor 展开.证明:将)()()(x f x f x f '+≤''右端的)(x f ,)(x f '在0=x 处按Taylor 公式展开. 注意到0)0()0(='=f f ,有222)(2)()0()0()(x f x f x f f x f ξξ''=''+'+=, x f f x f )()0()(η''+'=',其中ηξ,是属于0与x 之间的某个值.从而x f x f x f x f )(2)()()(2ηξ''+''='+.现令⎥⎦⎤⎢⎣⎡-∈41,41x ,则由)()(x f x f '+在⎥⎦⎤⎢⎣⎡-41,41上连续知,存在⎥⎦⎤⎢⎣⎡-∈41,410x ,使得{}M x f x f x f x f xx ='+='+≤≤-)()(max )()(14100.下面只要证明0=M 即可. 事实上⎥⎦⎤⎢⎣⎡''+''≤''+''='+=)(2)(41)(2)()()(000020000ηξηξf f x f x f x f x f M ()()()()[]000041ηηξξf f f f +'++'≤(由()()x f x f x f x f ηξ''+''='+22)()()11242M M ≤⋅=,即M M 20≤≤, 所以0=M . 在⎥⎦⎤⎢⎣⎡-41,41上0)(≡x f . 例6(辽宁大学2005年)求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→x x x x 1sin1lim 2. 分析:利用Taylor 展开式计算函数极限. 解: 将x1sin展开成带Peano 余项的二阶Taylor 公式⎪⎭⎫ ⎝⎛+-=3316111s i n x o x x x ,则 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→→∞→332216111lim 1sin 1lim x o x x x x x x x x x x ()61161lim 16111lim 322=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅-+-=∞→∞→o x o x x x x x . 例7(山东师范大学2006年)求422cos lim xex xx -→-.分析:利用Taylor 展开式计算函数极限. 解 进行带Peano 余项的Taylor 展开()5422421cos xo xxx ++-=, )(82154222x o xxex++-=-,所以)(12cos 5422x o xex x+-=--, 进而121cos lim422-=--→xex xx .例8(浙江大学2005年、华南理工大学2005年)设)(x f 在),[+∞a 上有连续的二阶导数,且已知(){}+∞∈=,0)(sup 0x x f M 和(){}+∞∈''=,0)(sup 2x x f M 均为有限数. 证明:(1)2022)(M t tM t f +≤' ,对任意的0>t ,),0(+∞∈x 成立;(2){}),0()(sup 1+∞∈'=x x f M 也是有限数,且满足不等式2012M M M ≤ .分析:Taylor 展开式.证明(1)考虑)(t x f + 在t 处的Taylor 展开式,,2)()()()(2>''+'+=+t t f t t t t f t t f ξ,则t f tt f t f t f 2)()()2()(ξ''--=',所以++≤'tt f t f t f )()2()(2)(ξf ''t ,有题设条件可得t M tM t f 22)(2+≤' .(2)同理由Taylor 展开式知,t M tM t f 22)(2+≤'成立,从而t M tM M 2221+≤,取202M M t = 即得证.例9(哈尔滨工业大学2006年)设)(x f 在[)+∞,0内二阶可微,0)(lim =+∞→x f x ,但)(lim x f x '+∞→不存在.证明:存在00>x ,使1)(0>''x f .分析 Taylor 展开式.证明 反证法,设对任意的),0(+∞∈x ,均有1)(≤''x f .利用Taylor 展开式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+,因此有2)()(1)(h x f h x f hx f +-+≤' ,取ε=h ,由0)(lim =+∞→x f x 知,存在0>A ,当A x > 时,有4)(2ε≤'x f ,于是ε<')(x f ,A x > ,即0)(lim ='+∞→x f x ,矛盾.例10 (华中科技大学2007年)设 )(x f 在(0,1) 上二阶可导且满足1)(≤''x f ,10(≤≤x ,又设)(x f 在()1.0 内取到极值41 .证明:1)1()0(≤+f f .分析 极值点,Taylor 展开式.证明 因为)(x f 在)1,0(上二阶可导,假设ξ在极值点,则41)(=ξf 、0)(='ξf .对)(x f 关于0=x 、1=x 在ξ点Taylor 展开有21)(2)())(()()0(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.又有2)1(2)()1)(()()1(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.所以有2221)1(2)(0)(2)(0)()1()0(ξηξξηξ-''+++''++=+f f f f f f[]2221)1()()(21)(2ξηξηξ-''+''+≤f f f[]22)1(121ξξ-++≤12121=+≤.这里另22)1()(x x x g -=,)1,0(∈x ,则最大值1)1(=g . 练习[1](华中科技大学2005年)设)(x f 在[]1,0上有二阶连续导数,0)1()0(==f f ,58)(≤''x f ,58)(≤'x f ,给出)10()(≤≤x x f 的一个估计.[2](华中科技大学2004年)设)10(,2)(,0)1()0(≤≤≤''==x x f f f ,证明:1)(≤'x f .[3](北京航空航天大学2005年)证明:对任意的n ,有)!1(1!)1(!31211+<⎪⎪⎭⎫ ⎝⎛-+⋅⋅⋅+---n n en. [4](华南理工大学2004年)设)(x f 在[]1,1-上三次可微,1)1(,0)0()0()1(=='==-f f f f .证明:存在)1,1(-∈x ,使得3)()3(≥x f.[5](大连理工大学2006年) 将2)1(1)(x x f += 在0=x 展开成Taylor 级数.[6](同济大学1999年)求⎥⎦⎤⎢⎣⎡+-→)11ln(lim 20x x x x (答案:21).