天津市河东区中考数学一模试卷含答案解析资料

合集下载

河东区初中一模试卷数学

河东区初中一模试卷数学

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 0.5B. -3C. $\sqrt{2}$D. $\frac{1}{2}$2. 已知函数$f(x) = 2x - 3$,则$f(2)$的值为()A. 1B. 3C. 5D. 73. 下列方程中,解为正数的是()A. $x^2 - 4 = 0$B. $x^2 + 4 = 0$C. $x^2 - 2x - 3 = 0$D. $x^2 + 2x - 3 = 0$4. 一个等腰三角形的底边长为8cm,腰长为6cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm5. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 等边三角形C. 正方形D. 平行四边形6. 下列不等式中,正确的是()A. $3x < 2x + 1$B. $2x > 3x + 1$C. $-3x < 2x + 1$D. $-2x > 3x + 1$7. 已知一元二次方程$ax^2 + bx + c = 0$($a \neq 0$)的判别式$\Delta = b^2 - 4ac$,则当$\Delta > 0$时,方程有两个不相等的实数根。

以下说法正确的是()A. $a > 0$时,$x_1 > x_2$B. $a > 0$时,$x_1 < x_2$C. $a < 0$时,$x_1 > x_2$D. $a < 0$时,$x_1 < x_2$8. 在平面直角坐标系中,点$A(2,3)$关于原点的对称点是()A. $(-2,-3)$B. $(-2,3)$C. $(2,-3)$D. $(2,3)$9. 下列函数中,是奇函数的是()A. $f(x) = x^2$B. $f(x) = 2x$C. $f(x) = |x|$D. $f(x) = x^3$10. 下列各数中,不是无理数的是()A. $\pi$B. $\sqrt{3}$C. $\sqrt{2}$D. $\frac{\pi}{2}$二、填空题(每题5分,共50分)11. 计算:$-3 + 4 - 5 + 6 - 7 + 8 + \ldots + 99 - 100$。

河东区初中数学一模试卷

河东区初中数学一模试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1.5D. 02. 下列函数中,图象是一条直线的是()A. y = 2x + 1B. y = x^2 + 2x + 1C. y = |x|D. y = √x3. 在等腰三角形ABC中,AB = AC,若∠BAC = 60°,则∠ABC的度数是()A. 60°B. 120°C. 30°D. 90°4. 已知一元二次方程x^2 - 4x + 3 = 0,则方程的两根之和是()A. 1B. 3C. 4D. 55. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 等边三角形C. 长方形D. 正方形6. 下列等式正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^27. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 若一个数是偶数,则它的平方根一定是()A. 偶数B. 奇数C. 有理数D. 无理数9. 下列函数中,在定义域内是单调递增函数的是()A. y = x^2B. y = -x^2C. y = 2xD. y = -2x10. 下列图形中,可以折叠成一个正方体的是()A. 长方体B. 等腰直角三角形C. 正方形D. 等边三角形二、填空题(每题3分,共30分)11. 已知等差数列{an}中,a1 = 2,公差d = 3,则a10 = ________。

12. 在直角坐标系中,点A(2,3),点B(-1,-4),则线段AB的中点坐标是________。

13. 一元二次方程x^2 - 5x + 6 = 0的解是 ________。

河东中考一模数学试卷

河东中考一模数学试卷

考试时间:120分钟满分:150分一、选择题(每小题3分,共30分)1. 下列选项中,不是有理数的是()A. -5B. √16C. πD. 1/32. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 03. 下列函数中,图象是一条直线的是()A. y = x^2 - 1B. y = 2x - 3C. y = √xD. y = log2x4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°5. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11B. 1, 3, 6, 10C. 3, 6, 9, 12D. 4, 7, 10, 136. 下列各式中,完全平方公式正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^27. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1,-2),则a的值是()A. 1B. -1C. 2D. -28. 在直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标是()A. (1,1)B. (1,2)C. (2,1)D. (2,2)9. 下列关于三角形外接圆的说法正确的是()A. 外接圆的半径是三角形三边之和的一半B. 外接圆的半径是三角形三边之差的一半C. 外接圆的半径是三角形三边乘积的一半D. 外接圆的半径是三角形三边乘积的平方根10. 下列关于平行四边形的说法正确的是()A. 对角线互相垂直的平行四边形是矩形B. 对角线互相平分的四边形是平行四边形C. 对角线相等的四边形是矩形D. 对角线互相垂直的平行四边形是菱形二、填空题(每小题3分,共30分)11. 计算:-3 - (-5) = _______。

河东区一模数学初中试卷

河东区一模数学初中试卷

一、选择题(每题3分,共30分)1. 下列数中,是质数的是()A. 23B. 22C. 24D. 252. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆3. 小明有5元、2元和1元人民币若干,他至少有多少种不同的付款方式?A. 5种B. 6种C. 7种D. 8种4. 已知函数y=2x-3,当x=4时,y的值为()A. 5B. 7C. 9D. 115. 在梯形ABCD中,AD平行于BC,AB=CD=6cm,AD=10cm,BC=4cm,那么梯形的高是()A. 3cmB. 4cmC. 5cmD. 6cm6. 若一个等腰三角形的底边长为10cm,腰长为8cm,那么这个三角形的面积是()A. 40cm²B. 48cm²C. 56cm²D. 64cm²7. 下列关于实数的说法正确的是()A. 实数都是无理数B. 实数都是整数C. 实数包括有理数和无理数D. 实数不包括有理数8. 小华的自行车每分钟可以骑行200米,那么他骑行5分钟可以骑行()A. 1000米B. 2000米C. 3000米D. 4000米9. 下列方程中,只有正数解的是()A. x²=4B. x²+1=0C. x²-4=0D. x²-1=010. 在一次数学竞赛中,甲、乙、丙三人得分分别为90分、85分和80分,那么他们的平均分是()A. 85分B. 86分C. 87分D. 88分二、填空题(每题3分,共30分)11. 2的平方根是________,3的立方根是________。

12. 0.5的相反数是________,-3的倒数是________。

13. 下列分数中,最简分数是________。

14. 已知三角形ABC中,∠A=60°,∠B=70°,那么∠C的度数是________。

15. 下列数中,绝对值最大的是________。

河东区数学试卷中考一模

河东区数学试卷中考一模

一、选择题(每题3分,共30分)1. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10的值为()A. 21B. 23C. 25D. 272. 若等比数列{bn}的首项b1=2,公比q=3,则第4项b4的值为()A. 18B. 24C. 27D. 303. 在△ABC中,∠A=30°,∠B=45°,∠C=105°,若a=6,则b+c的值为()A. 6√3B. 6√2C. 6√6D. 124. 已知函数f(x)=x^2-4x+3,则f(2x-1)的值为()A. 4x^2-8x+5B. 4x^2-8x+1C. 4x^2-8x-5D. 4x^2-8x-15. 若直线y=kx+1与圆x^2+y^2=4相切,则k的值为()A. ±√3B. ±2C. ±1D. ±√26. 在直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的中点坐标为()A. (1,1)B. (1,2)C. (2,1)D. (2,2)7. 若方程x^2-3x+2=0的解为x1和x2,则x1+x2的值为()A. 3B. 2C. 1D. 08. 若sinθ=1/2,则cosθ的值为()A. √3/2B. 1/2C. -√3/2D. -1/29. 已知函数f(x)=x^3-3x^2+4x-2,则f(1)的值为()A. 2B. 3C. 4D. 510. 若直线y=kx+b与x轴、y轴的交点分别为A、B,且OA=OB,则k+b的值为()A. 0B. 1C. -1D. 2二、填空题(每题5分,共30分)11. 若等差数列{an}的首项a1=2,公差d=3,则第10项a10=__________。

