交城县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
交城县一中2018-2019学年高二上学期数学期末模拟试卷含解析
交城县一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .32. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日C .6日和11日D .2日和11日3. 椭圆=1的离心率为( ) A . B .C .D .4. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 5. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 6. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?7. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 8. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧9. 为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位B .向左平移6π个单位 C.向右平移3π个单位 D .向右平移23π个单位10.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 311.已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大. 12.已知函数f (x )=,则f (0)=( )A .﹣1B .0C .1D .313.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β14.已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β15.函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2D .3﹣a二、填空题16.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.17.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.18.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 19.函数的定义域为 .三、解答题20.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?21.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨 迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.22.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]23.(本小题满分12分) 已知函数2()xf x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.24.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.25.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.交城县一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵指数函数的反函数是对数函数,∴函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1.故选:B.【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.2.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.3.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.4.【答案】B【解析】5. 【答案】A【解析】试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且05<,所以0A ∈,即D 正确,故选A. 1考点:集合与元素的关系. 6. 【答案】C【解析】解:模拟执行程序框图,可得 S=2,i=0不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.7. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值. 8. 【答案】D 【解析】考点:命题的真假. 9. 【答案】C 【解析】试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,故选C .考点:图象的平移. 10.【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2=4,下部分矩形面积S 2=24,故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A.【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.11.【答案】D第Ⅱ卷(共100分)[.Com]12.【答案】B【解析】解:函数f(x)=,则f(0)=f(2)=log22﹣1=1﹣1=0.故选B.【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题.13.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D14.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.15.【答案】A【解析】A . C . D .恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12, 故选:A .二、填空题16.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.17.【答案】9【解析】18.【答案】①②⑤【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.19.【答案】[﹣2,1)∪(1,2].【解析】解:要使函数有意义,需满足,解得:﹣2≤x ≤2且x ≠1,所以函数的定义域为:[﹣2,1)∪(1,2]. 故答案为:[﹣2,1)∪(1,2].三、解答题20.【答案】【解析】解:设至少需要同时开x 个窗口,则根据题意有,.由①②得,c=2b ,a=75b ,代入③得,75b+10b ≤20bx ,∴x ≥,即至少同时开5个窗口才能满足要求.21.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围. 22.【答案】(1)13|{<<-x x 或}3>x ;(2). 【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分)综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.123.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4ea ∈时,有0个公共点;当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21x h x e x =--,令'()()21x m x h x e x ==--,则'()2x m x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 24.【答案】【解析】【专题】概率与统计. 【分析】(I )确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II )确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I )所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E(Y)=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.25.【答案】【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点所以l的方程为…(ⅱ)当2﹣k2≠0,即k≠±时△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.所以l的方程为3x﹣2y+1=0…综上知:l的方程为x=1或或3x﹣2y+1=0…(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12﹣y12=2,2x22﹣y22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.。
交城县高级中学2018-2019学年上学期高二数学12月月考试题含解析
交城县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.sin3sin1.5cos8.5,,的大小关系为()A.sin1.5sin3cos8.5<<B.cos8.5sin3sin1.5<<C.sin1.5cos8.5sin3<<D.cos8.5sin1.5sin3<<2.抛物线y2=2x的焦点到直线x﹣y=0的距离是()A.B.C.D.3.lgx,lgy,lgz成等差数列是由y2=zx成立的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也不必要条件4.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=5.函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()A.,πB.,C.,πD.,6.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为()A.64 B.32 C.643D.3237. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .38. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π9. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣210.已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )A .﹣2B .2C .﹣D .11.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞12.设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .二、填空题13.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= . 14.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________15.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .16.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2)a n+sin2,则该数列的前16项和为.17.用描述法表示图中阴影部分的点(含边界)的坐标的集合为.18.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是.三、解答题19.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.(Ⅰ)p的值;(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.20.已知奇函数f (x )=(c ∈R ).(Ⅰ)求c 的值;(Ⅱ)当x ∈[2,+∞)时,求f (x )的最小值.21.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f =(1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;22.如图,边长为2的正方形ABCD 绕AB 边所在直线旋转一定的角度(小于180°)到ABEF 的位置. (Ⅰ)求证:CE ∥平面ADF ;(Ⅱ)若K 为线段BE 上异于B ,E 的点,CE=2.设直线AK 与平面BDF 所成角为φ,当30°≤φ≤45°时,求BK 的取值范围.23.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名5595%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌3.841 6.635附:K2=.24.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ). (1)当a=12时,求f (x )在区间[1,e]上的最大值和最小值; (2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。
交城县高中2018-2019学年上学期高二数学12月月考试题含解析
交城县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在下面程序框图中,输入,则输出的的值是( )44N S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.2. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .93. 设集合,,则( ){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B = A.B.C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.4. 半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 35. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .26. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .7. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内8. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 29. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥110.设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)11.方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称12.函数在一个周期内的图象如图所示,此函数的解析式为( )sin()y A x ωϕ=+A . B . C . D .2sin(2)3y x π=+22sin(23y x π=+2sin()23x y π=-2sin(2)3y x π=-二、填空题13.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 . 14.用“<”或“>”号填空:30.8 30.7.15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 16.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .17.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:年份20302035204020452050年份代号t 12345所占比例y6865626261根据上表,y 关于t 的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围. 20.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B(1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.21.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.22.19.已知函数f(x)=ln.23.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?24.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S交城县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B2.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.3.【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.||2x ≤22x -≤≤{}|22A x x =-≤≤{}1,2A B = 4. 【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A 5. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查. 6. 【答案】 A【解析】解:取a=﹣时,f (x )=﹣x|x|+x ,∵f (x+a )<f (x ),∴(x ﹣)|x ﹣|+1>x|x|,(1)x <0时,解得﹣<x <0;(2)0≤x ≤时,解得0;(3)x >时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B 、D ;取a=1时,f (x )=x|x|+x ,∵f (x+a )<f (x ),∴(x+1)|x+1|+1<x|x|,(1)x <﹣1时,解得x >0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.7.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 8.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B9.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.10.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m ≤﹣2,故选A .【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题. 11.【答案】A【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键. 12.【答案】B 【解析】考点:三角函数的图象与性质.()sin()f x A x ωϕ=+二、填空题13.【答案】 4 .【解析】解:双曲线x 2﹣my 2=1化为x 2﹣=1,∴a 2=1,b 2=,∵实轴长是虚轴长的2倍,∴2a=2×2b ,化为a 2=4b 2,即1=,解得m=4.故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键. 14.【答案】 > 【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.15.【答案】 0 .【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n}是周期为6的周期数列,∴b2016=b336×6=b6=0,故答案为:0.【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.16.【答案】 .【解析】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1),由,消去x得.设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4①.∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,消去y2得k2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.17.【答案】 y=﹣1.7t+68.7 【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.18.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}三、解答题19.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g (x )max =g (1)=m ﹣6<0,解得m <6.所以m <0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.20.【答案】(1)详见解析;(2)详见解析.∴点为线段中点,;…………7分P AB PB PA =(2)若直线斜率不存在,则,与椭圆方程联立可得,,AB 2:±=x AB 2C )1,2(2--±t A ,故,…………9分)1,2(2-±t B 122-=∆t S OAB 若直线斜率存在,由(1)可得AB ,,,…………11分148221+-=+k km x x 144422221+-=k t m x x 141141222212+-+=-+=k t k x x k AB 点到直线的距离,…………13分O AB 2221141kk k m d ++=+=∴,综上,的面积为定值.…………15分12212-=⋅=∆t d AB S OAB OAB ∆122-t 21.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1∴1≤a≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.23.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin ∠ADC 给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴,…6由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f (θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.24.【答案】(1);(2).122n n b +=-222(4)n n S n n +=-++【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比122n n b b +=+数列的通项公式可得,变形形式为;(2)由(1)可知,n b 12()n n b x b x ++=+122(2)n n n n a a b n --==-≥这是数列的后项与前项的差,要求通项公式可用累加法,即由{}n a 112()()n n n n n a a a a a ---=-+-+求得.211()a a a +-+试题解析:(1),∵,112222(2)n n n n b b b b ++=+⇒+=+1222n n b b ++=+又,121224b a a +=-+=∴.2312(21)(2222)22222221n n n n a n n n +-=++++-+=-+=-- ∴.224(12)(22)2(4)122n n n n n S n n +-+=-=-++-考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.。
交城县二中2018-2019学年高二上学期数学期末模拟试卷含解析
7. 自圆 C : ( x 3) ( y 4) 4 外一点 P ( x, y ) 引该圆的一条切线,切点为 Q ,切线的长度等于点 P 到 原点 O 的长,则点 P 轨迹方程为( A. 8 x 6 y 21 0 B. 8 x 6 y 21 0 C. 6 x 8 y 21 0 D. 6 x 8 y 21 0 【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解 能力. 8. 函数 f ( x) 2 cos( x ) ( 0 , 0 )的部分图象如图所示,则 f (0)的值为( )
第 1 页,共 16 页
A.