[7](大连理工大学2004年)设)(x f 在[]1,0上二阶可导,且有,0)1()0(==f f []21)(m i n 1,0-=∈x f x ,证明:存在)1,0(∈ξ,使得4)(≥''ξf .[8] (东南大学2004年)(1)设)(x f 在[]2.0上二阶可导,0)2()0(='='f f .证明:存在)2,0(∈ξ使得[])(4)2()0(3)(320ξf f f dx x f ''++=⎰.(2)若在(1)中只假定)(x f 在[]2,0上存在二阶导数而不要求二阶导数连续,那么(1)的结论是否成立?[9](东南大学2003年) 求42cos lim2xx exx --→(答案:81-).[10](同济大学1999年)求xx x xx x x arcsin )1ln(cos sinlim222+-→(答案:61).§8.2 函数的极值和最值 函数的凸性与拐点一、知识结构 1、函数的极值和最值函数)(x f y =的极值是一个局部概念,而函数)(x f y =的最值是一个整体概念. 如函数)(x f y =在区间[]b a ,上有定义, 如果[]b a x ,0∈的某个邻域),(0δx U 内有)()(0x f x f ≤()()(0x f x f ≥), 则我们称函数)(x f y =在点0x 取得极大值(极小值). 函数)(x f y =在区间[]b a ,上的最大值)(0x f 满足)()(0x f x f ≥, 其中[]b a x ,∈.函数)(x f y =在区间[]b a ,上的最小值)(0x f 满足)()(0x f x f ≤, 其中[]b a x ,∈.(1) 一元函数)(x f y =的极值和最值定理1(必要条件) 设函数)(x f 在点0x 处可导,且在0x 处取得极值,那未这函数在0x 处的导数为零,即0)(0='x f .定理2(第一种充分条件) 设函数)(x f 在点0x 的一个邻域内可导且0)(0='x f .(1)如果当x 取0x 左侧邻近的值时,)(x f '恒为正;当x 取0x 右侧邻近的值时,)(x f '恒为负,那未函数)(x f 在0x 处取极大值;(2)如果当x 取0x 左侧邻近的值时,)(x f '恒为负;当x 取0x 右侧邻近的值时,)(x f '恒为正,那未函数)(x f 在0x 处取极小值;(3)如果当x 取0x 左右两侧邻近的值时,)(x f '恒为正或恒为负;那未函数)(x f 在0x 处没有极值.定理3 (第二种充分条件)设函数)(x f 在点0x 处具有二阶导数且0)(0='x f 0)(0≠''x f ,那么(1)当0)(0<''x f 时,函数)(x f 在点0x 处取极大值; (2)当0)(0>''x f 时,函数)(x f 在点0x 处取极小值. 一元函数)(x f y =在闭区间[]b a ,上的最值:(1)一元函数)(x f y =在()b a ,内的极大值与)(),(b f a f 中最大的为一元函数)(x f y =在闭区间[]b a ,上的最大值;(2)一元函数)(x f y =在()b a ,内的极小值与)(),(b f a f 中最小的为一元函数)(x f y =在闭区间[]b a ,上的最小值.(2) 二元函数()y x f z ,=的极值和最值定理1(必要条件) 设函数),(y x f 在点()00,y x 处可导,且在()00,y x 处取得极值,那未这函数在()00,y x 处的偏导数为零,即0),(00=y x f x ,0),(00=y x f y .定理2 (充分条件)设函数),(y x f 在点()00,y x 某邻域内连续且有一阶、二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则函数),(y x f 在点()00,y x 是否取得极值的条件如下:(1)02>-B AC 时具有极值, 且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论. 利用拉格朗日函数求极值和最值(条件极值)求函数),(y x f z =的极值,其中()y x ,满足条件0),(=y x F . 构造拉格朗日函数),(),(),,(y x F y x f y x L λλ+=, 解方程⎪⎩⎪⎨⎧===0),,(0),,(0),,(λλλλy x L y x L y x L y x 得⎪⎩⎪⎨⎧===000λλy y x x ,则()00,y x 为函数),(y x f z =的极值点(根据实际问题确定),进而求得函数),(y x f z =的极值),(00y x f z =.2、函数的凸性与拐点定义1 若曲线)(x f y =在某区间内位于其切线的上方, 则称该曲线在此区间内是凸的, 此区间称为凸区间. 若曲线位于其切线的下方, 则称该曲线在此区间内是凹的, 此区间称为凹区间.定义 2 设函数)(x f y =在区间I 上连续,如果对区间I 上任意两点21,x x ,恒有2)()(22121x f x f x x f +<⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凹(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凸(或凸弧).定理1 设函数)(x f y =在区间[]b a ,上连续,在()b a ,内具有一阶和二阶导数,那么(1) 若在()b a ,内0)(>''x f ,则)(x f y =在区间[]b a ,的图形是凹的; (2) 若在()b a ,内0)(<''x f ,则)(x f y =在区间[]b a ,的图形是凸的. 3、函数)(x f y =图像的描绘主要用函数)(x f y =的一阶导数)(x f y '='和二阶导数)(x f y ''=''的性质和曲线)(x f y =的渐进线描绘函数)(x f y =图像.如果0)(>''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向下凸. 如果0)(<''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向上凸. 如果0)(0=''x f , 且)(x f ''在()0,x a ,()b x ,0上异号, 则0x 为函数)(x f y =图像的拐点.如果0)(>'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递增. 如果0)(<'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递减.二、解证题方法 1、函数的极值和最值例1(南京大学2003年)对任意00>y , 求)1()(00x x y x y -=ϕ在()1,0中的最大值, 并证明该最大值对任意00>y , 均小于1-e .