12. 若等比数列{bn}的首项b1=4,公比q=2,则第5项b5=__________。

13. 在△ABC中,∠A=30°,∠B=45°,∠C=105°,若a=6,则b+c=__________。

天津市河东区2019-2020学年中考数学一模试卷含解析

天津市河东区2019-2020学年中考数学一模试卷含解析

天津市河东区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104B.1.07×105C.1.7×104D.1.07×1042.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A.4200.5x+-420x=20 B.420x-4200.5x+=20C.4200.5x--420x=20 D.420420200.5x x-=-4.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大5.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.246.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.257.6的绝对值是()A.6 B.﹣6 C.16D.16-8.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是()A.4 B.1 C.2 D.39.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.AD DC AB AC=10.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A.10 B.11 C.12 D.1311.下列实数中,在2和3之间的是()A .πB .2π-C .325D .32812.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a+1a =2,求a 2+21a=_____. 14.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB 的长为1.74m ,后拉杆AE 的倾斜角∠EAB=53°,篮板MN 到立柱BC 的水平距离BH=1.74m ,在篮板MN 另一侧,与篮球架横伸臂DG 等高度处安装篮筐,已知篮筐到地面的距离GH 的标准高度为3.05m .则篮球架横伸臂DG 的长约为_____m (结果保留一位小数,参考数据:sin53°≈45, cos53°≈35,tan53°≈43).15.因式分解23a a +=______.16.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 17.如图,在等边△ABC 中,AB=4,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,连接DE 交AC 于点F ,则△AEF 的面积为_______.18.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎤+⎦的值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天清理道路的米数.20.(6分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.21.(6分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.23.(8分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2y x y-的值,其中x=sin60°,y=tan30°. 24.(10分)计算:2112(1)6tan 303π-︒⎛⎫+--+- ⎪⎝⎭解方程:544101236x x x x -++=-- 25.(10分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB 于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).26.(12分)楼房AB 后有一假山,其坡度为i=1:3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)27.(12分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.求∠APB 的度数;已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.C【解析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.4.C【解析】【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A选项:年最高温度呈上升趋势,正确;B选项:2014年出现了这6年的最高温度,正确;C选项:年的温差成下降趋势,错误;D选项:2016年的温差最大,正确;故选C.【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键.5.D【解析】【分析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.6.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B时,用5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.7.A试题分析:1是正数,绝对值是它本身1.故选A.考点:绝对值.8.D【解析】【分析】根据垂径定理,圆周角的性质定理即可作出判断.【详解】∵P是弦AB的中点,CD是过点P的直径.∴AB⊥CD,弧AD=弧BD,故①正确,③正确;∠AOB=2∠AOD=4∠ACD,故②正确.P是OD上的任意一点,因而④不一定正确.故正确的是:①②③.故选:D.【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.9.C【解析】【分析】结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②AD DC AB AC,故选C.【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.10.B【解析】【分析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.11.C【解析】【详解】分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、,故本选项符合题意;D、<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.12.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33, 故选D .【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1【解析】试题分析:∵21()a a +=2212a a ++=4,∴221a a +=4-1=1.故答案为1. 考点:完全平方公式.14.1.1.【解析】【分析】过点D 作DO ⊥AH 于点O ,先证明△ABC ∽△AOD 得出AB AO =CB DO,再根据已知条件求出AO ,则OH=AH-AO=DG .【详解】解:过点D 作DO ⊥AH 于点O ,如图:由题意得CB ∥DO ,∴△ABC ∽△AOD ,∴AB AO =CB DO, ∵∠CAB=53°,tan53°=43, ∴tan ∠CAB=CB AB =43, ∵AB=1.74m ,∴CB=1.31m ,∵四边形DGHO 为长方形,∴DO=GH=3.05m ,OH=DG ,∴1.74AO=2.323.05,则AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,则OH=AH-AO≈1.1m,∴DG≈1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用. 15.a(3a+1)【解析】3a2+a=a(3a+1),故答案为a(3a+1).16.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.17.2【解析】【分析】首先,利用等边三角形的性质求得△ADE 为等边三角形,则DE=AD ,便可求出EF 和AF ,从而得到△AEF 的面积.【详解】解:∵在等边△ABC 中,∠B=60º,AB=4,D 是BC 的中点,∴AD ⊥BC ,∠BAD=∠CAD=30º,∴AD=ABcos30º 根据旋转的性质知,∠EAC=∠DAB=30º,AD=AE ,∴∠DAE=∠EAC+∠CAD=60º,∴△ADE 的等边三角形,∴,∠AEF=60º,∵∠EAC=∠CAD∴EF=DF=12DE =,AF ⊥DE∴AF=EFtan60º,∴S △AEF =12EF×AF=12×.故答案为:2. 【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出△ADE 是等边三角形是解题的关键.18.4【解析】【分析】1的整数部分即可.【详解】∵3<4,∴4<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1米.【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.试题解析:解:设原来每天清理道路x 米,根据题意得:600480060092x x-+= 解得,x=1.检验:当x=1时,2x≠0,∴x=1是原方程的解.答:该地驻军原来每天清理道路1米.点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根. 20.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.21.(1)y=2x 2﹣3x ;(2)C (1,﹣1);(3)(4564,316)或(﹣316,4564). 【解析】【分析】(1)由直线解析式可求得B 点坐标,由A 、B 坐标,利用待定系数法可求得抛物线的表达式;(2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得OMOP的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由OM MG OGOP PH OH==的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.【详解】(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得:4229342a ba b+=⎧⎪⎨+=⎪⎩,解得:23ab=⎧⎨=-⎩,∴抛物线解析式为223y x x=-;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=12CD•OE+12CD•BF=12(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图2,∵B (2,2),∴∠AOB=∠NOB=45°,在△AOB 和△NOB 中,∵∠AOB=∠NOB ,OB=OB ,∠ABO=∠NBO ,∴△AOB ≌△NOB (ASA ),∴ON=OA=32, ∴N (0,32), ∴可设直线BN 解析式为y=kx+32,把B 点坐标代入可得2=2k+32,解得k=14, ∴直线BN 的解析式为1342y x =+,联立直线BN 和抛物线解析式可得:2134223y x y x x ⎧=+⎪⎨⎪=-⎩,解得:22x y =⎧⎨=⎩或384532x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴M (38-,4532), ∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2),∴OB=,∵△POC ∽△MOB , ∴2OM OB OP OC==,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,如图3∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH , ∴2OM MG OG OP PH OH=== ∵M (38-,4532), ∴MG=38,OG=4532, ∴PH=12MG=316,OH=12OG=4564,∴P(4564,316);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=12MG=316,OH=12OG=4564,∴P(﹣316,4564);综上可知:存在满足条件的点P,其坐标为(4564,316)或(﹣316,4564).【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.22.木竿PQ的长度为3.35米.【解析】【分析】过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN为矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴AB QD BC DN,∴QD =AB DN BC⋅=2.25, ∴PQ =QD +DP = 2.25+1.1=3.35(m ).答:木竿PQ 的长度为3.35米.【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.23.-【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=--sin60tan30x y =︒==︒=Q∴原式===- 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24. (1)10;(2)原方程无解.【解析】【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=323169+-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS 证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD 中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x ,BD=2DO=6x .∴AB=6x ,又,∴AF=2x ,又AM=x ,∴AM=MF=x ,∴△AME ≌△FME(SAS),∴AE=FE ,∠AEM=∠FEM ,又AE=CE ,∠AEM=∠CEG ,∴FE=CE ,∠FEM=∠CEG ,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE ,∴△EFC 是等腰直角三角形.(3)过点E 作EM ⊥AB ,垂足为M ,延长ME 交CD 于点N ,过点E 作EG ⊥BC ,垂足为G .则△AEM ≌△CEG(HL),∴∠AEM=∠CEG . ∵EF ⊥CE ,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF ,∵∠CEG =∠AEF ,∴∠AEF=∠MEF ,∴△AEM ≌△FEM (ASA),∴AM=FM .设AM=x ,则AF=2x ,DN =x ,DE=x ,∴BD=x .∴AB=x .∴=2x:x=.考点:四边形综合题.26.(39+93)米. 【解析】【分析】过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,根据CE=20米,坡度为i=1:3,分别求出EF 、CF 的长度,在Rt △AEH 中求出AH ,继而可得楼房AB 的高.【详解】解:过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,在Rt △CEF 中,∵3EF i CF ===tan ∠ECF , ∴∠ECF=30°,∴EF=12CE=10米,CF=10米,∴BH=EF=10米, HE=BF=BC+CF=(3在Rt △AHE 中,∵∠HAE=45°,∴AH=HE=(3AB=AH+HB=(3)米.答:楼房AB的高为(35+103)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.27.(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,3PH在Rt△BPH中,∠PBH=30°,BH=33PH∴AB=AH-BH=33PH=50解得325,因此不会进入暗礁区,继续航行仍然安全. 考点:解直角三角形。

中考数学模拟试卷含答案解析(word版)

中考数学模拟试卷含答案解析(word版)

∴ 方程有两个相等的实数根.
故选 C. 【点评】本题考查的是根的判别式,
熟知一元二次方程 ax2+bx+c=0 ( a≠0)的根与 △的关
系是解答此题的关键.
4.顺次连接矩形 ABCD 各边中点, 所得四边形必定是(

A .邻边不等的平行四边形 B .矩形
C.正方形 D .菱形
【分析】作出图形, 根据三角形的中位线定理可得 EF=GH= AC , FG=EH= BD , 再根
∴ 此直角三角形的斜边长为 4, 两条直角边分别为 2 ,
∴ 它的内切圆半径为: R= ( 2 +2 ﹣ 4) =2 ﹣ 2.
故选 B .
【点评】 本题考查了三角形的外接圆和三角形的内切圆,
等腰直角三角形的性质, 要注意
直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:
r= ( a+b﹣ c);

A . 45°B .60°C.75°D. 90° 【分析】首先根据 ∠ A: ∠B : ∠C=3 :4: 5, 求出 ∠ C 的度数占三角形的内角和的几分之
几;然后根据分数乘法的意义, 用 180°乘以 ∠ C 的度数占三角形的内角和的分率, 求出 ∠ C
等于多少度即可.
【解答】解: 180°×
= =75 ° 即 ∠ C 等于 75°.
11.如图, 在 x 轴的上方, 直角 ∠ BOA 绕原点 O 按顺时针方向旋转, 若 ∠ BOA 的两边
分别与函数 y= ﹣ 、 y= 的图象交于 B 、 A 两点, 则 ∠ OAB 的大小的变化趋势为(

A .逐渐变小 B.逐渐变大 C.时大时小 D.保持不变 【分析】 如图, 作辅助线; 首先证明 △ BOM ∽ △OAN , 得到

天津市河东区中考数学一模试卷

天津市河东区中考数学一模试卷

18.(3 分)如图所示,在每个边长都为 1 的小正方形组成的网格中,点 A、B、
C 均为格点.
(Ⅰ)线段 AB 的长度等于

(Ⅱ)若 P 为线段 AB 上的动点,以 PC、PA 为邻边的四边形 PAQC 为平行四边
形,当 PQ 长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,
并简要说明你的作图方法(不要求证明).
第2页(共8页)
A.1 个
B.2 个
C.3 个
二、填空题:本大题共 6 小题,每小题 3 分,共 18 分.
13.(3 分)2x3•(﹣x2)=

14.(3 分)计算


D.4 个
15.(3 分)一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,
6,投掷一次,朝上一面的数字是偶数的概率是
5.(3 分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯
视图是( )
A.
B.
6.(3 分)估计 的值在( )
A.2 和 3 之间 B.3 和 4 之间
7.(3 分)计算
的结果是(
C.
C.4 和 5 之间 )
A.a﹣b
B.b﹣a
C.1
第1页(共8页)
D. D.5 和 6 之间 D.﹣1
的切线 l,过点 B 作 l 的垂线 BD,垂足为 D,BD 与⊙O 交于点 E. (1)求∠AEC 的度数;
第4页(共)
(2)求证:四边形 OBEC 是菱形.
22.(10 分)如图,小东在教学楼距地面 9 米高的窗口 C 处,测得正前方旗杆顶 部 A 点的仰角为 37°,旗杆底部 B 点的俯角为 45°,升旗时,国旗上端悬挂 在距地面 2.25 米处,若国旗随国歌声冉冉升起,并在国歌播放 45 秒结束时到 达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈ 0.60,cos37°≈0.80,tan37°≈0.75)