3 2
B. 1
C. 2
D. 3
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 9. 若复数(2+ai)2(a∈R)是实数(i 是虚数单位),则实数 a 的值为( A.﹣2 B.±2 C.0 D.2 ) )
(2 i ) 2 10.复数 z ( i 为虚数单位),则 z 的共轭复数为( i A. - 4 + 3i B. 4 + 3i C. 3 + 4i D. 3 - 4i
(ⅱ)设函数 g x 在区间 D 上的两个极值分别为 g x1 和 g x2 , 求证: x1 x2 e .
20.已知数列{an}满足 a1= ,an+1=an+ (Ⅰ)证明:bn∈(0,1)
,数列{bn}满足 bn=
(Ⅱ)证明:
=
(Ⅲ)证明:对任意正整数 n 有 an
n n } 的前 n 项和,若不等式 | 1 | S n n 1 对一切 n N 恒成立,则 的取值范围是 n 1 2 2
交城县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
交城县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )=,则“f[f (a )]=1“是“a=1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件2. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化3. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 4. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.5. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个6.平面α与平面β平行的条件可以是()A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行7.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?8.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所在过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形9.函数y=sin(2x+)图象的一条对称轴方程为()A.x=﹣B.x=﹣C.x=D.x=10.数列{a n}的首项a1=1,a n+1=a n+2n,则a5=()A.B.20 C.21 D.3111.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.312.已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=1二、填空题13.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.15.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.16.若log 2(2m ﹣3)=0,则e lnm ﹣1= .17.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.18.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题19.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.20.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.21.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).22.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.23.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.24.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.交城县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】解:当a=1,则f (a )=f (1)=0,则f (0)=0+1=1,则必要性成立, 若x ≤0,若f (x )=1,则2x+1=1,则x=0, 若x >0,若f (x )=1,则x 2﹣1=1,则x=,即若f[f (a )]=1,则f (a )=0或,若a >0,则由f (a )=0或1得a 2﹣1=0或a 2﹣1=,即a 2=1或a 2=+1,解得a=1或a=,若a ≤0,则由f (a )=0或1得2a+1=0或2a+1=,即a=﹣,此时充分性不成立,即“f[f (a )]=1“是“a=1”的必要不充分条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.2. 【答案】B 【解析】考点:棱柱、棱锥、棱台的体积. 3. 【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
2018-2019学年高二(上)期末数学试卷2带答案
2018-2019学年高二(上)期末数学试卷2带答案一、填空题(本大题满分36分)本大题共12小题,每个空格填对得3分,否则一律得0分.1.(3分)直线3x﹣4y﹣5=0的倾斜角的大小为(结果用反三角函数值表示)2.(3分)若=(﹣5,4),=(7,9),则与同向的单位向量的坐标是.3.(3分)若线性方程组的增广矩阵为,解为,则a+b=.4.(3分)行列式中中元素﹣3的代数余子式的值为7,则k=.5.(3分)以点P(3,4)和点Q(﹣5,6)为一条直径的两个端点的圆的方程是.6.(3分)若顶点在原点的抛物线的焦点与圆x2+y2﹣4x=0的圆心重合,则该抛物线的准线方程为.7.(3分)在△ABC中,|AB|=3,|BC|=7,|CA|=5,则在方向上的投影是.8.(3分)已知双曲线kx2﹣y2=1的一条渐进线的方向向量=(2,﹣1),则k=.9.(3分)在正三角形ABC中,D是BC上的点,AB=3,BD=1,则=.10.(3分)已知F1、F2是双曲线C:﹣=1(a>0,b>0)的两个焦点,P 是双曲线C上一点,且⊥,若△PF1F2的面积为16,则b=.11.(3分)若点O和点F分别为椭圆+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为.12.(3分)在平面直角坐标系中,两个动圆均过点A(1,0)且与直线l:x=﹣1相切,圆心分别为C1、C2,若动点M满足2=+,则M的轨迹方程为.二、本大题共4小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.13.(4分)“”是“方程组有唯一解”的()A.充分不必要条件 B.必要不充分条C.充要条件D.既不充分又不必要条件14.(4分)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.715.(4分)已知集合P={(x,y)||x|+2|y|=5},Q={(x,y)|x2+y2=5},则集合P∩Q中元素的个数是()A.0 B.2 C.4 D.816.(4分)已知对称轴为坐标轴的双曲线的渐进线方程为y=±x(a>0,b>0),若双曲线上有一点M(x0,y0),使b|x0|<a|y0|,则该双曲线的焦点()A.在x轴上B.在y轴上C.当a>b时,在x轴上D.当a>b时,在y轴上三、解答题(本大题满分48分)本大题共5小题,解答应写出文字说明,证明过程或演算步骤.17.(8分)已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.18.(8分)已知直线l经过点P(﹣2,),并且与直线l0:x﹣y+2=0的夹角为,求直线l的方程.19.(10分)如图所示,A(2,0)、B、C是椭圆E:+=1(a>b>0)上的三点,BC过椭圆E的中心且斜率为1,椭圆长轴的一个端点与短轴的两个端点内构成正三角形.(1)求椭圆E的方程;(2)求△ABC的面积.20.(10分)如图所示的封闭区域的边界是由两个关于x轴对称的半圆与截取于同一双曲线的两段曲线组合而成的,其中上半圆所在圆的方程是x2+y2﹣4y﹣4=0,双曲线的左右顶点A、B是该圆与x轴的交点,双曲线与该圆的另两个交点是该圆平行于x轴的一条直径的两个端点.(1)求双曲线的方程;(2)记双曲线的左、右焦点为F1、F2,试在封闭区域的边界上求点P,使得∠F1PF2是直角.21.(12分)对于曲线C:f(x,y)=0,若存在非负实常数M和m,使得曲线C 上任意一点P(x,y)有m≤|OP|≤M成立(其中O为坐标原点),则称曲线C 为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界M0成为曲线C 的外确界,最大的内界m0成为曲线C的内确界.(1)曲线y2=4x与曲线(x﹣1)2+y2=4是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;(2)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.参考答案与试题解析一、填空题(本大题满分36分)本大题共12小题,每个空格填对得3分,否则一律得0分.1.(3分)直线3x﹣4y﹣5=0的倾斜角的大小为arctan(结果用反三角函数值表示)【分析】根据所给的直线3x﹣4y﹣5=0,得到直线的斜率时,直线的斜率是倾斜角的正切,得到tanα=,α∈[0,π],根据倾斜角的范围和正切的反三角函数的值域确定结果.【解答】解:∵直线3x﹣4y﹣5=0,∴直线的斜率时,直线的斜率是倾斜角的正切,∴tanα=,α∈[0,π],∴α=arctan,故答案为:arctan.【点评】本题考查反三角函数的应用及直线的倾斜角与斜率的关系,本题解题的关键是理解反三角函数的值域和倾斜角的范围,本题是一个基础题.2.(3分)若=(﹣5,4),=(7,9),则与同向的单位向量的坐标是(,).【分析】根据坐标运算求出向量,再求与同向的单位向量即可.【解答】解:∵=(﹣5,4),=(7,9),∴=(12,5),||==13;∴与同向的单位向量的坐标为=(,).故答案为:(,).【点评】本题考查了平面向量的坐标运算与单位向量的应用问题,是基础题目.3.(3分)若线性方程组的增广矩阵为,解为,则a+b=2.【分析】根据增广矩阵的定义得到是方程组的解,解方程组即可.【解答】解:由题意知是方程组的解,即,则a+b=1+1=2,故答案为:2.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(3分)行列式中中元素﹣3的代数余子式的值为7,则k=3.【分析】由题意可知求得A12=﹣=k+4,代入即可求得k的值.【解答】解:由题意可知:设A=,元素﹣3的代数余子式A12=﹣=k+4,∴k+4=7,∴k=3,故答案为:3.【点评】本题考查三阶行列式的代数余子式的定义及行列式的运算,考察计算能力,属于基础题.5.(3分)以点P(3,4)和点Q(﹣5,6)为一条直径的两个端点的圆的方程是(x+1)2+(y﹣5)2=17.【分析】由中点坐标公式求出圆心,由两点间距离公式求出圆半径,由此能求出圆的方程.【解答】解:∵点P(3,4)和点Q(﹣5,6),∴以点P(3,4)和点Q(﹣5,6)为一条直径的两个端点的圆的圆心为(﹣1,5),圆的半径r===.∴圆的方程为:(x+1)2+(y﹣5)2=17.故答案为:(x+1)2+(y﹣5)2=17.【点评】本题考查圆的方程的求法,是基础题,解题时要认真审题,注意中点坐标公式和两点间距离公式的合理运用.6.(3分)若顶点在原点的抛物线的焦点与圆x2+y2﹣4x=0的圆心重合,则该抛物线的准线方程为x=﹣2.【分析】由已知得抛物线的焦点F(2,0),由此能求出该抛物线的准线方程.【解答】解:∵顶点在原点的抛物线的焦点与圆x2+y2﹣4x=0的圆心重合,∴抛物线的焦点F(2,0),∴该抛物线的准线方程为x=﹣2.故答案为:x=﹣2.【点评】本题考查抛物线的准线方程的求法,是基础题,解题时要认真审题,注意抛物线、圆的性质的合理运用.7.(3分)在△ABC中,|AB|=3,|BC|=7,|CA|=5,则在方向上的投影是.【分析】利用余弦定理求出A,则与的夹角为π﹣A.【解答】解:cosA===﹣.∴在方向上的投影是||•cos(π﹣A)=3×=.故答案为.【点评】本题考查了平面向量的夹角,余弦定理,属于基础题.8.(3分)已知双曲线kx2﹣y2=1的一条渐进线的方向向量=(2,﹣1),则k=.【分析】根据题设条件知求出渐近线的斜率,建立方程求出k.