解 由于000120)1()(y y xy x xy x --='-ϕ ,令0)1()(000120=--='-y y xy x xy x ϕ得函数)(x ϕ的稳定点100+=y y x , 所以函数)(x ϕ的最大值为10000111)1(+⎪⎪⎭⎫⎝⎛+-=+y y y y ϕ.因为()x x -<-1ln , 10<<x , 所以()11111000000111)1(-⎪⎪⎭⎫⎝⎛+-++<=⎪⎪⎭⎫⎝⎛+-=+eey y y y y y ϕ .例2(复旦大学2000年, 北京理工大学2003年)在下列数,,,4,3,2,143n n 中,求出最大的一个数.解 构造辅助函数xx x f =)(, 1≥x , 则222ln 1ln 1ln 1ln 1)(xxx x x x x e e x f xxx x x x -=⎪⎭⎫⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xx x f =)(, 1≥x 的稳定点e x =. 当e x <≤1, 0)(>x f ,当e x ≥,0)(<x f , 所以函数)(x f 在点e x =取得最大值ee . 从而下列数,,,4,3,2,143n n 中最大的一个数只可能是33,2中的一个, 又因332<, 所以下列数 ,,,4,3,2,143n n 中最大的一个数是33.例3(北京化工大学2004年)在下列数,2004,,4,3,2,12004242322中,求出最大的一个数.解构造辅助函数xxx f 2)(=, 1≥x , 则22222ln 2ln 1ln 222ln 2)(x x x x x x x e e x f x x x x xx⋅-⋅=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xxx f 2)(=, 1≥x 的稳定点e x =. 当e x <≤1,0)(>x f ,当e x ≥, 0)(<x f , 所以函数)(x f 在点e x =取得最大值ee 2.从而下列数 ,2004,,4,3,2,12004242322中最大的一个数只可能是3223,2中的一个,又因32232<,所以下列数,2004,,4,3,2,12004242322中最大的一个数是323.例4(中山大学2006年)设S 为由两条抛物线12-=x y 与12+-=x y 所围成的闭区域,椭圆12222=+by ax 在S 内, 确定b a ,(0>b a 、), 使椭圆的面积最大.解 两条抛物线12-=x y 与12+-=x y 的交点为()0,1-,()0,1,()1,0-,()1,0.S 为1122+-≤≤-x y x ,因为椭圆12222=+by ax 在S 内, 所以1,0≤<b a . 椭圆的参数方程为⎩⎨⎧==t b y ta x s i n c o s ,π20≤≤t ,由椭圆12222=+by ax 和区域S 的对称性知,椭圆12222=+by ax 的面积最大时, 必须有ta tb 22cos 1sin -= ,20π≤≤t 有惟一解. 即0cos 1sin 22=+-t a t b ,20π≤≤t 有惟一解.令01sin sin cos 1sin )(22222=-++-=+-=a t b t a t a t b t f ,20π≤≤t .则01)0(2≤-=a f , 012≤-=⎪⎭⎫⎝⎛b f π ,0)1(4222=-+=∆a a b ,()122sin 22≤=--=ab ab t . 于是212aa b -=,122≤≤a . 椭圆12222=+by ax 的面积2221212)(aaa a a ab a f -=-==πππ,122≤≤a . 即01214)(232=---='aaa a a f ππ, 得36=a , 322=b , 故最大面积为934π.例5(湖南师范大学2005年)设q p b a ,,,都是正数,(1)求()q px xx f -=1)(在区间[]1,0上最大值;(2)证明:qp qpq p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.解(1)因为()qpx xx f -=1)(, 所以()()1111)(-----='q pq p x qxx pxx f ,令()()011)(11=---='--q pqp x qxx pxx f 得稳定点qp p x +=. 又0)1()0(==f f , ()qp qp q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+, 进而函数()qpx x x f -=1)(在区间[]1,0上最大值为()qp qpq p qp q p p f ++=⎪⎪⎭⎫⎝⎛+.(2)因为()1,q p p qp q p qa a a ab p p qf f a b a b a b a b a b p q p q +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=≤= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+⎝⎭⎝⎭所以qp q p q p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.例6(南京农业大学2004年)试问方程033=+-q px x 在实数域内有几个实根.解 由于()+∞=+-+∞→q px x x 3lim 3, ()-∞=+--∞→q px x x 3lim 3, 所以方程033=+-q px x 在实数域内至少有一个实根. 令q px x x f +-=3)(3, 则()p x p x x f -=-='22333)(.(1)当0<p 时, 有0)(>'x f , 进而)(x f 单调递增, 方程033=+-q px x 在实数域内只有一个实根.(2) 当0>p 时, 得q px x x f +-=3)(3的稳定点p x =, p x -=. 上述稳定点将()+∞∞-,分成三个区间()p -∞-,, ()p p ,-, ()+∞,p . 当()p x -∞-∈,时, )(x f 严格单调递增, 当()pp x ,-∈时, )(x f 严格单调递减, 当()+∞∈,p x 时, )(x f 严格单调递增. 进而,在p x -=时, )(x f 取得极大值q p p +2.在p x =时, )(x f 取得极小值q p p +-2. 所以, 当()()042232>-=+-+p q q p pq p p时,方程33=+-q px x 只有一个实根, 当()()042232=-=+-+p q q p pq p p时, 方程033=+-q px x 有两个实根, 当()()042232<-=+-+p q q p pq p p时, 方程。