河东初中一模数学试卷答案

河东初中一模数学试卷答案

一、选择题(每题3分,共30分)1. 如果a > b,那么下列不等式中一定成立的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a 2 > b 2D. a / 2 > b / 2答案:A2. 下列分数中,分子相同,分母越小,分数值越大的是()A. 1/3B. 1/4C. 1/5D. 1/6答案:A3. 一个长方形的长是12厘米,宽是8厘米,它的面积是()A. 96平方厘米B. 120平方厘米C. 144平方厘米D. 160平方厘米答案:C4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^3答案:B5. 一个等腰三角形的底边长是8厘米,腰长是10厘米,那么这个三角形的面积是()A. 32平方厘米B. 40平方厘米C. 48平方厘米D. 64平方厘米答案:B6. 如果一个数的平方根是±3,那么这个数是()A. 9B. 12C. 15D. 18答案:A7. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 矩形答案:D8. 一个圆的半径增加了20%,那么这个圆的面积增加了()A. 20%B. 40%C. 60%D. 100%答案:B9. 下列数中,是整数的有()A. 1.5B. 3/2C. 2.3D. 0.5答案:D10. 一个数x满足不等式x + 4 > 2x - 1,那么x的取值范围是()A. x < 5B. x ≤ 5C. x > 5D. x ≥ 5答案:A二、填空题(每题3分,共30分)11. 0.3 × 0.4 = ______答案:0.1212. 2^3 ÷ 3^2 = ______答案:2/913. √(16) + √(25) = ______答案:914. 5 - 3/2 = ______答案:2.515. 3x + 4 = 19,解得x = ______答案:516. 2(x - 3) = 5,解得x = ______答案:417. (x + 2)^2 = 49,解得x = ______答案:-7 或 318. a - b = 3,b - a = 5,解得a = ______,b = ______答案:a = 4,b = -119. 4x^2 - 9 = 0,解得x = ______答案:x = 3/2 或 x = -3/220. 2x + 3y = 12,x - y = 1,解得x = ______,y = ______答案:x = 3,y = 2三、解答题(每题10分,共40分)21. 一辆汽车从甲地开往乙地,行驶了3小时,速度为60千米/小时,然后减速行驶了2小时,速度为40千米/小时,最后又以60千米/小时的速度行驶了1小时到达乙地。

天津市河东区2019-2020学年中考一诊数学试题含解析

天津市河东区2019-2020学年中考一诊数学试题含解析

天津市河东区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣52.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .33B.55C.233D.2553.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣164.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.155.如图,不等式组1010xx+⎧⎨-≤⎩f的解集在数轴上表示正确的是()A.B.C.D.6.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )A.24d hπB.22d hπC.2d hπD.24d hπ7.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.a3+a4=a7D.(ab)3=ab38.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π9.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( ) A .3.82×107B .3.82×108C .3.82×109D .0.382×101010.二次函数y =a(x ﹣m)2﹣n 的图象如图,则一次函数y =mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限11.若正六边形的半径长为4,则它的边长等于( ) A .4B .2C .23D .4312.下列计算正确的是( ) A .x 4•x 4=x 16 B .(a+b )2=a 2+b 2 C .=±4 D .(a 6)2÷(a 4)3=1二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:3a 3﹣6a 2b+3ab 2=_____.14.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .15.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=_____.16.函数2y x +=﹣的图象不经过第__________象限.17.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.18.如图,直线4y x =+与双曲线ky x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx+b 的图象和反比例函数y =mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;直接写出一次函数的值小于反比例函数值的x 的取值范围.20.(6分)庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)21.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(8分)如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC=8cm ,BC=6cm ,∠C=90°,EG=4cm ,∠EGF=90°,O 是△EFG 斜边上的中点.如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)23.(8分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.24.(10分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO =30 cm ,∠OBC =45°,求AB 的长度.(结果精确到0.1 cm)25.(10分)如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.写出图中小于平角的角.求出∠BOD 的度数.小明发现OE 平分∠BOC ,请你通过计算说明道理.26.(12分)先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值. 27.(12分)如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 0025=2.5×10﹣6;故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.D【解析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.3.B【解析】【分析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.4.D【解析】【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案. 【详解】根据题意 :从袋中任意摸出一个球,是白球的概率为=210=15. 故答案为D 【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.B 【解析】 【分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可. 【详解】解:解第一个不等式得:x >-1; 解第二个不等式得:x≤1, 在数轴上表示,故选B. 【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示. 6.A 【解析】圆柱体的底面积为:π×(2d)2, ∴矿石的体积为:π×(2d )2h= 2π4d h .故答案为2π4d h .7.A 【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A 、幂的乘方法则,底数不变,指数相乘,原式计算正确;B 、同底数幂的乘法,底数不变,指数相加,原式=5a,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=33a b,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.8.B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B9.B【解析】【分析】根据题目中的数据可以用科学记数法表示出来,本题得以解决.【详解】解:3.82亿=3.82×108,故选B.【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.10.A【解析】【分析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.11.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.12.D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3a(a﹣b)1【解析】【分析】首先提取公因式3a,再利用完全平方公式分解即可.【详解】3a3﹣6a1b+3ab1,=3a(a1﹣1ab+b1),=3a(a﹣b)1.故答案为:3a(a﹣b)1.【点睛】此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.14.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等 15.75° 【解析】试题解析:∵直线l 1∥l 2,∴130.A ∠=∠=o,AB AC Q =75.ACB B ∴∠=∠=o2180175.ACB ∴∠=-∠-∠=o o故答案为75.o16.三. 【解析】 【分析】先根据一次函数212y x k b +=﹣中=﹣,=判断出函数图象经过的象限,进而可得出结论. 【详解】解:∵一次函数2y x +=﹣中1020k b =﹣<,=>,∴此函数的图象经过一、二、四象限,不经过第三象限,故答案为:三. 【点睛】本题考查的是一次函数的性质,即一次函数0y kx b k +≠=()中,当0k <,0b >时,函数图象经过一、二、四象限. 17.73° 【解析】试题解析:∵∠CBD=34°, ∴∠CBE=180°-∠CBD=146°, ∴∠ABC=∠ABE=12∠CBE=73°.18.(0,52).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y轴的交点为:(0,52).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC 进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.20.李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A【解析】过点A作AD⊥BC于点D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A21.33.3【解析】【分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.【详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.22.(1)1.5s;(2)S=625x2+175x+3(0<x<3);(3)当x=52(s)时,四边形OAHP面积与△ABC面积的比为13:1.【解析】【分析】(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO 的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD 的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.【详解】解:(1)∵Rt△EFG∽Rt△ABC∴EG FGAC BC=,即486FG=,∴FG=468⨯=3cm∵当P为FG的中点时,OP∥EG,EG∥AC ∴OP∥AC∴x=121FG=12×3=1.5(s)∴当x为1.5s时,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm ∵EG∥AH∴△EFG∽△AFH∴EG EF FG AH AF FH==,∴AH=45(x+5),FH=35(x+5)过点O作OD⊥FP,垂足为D∵点O为EF中点∴OD=12EG=2cm∵FP=3﹣x∴S四边形OAHP=S△AFH﹣S△OFP=12•AH•FH﹣12•OD•FP=12•45(x+5)•35(x+5)﹣12×2×(3﹣x)=625x2+175x+3(0<x<3).(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1则S四边形OAHP=1324×S△ABC∴625x2+175x+3=1324×12×6×8∴6x2+85x﹣250=0解得x1=52,x2=﹣503(舍去)∵0<x<3∴当x=52(s)时,四边形OAHP面积与△ABC面积的比为13:1.【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.23.(1) 3.4棵、3棵;(2)1.【解析】【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有73007030⨯=户, 故答案为:1.【点睛】 此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.24.37【解析】试题分析:过O 点作⊥OD AB 交AB 于D 点.构造直角三角形,在Rt ADO △中,计算出,OD AD ,在Rt BDO V 中, 计算出BD .试题解析:如图所示:过O 点作⊥OD AB 交AB 于D 点.在Rt ADO △中,15,30A AO ∠=︒=Q ,sin15300.2597.77(cm).OD AO ∴=⋅︒=⨯=cos15300.96628.98(cm).AD AO =⋅︒=⨯=又∵在Rt BDO V 中,45.OBC ∠=︒7.77(cm)BD OD ∴==,36.7537(cm)AB AD BD ∴=+=≈.答:AB 的长度为37cm .25.(1)答案见解析 (2)155°(3)答案见解析 【解析】【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC ,首先利用角平分线的定义和邻补角的定义求得∠DOC 和∠BOC 即可;(3)根据∠COE=∠DOE ﹣∠DOC 和∠BOE=∠BOD ﹣∠DOE 分别求得∠COE 与∠BOE 的度数即可说明.【详解】(1)图中小于平角的角∠AOD ,∠AOC ,∠AOE ,∠DOC ,∠DOE ,∠DOB ,∠COE ,∠COB ,∠EOB . (2)因为∠AOC=50°,OD 平分∠AOC ,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE ﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD ﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE ,所以OE 平分∠BOC .【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键. 26.3x x -,当x=2时,原式=2-. 【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可. 试题解析:原式=()()2x x1x12x1x1x3--⎛⎫-⋅⎪--⎝⎭-=()()2x x1x3x1x3--⋅--=xx3-当x=2时,原式=22 23=--.27.(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.【解析】【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.。