【解答】解:∵双曲线kx2﹣y2=1的渐近线的一条渐近线的方向向量=(2,﹣1),∴渐近线的斜率为=,∴k=.故答案为:.【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.9.(3分)在正三角形ABC中,D是BC上的点,AB=3,BD=1,则=.【分析】利用向量的加法法则化,展开后利用数量积运算得答案.【解答】解:如图,∵AB=3,BD=1,∠B=60°,∴===.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量的加法法则,是基础题.10.(3分)已知F1、F2是双曲线C:﹣=1(a>0,b>0)的两个焦点,P 是双曲线C上一点,且⊥,若△PF1F2的面积为16,则b=4.【分析】Rt△PF1F2中,由勾股定理及双曲线的定义,△PF1F2面积为16,即可求出b.【解答】解:设|PF1|=m,|PF2|=n,⊥,得∠F1PF2=90°,∴m2+n2=4c2,△PF1F2的面积为16,∴mn=32∴4a2=(m﹣n)2=4c2﹣64,∴b2=c2﹣a2=16,∴b=4.故答案为:4.【点评】本题给出双曲线的焦点三角形为直角三角形及它的面积,着重考查了勾股定理、双曲线的定义和简单几何性质等知识.11.(3分)若点O和点F分别为椭圆+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为2.【分析】先求出左焦点坐标F,设P(x,y),根据P(x,y)在椭圆上可得到x、y的关系式,表示出|OP|2+|PF|2,再将x、y的关系式代入组成二次函数进而可确定答案.【解答】解:由题意,F(﹣1,0),设点P(x,y),则有+y2=1,解得y2=1﹣,因为|OP|2+|PF|2=x2+y2+(x+1)2+y2=x2+(x+1)2+2﹣x2=(x+1)2+2,此二次函数对应的抛物线的对称轴为x=﹣1,|OP|2+|PF|2的最小值为2.故答案为:2.【点评】本题考查椭圆的方程、几何性质、两点间的距离公式、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力.12.(3分)在平面直角坐标系中,两个动圆均过点A(1,0)且与直线l:x=﹣1相切,圆心分别为C1、C2,若动点M满足2=+,则M的轨迹方程为y2=2x﹣1.【分析】由抛物线的定义可得动圆的圆心轨迹方程为y2=4x,利用2=+,确定坐标之间的关系,即可求出M的轨迹方程.【解答】解:由抛物线的定义可得动圆的圆心轨迹方程为y2=4x,设C1(a,b),C2(m,n),M(x,y),则∵2=+,∴2(x﹣m,y﹣n)=(a﹣m,b﹣n)+(1﹣m,﹣n),∴2x=a+1,2y=b,∴a=2x﹣1,b=2y,∵b2=4a,∴(2y)2=4(2x﹣1),即y2=2x﹣1.故答案为:y2=2x﹣1.【点评】本题考查轨迹方程,考查向量知识的运用,考查学生分析解决问题的能力,确定坐标之间的关系是关键.二、本大题共4小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.13.(4分)“”是“方程组有唯一解”的()A.充分不必要条件 B.必要不充分条C.充要条件D.既不充分又不必要条件【分析】根据两直线间的位置关系,从而得到答案.【解答】解:由⇔a1 b2≠a2 b1,⇔直线a1x+b1y=c1和直线a2x+b2y=c2不平行,⇔方程组有唯一解,故选:C.【点评】本题考查了充分必要条件,考查了直线之间的位置关系,是一道基础题.14.(4分)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当S=0时,满足继续循环的条件,故S=1,k=1;当S=1时,满足继续循环的条件,故S=3,k=2;当S=3时,满足继续循环的条件,故S=11,k=3;当S=11时,满足继续循环的条件,故S=2059,k=4;当S=2049时,不满足继续循环的条件,故输出的k值为4,故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.15.(4分)已知集合P={(x,y)||x|+2|y|=5},Q={(x,y)|x2+y2=5},则集合P∩Q中元素的个数是()A.0 B.2 C.4 D.8【分析】做出P与Q中表示的图象,确定出两集合的交集,即可做出判断.【解答】解:对于P中|x|+2|y|=5,当x>0,y>0时,化简得:x+2y=5;当x>0,y<0时,化简得:x﹣2y=5;当x<0,y>0时,化简得:﹣x+2y=5;当x<0,y<0时,化简得:﹣x﹣2y=5,对于Q中,x2+y2=5,表示圆心为原点,半径为的圆,做出图形,如图所示,则集合P∩Q=∅,即P∩Q中元素的个数是0个,故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.16.(4分)已知对称轴为坐标轴的双曲线的渐进线方程为y=±x(a>0,b>0),若双曲线上有一点M(x0,y0),使b|x0|<a|y0|,则该双曲线的焦点()A.在x轴上B.在y轴上C.当a>b时,在x轴上D.当a>b时,在y轴上【分析】利用题设不等式,令二者平方,整理求得﹣>0,即可判断出焦点的位置.【解答】解:∵a|y0|>b|x0|≥0∴平方a2y02>b2x02∴﹣>0∴焦点在y轴故选:B.【点评】本题主要考查了双曲线的简单性质.考查了学生分析问题和解决问题的能力.三、解答题(本大题满分48分)本大题共5小题,解答应写出文字说明,证明过程或演算步骤.17.(8分)已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.【分析】(1)设,由||=2,且∥,知,由此能求出的坐标.(2)由,知,整理得,故,由此能求出与的夹角θ.【解答】解:(1)设,∵||=2,且∥,∴,…(3分)解得或,…(5分)故或.…(6分)(2)∵,∴,即,…(8分)∴,整理得,…(10分)∴,…(12分)又∵θ∈[0,π],∴θ=π.…(14分)【点评】本题考查平面向量的坐标运算和数量积判断两个平面垂直的条件的灵活运用,是基础题.解题时要认真审题,仔细解答.18.(8分)已知直线l经过点P(﹣2,),并且与直线l0:x﹣y+2=0的夹角为,求直线l的方程.【分析】根据条件求出直线l的倾斜角,可得直线l的斜率,再用点斜式求得直线l的方程.【解答】解:由于直线l0:x﹣y+2=0的斜率为,故它的倾斜角为,由于直线l和直线l0:x﹣y+2=0的夹角为,故直线l的倾斜角为或,故直线l的斜率不存在或斜率为﹣.再根据直线l经过点P(﹣2,),可得直线l的方程为x=﹣2,或y﹣=﹣(x+2),即x=﹣2,或x+y﹣1=0.如图:【点评】本题主要考查直线的倾斜角和斜率,两条直线的夹角,用点斜式求直线的方程,属于基础题.19.(10分)如图所示,A(2,0)、B、C是椭圆E:+=1(a>b>0)上的三点,BC过椭圆E的中心且斜率为1,椭圆长轴的一个端点与短轴的两个端点内构成正三角形.(1)求椭圆E的方程;(2)求△ABC的面积.【分析】(1)由题意可得a=2,再由正三角形的条件可得a=b,解得b,进而得到椭圆方程;(2)由题意写出A点坐标,直线CB方程,联立直线方程与椭圆方程可求得交=|OA|•|y B﹣y C|,代入数值即可求得面积.点C、B的纵坐标,S△ABC【解答】解:(1)A的坐标为(2,0),即有a=2,椭圆长轴的一个端点与短轴的两个端点构成正三角形,可得a=b,解得b=2,则椭圆E的方程为,(2)直线BC的方程为y=x,代入椭圆方程x2+3y2=12,得y=x=±,=|OA|•|y B﹣y C|=×2=6,∴S△ABC△ABC的面积为6.【点评】本题考查求椭圆的标准方程,直线与椭圆的位置关系、三角形面积公式,考查学生分析问题解决问题的能力,属于中档题.20.(10分)如图所示的封闭区域的边界是由两个关于x轴对称的半圆与截取于同一双曲线的两段曲线组合而成的,其中上半圆所在圆的方程是x2+y2﹣4y﹣4=0,双曲线的左右顶点A、B是该圆与x轴的交点,双曲线与该圆的另两个交点是该圆平行于x轴的一条直径的两个端点.(1)求双曲线的方程;(2)记双曲线的左、右焦点为F1、F2,试在封闭区域的边界上求点P,使得∠F1PF2是直角.【分析】(1)根据上半个圆所在圆的方程得出两圆的圆心与半径,再求出双曲线的顶点坐标与标准方程;(2)设点P的坐标,根据∠F1PF2是直角得出方程x2+y2=8,分别与双曲线和圆的方程联立,即可求出点P的坐标,注意检验,排除不合题意的坐标.【解答】解:(1)上半个圆所在圆的方程为x2+y2﹣4y﹣4=0,圆心为(0,2),半径为2;则下半个圆所在圆的圆心为(0,﹣2),半径为2;双曲线的左、右顶点A、B是该圆与x轴的交点,即为(﹣2,0),(2,0),即a=2,由于双曲线与半圆相交于与x轴平行的直径的两端点,则令y=2,解得x=±2,即有交点为(±2,2);设双曲线的方程为﹣=1(a>0,b>0),则﹣=1,且a=2,解得b=2;所以双曲线的方程为﹣=1;(2)双曲线的左、右焦点为F1(﹣2,0),F2(2,0),若∠F1PF2是直角,设点P(x,y),则有x2+y2=8,由,解得x2=6,y2=2;由,解得y=±1(不满足题意,应舍去);所以在封闭区域的边界上所求点P的坐标为(±,)和(±,﹣).【点评】本题考查了双曲线的标准方程的求法问题,也考查了圆与圆、圆与双曲线的位置关系,是综合性题目.21.(12分)对于曲线C:f(x,y)=0,若存在非负实常数M和m,使得曲线C 上任意一点P(x,y)有m≤|OP|≤M成立(其中O为坐标原点),则称曲线C 为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界M0成为曲线C 的外确界,最大的内界m0成为曲线C的内确界.(1)曲线y2=4x与曲线(x﹣1)2+y2=4是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;(2)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.【分析】(1)由外确界与内确界的概念,结合曲线方程,数形结合得答案;(2)由题意求出曲线C的方程,进一步得到x的范围,把x2+y2转化为含有x的代数式,分类讨论得答案.【解答】解:(1)y2=4x的图象为开口向右的抛物线,抛物线上的点到原点的距离的最小值为0,无最大值,∴曲线y2=4x不是“有界曲线”;∵曲线(x﹣1)2+y2=4的轨迹为以(1,0)为圆心,以2为半径的圆,如图:由图可知曲线(x﹣1)2+y2=4上的点到原点距离的最小值为1,最大值为3,则曲线(x﹣1)2+y2=4是“有界曲线”,其外确界为3,内确界为1;(2)由已知得:,整理得:(x2+y2+1)2﹣4x2=a2,∴,∵y2≥0,∴,∴(x2+1)2≤4x2+a2,∴(x2﹣1)2≤a2,∴1﹣a≤x2≤a+1,则=,∵1﹣a≤x2≤a+1,∴(a﹣2)2≤4x2+a2≤(a+2)2,即,当0<a<1时,2﹣a,则,∴,则曲线C的外确界与内确界分别为;当1≤a≤2时,2﹣a,则,∴0,则曲线C的外确界与内确界分别为,0;当2<a≤3时,a﹣2,则a﹣3≤﹣1≤a+1,∴0,则曲线C的外确界与内确界分别为,0;当a>3时,a﹣2,则a﹣3≤﹣1≤a+1,∴,则曲线C的外确界与内确界分别为,.【点评】本题考查曲线的外确界与内确界的求法,体现了分类讨论的数学思想方法,理解题意是关键,注意函数与方程思想的合理运用,属难题.。
交城县三中2018-2019学年高二上学期数学期末模拟试卷含解析