微分中值定理与积分中值定理的比较

微分中值定理与积分中值定理的比较

微分中值定理与积分中值定理的比较微分中值定理与积分中值定理在微积分的数学定理中都十分简单而重要,它们都是针对一元函数和定积分积分之间关系的重要总结。

它们在实际应用中也是非常有用的,不少学生接触到数学问题时也通常会用到这两个定理。

下面将就微分中值定理与积分中值定理的比较进行详细阐述:一、定义1. 微分中值定理:如果在闭区间[a,b]上的一元函数y=f(x)是连续函数,那么在a<=x<b处有f'(ξ)=f(b)-f(a)/b-a,其中ξ属于[a,b]。

2. 积分中值定理:如果函数y=f(x)在闭区间[a,b]上是连续函数,则其在[a,b]上积分有F(b)-F(a)=∫f(x)dx,其中F(x)是y=f(x)的微分函数。

二、性质1. 微分中值定理:它是一个等式,表示函数在区间内求导值即为在端点处函数值的差商。

只有当函数在闭区间[a,b]上是连续函数时才有效。

2. 积分中值定理:它表示的是函数在闭区间[a,b]上的定积分的值,只要函数在闭区间[a,b]上是连续函数就有效。

三、应用1. 微分中值定理:它可以用来求解不容易积分函数的导数表达式,如果可以在区间上求出其函数值,则可以求出其导数表达式。

2. 积分中值定理:它可以解决不同区间的定积分求解问题,如果求解不同的区间的定积分,可以用这个定理得出相应的定积分值。

四、结论微分中值定理与积分中值定理在微积分的数学定理中十分简单而重要,它们的本质都是一元函数的微分和积分之间的关系,从而实现求解函数的导数表达式和定积分结果的目的,而且如果函数在闭区间[a,b]上连续,它们都是有效的。