河东区初三数学一模试卷

河东区初三数学一模试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 已知函数f(x) = 2x + 1,若f(x) > 3,则x的取值范围是()A. x > 1B. x < 1C. x ≥ 1D. x ≤ 12. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°3. 已知数列{an}中,a1 = 3,an+1 = 2an - 1,则数列{an}的通项公式是()A. an = 2n + 1B. an = 2n - 1C. an = 3×2^(n-1)D. an = 3×2^(n-2)4. 若a、b、c是等差数列,且a + b + c = 15,则b的值为()A. 5B. 10C. 15D. 205. 已知二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, -2),则a的值是()A. 1B. -1C. 2D. -26. 在平面直角坐标系中,点A(2, 3)关于直线y = x的对称点B的坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)7. 已知一元二次方程x^2 - 5x + 6 = 0的解是x1和x2,则方程x^2 - 5x + 7 = 0的解是()A. x1和x2B. x1和x2的相反数C. x1和x2的倒数D. x1和x2的平方8. 若等比数列{an}的公比为q,且a1 = 1,a3 = 8,则q的值为()A. 2B. 4C. 8D. 169. 已知正方形的对角线长为2√3,则该正方形的面积是()A. 6B. 12C. 18D. 2410. 在△ABC中,∠A = 30°,∠B = 75°,则△ABC的面积是()A. 1/2B. √3/2C. √3D. 3二、填空题(本大题共10小题,每小题3分,共30分)11. 已知x + y = 5,xy = 6,则x^2 + y^2的值为______。

2020年天津市河东区中考数学一模试卷含答案解析

2020年天津市河东区中考数学一模试卷含答案解析

2020年天津市河东区中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.12.tan30°的值等于()A.B.C.D.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.根据海关统计,2020年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104 B.0.1488×107C.14.88×106 D.1.488×1065.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.6.方程的解为()A.x=﹣2 B.x=2 C.x=﹣1 D.x=7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名B.52名C.78名D.104名8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.39.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>1010.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6C.2D.811.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c >0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P均落在格点上.(1)计算三角形ABC的周长等于.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC 上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是;m=,n=.(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2020年天津市河东区中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.tan30°的值等于()A.B.C.D.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选C.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C上下折叠能重合,是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.根据海关统计,2020年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104 B.0.1488×107C.14.88×106 D.1.488×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:148000这个数用科学记数法表示为1.488×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.方程的解为()A.x=﹣2 B.x=2 C.x=﹣1 D.x=【分析】观察方程可得最简公分母是:x(x﹣1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以x(x﹣1)得,2x﹣2=3x,解得:x=﹣2.经检验:x=﹣2是原方程的解;故选A.【点评】此题考查了分式方程的解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名B.52名C.78名D.104名【分析】用学生总人数乘以植树量为6棵的百分比即可求解.【解答】解:观察统计图发现植树量为6棵的占30%,故植树量达6棵的人数有260×30%=78人,故选C.【点评】本题考查了用样本估计总体及扇形统计图的知识,解题的关键是从扇形统计题中整理出植树量达6棵所占的百分比,难度不大.8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.3【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题考查了正六边形和圆,掌握外接圆的半径等于正六边形的边长是解此题的关键.9.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>10【分析】将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(﹣2,﹣5),∴﹣5=,解得:k=10,∴反比例函数解析式为y=.当x>0时,反比例函数单调递减,当x=1时,y==10;当x=2时,y==5.∴当1<x<2时,5<y<10.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x 的值即可得出结论.10.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6C.2D.8【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选A.【点评】此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c >0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于﹣a6.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a2)3=﹣a6.故答案为:﹣a6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,∴从中任意摸出一个球,是白球的概率是:.故答案为.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=2.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴,解得m=2.故答案为:2.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系及其增减性是解答此题的关键.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线x=1.【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,可以得到它的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,∴抛物线的对称轴为直线x=,故答案为:x=1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的性质,知道二次函数的图象具有对称性.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P均落在格点上.(1)计算三角形ABC的周长等于3+5.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC 上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)【分析】(1)根据勾股定理分别求出AB、AC即可解决问题.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,由△AEH∽△ABC,得=,列出方程即可解决.【解答】解:(1)∵AB==,AC==2,BC=5,∴AB+AC+BC=3+5,∴△ABC的周长为3+5.故答案为3+5.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,∵矩形EFGH的周长为8,∴EH=4﹣x,∵EH∥BC,∴△AEH∽△ABC,∴=,∴,∴x=,∴EF=,∵EF∥AM,∴===,∴BE=AB,∴当BE=AB时,矩形EFGH的周长等于线段BP长度的2倍.【点评】本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得x≥﹣1.(2)解不等式②,得x≤1.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为﹣1≤x≤1.【分析】先根据不等式基本性质求出两个不等式的解集,再将不等式解集表示在数轴上,根据解集在数轴上的表示求其公共解.【解答】解:(1)解不等式①,得:x≥﹣1,(2)解不等式②,得:x≤1,(3)把不等式①和②的解集表示在数轴上,如图:(4)∴原不等式组的解集为:﹣1≤x≤1;故答案为:(1)x≥﹣1;(2)x≤1;(4)﹣1≤x≤1.【点评】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是240;m=24,n=15.(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.【分析】(1)用“舞蹈”类人数除以其占总人数百分比可得总人数,将“武术”类人数占总人数百分比×总人数可得m的值,将“花样滑冰”类人数除以总人数可得其所占百分比;(2)用乒乓球类人数占样本总数的百分比乘以2600可得.【解答】解:(1)被调查的学生总人数是60÷25%=240(人),“武术”类人数m=240×10%=24(人),“花样滑冰”类人数占总人数百分比n=×100=15;(2)×2600=130(人),答:估计全校最喜爱乒乓球的人数约为130人.故答案为:(1)240,24,15.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BC﹣BD=31.45,进而可求出答案.【解答】解:设AB=x米,在Rt△ACB和Rt△ADB中,∵∠C=45°,∠ADB=60°,CD=31.45m,∴CB=x,BD=x,∵CD=BC﹣BD=x﹣x=31.45,解得:x≈74.4.答:塔高AB约为74.4米.【点评】本题考查了解直角三角形的应用﹣仰角俯角;能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形是解决问题的关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.【分析】(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;【解答】解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+57600;=6300+57600=63900;当x=15时,W有最大值,W最大②当15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080;∴x=18时有最大值为:64080元.综上x=18时,有最大利润64080.【点评】本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【分析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M 重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握旋转变化与平移变化的性质是解题的关键.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.【点评】本题考查的是二次函数综合题,涉及到二次函数与一次函数的交点问题、二次函数图象上点的坐标特点、平行四边形的判定与性质等知识,难度较大.2020年6月17日。