交城县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}2. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种3. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .34. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.7. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一8. 设为虚数单位,则( )A .B .C .D .9. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( )A .15 B .16 C .314 D .13 10.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( )A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-11.设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)12.已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣8二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____.14.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 15.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .16.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)=.17.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.18.已知f(x)=,则f(﹣)+f()等于.三、解答题19.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.20.已知函数3()1xf xx=+,[]2,5x∈.f x的单调性并且证明;(1)判断()f x在区间[]2,5上的最大值和最小值.(2)求()21.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.22.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.23.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.24.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.交城县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.2.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.3.【答案】B【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,∴命题P是真命题,∴命题P的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.4.【答案】C【解析】解:F,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.1点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力.5. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 6. 【答案】C7. 【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C .【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.8. 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】 故答案为:C 9. 【答案】D 【解析】考点:等差数列. 10.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 11.【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢, 则k ≥﹣1. ∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.12.【答案】B 【解析】解:∵f (x+4)=f (x ), ∴f (2015)=f (504×4﹣1)=f (﹣1), 又∵f (x )在R 上是奇函数, ∴f (﹣1)=﹣f (1)=﹣2.故选B .【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.二、填空题13.【答案】22,3⎛⎫- ⎪⎝⎭【解析】14.【答案】5.【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.15.【答案】.【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则BE=B1F=,EF=1∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.16.【答案】0.6.【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.17.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.18.【答案】4.【解析】解:由分段函数可知f()=2×=.f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,∴f()+f(﹣)=+.故答案为:4.三、解答题19.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.20.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<, 所以()f x 在[]2,5上是增函数.所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 21.【答案】【解析】解:(1).∴=1﹣i.(2)a(1+i)+b=1﹣i,即a+b+ai=1﹣i,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.22.【答案】【解析】解:(1)由,解得0≤x≤3A=[0,3],由B={y|y=2x,1≤x≤2}=[2,4],(2))∁U A=(﹣∞,0)∪[3,+∞),∴(∁U A)∩B=(3,4]23.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.24.【答案】(1)圆与圆相离;(2)定值为2. 【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP 的距离相等,所以两个三角形的面积比值PAPB S S APG PBG=∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.试题解析:(1) ∵圆N 的圆心)35,35(-N 关于直线x y =的对称点为)35,35(-M , ∴916)34(||222=-==MD r , ∴圆M 的方程为916)35()35(22=-++y x .∵3823210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.考点:1.圆与圆的位置关系;2.点与圆的位置关系.1。
交城县三中2018-2019学年高二上学期第二次月考试卷数学
交城县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下面是关于复数的四个命题:p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 42. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .133. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )A .B .C .2 D .44. 在正方体1111ABCD A B C D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线 EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 5. 函数y=x 3﹣x 2﹣x 的单调递增区间为( )A .B .C .D .6. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 7. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )A .2mB .2mC .4 mD .6 m 8. 若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( )A .±1B .﹣1C .0D .19. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 10.在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .11.下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =12.下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=二、填空题13.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.14.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.15.当时,4x<log a x ,则a 的取值范围 .16.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 . 17.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).18.计算:×5﹣1= .三、解答题19.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由. 20.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小; (2)若,,求的值。
交城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
交城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若某算法框图如图所示,则输出的结果为( )A .7B .15C .31D .632. 执行如图所示的程序框图,则输出结果S=( )A .15B .25C .50D .1003. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.4. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣15. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .4 B .4 C.4D .346. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .7. 与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)8. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=9. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .10.若f ′(x 0)=﹣3,则=( )A .﹣3B .﹣12C .﹣9D .﹣611.设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .312.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .二、填空题13.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .15.已知角α终边上一点为P (﹣1,2),则值等于 .16.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .18.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.三、解答题19.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;20.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
交城县高中2018-2019学年高二上学期第二次月考试卷数学