微积分中的积分中值定理与应用

微积分中的积分中值定理与应用

微积分中的积分中值定理与应用微积分是数学中非常重要的一门学科,它不仅仅有理论知识,还有强大的应用价值。

其中,积分中值定理是微积分中重要的定理之一。

本文将介绍积分中值定理的概念与定理,以及它在实际应用中的作用。

一、积分中值定理的概念与定理积分中值定理是微积分中比较重要的一个定理,其实质是将积分中的连续函数映射到了求导中的函数上。

简单来说,就是将求积分变成了求导数。

在微积分中,对于一个连续函数f(x),如果它在区间[a,b]上积分等于区间长度(b-a)×函数在[a,b]中某一点的值,那么一定存在某一个c∈[a,b],使得f(c)=(1/(b-a))×∫[a,b]f(x)dx。

这就是积分中值定理的数学表述。

从图形的角度来理解,积分中值定理表明了在[a,b]上积分等于积分曲线的平均值与x轴之间的面积,也就是说,存在某一个点c,函数f(x)在该点的函数值等于积分曲线通过x轴的平均值。

这个点c就是积分中值点。

积分中值定理的证明方式有很多,这里不做详细讲解。

但需要注意的是,积分中值定理的前提是函数f(x)在区间[a,b]上连续,否则定理不成立。

二、积分中值定理的应用积分中值定理是微积分中非常重要的定理,不仅有重要的理论价值,还有强大的应用价值。

下面将讨论积分中值定理在实际应用中的一些典型情况。

1、平均值问题积分中值定理可以用来解决平均值相关的问题。

例如,求一个连续函数在某一区间上的平均值。

假设f(x)在区间[a,b]连续,那么根据积分中值定理,存在某一个c∈[a,b],使得f(c)等于积分曲线的平均值(也就是∫[a,b]f(x)dx/(b-a))。

因此,可以通过积分中值定理求出函数在区间上的平均值。

这种方法可以适用于各种求平均值的问题,例如温度的平均值、电压的平均值、质量的平均值等。

2、最大值与最小值问题积分中值定理可以用来求解连续函数的最大值与最小值。

假设f(x)在区间[a,b]上连续,并且有极值,那么根据极值定理,存在一个点c∈[a,b],使得f(c)等于函数f(x)在该区间上的最大值或最小值。

积分中值定理的原理和应用

积分中值定理的原理和应用

积分中值定理的原理和应用1. 积分中值定理的原理积分中值定理是微积分中的重要定理之一,它描述了函数在某个区间上的平均值与该函数在同一区间上的某个点的函数值之间的关系。

具体而言,积分中值定理表述如下:定理 1(积分中值定理):若f(x)是闭区间[a,b]上的连续函数,并且F(x)是f(x)的一个原函数,则存在 $c \\in (a,b)$,使得:$$\\int_a^b f(x)dx = (b-a)F(c)$$其中,$\\int_a^b f(x)dx$ 表示函数f(x)在闭区间[a,b]上的积分,(b−a)表示区间[a,b]的长度。

从定理 1 可以看出,对于具有原函数的连续函数来说,其在某个区间上的积分值与此函数在该区间上的某个点函数值成正比。

2. 积分中值定理的应用积分中值定理是微积分中很常用的工具之一,它在数学和科学的各个领域都有重要的应用。

下面将介绍一些常见的应用场景。

2.1 函数平均值的计算根据积分中值定理,我们可以计算函数f(x)在区间[a,b]上的平均值。

根据定理 1,可以得到:$$\\frac{1}{b-a}\\int_a^b f(x)dx = F(c)$$其中F(c)为函数f(x)在区间[a,b]上某个点的函数值。

因此,可以通过求函数f(x)在区间[a,b]上的积分来计算函数的平均值。

2.2 曲线长度的计算另一个应用积分中值定理的例子是计算曲线的长度。

设有一条曲线C,其方程为y=f(x),其中f(x)在闭区间[a,b]上连续并具有连续的导数。

我们可以将曲线划分成若干小段,然后计算每个小段的长度,再将所有小段长度相加即可得到整条曲线的长度。

如果我们设 $\\Delta x$ 为小段的长度,根据微积分的概念,可以得到:$$\\Delta L = \\sqrt{1 + [f'(x)]^2} \\Delta x$$其中f′(x)表示f(x)的导数。

由积分中值定理可知,存在 $c \\in (a,b)$,使得:$$\\int_a^b \\sqrt{1 + [f'(x)]^2} dx = (b-a)\\sqrt{1 + [f'(c)]^2}$$这样,我们就可以通过计算积分来求得整条曲线的长度。