2024年天津市河东区中考数学一模试卷及参考答案

2024年天津市河东区中考数学一模试卷及参考答案

2024年天津市河东区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算的结果等于()A.B.C.1D.﹣12.(3分)估计的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间3.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)2023年10月26日,神舟十七号载人飞船发射取得圆满成功,航天员江新林、汤洪波、唐胜杰将与神舟十六号航天员会师太空.空间站距离地球约为423000m,423000用科学记数法可表示为()A.423×103B.42.3×104C.4.23×105D.0.423×1066.(3分)计算的值等于()A.0B.C.D.7.(3分)计算的结果正确的是()A.B.C.D.8.(3分)若点A(x1,﹣4),B(x2,1),C(x3,4)都在反比例函数的图象上.则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2 9.(3分)若x1,x2是方程x2﹣2x﹣3=0的两个根,则()A.x1+x2=﹣2B.x1+x2=3C.x1x2=﹣3D.x1x2=2 10.(3分)如图,在∠AOB中,以点O为圆心,5为半径作弧,分别交射线OA,OB于点C,D,再分别以C,D为圆心,CO的长为半径作弧,两弧在∠AOB内部交于点E,作射线OE,若OE=8,则C,D两点之间的距离为()A.5B.6C.D.811.(3分)如图,在△ABC中,∠ACB=90°,D是斜边AB的中点,把△ABC沿着CD折叠,点B的对应点为点E,连接AE.下列结论一定正确的是()A.AD+DE=AB B.∠CDE=60°C.AE+EC=AC D.AB∥EC 12.(3分)如图,在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x+1的一部分(水平地面为x轴,单位:m),有下列结论:①出球点A离点O的距离是1m;②羽毛球最高达到m;③羽毛球横向飞出的最远距离是3m;其中,正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一个不透明的袋子里装有2个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为.14.(3分)计算:(﹣a3b)2=.15.(3分)计算的结果为.16.(3分)一次函数y=﹣x+4的图象向下平移3个单位后经过点(a,3),则a的值为.17.(3分)如图,在△ABC中,∠BAC=90°,AB=AC,点E在△ABC外,连接AE,BE,CE,过点A作AF⊥AE,交CE于点F,连接BF,若AE=AF=.则:(Ⅰ)线段EF的长等于;(Ⅱ)△ABC的面积为.18.(3分)如图,在每个小正方形的边长为1的网格中,等边三角形ABC内接于圆,且顶点A,B均在格点上.(1)线段AB的长为;(2)若点D在圆上,AB与CD相交于点P,请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组.请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上分别表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为,图①中m的值为;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.21.(10分)已知点A,B,C在⊙O上.(Ⅰ)如图①,过点A作⊙O的切线EF,交BC延长线于点E,D是弧BC的中点,连接DO并延长,交BC于点G,交⊙O于点H,交切线EF于点F,连接BA,BH,若∠ABH=24°,求∠E的大小;(Ⅱ)如图②,若∠AOC+∠B=135°,⊙O的半径为5,BC=8,求AB的长.22.(10分)综合与实践活动中,要测量一个信号塔的高度,如图,信号塔AB前有一段高为DE的台阶,已知CD的长为5米,高DE为3米,点E、C、A在同一条水平直线上.在点C处测得点B的仰角为45°,在点D处测得点B的仰角为38.7°.(Ⅰ)求CE的长;(Ⅱ)设塔AB的高度为h(单位:m).①用含有h的式子表示线段EA的长;②求塔AB的高度(tan38.7°≈0.80,结果保留整数).23.(10分)已知小天家、文具店、公园依次在同一条直线上,文具店离小天家0.6km,公园离小天家0.8km,小天从家出发,先用了8min匀速步行去文具店;从文具店出来后接着匀速步行了3min到公园锻炼;从公园出来后,接着用了10min匀速步行回到家.下面图中x表示时间,y表示离家的距离.图象反映了这个过程中小天离家的距离与时间之间的对应关系.请根据相关信息解答下列问题:(Ⅰ)①填表:小天离开家的时间/min181558小天离开家的距离/km0.6②填空:小天从文具店到公园的速度为km/min;③当28≤x≤68时,请直接写出小天离家的距离y关于时间x的函数解析式;(Ⅱ)当小天离开文具店30min时,小天的弟弟小津从公园出发匀速步行直接回家,如果小津的速度为0.05km/min,那么小津在回家的途中遇到小天时离家的距离是多少?(直接写出结果即可).24.(10分)在平面直角坐标系中,O为原点,直角三角形OAB的顶点A(2,0),∠BAO=30°,菱形CDEF的顶点C(0,1),E(﹣2,1),F(﹣,0).(Ⅰ)填空:如图①,点B的坐标为,点D的坐标为;(Ⅱ)将菱形CDEF沿水平方向向右平移,得到菱形C′D′E′F′,点C,D,E,F 的对应点分别为C′,D′,E′,F′,设FF′=t,菱形C′D′E′F′与直角三角形OAB重叠部分的面积为S.(ⅰ)如图②,当边D′E′分别与AB、OB相交于点M、N,边E′F′与OB相交于点P,边F′C′与AB相交于点Q,且菱形C′D′E′F′与直角三角形OAB重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;(ⅱ)当S=时,求t的值(直接写出结果即可).25.(10分)已知抛物线y=x2+bx+c(b,c为常数),与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,抛物线的顶点为D.(Ⅰ)若b=﹣2,c=﹣6.①求点A和点D的坐标;②连接AC并延长交BD的延长线于点E,求∠CEB的度数;(Ⅱ)若点B的坐标为(﹣c,0),且c<﹣1,抛物线上的点F的横坐标为m,且﹣b<m<﹣c,过点F作FG⊥BC,垂足为G.且DF∥BC,当BG+3FG=4时,求m的值.2024年天津市河东区中考数学一模试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C;2.C;3.B;4.B;5.C;6.A;7.A;8.B;9.C;10.B;11.A;12.C;二、填空题(本大题共6小题,每小题3分,共18分)13.;14.a6b2;15.18;16.﹣2;17.2;5;18.;取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求.;三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.x≤3x≥﹣2﹣2≤x≤320.502021.(Ⅰ)∠E的度数是48°(Ⅱ)AB的长是7.;22.(Ⅰ)CE的长为4m;(Ⅱ)①线段EA的长为(4+h)m;②塔AB的高度约为31m.;23.;0.6;0.8;;24.(0,2;(﹣,2);25.(Ⅰ)①D(2,﹣8)、点A(﹣2,0);②∠CEB=45°;(Ⅱ)m=3.。

河东区一模数学初三试卷

河东区一模数学初三试卷

1. 下列各数中,是整数的是()A. √9B. 3.14C. 2/3D. -52. 下列各式中,正确的是()A. a + b = b + aB. a × b = b × aC. a ÷ b = b ÷ aD. a - b = b - a3. 下列各数中,有理数是()A. √-9B. 3.14C. 2/3D. -54. 下列各式中,绝对值最大的是()A. |3|B. |-3|C. |0|D. |1|5. 下列各式中,同类项是()A. 2x + 3yB. 4x^2 - 5y^2C. 2x^2 + 3xyD. 4x^2 + 5x二、填空题(每题5分,共25分)6. 若a = -3,b = 2,则a + b = ________,a - b = ________,ab = ________。

7. (-2)^3 = ________,(-2)^2 = ________,(-2)^0 = ________。

8. |5| = ________,|-5| = ________,|0| = ________。

9. 若a = 3,b = -2,则a^2 - b^2 = ________。

10. 若a = 2,b = -3,则(a + b)(a - b) = ________。

三、解答题(每题15分,共45分)11. (1)若a + b = 5,ab = 6,求a^2 + b^2的值。

(2)若x + y = 3,xy = 2,求x^2 + y^2的值。

12. (1)若a、b是方程x^2 - 5x + 6 = 0的两根,求a + b和ab的值。

(2)若a、b是方程2x^2 - 4x + 1 = 0的两根,求a + b和ab的值。

13. (1)已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,求证:三角形ABC是直角三角形。

(2)已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,求证:三角形ABC的面积是c^2/2。

2024届天津市河东区中考数学模拟试题含解析

2024届天津市河东区中考数学模拟试题含解析

2024届天津市河东区中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列二次根式中,为最简二次根式的是()A.45B.22a bC.12D. 3.62.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.3.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.25πcm B.210πcm C.215πcm D.220πcm4.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A .12a B .a C .32a D .3a5.将一次函数2y x =-的图象向下平移2个单位后,当0y >时,a 的取值范围是( ) A .1x >-B .1x >C .1x <-D .1x <6.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A .105°B .110°C .115°D .120°7.△ABC 在正方形网格中的位置如图所示,则cosB 的值为( )A 5B 25C .12D .28.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣39.如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 的坐标为(0,4),将△ABO 绕点B 逆时针旋转60°后得到△A'BO',若函数y=kx(x >0)的图象经过点O',则k 的值为( )A .23B .4C .43D .810.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米11.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个12.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:12(2018)--=___.14.如图,在△ABC 中,AB =3,∠B =45°,∠C =105°,点D 、E 、F 分别在AC 、BC 、AB 上,且四边形ADEF 为菱形,若点P 是AE 上一个动点,则PF +PB 的最小值为_____.15.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=23,则BC的长为______.16.如图,将边长为6的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.17.已知点M(1,2)在反比例函数的图象上,则k=____.18.若﹣4x a y+x2y b=﹣3x2y,则a+b=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总10 20 30 60 90 120 180 240 330 450次数“和为8”出2 10 13 24 30 37 58 82 110 150现的频数“和为8”出0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33现的频率解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x的值可以为7吗?为什么?20.(6分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.21.(6分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.982≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?22.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=kx (x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=kx的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.23.(8分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.24.(10分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.25.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m请说明理由26.(12分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=25DE,求tan∠ABD 的值.27.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(整式)(分母中不含根号)2.被开方数中不含能开提尽方的(因数)或(因式).【题目详解】A. 不是最简二次根式;B. ,最简二次根式;C. =2,不是最简二次根式;D. ,不是最简二次根式.故选:B【题目点拨】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.2、C【解题分析】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.3、B【解题分析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=27252360π⨯⨯=10π .故选B.4、A【解题分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【题目详解】如图,取BC 的中点G ,连接MG ,∵旋转角为60°, ∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°, ∴∠HBN=∠GBM ,∵CH 是等边△ABC 的对称轴, ∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN , ∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===, ∴△MBG ≌△NBH (SAS ), ∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a,∴HN=2a ,故选A . 【题目点拨】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.5、C 【解题分析】直接利用一次函数平移规律,即k 不变,进而利用一次函数图象的性质得出答案. 【题目详解】将一次函数2y x =-向下平移2个单位后,得:22y x =--,当0y >时,则:220x -->,解得:1x <-,∴当0y >时,1x <-,故选C . 【题目点拨】本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键. 6、C 【解题分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO 即可解决问题. 【题目详解】如图,对图形进行点标注.∵直线a ∥b , ∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°, ∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【题目点拨】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.7、A【解题分析】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cos B=25525BDAB==.故选A.8、B【解题分析】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.9、C【解题分析】根据题意可以求得点O'的坐标,从而可以求得k的值.【题目详解】∵点B的坐标为(0,4),∴OB=4,作O′C⊥OB于点C,∵△ABO绕点B逆时针旋转60°后得到△A'BO',∴O′B=OB=4,∴O′C=4×sin60°=23,BC=4×cos60°=2,∴OC=2,∴点O′的坐标为:(23,2),∵函数y=k x(x >0)的图象经过点O', ∴2=23k,得k=43, 故选C .【题目点拨】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.10、C【解题分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【题目详解】在Rt △A′BD 中,∵∠A′DB=90°,A′D=2米,BD 2+A′D 2=A′B′2,∴BD 2+22=6.25,∴BD 2=2.25,∵BD >0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C .【题目点拨】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.11、B【解题分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【题目详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【题目点拨】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【题目详解】请在此输入详解!【题目点拨】请在此输入点睛!12、B【解题分析】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD 是正方形,故此选项正确,不合题意.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1 2 -【解题分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【题目详解】原式11122 =-=-.故答案为12 -.【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.14、10【解题分析】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.【题目详解】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四边形ADEF是菱形,∴F,D关于直线AE对称,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是线段BD的长,∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=12x,FG=32x,∵∠EGB=45°,EG⊥BG,∴EG=BG=12x,∴3123∴x=2,∴DH=1,BH=3,∴2213+10,∴PF+PB10,故答案为10.【题目点拨】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.15、2【解题分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【题目详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵3,OC=2,∴22+22OC PC+,2(23)∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【题目点拨】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、6﹣3【解题分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影=S正方形﹣S四边形AB′OD,计算面积即可.部分【题目详解】解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=2,×6=23,S四边形AB′OD=2S△AOD=2×122∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣23.【题目点拨】此题的重点是能够计算出四边形的面积.注意发现全等三角形.17、-2【解题分析】=1×(-2)=-218、1【解题分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【题目详解】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【题目点拨】本题考查的知识点为:同类项中相同字母的指数是相同的.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)出现“和为8”的概率是0.33;(2)x的值不能为7. 【解题分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案.【题目详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=16≠13,所以x的值不能为7.【题目点拨】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.20、(1)25;(2)8°48′;(3).【解题分析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.考点:频数(率)分布表;扇形统计图;列表法与树状图法.21、(1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解题分析】试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=332≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.22、(1)C(2,2);(2)①反比例函数解析式为y=4x;②直线CD的解析式为y=﹣12x+1;(1)m=1时,S△OEF最大,最大值为1 4 .【解题分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【题目详解】(1)∵点C是OA的中点,A(4,4),O(0,0),∴C4040,22++⎛⎫⎪⎝⎭,∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,32n+),∵点C,D(4,n)在双曲线kyx=上,∴3224nkk n+⎧=⨯⎪⎨⎪=⎩,∴14 nk=⎧⎨=⎩,∴反比例函数解析式为4yx =;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴22 41a ba b+=⎧⎨+=⎩,∴123ab⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为y=﹣12x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣12x+1,设点E(m,﹣12m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线4yx于F,∴F(m,4m ),∴EF=﹣12m+1﹣4m,∴S△OEF=12(﹣12m+1﹣4m)×m=12(﹣12m2+1m﹣4)=﹣14(m﹣1)2+14,∵2<m<4,∴m=1时,S△OEF最大,最大值为1 4【题目点拨】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.23、2.【解题分析】根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.【题目详解】解:∵AD是△ABC的中线,且BC=10,∴BD=12BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵CD=BD,∴AC=AB=2.【题目点拨】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.24、(1)y=﹣12x2+12x+1;(2)①-12;②点P的坐标(6,﹣14)(4,﹣5);(35.【解题分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【题目详解】解:(1)将A ,B 点坐标代入,得10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩, 解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩, 即P (6,﹣14);当PB ⊥AB 时,PB 的解析式为y =﹣2x+3,联立PB 与抛物线,得21112223y x x y x ⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h55.点M到直线AB 5.【题目点拨】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键25、(1)10%;(1)会跌破10000元/m1.【解题分析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【题目详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【题目点拨】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.26、(1)90°;(1)证明见解析;(3)1.【解题分析】(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【题目详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(1)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DE AD DC=,∴DC1=AD•DE∵AC=15DE,∴设DE=x,则AC=15x,则AC1﹣AD1=AD•DE,期(15x)1﹣AD1=AD•x,整理得:AD1+AD•x﹣10x1=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.27、(1)证明见解析;(2)1.【解题分析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【题目详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【题目点拨】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.。