交城县高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.在△ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则△ABC的面积是()A.16 B.6 C.4 D.82.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π3.已知等差数列{a n}的前n项和为S n,若m>1,且a m﹣1+a m+1﹣a m2=0,S2m﹣1=38,则m等于()A.38 B.20 C.10 D.94.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④5.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于,则的值为()A. B. C. D.6.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()A.外离 B.相交 C.内切 D.外切7.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()A.B.C.2 D.38.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是()A. B. C. D. 9. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能10.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( ) A. B.或C.D.或11.数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .311512.设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____. 15.在中,角、、所对应的边分别为、、,若,则_________16.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .17.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .18.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .三、解答题19.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2) (Ⅰ)求四棱锥C ﹣FDEO 的体积(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.20.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m的值;(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD 与CE 的交点Q 总在椭圆+y 2=()2上.22.如图所示,在正方体1111ABCD A BC D 中. (1)求11AC 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11AC 与EF 所成角的大小.23.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?24.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.交城县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S △ABC =absinC==8.故选:D .2. 【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin (ωx+φ)的周期为,属于基础题.3. 【答案】C【解析】解:根据等差数列的性质可得:a m ﹣1+a m+1=2a m ,则a m ﹣1+a m+1﹣a m 2=a m (2﹣a m )=0,解得:a m =0或a m =2,若a m 等于0,显然S 2m ﹣1==(2m ﹣1)a m =38不成立,故有a m =2, ∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10. 故选C4. 【答案】A 【解析】考点:斜二测画法.5.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B6.【答案】D【解析】解:由圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16得:圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D7.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B.【点评】题考查类比推理和归纳推理,属基础题.8.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.9.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.10.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x <,则原不等式的解集为0≤x <,综上,所求不等式的解集为{x|x <﹣或0≤x <}. 故选B11.【答案】C 【解析】试题分析:由2123n a a a a n =,则21231(1)n a a a a n -=-,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式.12.【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢, 则k ≥﹣1. ∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.14.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,15.【答案】【解析】因为,所以,所以,所以答案:16.【答案】{x|﹣1<x<1}.【解析】解:∵A={x|﹣1<x<3},B={x|x<1},∴A∩B={x|﹣1<x<1},故答案为:{x|﹣1<x<1}【点评】本题主要考查集合的基本运算,比较基础.17.【答案】1.【解析】解:∵x为实数,[x]表示不超过x的最大整数,∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.结合图象得到函数f(x)=x﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.18.【答案】∃x0∈R,都有x03<1.【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.故答案为:∃x0∈R,都有x03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.三、解答题19.【答案】【解析】解:(Ⅰ)如图1,∵弦CD垂直平分半径OA,半径为2,∴CF=DF,OF=,∴在Rt△COF中有∠COF=60°,CF=DF=,∵CE为直径,∴DE⊥CD,∴OF∥DE,DE=2OF=2,∴,图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,又CF⊥AB,CF⊂平面ACB,∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,∴.(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.证明:分别连接PE,CP,OP,∵点P为劣弧BC弧的中点,∴,∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,∴CP∥AB,且,又∵DE∥AB且DE=,∴CP∥DE且CP=DE,∴四边形CDEP为平行四边形,∴PE∥CD,又PE⊄面CDO,CD⊂面CDO,∴PE∥平面CDO.【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.20.【答案】【解析】解:(Ⅰ)∵f(x)=sinωxcosωx+sin2ωx﹣=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin(2ωx﹣),依题意得函数f(x)的周期为π且ω>0,∴2ω=,∴ω=1,则m=±1;(Ⅱ)由(Ⅰ)知f(x)=sin(2ωx﹣),∴,∴.又∵x∈[0,2π],∴.∴y=f(x)在x∈[0,2π]上所有零点的和为.【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.21.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.22.【答案】(1)60︒;(2)90︒. 【解析】试题解析:(1)连接AC ,1AB ,由1111ABCD A BC D -是正方体,知11AAC C 为平行四边形, 所以11//AC AC ,从而1B C 与AC 所成的角就是11AC 与1B C 所成的角. 由11AB AC B C ==可知160B CA ∠=︒, 即11AC 与BC 所成的角为60︒.考点:异面直线的所成的角.【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.23.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.a ;(2)3.6万;(3)2.9.24.【答案】(1)0.3【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.。
交城县一中2018-2019学年上学期高二数学12月月考试题含解析
交城县一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.抛物线x=﹣4y2的准线方程为()A.y=1B.y=C.x=1D.x=2.sin(﹣510°)=()A.B.C.﹣D.﹣201633.年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20350500150名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分层抽样的方法,应从青年职工中抽取的人数为()56710A. B. C. D.【命题意图】本题主要考查分层抽样的方法的运用,属容易题.4.已知等比数列{a n}的前n项和为S n,若=4,则=()A.3B.4C.D.135.在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0<B.0C.0D.06.若a<b<0,则下列不等式不成立是()A.>B.>C.|a|>|b|D.a2>b287.某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽44车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘42坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有()种.24184836A.B.C.D.【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.8. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β9. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FN A .B .C . D2)-21:(110.已知,,(,2)k =-c ,若,则( )(2,1)a =- (,3)b k =- (1,2)c = (2)a b c -⊥||b =A. B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.11.“方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要12.若直线上存在点满足约束条件2y x =(,)x y 则实数的最大值为 30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩m A 、B 、C 、D 、1-322二、填空题13.已知,,与的夹角为,则||2=a ||1=b 2-a 13b 3π|2|+=a b .14.【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经()32f x x x =-()f x ()()1,1f 过圆的圆心,则实数的值为__________.()22:2C x y a +-=a 15.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .17.= .-23311+log 6-log 42(18.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .三、解答题19.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数.(1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式. 20.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.21.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 22.(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,,点是线段的中PA O A PBC O CPE APE ∠=∠H ED点.(1)证明:四点共圆;D F E A 、、、(2)证明:.PC PB PF ⋅=223.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.24.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.交城县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:抛物线x=﹣4y2即为y2=﹣x,可得准线方程为x=.故选:D.2.【答案】C【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C.3.【答案】C4.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D.【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.5.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.6. 【答案】A【解析】解:∵a <b <0,∴﹣a >﹣b >0,∴|a|>|b|,a 2>b 2,即,可知:B ,C ,D 都正确,因此A 不正确.故选:A .【点评】本题考查了不等式的基本性质,属于基础题. 7. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有12121223=C C C 种. 共有24种. 选A.12121213=C C C 8. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D 选项中的命题是错误的故选D 9. 【答案】D 【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题M得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.10.【答案】A【解析】11.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题. 12.【答案】B【解析】如图,当直线经过函数的图象m x =x y 2=与直线的交点时,03=-+y x 函数的图像仅有一个点在可行域内,x y 2=P 由,得,∴.230y xx y =⎧⎨+-=⎩)2,1(P 1≤m 二、填空题13.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.与的夹角为,,a b 23π1⋅=-a b ∴.|2|+=a b 2==14.【答案】2-【解析】结合函数的解析式可得:,()311211f =-⨯=-对函数求导可得:,故切线的斜率为,()2'32f x x =-()2'13121k f ==⨯-=则切线方程为:,即,()111y x +=⨯-2y x =-圆:的圆心为,则:.C ()222x y a +-=()0,a 022a =-=-15.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈ ⎝'⎛ ⎝16.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,42541415432∴数列{a n }是以1为首项,以为公比的等比数列,S n ==2﹣()n ﹣1,对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,∴x 2+tx+1≥2,x 2+tx ﹣1≥0,令f (t )=tx+x 2﹣1,∴,解得:x ≥或x ≤,∴实数x 的取值范围(﹣∞,]∪[,+∞).17.【答案】332【解析】试题分析:原式=。
2018-2019学年高二数学上学期期末考试试题(含解析)_2
2018-2019学年高二数学上学期期末考试试题(含解析)第I卷(选择题共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知命题,下列命题中正确的是( )A. B.C. D.【答案】C【解析】试题分析:命题,使的否定为,使,故选C.考点:特称命题的否定.2.抛物线的焦点坐标为A. B. C. D.【答案】A【解析】抛物线,开口向右且焦点在轴上,坐标为.故选A.3.“a>1”是“<1”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.4. 已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:由已知中△ABC三个顶点为A(3,3,2),B (4,-3,7),C(0,5,1),利用中点公式,求出BC边上中点D的坐标,代入空间两点间距公式,即可得到答案.解:∵B(4,-3,7),C(0,5,1),则BC的中点D的坐标为(2,1,4)则AD即为△ABC中BC边上的中线故选B.考点:空间中两点之间的距离点评:本题考查的知识点是空间中两点之间的距离,其中根据已知条件求出BC边上中点的坐标,是解答本题的关键.5.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。
其中正确的命题是()A. ①②B. ①③C. ②③D. ①②③【答案】C【解析】【分析】根据空间向量的基底判断②③的正误,找出反例判断①命题的正误,即可得到正确选项.【详解】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.【点睛】本题考查共线向量与共面向量,考查学生分析问题,解决问题的能力,是基础题.6.如图所示,在平行六面体中,为与的交点.若,,,则下列向量中与相等的向量是()A. B.C. D.【答案】A【解析】【分析】运用向量的加法、减法的几何意义,可以把用已知的一组基底表示.详解】.【点睛】本题考查了空间向量用一组已知基底进行表示.7.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A. (x≠0)B. (x≠0)C. (x≠0)D. (x≠0)【答案】B【解析】由于,所以到的距离之和为,满足椭圆的定义,其中,由于焦点在轴上,故选.点睛:本题主要考查椭圆的定义和标准方程. 涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解. 求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).8.过抛物线的焦点作直线交抛物线于两点,如果,那么A. 6B. 8C. 9D. 10【答案】B【解析】【分析】根据抛物线的性质直接求解,即焦点弦长为.【详解】抛物线中,,∴,故选B.【点睛】是抛物线的焦点弦,,,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为.9.若直线与双曲线的右支交于不同的两点,则的取值范围是A. B. C. D.【答案】D【解析】【分析】由直线与双曲线联立得(1-k2)x2-4kx-10=0,由结合韦达定理可得解.【详解】解析:把y=kx+2代入x2-y2=6,得x2-(kx+2)2=6,化简得(1-k2)x2-4kx-10=0,由题意知即解得<k<-1.答案:D.【点睛】本题主要考查了直线与双曲线的位置关系,属于中档题.10.试在抛物线上求一点,使其到焦点距离与到的距离之和最小,则该点坐标为A. B. C. D.【答案】A【解析】由题意得抛物线的焦点为,准线方程为.过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时.故点的纵坐标为1,所以横坐标.即点P的坐标为.选A.点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.11.在长方体中,如果,,那么到直线的距离为A. B. C. D.【答案】C【解析】【分析】由题意可得:连接,AC,过A作,根据长方体得性质可得:平面ABCD,即可得到,,再根据等面积可得答案.【详解】由题意可得:连接,AC,过A作,如图所示:根据长方体得性质可得:平面ABCD.因为,,所以,,根据等面积可得:.故选:C.【点睛】本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题..12.已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为正三角形,则该椭圆的离心率为()A. B. C. D.【答案】D【解析】在方程中,令,可得,∴.∵△ABF2为正三角形,∴,即,∴,∴,整理得,∴,解得或(舍去).选D.点睛:求椭圆离心率或其范围的方法(1)求的值,由直接求.(2)列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.第Ⅱ卷(主观题共90分)二、填空题(每题5分,共20分,将答案写在答题纸上)13. 已知A(1,-2,11)、B(4,2,3)、C(x,y,15)三点共线,则xy=___________.【答案】2.【解析】试题分析:由三点共线得向量与共线,即,,,解得,,∴.考点:空间三点共线.14.已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面宽是____________米(精确到米).【答案】【解析】试题分析:设抛物线方程为,当x=0时 c=2,当x=-4和x=4时y=0,求得, b=0,则,令y=1,得,所以水面宽.考点:抛物线方程.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.①一个命题的逆命题为真,它的否命题一定也为真:②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件;④“”是“”的充分必要条件;以上说法中,判断错误的有_______________.【答案】③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若,则,有,则三个角成等差数列,反之若三个角成等差数列,有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.已知命题有两个不相等的负根,命题无实根,若为假,为真,求实数的取值范围.【答案】【解析】【分析】根据命题和的真假性,逐个判断.【详解】因为假,并且为真,故假,而真即不存在两个不等的负根,且无实根.所以,即,当时,不存在两个不等的负根,当时,存在两个不等的负根.所以的取值范围是【点睛】此题考查了常用的逻辑用语和一元二次方程的性质,属于基础题.18.已知椭圆C的两焦点分别为,长轴长为6。
交城县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析
D.(e,+∞)
3. 一个四边形的斜二侧直观图是一个底角为 45°,腰和上底的长均为 1 的等腰梯形,那么原四边形的面积是
4. 已知 x,y∈R,且 积为( A.4 ﹣ ) B.4 ﹣ C.
D.
+ )
5. 设 a∈R,且(a﹣i)•2i(i 为虚数单位)为正实数,则 a 等于( A.1 B.0 C.﹣1 D.0 或﹣1
23.已知数列{an}满足 a1= ,an+1=an+ (Ⅰ)证明:bn∈(0,1)
,数列{bn}满足 bn=
(Ⅱ)证明:
=
第 5 页,共 17 页
(Ⅲ)证明:对任意正整数 n 有 an
.
24.如图,点 A 是单位圆与 x 轴正半轴的交点,B(﹣ , ). (I)若∠AOB=α,求 cosα+sinα 的值; (II)设点 P 为单位圆上的一个动点,点 Q 满足 的最大值. = + .若∠AOP=2θ, 表示| |,并求| |
第 4 页,共 17 页
(1)求 cos 的值; 6 (2)求 cos 2 的值. 12
22.如图,已知 AC,BD 为圆 O 的任意两条直径,直线 AE,CF 是圆 O 所在平面的两条垂线,且线段 AE=CF= ,AC=2. (Ⅰ)证明 AD⊥BE; (Ⅱ)求多面体 EF﹣ABCD 体积的最大值.