中值定理的应用

中值定理的应用
有时也可考虑对导数用中值定理. (5) 若结论为不等式,要注意适当放大或缩小的技巧.
5. 证明有关中值问题的结论:
题型一:证明存在 使 f ( ) 0或A(常数).
例1. 设f (x) 在[0,1]上可导,0 f (x) 1,且 f (x) 1,
(0 x 1),证明在(0,1)内必有唯一的 , 使 f ( ) .
[这里关键,需找a,b使f (a) f (b)( 0) ]
2. 使f ( ) 0 :
(1)对f (x)用费马定理或罗尔定理; (2)需找三个点a,b,c,使f (a) f (b) f (c),(a b c) 则1 (a,b)使f (1) 0; 2 (b, c)使f (2 ) 0;



f (x)g(x) f (x)g(x)
g 2 ( x)
x
0.
构造辅助函数 F(x) f (x) g(x)
(3) 要证 f () f ()g() 0.
即证 F(x) eg(x) [ f (x) f (x)g(x)] 0.
x
(3) g(a) g(b) 0. 由Rolle定理 (a, b), 使g( ) 0.
即 ek f ( ) ek kf ( ) 0
由于ek 0, f ( ) kf ( ) 0
即 f ( ) k. f ( )
总结:通过恒等变形
7). 有关中值问题的解题方法 利用逆向思维,设辅助函数. 一般解题方法: (1)证明含一个中值的等式或根的存在,多用罗尔定理,
可用原函数法找辅助函数. (2) 若结论中涉及含中值的两个不同函数,可考虑用柯
西中值定理 . (3) 若结论中含两个或两个以上的中值,必须多次应用

中值定理的证明与应用

中值定理的证明与应用

中值定理的证明与应用中值定理是微积分中的重要概念,它揭示了函数在某一区间内存在特殊点的性质。

本文将对中值定理进行详细的证明及其应用进行探讨。

一、中值定理的证明中值定理是由法国数学家拉格朗日于18世纪提出的,它包含了三个不同的形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。

下面将对这三个形式进行证明。

1. 拉格朗日中值定理的证明拉格朗日中值定理是中值定理中最基本的形式,它表述为:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,则在(a, b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。

证明的思路如下:首先将函数f(x)进行泰勒展开,得到f(x) = f(a) +f'(c)(x - a)。

根据泰勒展开,我们可以看到在点c处,f(c)恰好等于f(a)加上一个与f'(c)成正比的量,而这个比例恰好等于(f(b) - f(a))/(b - a)。

因此,可以得出结论:在(a, b)内至少存在一点c,使得f'(c) = (f(b) -f(a))/(b - a)。

这就完成了拉格朗日中值定理的证明。

2. 柯西中值定理的证明柯西中值定理是中值定理的一种推广形式,它表述为:若函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,并且g'(x)≠0,则在(a, b)内至少存在一点c,使得[f'(c)/g'(c)] = [f(b) - f(a)]/[g(b) - g(a)]。

证明的思路如下:首先定义一个函数h(x) = f(x) - [f(b) - f(a)]/[g(b) -g(a)] * g(x),则h(a) = f(a)- (f(b) - f(a))/(g(b) - g(a))*g(a) = 0,h(b) = f(b)- (f(b) - f(a))/(g(b) - g(a))*g(b) = 0。

赵树嫄微积分第四版第四章-中值定理与导数的应用

赵树嫄微积分第四版第四章-中值定理与导数的应用
24
练习 证明当x 0时, x ln(1 x) x. 1 x
证 设 f (t) ln(1 t),
f (t)在[0, x]上满足拉格朗日定理的条件 ,
f ( x) f (0) f ( )(x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x ,
(2) 若 M m. f (a) f (b),
所以最大值和最小值不可能同时在端点取得。
设 M f (a), 则 M f (b),
(a,b),使 f ( ) M. 由费马引理, 条件有一个不满足,则定理的结 论就可能不成立。
y
y
y
B
A
B
A
B
A
f ( x) 是二次多项式,只能有两个零点,分别在区间(1, 2) 及 (2, 3) 内。
思考: f ( x) 的零点呢?
11
例4 证明:可导函数 f ( x) 的两个零点之间必有 f ( x) f ( x) 的零点. 证 对 g( x) ex f ( x) 使用罗尔定理,
g( x) ex[ f ( x) f ( x)],
C2
该点处的切线平
A
行 于 弦 AB.
O a
hbx
证明 作辅助函数 F(x) f (x) f (a) f (b) f (a) (x a), ba
F(x) 在 [a, b]上连续,在 (a, b)内可导,
F(a) F(b) 0, 由罗尔定理, (a, b) ,使
F ( ) f ( ) f (b) f (a) 0 ,
ba

f ( ) f (b) f (a) .
ba
17
例7 f (x) ln x ,在[1,e] 上满足拉格朗日定理的条件,

中值定理及其应用

中值定理及其应用

中值定理及其应用中值定理是微积分中的重要定理之一,它是高阶微积分的基础,被广泛应用于物理、经济、工程等领域。

在本文中,我们将介绍中值定理的概念、证明以及其在实际问题中的应用。

一、中值定理的概念中值定理是微积分中的一个基本定理,用来分析函数在某个区间上的平均变化率与瞬时变化率的关系。

它由罗尔定理、拉格朗日中值定理和柯西中值定理组成。

1. 罗尔定理罗尔定理是中值定理的基础,它主要用于研究函数在闭区间上连续且在开区间上可导的情况。

罗尔定理的表述为:设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则存在c∈(a,b),使得f'(c) = 0。