河东区中考一模数学试卷

河东区中考一模数学试卷

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若方程2x-3=5的解是x=a,则a的值为:A. 4B. 2C. 1D. -22. 下列函数中,有最小值的是:A. y=x^2B. y=-x^2C. y=x^2+1D. y=x^2-13. 在等腰三角形ABC中,AB=AC,且∠BAC=60°,则∠B的度数为:A. 60°B. 30°C. 45°D. 90°4. 已知函数y=kx+b(k≠0)的图象经过点(1,2),(2,4),则该函数的解析式为:A. y=2xB. y=3xC. y=2x+1D. y=3x+15. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,6)6. 若a,b是方程x^2-5x+6=0的两个根,则a+b的值为:A. 5B. 6C. 7D. 87. 已知三角形ABC中,∠A=45°,∠B=60°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°8. 下列数列中,不是等差数列的是:A. 1,4,7,10,13B. 2,5,8,11,14C. 3,6,9,12,15D. 4,7,10,13,169. 在等腰直角三角形中,斜边长为c,则腰长为:A. √2cB. √3cC. 2√2cD. 2√3c10. 下列命题中,正确的是:A. 所有平行四边形都是矩形B. 所有等腰三角形都是等边三角形C. 所有等边三角形都是等腰三角形D. 所有等腰三角形都是直角三角形二、填空题(本大题共10小题,每小题3分,共30分。