第 7 页,共 17 页
4. 【答案】 A 【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形 OAB, 若存在 θ∈R,使得 xcosθ+ysinθ+1=0 成立, 则 令 sinα= 则方程等价为 即 sin(α+θ)=﹣ ( cosθ+ ,则 cosθ= sinθ)=﹣1, ,
2018-2019学年高二上学期期末考试数学试题+答案
参考答案一、选择题,每小题5分,共60分.1-12、CDACD ACBBA BD二、填空题,每小题5分,共20分.13. 2 14. 85 15. 18 16. ②③ 三、解答题,共70分.17. 解:(Ⅰ)由题意知)5,8(),21,1(A D - ∴ k AD =2118215=+-………………………………3′ ∴ 直线AD 的方程为)8(215-=-x y ………………………5′ 即 x-2y+2=0 ………………………………6′(Ⅱ)由已知得 k BC =21)6(432-=---- ……………………………7′ ∴ k AE =2 ………………………………9′∴ 直线AE 的方程为y-5=2(x-8) ……………………………11′即 2x-y-11=0 ……………………………12′18. 解:(Ⅰ)6)108642(51=++++=x 10)5.475.91316(51=++++=y ………2′ 45.165)1006436164(3004556575232ˆ2-=⨯-++++-++++=b ………………………4′ 7.186)45.1(10ˆ=⨯--=a………………………5′ ∴ y 关于x 的回归直线方程为7.1845.1ˆ+-=x y……………………6′ (Ⅱ)由题意知 )2.1775.105.0(7.1845.12+--+-=x x x z=5.13.005.02++-x x ……………………9′∴ 3)05.0(23.0=-⨯-=x 时,z 最大. ∴ x=3时,销售利润取最大值. ……………………12′19. 解:(Ⅰ)如图 ………1′已知AO m m A PA O PO ⊥⊂⊥,,,ααα于交平面于 ……………………3′ 求证:PA m ⊥ ……………………………4′证明:PAO m AO m m PO m PO 平面又平面∵⊥⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊂⊥αα PA m ⊥∴ ……………………………8′(Ⅱ)逆命题:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直. ………………………10′逆命题是真命题 ……………………………12′20. 解:(Ⅰ)由题意知,直线AB 的方程为y-2=k(x-0) 即y=kx+2 ……………………1′代入圆方程,整理得: 036)124()1(22=+-++x k x k ………………3′∵ A 、B 是不同两点, ∴ △=036)1(4)124(22>⋅+--k k ……………4′解得 043<<-k ∴ k 的取值范围为)0,43(- ……………………6′ (Ⅱ)∵ P (0,2), Q (6,0) ∴ )2,6(-=PQ ……………………7′设 A(x 1,y 1) B(x 2,y 2), 由(Ⅰ)知2211412kk x x +-=+ ∴ 221212114124)(22k k x x k kx kx y y ++=++=+++=+ ∴ )14121412(22k k k k OB oA +++-=+, ……………………9′ 要OB OA +与PQ 共线,则221412214126k k k k +-⋅-=++⋅解得 43-=k ……………………11′ 由(Ⅰ)知)0,43(-∈k ∴ 不存在常数k ,使OB OA +与PQ 共线. ……………………12′21. 解:(Ⅰ)连接AC 交BD 于O ,连接EO∵ 正方形ABCD ,∴⇒⎭⎬⎫中点是中点是PC E AC O (Ⅱ)z y,x ,DP DC,DA,D 分别为为原点,射线以轴的正半轴建立直角坐标系设PD =DC=1,易知:D (0,0,0),A (1,0,0),C (0,1,0),B (1,1,0),P(0,0,1)∴ )1,1,1(),21,21,0(),21,21,0(--==PB DE E EFD PB EF PB DE PB PB DE 平面∵又⊥⇒⎪⎭⎪⎬⎫⊥⊥∴=⋅,0 ……………………7′ (Ⅲ)由(Ⅱ)可知:)0,0,1(),0,1,0(),1,1,1(-==--=BC AB PB设平面PAB 的法向量为m=(x,y,z ),则⎩⎨⎧==+--00x y z y ∴x=z,y=0,取m =(1,0,1) ……………………9′ 同理可得平面PCB 的法向量n =(0,1,1)21221,cos =⋅>=<n m ∴ ︒60的夹角为与n m ……………………11′EDB PA EDB PA EDB EO PA EO 平面∥平面平面∥⇒⎪⎭⎪⎬⎫⊄⊂ ……………3′结合图形可知,二面角A —PB —C 为120° ……………………12′22. 解:(Ⅰ)区域D 如图……………………2′)1(01---=+=x y x y z 即连线的斜率与定点为动点)0,1(),(z -P y x ……………………4′∴ 2)1(002z =---=PB k 的最大值为 ……………………5′ (Ⅱ)由(Ⅰ)知A (2,0),B (0,2),C (4,4)设 △ABC 的外接圆方程为022=++++F Ey Dx y x 代入各点得⎪⎩⎪⎨⎧=+++=++=++04432024024F E D F E F D ……………………7′ 解得: 314-==E D 316=F ∴ △ABC 的外接圆方程为0316********=+--+y x y x ………………10′。
交城县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
交城县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?2.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣13.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α4.若某算法框图如图所示,则输出的结果为()A.7 B.15 C.31 D.635.函数y=的定义域为()A .(,1)B .(,∞)C .(1,+∞)D .(,1)∪(1,+∞)6. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .7. 双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .8. 设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a9. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A .B .C .D .10.设a 是函数x 的零点,若x 0>a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定11.已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞--12.若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .5二、填空题13.等比数列{a n }的公比q=﹣,a 6=1,则S 6= . 14.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.15.已知函数f (x )=sinx ﹣cosx ,则= .16.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________18.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).三、解答题19.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.20.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.21.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.22.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.23.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.24.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .交城县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.2.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.3.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.4.【答案】D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A≤5,B=3,A=2满足条件A≤5,B=7,A=3满足条件A≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.5.【答案】A【解析】解:由题意知log0.5(4x﹣3)>0且4x﹣3>0,由此可解得,故选A.6.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D7.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.8.【答案】A【解析】解:∵a=60.5>1,0<b=0.56<1,c=log0.56<0,∴c<b<a.故选:A.【点评】本题考查了指数函数与对数函数的单调性,属于基础题.9.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.10.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.11.【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为 222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C12.【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]二、填空题13.【答案】 ﹣21 .【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,∴a 1(﹣)5=1,解得a 1=﹣32,∴S 6==﹣21故答案为:﹣2114.【答案】()0,1【解析】15.【答案】.【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.16.【答案】5﹣4.【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.17.【答案】【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:18.【答案】【解析】【知识点】空间几何体的三视图与直观图 【试题解析】该几何体是半个圆柱。
交城县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
求得圆心 C(0,0)到直线 l:x0x+y0y=4 的距离 d=
< =2,
故直线和圆 C 相交,
故选:C.
【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题. 11.【答案】A
考
第 8 页,共 18 页
点:复数运算. 12.【答案】A
【解析】解:几何体如图所示,则 V=
A.1 MN 5
B. 2 MN 10
C.1 MN 5
D. 2 MN 5
2. 已知集合 A {x| lgx 0} , B={x | 1 x 3} ,则 A B (
)
2
A. (0,3]
B. (1, 2]
C. (1,3]
D.[1 ,1] 2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.
≤0},则 N∩M(
)
第 1 页,共 18 页
A.(1﹣1,] B.(0,1] C.[﹣1,1] D.(﹣1,2]
10.已知圆 C:x2+y2=4,若点 P(x0,y0)在圆 C 外,则直线 l:x0x+y0y=4 与圆 C 的位置关系为(
)
A.相离 B.相切 C.相交 D.不能确定
11.已知是虚数单位,若复数 3i(a i) ( a R )的实部与虚部相等,则 a ( )
考点:两个集合相等、子集.1 8. 【答案】D 【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由 z=ax+y,得 y=﹣ax+z, 若 a=0,此时 y=z,此时函数 y=z 只在 B 处取得最小值,不满足条件. 若 a>0,则目标函数的斜率 k=﹣a<0. 平移直线 y=﹣ax+z, 由图象可知当直线 y=﹣ax+z 和直线 x+y=1 平行时,此时目标函数取得最小值时最优解有无数多个, 此时﹣a=﹣1,即 a=1. 若 a<0,则目标函数的斜率 k=﹣a>0. 平移直线 y=﹣ax+z, 由图象可知当直线 y=﹣ax+z,此时目标函数只在 C 处取得最小值,不满足条件. 综上 a=1. 故选:D.