2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种形式,它由罗尔定理推导而来。

拉格朗日中值定理的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。

3. 柯西中值定理柯西中值定理是中值定理的另一种形式,它由拉格朗日中值定理推导而来。

柯西中值定理的表述为:如果两个函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则存在c∈(a, b),使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。

二、中值定理的证明中值定理的证明相对复杂,需要运用到微积分中的一些基本概念和定理。

在这里,我们将省略中值定理的详细证明过程。

三、中值定理的应用中值定理在实际问题中具有广泛的应用。

以下是几个常见的应用实例:1. 平均速度与瞬时速度根据拉格朗日中值定理,对于一段时间内的平均速度与某一时刻的瞬时速度,它们之间存在一个相等的关系。

这在物理学中有着重要的意义,可以通过计算平均速度来得到瞬时速度的近似值。

2. 函数求导与图像切线中值定理可以用于求解函数的导数以及函数图像的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 微分与积分中值定理及其应用1 微积分中值定理 01.1 微分中值定理 .......................................... 0 1.2 积分中值定理 .......................................... 2 2 微积分中值定理的应用 . (3)4.1 证明方程根(零点)的存在性 ............................ 3 4.2 进行估值运算 .......................................... 6 4.3 证明函数的单调性 ...................................... 7 4.4 求极限 ................................................ 7 4.5 证明不等式 .. (7)引言Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。

微分中值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。

1 微积分中值定理微分中值定理罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =,则在(a,b )内至少存在一点ξ,使得0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.柯西中值定理: 设函数f 和g 满足 (ⅰ)在[a,b]上都连续; (ⅱ)在(a,b )内都可导; (ⅲ))('x f 和)('x g 不同时为零; (ⅳ))()(b g x g ≠, 则存在),(b a ∈ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ. 微分中值定理的推广罗尔定理的推广定理1: 设函数)(x f 在(a,b )内可导,且有)()(lim )0()0()(lim ∞-∞+==-=+=-+→→或为有限值或A A x f b f a f x f bx a x ,则存在点),(b a ∈ξ,使得0)(='ξf . 证明:首先对A 为有限值进行论证:令⎩⎨⎧==∈=b x a x A b a x x f x F 或,),(),()(则易知函数)(x f 在[a,b]上连续,在(a,b )内可导且)()(b F a F =.由Rolle 定理可知,在(a,b)内至少存在一点ξ,使得0)(='ξF ,而在(a,b)内有)()(x f x F '=',所以0)(='ξf . 其次对A=∞+(∞-)进行论证:由引理1,)(x f 在(a,b )内能取得最小值(最大值).不妨设:函数)(x f 在),(b a ∈ξ处取得最小值(最大值).此时函数)(x f 在),(b a ∈ξ处也就取得极小值(极大值).又因为)(x f 在),(b a ∈ξ处可导,由Fermat 引理,可得0)(='ξf . 综上所述,从而定理得证.定理2: 设函数)(x f 在(a,∞+),内可导,且)(lim )(lim x f x f x ax +∞→→=+,证明:在(a,∞+)中存在一点ξ,使得0)(='ξf .定理3: 设函数)(x f 在(∞-,b),内可导,且)(lim )(lim x f x f bx x -→-∞→=,证明:在(∞-,b)中存在一点ξ,使得0)(='ξf .定理4: 设函数)(x f 在(∞-,∞+),内可导,且)(lim )(lim x f x f x x +∞→-∞→=,证明:在(∞-,∞+)中存在一点ξ,使得0)(='ξf .朗格朗日中值定理的推广定理5: 如果函数)(x f 满足条件:在开区间(a,b )上可导且)0()(lim ),()0()(lim -==+=-+→→b f x f a f a f x f bx a x 存在,则在(a,b )内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.柯西中值定理的推广定理6: 如果函数f(x)和F(x)满足条件: ①都在有限区间(a,b)内可导;②;)(lim ,)(lim ,)(lim ,)(lim 2211M x F m x F M x f m x f bx ax bx ax ====-+-+→→→→③;0)(),,('≠∈∀x F b a x 有 则在(a,b)内至少有一点ξ,使得 证明:作辅助函数A(x),B(x),并且令则A(x),B(x)在闭区间[a,b]上连续,开区间(a,b)内可导,且对,0)(),,('≠∈∀x B b a x 由Cauchy 中值定理可知,至少有一点),(b a ∈ξ使得 又当),(b a x ∈时,)()(),()(x F x B x f x A ==∴2211'''')()()()()()()()(m M m M a B b B a A b A F f B A --=--==ξξξξ 即:2211'')()(m M m M F f --=ξξ 1.2积分中值定理积分中值定理: 若)(x f 在区间[a,b]上连续,则在[a,b]上至少存在一点ξ使得()()()b a a b f dx x f b≤≤-=⎰ξξ,a.积分中值定理的推广推广的积分第一中值定理: 若()()x g x f ,在闭区间[]b a ,上连续,且()x g 在[]b a ,上不变号,则在[]b a ,至少存在一点ξ,使得第一型曲线积分中值定理: 若函数(,)f x y 在光滑有界闭曲线C 上连续,则在曲线C 上至少存在一点(,)ξη,使(,)(,)Cf x y ds f S ξη=⎰。