把答案填在题中的横线上。

)11. 若方程3x-2=5的解是x=a,则a的值为______。

12. 函数y=2x+1的图象与x轴的交点坐标为______。

天津市河东区中考数学一模试卷含解析

天津市河东区中考数学一模试卷含解析

2018 年天津市河东区中考数学一模试卷一、选择题(本大题共 12 小題,每题3 分,共 36 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的 )1.(3 分)计算﹣ 3+10=()A .﹣ 30B .﹣ 13C .﹣ 7D . 72.(3 分) 2cos30 °的值等于( )A .1B .C .D .23.(3 分)下面图形中,是中心对称图形的是( )A .B .C .D .4.( 3 分)中共十九大召开期间, 十九大代表纷纷利用休息时间到达北京展览馆,参观 “砥砺奋进的五年 ”大型成就展,据统计, 9 月下旬开幕至 10 月 22 日,展览累计参观人数已经高出 78 万,请将 780000 用科学记数法表示为()A .78×104B .×105C .×106D .× 1065.( 3 分)如图,是由五个相同的小正方体组成的立体图形,其俯视图是()A .B .C .D .6.(3 分)估计的值在()A .2和3之间B .3和4之间C .4和5之间D .5和 6之间7.(3 分)计算﹣ 的结果是( )A .1B .﹣1C .2D .﹣ 28.(3 分)方程 x 2﹣2x=3 可以化简为( ).( ﹣ )( ) =0 .( )(﹣) 2 =2 2+4=0 A x 3 x+1 B x+3 x 1 =0 C .(x ﹣1) D .(x ﹣1)9.(3 分)如图,将△ ABC 绕点 A 逆时针旋转 100°,获取△ ADE .若点 D 在线段BC的延长线上,则∠ B 的大小为()A.30°B.40°C.50°D.60°10.( 3 分)点 A(﹣ 3,y1),B(﹣ 1,y2),C(1,y3)都在反比率函数y=﹣的图象上,则 y1, y2, y3的大小关系是()A.y 1<y2<y3. 3 <y2<y1. 3<y1<y2.2<y1<y3B yC yD y11.(3 分)如图,在底边 BC为 2,腰 AB为 2 的等腰三角形 ABC中,DE 垂直均分 AB 于点 D,交 BC于点 E,则△ ACE的周长为()A.2+B.2+2C.4D. 312.( 3 分)二次函数y=x2﹣bx+b﹣2 图象与x 轴交于点A(x1,0),B(x2,0),且 0<x1<1,2<x2<3,则满足条件的 b 的取值范围是()A.b>﹣ 1 B.1<b<2 C.D.二、填空题(本大题共 6 小磁,每题 3 分,共 18 分)13.( 3分)(﹣ p)2?(﹣ p)3=.14.( 3分)计算:=.15.(3 分)一个不透明的盒子中装有2 个白球, 5 个红球和 3 个黄球,这些球除颜色外,没有任何其他差异,现从这个盒子中随机摸出一个球,摸到红球的概率为.16.( 3 分)请写出一个过点( 0, 1),且 y 随着 x 的增大而减小的一次函数剖析式.17.( 3 分)如图,正方形ABCD,点 E,F 分别在 AD, CD上, BG⊥EF,点 G 为垂足, AB=5,AE=1,CF=2,则 BG=.18.( 3 分)在以下列图的网格中,每个小正方形的边长都为为格点.(Ⅰ)△ ABC的面积等于.(Ⅱ)请借助无刻度的直尺,在以下列图的网格中画出△垂直均分线,并简要说明你是怎么画出来的:.1,点 A、B、C 均ABC的角均分线 BD 的三、解谷题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)19.( 8 分)解不等式组请结合题意填空,完成本题的解答:( I)解不等式(1);(Ⅱ)解不等式(2);(Ⅲ)把不等式( 1)和( 2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8 分)某高校学生会向全校2900 名学生倡导了“爱心一日捐”捐款活动,为认识捐款情况,学生会随机检查了部分学生的捐款金额,并用获取的数据绘制了以下统计图①和图②,请依照相关信息,解答以下问题:( I)本次接受随机抽样检查的学生人数为,图①中m的值是(Ⅱ)求本次检查获取的样本数据的平均数、众数和中位数;(Ⅲ)依照样本数据,估计该校本次活动捐款金额不高出10 元(包括学生人数.;10 元)的21.( 10 分)如图, PA、PB 是⊙ O 的切线, A,B 为切点,∠ APB=60°,连接PO 并延长与⊙ O 交于 C 点,连接 AC、BC.(Ⅰ)求∠ ACB的大小;(Ⅱ)若⊙ O 半径为 1,求四边形 ACBP的面积.22.( 10 分)小明为了测量楼房 AB 的高度,他从楼底的 B 处沿着斜坡向上行走20m,到达坡顶 D 处.已知斜坡的坡角为15°.(以下计算结果精确到)(1)求小明此时与地面的垂直距离 CD的值;(2)小明的身高 ED是,他站在坡顶看楼顶 A 处的仰角为 45°,求楼房 AB的高度.(sin15 °≈cos15°≈tan≈)23.( 10 分)“五四”青年节期间,校团委对团员参加活动情况进行表彰,计划分为优秀奖和贡献奖,为此联系印刷公司设计了两种奖状,A,B 两家公司都为学校提出了相同规格和单价的两种奖状,其中优秀奖的奖状 6 元/ 张,贡献奖的奖状 5 元 / 张,经过协商, A 公司的优惠条件是:两种奖状都打八折,但要收制版费 50 元; B 公司的优惠条件是:两种奖状都打九折;依照学校要求,优秀奖的个数是贡献奖的 2 倍还多 10 个,若是设贡献奖的个数是 x 个.( 1)分别写出校团委购买 A, B 两家印刷厂所需要的总花销 y1(元)和 y2(元)与贡献奖个数 x 之间的函数关系式;( 2)校团委选择哪家印刷公司比较合算?请说明原由.24.( 10 分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形OACB的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=10.点 D 为 y 轴上一点,其坐标为( 0,2),点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣ CB的方向运动,当点 P 与点 B 重合时停止运动,运动时间为 t 秒.( 1)当点 P 经过点 C 时,求直线 DP 的函数剖析式;( 2)①求△ OPD的面积 S 关于 t 的函数剖析式;②如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P的坐标.( 3)点 P 在运动过程中可否存在使△BDP 为等腰三角形?若存在,央求出点P 的坐标;若不存在,请说明原由.25.(10 分)在平面直角坐标系xOy 中,抛物线 y=x2+bx+c 与 x 轴交于点 A,B(A 在 B 的左侧),抛物线的对称轴为直线 x=1,AB=4.( 1)求抛物线的表达式;(2)抛物线上有两点 M( x1,y1)和 N(x2,y2),若 x1<1,x2> 1, x1 +x2> 2,试判断 y1与 y2的大小,并说明原由;( 3)平移该抛物线,使平移后的抛物线经过点O,且与 x 轴交于点 D,记平移后的抛物线极点为点P①若△ ODP是等腰直角三角形,求点P 的坐标;②在①的条件下,直线x=m(0<m<3)分别交线段 BP、BC于点 E、F,且△ BEF 的面积:△ BPC的面积 =2:3,直接写出 m 的值.2018 年天津市河东区中考数学一模试卷参照答案与试题剖析一、选择题(本大题共12 小題,每题 3 分,共 36 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的)1.【解答】解:﹣ 3+10=+( 10﹣3)=7,应选: D.2.【解答】解: 2cos30°=2×=.应选: C.3.【解答】解: A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.应选: D.4.【解答】解:×105,应选: B.5.【解答】解:从上面看易得:有 3 列小正方形第 1 列有 1 个正方形,第 2 列有 2 个正方形,第3 列有1 个正方形,且只有中间的小正方形在下面,进而得出答案即可,应选: A.6.【解答】解:∵ 25<27< 36,∴5<<6,∴2<﹣3<3,即2和3之间.应选: A.7.【解答】解:原式 ==﹣=﹣1.应选: B.8.【解答】解: x2﹣2x=3,(x﹣3)(x+1)=0,应选: A.9.【解答】解:依照旋转的性质,可得:AB=AD,∠ BAD=100°,∴∠ B=∠ ADB= ×( 180°﹣100°) =40°.应选: B.10.【解答】解:当 x=﹣3 时, y1=1,当x=﹣1 时,y2=3,当 x=1 时, y3=﹣ 3,∴ y3<y1<y2应选: C.11.【解答】解:∵ DE垂直均分 AB,∴BE=AE,∴AE+CE=BC=2 ,∴△ACE的周长 =AC AE CE=ACBC=2 2,++++应选: B.12.【解答】解:由题意可得,,解得, 2<b<,应选: C.二、填空题(本大题共 6 小磁,每题 3 分,共 18 分)13.【解答】解:(﹣ p)2?(﹣ p)3=(﹣ p)2+3=(﹣ p)5=﹣p5;故答案是:﹣ p5.14.【解答】解:原式 =25﹣2×5×3 +(3)2=25﹣30+18=43﹣30.15.【解答】解:依照题意可得:一个不透明的盒子中装有个黄球,共 10 个,摸到红球的概率为:=.2 个白球, 5 个红球和3故答案为:.16.【解答】解:设该一次函数的剖析式为y=kx+b.∵y 随着x 的增大而减小,∴ k< 0,取 k=﹣1.∵点(0,1)在一次函数图象上,∴ b=1.故答案为: y=﹣ x+1.17.【解答】解:如图,连接 BE、 BF.∵四边形 ABCD是正方形,∴AB=BC=CD=AD=5,∵ AE=1, AF=2,∴DE=4, DF=3,∴ EF==5,∵S△BEF= ?EF?BG=S正方形ABCD﹣S△ABE﹣S△BCF﹣S△DEF,∴? 5?BG=25﹣ ?5?1﹣ ?5?2﹣ ?3?4,∴BG= ,故答案为18.,【解答】解:(Ⅰ)△ ABC的面积= 故答案为: 6;(Ⅱ)以下列图:先画出△ ABC的角均分线 BD,再画出 BD 的垂直均分线即可;故答案为:先画出△ ABC的角均分线 BD,再画出 BD的垂直均分线.三、解谷题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)19.【解答】解:,(Ⅰ)解不等式①得: x<2,(Ⅱ)解不等式②得: x≥﹣ 4,(Ⅲ)把不等式①和②的解集在数轴上表示出来如图:(Ⅳ)原不等式组的解集为:﹣4≤ x<2,故答案为:(Ⅰ) x<2;(Ⅱ) x≥﹣ 4;(Ⅳ)﹣ 4≤x<2.20.【解答】解:(I)检查的学生数是: 4÷8%=50(人),m= ×100=32.故答案是: 50, 32;(Ⅱ)平均数是:=16(元),由于捐款 10 元人数最多,所以众数是10 元,中位数为第 25、 26 个数据的平均数,因其中位数是=15 元;(Ⅲ)估计该校本次活动捐款金额不高出10 元(包括 10 元)的学生人数2900×=1160(人).21.【解答】解:(Ⅰ)连接 OA,如图,∵PA、PB 是⊙ O 的切线,∴OA⊥ AP,OP 均分∠ APB,∴∠ APO= ∠APB=30°,∴∠ AOP=60°,∵OA=OC,∴∠ OAC=∠OCA,∴∠ ACO=AOP=30°,同理可得∠ BCP=30°,∴∠ ACB=60°;(Ⅱ)在 Rt△OPA中,∵∠ APO=30°,∴AP= OA= , OP=2OA=2,∴OP=2OC,而 S△OPA= × 1×,∴S△AOC= S△PAO= ,∴S△ACP=,∴四边形 ACBP的面积 =2S△ACP=.22.【解答】解:(1)在 Rt△BCD中,∵∠ CBD=15°,BD=20,∴CD=BD?sin15°,∴CD≈;答:小明与地面的垂直距离CD的值是;(2)在 Rt△ AFE中,∵∠AEF=45°,∴ AF=EF=BC,由( 1)知, BC=BD?cos15°≈(m),∴(m).答:楼房 AB 的高度是.23.【解答】解:(1)由题意 y1( 2x+10)+4x+50=13.6x+98,y2(2x+10) +4.5x=15.3x+54.(2)当 y1> y2时, 13.6x+98> 15.3x+54,解得 x<25 ,∵ x 为整数,∴当贡献奖个数小于等于25 个时,选 B 公司比较合算;当贡献奖个数大于25个时,选 A 公司比较合算.24.【解答】解:(1)∵ OA=6,OB=10,四边形 OACB为长方形,∴C(6,10).设此时直线 DP 剖析式为 y=kx+b,把( 0,2), C( 6, 10)分别代入,得,解得则此时直线 DP 剖析式为 y=x+2;( 2)①当点 P 在线段 AC 上时, OD=2,高为 6,S=6;当点 P 在线段 BC 上时, OD=2,高为 6+10﹣2t=16﹣ 2t ,S= × 2×( 16﹣ 2t)=﹣2t+16;②设 P(m, 10),则 PB=PB′=m,如图 2,∵OB′=OB=10,OA=6,∴ AB′==8,∴B′C=10﹣8=2,∵ PC=6﹣ m,∴m2=22+( 6﹣m)2,解得 m=则此时点 P 的坐标是(,10);( 3)存在,原由于:若△ BDP为等腰三角形,分三种情况考虑:如图3,①当 BD=BP1=OB﹣OD=10﹣ 2=8,在Rt△BCP 中, BP11=8,BC=6,依照勾股定理得: CP=2,1 =∴ AP1=10﹣ 2,即 P1(6,10﹣2);②当 BP2=DP2时,此时 P2(6,6);③当 DB=DP3=8 时,在 Rt△DEP3中, DE=6,依照勾股定理得: P3E==2 ,∴AP3=AE+EP3=2 +2,即 P3(6,2 +2),综上,满足题意的P 坐标为( 6,6)或( 6, 2 +2)或( 6,10﹣2).25.【解答】解:(1)∵抛物线的对称轴为直线x=1, AB=4,∴A(﹣ 1,0),B(3,0),∴抛物线剖析式为y=( x+1)( x﹣3),即 y=x2﹣2x﹣3;(2)y1<y2;原由以下:∵ x1<1,x2>1,∴ M、N 在对称轴的两侧,∵x1+x2> 2,∴x2﹣1>1﹣x1,∴点 N 到直线 x=1 的距离比 M 点到直线 x=1 的距离远,∴y1<y2;(3)①作 PH⊥x 轴于 H,∵△ OPD为等腰直角三角形,∴PH=OH=OD,当点 D 在 x 轴的正半轴上,如图1,设 P( m,﹣ m),则 D(2m,0),设抛物线的剖析式为y=x( x﹣2m),把P(m,﹣m)代入得m(m﹣2m)=﹣m,解得m1=0(舍去),m2=1,即P(1,﹣1);当点 D 在 x 轴的负半轴上,如图 2,设 P( m,m),则 D( 2m, 0),设抛物线的剖析式为 y=x( x﹣2m),把 P(m,m)代入得 m(m﹣ 2m) =m,解得 m1=0(舍去),m2=﹣ 1,即 P(﹣1,﹣ 1);综上所述, P 点坐标为( 1,﹣ 1)或(﹣ 1,﹣ 1);②当点 D 在 x 轴的正半轴上,如图 1,延长 HP 交 BC于 Q,设直线 BP的剖析式为 y=px+q,把 B(3,0), P( 1,﹣ 1)代入得,解得,∴直线 BP的剖析式为 y= x﹣,易得直线 BC的剖析式为 y=x﹣ 3;则 Q(1,﹣ 2),E(m,m﹣),F(m,m﹣3),S△PBC=×1×3=,∵△ BEF的面积:△ BPC的面积 =2: 3,∴S△BEF=1,∴(﹣ m+ )(3﹣m)=1,解得 m1=5(舍去), m2=1;当点 D 在 x 轴的负半轴上,如图 2,延长 HP 交 BC于 Q,同理可得直线 BP 的剖析式为 y= x﹣,则 Q(﹣ 1,﹣ 4),E(m, m﹣), F( m,m﹣3),S△PBC=×3×3=,∵△ BEF的面积:△ BPC的面积 =2: 3,∴S△BEF=3,∴(﹣m+)(3﹣m)=3,解得m1=3+2(舍去),m2=3﹣2,综上所述, m 的值为 1 或 3﹣2.。