其中S 表示曲线C 的长。

第二型曲线积分中值定理: 若函数(,)f x y 在有向光滑闭曲线C 上连续,则在曲线C 上至少存在一点(,)ξη,使 (,)(,)Cf x y ds f I ξη=±⎰其中I 为有向光滑曲线C 在x 轴上的投影,符号±是由曲线C 的方向确定。

第一型曲面积分中值定理: 若D 为xoy 平面上的有界闭区域,(,)z z x y =是光滑曲面S ,函数(,,)f x y z 在S 上连续,则曲面S 上至少存在一点(,,)ξης,使得 (,,)(,,)Sf x y z d f A σξης=⎰⎰其中A 是曲面S 的面积。

第二型曲面积分中值定理: 若有光滑曲面S :(,)z z x y =,xy D y x ∈),(,其中xy D 是有界闭区域,函数(,,)f x y z 在S 上连续,则在曲面S 上至少存在一点(,,)ξης,使得 其中A 是S 的投影xy D 的面积。

3 微积分中值定理的应用3.1 证明方程根(零点)的存在性例1:设函数)(x f 和)(x g 在闭区间[a,b]上连续,在(a,b )上可导,则在(a,b )内存在一点),(b a ∈ξ,使得)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=. 证明:令)()()()()(a g x f x g a f x F -=,则)()()()()(a g x f x g a f x F '-'=',又有)()()()()(a g b f b g a f b F -=,0)()()()()(=-=a g a f a g a f a F .易知)(x F 在闭区间[a,b]上连续,在(a,b )上可导,故运用Lagrange 中值定理可得,存在一点),(b a ∈ξ,使得)]()()()()[()()()(a g f g a f a b b F a F b F ξξ'-'-==-,即)]()()()()[()()()()(a g f g a f a b a g b f b g a f ξξ'-'-=-,所以在(a,b )内存在一点),(b a ∈ξ,使得)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=,故定理得证. 例2: 设函数)(x f 和)(x g 在闭区间[a,b]上连续,在(a,b )上可导,且在闭区间[a,b]上,)(1x g 有意义,0)(≠'x g .则在(a,b )内存在一点),(b a ∈ξ,使得)()()()()]()([)()()()()(ξξξξξg g f f a g b g b g a g b f a f g ''-='. 证明:令)()()(x g x f x F =,)(1)(x g x G =,易知)(x F 和)(x G 在区间[a,b]上满足Cauchy 中值定理条件,故有,)()()()()()(ξξG F a G b G a F b F ''=--,即)()()()()()()()()()()(ξξξξξg g f g f b g a g b g a f a g b f ''-'-=--,所以在(a,b )内存在一点),(b a ∈ξ,使得)()()()()]()([)()()()()(ξξξξξg g f f a g b g b g a g b f a f g ''-=',故定理得证. 例1:设c b a ,,为三个实数,证明:方程c bx ax e x ++=2的根不超过三个. 证明:令x e c bx ax x F -++=2)(,则x e b ax x F -+=2)(',x e a x F -=2)(",x e x F -=)('".用反证法,设原方程的根超过程3个,那么F(x)至少有4个零点, 不妨设为4321x x x x <<< ,那么有罗尔定理,存在4332211x x x x <<<<<<ξξξ,使0)(')(')('321===ξξξF F F ,再用罗尔定理,存在32211ξηξηξ<<<<,使0)(")("21==ηηF F , 再用罗尔定理,存在21ηαη<<,使0)('"=αF ,因为x e x F -=)('", 所以0)('"≠-=ααe F ,矛盾,所以命题得证. 例2:设函数()f x 在[],a b 上连续,且()0f x >。

相关文档
最新文档