河东初中一模数学试卷

河东初中一模数学试卷

考试时间:120分钟总分:100分一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。

A. √16B. √-9C. πD. 2/32. 若a、b是方程2x² - 5x + 2 = 0的两根,则a² + b²的值为()。

A. 9B. 10C. 11D. 123. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点坐标为()。

A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)4. 下列函数中,是反比例函数的是()。

A. y = 2x + 3B. y = x²C. y = 1/xD. y = 3/x + 25. 下列命题中,正确的是()。

A. 平行四边形的对角线相等B. 相等的角不一定是对顶角C. 等腰三角形的底角相等D. 等边三角形的内角都是锐角6. 若等差数列{an}的第三项是2,第六项是6,则该数列的公差为()。

A. 1B. 2C. 3D. 47. 下列关于圆的性质中,错误的是()。

A. 圆的直径等于半径的两倍B. 同圆中,相等的弦所对的圆周角相等C. 圆心到圆上任意一点的距离都相等D. 相切的两圆半径之比等于切线长之比8. 下列代数式中,能被x² - 2x + 1整除的是()。

A. x³ - 2x² + xB. x³ - 3x² + 2xC. x³ - 4x² + 3xD. x³ - 5x² + 4x9. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB的长度为()。

A. 5cmB. 6cmC. 7cmD. 8cm10. 若一次函数y=kx+b(k≠0)的图象经过点(2,-3),则该函数的解析式为()。

A. y=2x-3B. y=3x-2C. y=2x+3D. y=3x+2二、填空题(每题5分,共30分)11. 若a、b、c是等差数列的连续三项,且a+b+c=18,则b=______。

初三河东一模数学试卷答案

初三河东一模数学试卷答案

一、选择题1. 答案:D解析:根据勾股定理,直角三角形的斜边平方等于两直角边平方的和。

故选D。

2. 答案:B解析:三角形的外角等于不相邻的两个内角之和。

故选B。

3. 答案:C解析:根据一元一次方程的解法,将方程中的未知数项移到等号右边,常数项移到等号左边,最后化简得到解。

故选C。

4. 答案:A解析:根据平行四边形的性质,对边平行且相等。

故选A。

5. 答案:B解析:根据反比例函数的性质,当x增大时,y会减小。

故选B。

二、填空题6. 答案:-3解析:根据一元一次方程的解法,将方程中的未知数项移到等号右边,常数项移到等号左边,最后化简得到解。

7. 答案:3解析:根据三角形的面积公式,面积等于底乘以高除以2。

故选3。

8. 答案:2解析:根据正方形的性质,对角线互相垂直且相等。

故选2。

9. 答案:-5解析:根据一元二次方程的解法,将方程化简后,利用求根公式得到解。

10. 答案:0.8解析:根据一元一次方程的解法,将方程中的未知数项移到等号右边,常数项移到等号左边,最后化简得到解。

三、解答题11. 答案:(1)首先,根据题意,将方程化简得到:x + 2 = 5x = 5 - 2x = 3(2)接下来,根据题意,将方程化简得到:2x - 4 = 32x = 3 + 42x = 7x = 7 / 2x = 3.512. 答案:(1)首先,根据题意,设这个数为x,列出方程:x + 3 = 2x - 5(2)接下来,将方程中的未知数项移到等号右边,常数项移到等号左边,得到:2x - x = 5 + 3x = 813. 答案:(1)首先,根据题意,将方程化简得到:(x - 2)^2 = 0(2)接下来,根据平方根的定义,得到:x - 2 = 0x = 2(3)最后,根据题意,将x代入原方程,得到:(2 - 2)^2 = 00 = 0所以,x = 2是原方程的解。

14. 答案:(1)首先,根据题意,将方程化简得到:x^2 - 5x + 6 = 0(2)接下来,根据因式分解的方法,得到:(x - 2)(x - 3) = 0(3)最后,根据零因子法则,得到:x - 2 = 0 或 x - 3 = 0x = 2 或 x = 3所以,方程的解为x = 2或x = 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年天津市河东区中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.12.tan30°的值等于()A.B.C.D.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104 B.0.1488×107C.14.88×106 D.1.488×1065.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.6.方程的解为()A.x=﹣2 B.x=2 C.x=﹣1 D.x=7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名B.52名C.78名D.104名8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.39.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>1010.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.811.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c >0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P均落在格点上.(1)计算三角形ABC的周长等于.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC 上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:)被调查的学生总人数是;m=,n=.(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2016年天津市河东区中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.tan30°的值等于()A.B.C.D.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选C.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C上下折叠能重合,是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104 B.0.1488×107C.14.88×106 D.1.488×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:148000这个数用科学记数法表示为1.488×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.方程的解为()A.x=﹣2 B.x=2 C.x=﹣1 D.x=【分析】观察方程可得最简公分母是:x(x﹣1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以x(x﹣1)得,2x﹣2=3x,解得:x=﹣2.经检验:x=﹣2是原方程的解;故选A.【点评】此题考查了分式方程的解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名B.52名C.78名D.104名【分析】用学生总人数乘以植树量为6棵的百分比即可求解.【解答】解:观察统计图发现植树量为6棵的占30%,故植树量达6棵的人数有260×30%=78人,故选C.【点评】本题考查了用样本估计总体及扇形统计图的知识,解题的关键是从扇形统计题中整理出植树量达6棵所占的百分比,难度不大.8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.3【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题考查了正六边形和圆,掌握外接圆的半径等于正六边形的边长是解此题的关键.9.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>10【分析】将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(﹣2,﹣5),∴﹣5=,解得:k=10,∴反比例函数解析式为y=.当x>0时,反比例函数单调递减,当x=1时,y==10;当x=2时,y==5.∴当1<x<2时,5<y<10.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x 的值即可得出结论.10.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选A.【点评】此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c >0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于﹣a6.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a2)3=﹣a6.故答案为:﹣a6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,∴从中任意摸出一个球,是白球的概率是:.故答案为.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=2.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴,解得m=2.故答案为:2.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系及其增减性是解答此题的关键.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线x=1.【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,可以得到它的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,∴抛物线的对称轴为直线x=,故答案为:x=1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的性质,知道二次函数的图象具有对称性.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P均落在格点上.(1)计算三角形ABC的周长等于3+5.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC 上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)【分析】(1)根据勾股定理分别求出AB、AC即可解决问题.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,由△AEH∽△ABC,得=,列出方程即可解决.【解答】解:(1)∵AB==,AC==2,BC=5,∴AB+AC+BC=3+5,∴△ABC的周长为3+5.故答案为3+5.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,∵矩形EFGH的周长为8,∴EH=4﹣x,∵EH∥BC,∴△AEH∽△ABC,∴=,∴,∴x=,∴EF=,∵EF∥AM,∴===,∴BE=AB,∴当BE=AB时,矩形EFGH的周长等于线段BP长度的2倍.【点评】本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得x≥﹣1.(2)解不等式②,得x≤1.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为﹣1≤x≤1.【分析】先根据不等式基本性质求出两个不等式的解集,再将不等式解集表示在数轴上,根据解集在数轴上的表示求其公共解.【解答】解:(1)解不等式①,得:x≥﹣1,(2)解不等式②,得:x≤1,(3)把不等式①和②的解集表示在数轴上,如图:(4)∴原不等式组的解集为:﹣1≤x≤1;故答案为:(1)x≥﹣1;(2)x≤1;(4)﹣1≤x≤1.【点评】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:)被调查的学生总人数是240;m=24,n=15.(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.【分析】(1)用“舞蹈”类人数除以其占总人数百分比可得总人数,将“武术”类人数占总人数百分比×总人数可得m的值,将“花样滑冰”类人数除以总人数可得其所占百分比;(2)用乒乓球类人数占样本总数的百分比乘以2600可得.【解答】解:(1)被调查的学生总人数是60÷25%=240(人),“武术”类人数m=240×10%=24(人),“花样滑冰”类人数占总人数百分比n=×100=15;(2)×2600=130(人),答:估计全校最喜爱乒乓球的人数约为130人.故答案为:(1)240,24,15.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BC﹣BD=31.45,进而可求出答案.【解答】解:设AB=x米,在Rt△ACB和Rt△ADB中,∵∠C=45°,∠ADB=60°,CD=31.45m,∴CB=x,BD=x,∵CD=BC﹣BD=x﹣x=31.45,解得:x≈74.4.答:塔高AB约为74.4米.【点评】本题考查了解直角三角形的应用﹣仰角俯角;能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形是解决问题的关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.【分析】(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;【解答】解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+57600;=6300+57600=63900;当x=15时,W有最大值,W最大②当15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080;∴x=18时有最大值为:64080元.综上x=18时,有最大利润64080.【点评】本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【分析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M 重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握旋转变化与平移变化的性质是解题的关键.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.【点评】本题考查的是二次函数综合题,涉及到二次函数与一次函数的交点问题、二次函数图象上点的坐标特点、平行四边形的判定与性质等知识,难度较大.2016年6月17日。

相关文档
最新文档