交城县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
交城县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN <<2. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 3. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)4. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题5. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣26. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.7. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==8. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .19. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]10.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定11.已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D . 12.某几何体的三视图如图所示,该几何体的体积是( )A. B. C. D.二、填空题13.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .14.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.15.已知一个算法,其流程图如图,则输出结果是 .16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 17.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .18.的展开式中的系数为(用数字作答).三、解答题19.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
交城县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析
交城县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]2. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .3. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个5. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .26. 若如图程序执行的结果是10,则输入的x 的值是( )A .0B .10C .﹣10D .10或﹣107. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)8. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( )A .4 2B .4 5C .2 2D .2 59. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .(52):5-B .2:5C .1:25D .5:(15)+ 10.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-11.已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a12.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3D213.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .B .12+C .122+ D .122+ 14.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.15.函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<二、填空题16.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A B k k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)19.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).三、解答题20.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?21.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.22.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.23.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.25.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.交城县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.3.【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数.由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 5. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3, ∴点A 到准线l :x=﹣1的距离为3∴1+x A =3 ∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.6. 【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x <0,时﹣x=10,解得:x=﹣10 当x ≥0,时x=10,解得:x=10 故选:D .7. 【答案】A【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a ﹣2b=3(a ﹣b )+(a+b ) ∵1≤a ﹣b ≤2,2≤a+b ≤4, ∴3≤3(a ﹣b )≤6 ∴5≤(a ﹣b )+3(a+b )≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,y ,是解答的关键.【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 9. 【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 10.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 11.【答案】A【解析】解:∵a=0.50.5,c=0.50.2, ∴0<a <c <1,b=20.5>1,∴b >c >a , 故选:A .12.【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 13.【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 14.【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.15.【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称.二、填空题16.【答案】 x+4y ﹣5=0 .【解析】解:设这条弦与椭圆+=1交于P (x 1,y 1),Q (x 2,y 2),由中点坐标公式知x 1+x 2=2,y 1+y 2=2,把P (x 1,y 1),Q (x 2,y 2)代入x 2+4y 2=36,得, ①﹣②,得2(x 1﹣x 2)+8(y 1﹣y 2)=0,∴k==﹣,∴这条弦所在的直线的方程y ﹣1=﹣(x ﹣1),即为x+4y ﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y ﹣5=0.故答案为:x+4y ﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.17.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2, f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.18.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k =-=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==1211,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111]考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 19.【答案】 ②④【解析】解:根据题意得:圆心(k ﹣1,3k ),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确; 考虑两圆的位置关系,圆k :圆心(k ﹣1,3k),半径为k 2,圆k+1:圆心(k ﹣1+1,3(k+1)),即(k ,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R ﹣r=(k+1)2﹣k 2=2k+,任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误; 若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4(k ∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确. 则真命题的代号是②④. 故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.三、解答题20.【答案】【解析】解:(1)依题意得: 当0<x ≤4时,y=10;…(2分)当4<x ≤18时,y=10+1.5(x ﹣4)=1.5x+4…当x >18时,y=10+1.5×14+2(x ﹣18)=2x ﹣5…(8分) ∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.21.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质. 22.【答案】【解析】解:(1)取BC 1的中点H ,连接HE 、HF ,则△BCC 1中,HF ∥CC 1且HF=CC 1又∵平行四边形AA 1C 1C 中,AE ∥CC 1且AE=CC 1 ∴AE ∥HF 且AE=HF ,可得四边形AFHE 为平行四边形, ∴AF ∥HE ,∵AF ⊄平面REC 1,HE ⊂平面REC 1 ∴AF ∥平面REC 1.…(2)等边△ABC 中,高AF==,所以EH=AF=由三棱柱ABC ﹣A1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B 的距离等于∵Rt △A 1C 1E ≌Rt △ABE ,∴EC 1=EB ,得EH ⊥BC 1可得S△=BC 1•EH=××=,而S △ABE =AB ×BE=2由等体积法得V A ﹣BEC1=V C1﹣BEC ,∴S △×d=S △ABE ×,(d 为点A 到平面BEC 1的距离)即××d=×2×,解之得d=∴点A到平面BEC1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.23.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.24.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.25.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.。
交城县高级中学2018-2019学年高二上学期第二次月考试卷数学
交城县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>2. 过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( ) A .1 B .2C .3D .43. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-4.已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( ) A.B.C.D.5. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣26. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点7. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π 8. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形9. (2011辽宁)设sin (+θ)=,则sin2θ=( )A .﹣B .﹣C .D .10.已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞11.已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .312.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(二、填空题13.已知某几何体的三视图如图所示,则该几何体的体积为 .14.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.16.设函数f(x)=则函数y=f(x)与y=的交点个数是.17.设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.18.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤三、解答题19.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.20.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.21.某港口的水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.(Ⅰ)求数列{a n}通项公式;(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.23.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?24.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.交城县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 C【解析】22212'()x f x x x x-=-+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-2217()24x x-+=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e e e =+->,2222()20g e e e=+-<,所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x xh x x x x==+,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()f x k x<,()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草图可看出(0,2)的时候递减的更快,所以124x x +>2. 【答案】A【解析】解:∵x 2=2y ,∴y ′=x , ∴抛物线C 在点B 处的切线斜率为1, ∴B (1,),∵x 2=2y 的焦点F (0,),准线方程为y=﹣,∴直线l的方程为y=,∴|AF|=1.故选:A.【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键.3.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 4.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.5.【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)∴直线AB的斜率k=1,∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.故选A,6.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.7.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.8.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.9.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.10.【答案】B【解析】试题分析:因为函数()xF x e=满足()()()F x g x h x=+,且()(),g x h x分别是R上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xx xe e e ee g x h x e g x h x g x h x x---+-∴=+=-∴==∀∈使得不等式()()20g x ah x-≥恒成立, 即2222x x x xe e e ea--+--≥恒成立,()2222x xx xx x x xe ee eae e e e-----++∴≤=--()2x xx xe ee e--=-++, 设x xt e e-=-,则函数x xt e e-=-在(]0,2上单调递增,220t e e-∴<≤-, 此时不等式2t t +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B. 考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.11.【答案】B【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题.12.【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.二、填空题13.【答案】.【解析】解:由三视图可知几何体为四棱锥,其中底面是边长为1的正方形,有一侧棱垂直与底面,高为2.∴棱锥的体积V==.故答案为.14.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-115.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.16.【答案】4.【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.17.【答案】1.【解析】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.18.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④三、解答题19.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,… ∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣, ∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.20.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)21.【答案】【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t≤24)(2)要想船舶安全,必须深度f(t)≥11.5,即∴,解得:12k+1≤t≤5+12k k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).【点评】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.22.【答案】【解析】(Ⅰ)解:由4S n=(a n+1)2,令n=1,得,即a1=1,又4S n+1=(a n+1+1)2,∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,∴a n=1+2(n﹣1)=2n﹣1;(Ⅱ)证明:由(Ⅰ)可知,b n==,则b1+b2+…+b n===.23.【答案】【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.24.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交城县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种2. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .63. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A .1372B .2024C .3136D .44954. 记集合和集合表示的平面区域分别为Ω1,Ω2,{}22(,)1A x y x y =+£{}(,)1,0,0B x y x y x y =+£³³ 若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( )A .B .C .D .12p1p2p13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要6. 集合,,,则,{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )N P A .B .C .D .M P N =⊆N P M =⊆M N P =⊆M P N==7. 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、22(0)y px p =>F 2218-=y x A 两点,若,且,则抛物线方程为( )B >AF BF ||3AF =A .B .C .D .2y x =22y x =24y x =23y x=【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.8. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .9. 四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是()ABCD PQMNA .B .AC BD ⊥AC BD= C.D .异面直线与所成的角为AC PQMN A PM BD 4510.等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .311.方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分12.设,为正实数,,,则=()a b 11a b+≤23()4()a b ab -=log a b A.B. C.D.或01-11-0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.13.若几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .π14.已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >815.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( )A .1B .2C .3D .4二、填空题16.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .17.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 18.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .19.函数的定义域是,则函数的定义域是__________.111]()y f x =[]0,2()1y f x =+三、解答题20.(本小题满分13分)设,数列满足:,.1()1f x x =+{}n a 112a =1(),n n a f a n N *+=∈(Ⅰ)若为方程的两个不相等的实根,证明:数列为等比数列;12,λλ()f x x =12n n a a λλ⎧⎫-⎨⎬-⎩⎭(Ⅱ)证明:存在实数,使得对,.m n N *∀∈2121222n n n n a a m a a -++<<<<)21.(本小题满分12分)如图长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.22.(本小题满分12分)已知函数.21()cos cos 2f x x x x =--(1)求函数在上的最大值和最小值;()y f x =[0,]2π(2)在中,角所对的边分别为,满足,,,求的值.1111]ABC ∆,,A B C ,,a b c 2c =3a =()0f B =sin A 23.(本小题满分12分)已知.1()2ln ()f x x a x a R x=--∈(Ⅰ)当时,求的单调区间;3a =()f x (Ⅱ)设,且有两个极值点,其中,求的最小值.()()2ln g x f x x a x =-+()g x 1[0,1]x ∈12()()g x g x -【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.24.(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直1C 14822=+y x 21F F 、1F 于轴的直线,直线垂直于点,线段的垂直平分线交于点.2l P 2PF 2l M (1)求点的轨迹的方程;M 2C (2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积2F BD AC 、D C B A 、、、ABCD 的最小值.25.已知数列{a n }的首项a 1=2,且满足a n+1=2a n +3•2n+1,(n ∈N *).(1)设b n =,证明数列{b n }是等差数列;(2)求数列{a n }的前n 项和S n .交城县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B.【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.2.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.3.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C .【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.4. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示及其内部,OAB D由几何概型得点M 落在区域Ω2内的概率为,故选A.112P ==p 2p5. 【答案】B 【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为p p q ∨p ⌝p q ∨p ⌝p ⌝假”时为真,必有“ 真”,故选B. p p q ∨考点:1、充分条件与必要条件;2、真值表的应用.6. 【答案】A 【解析】试题分析:通过列举可知,所以.{}{}2,6,0,2,4,6M P N ==±±=±±± M P N =⊆考点:两个集合相等、子集.17. 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,=y 00(,)A x y 02>px 0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px 解得或,因为,故,故,所以抛物线方程为.2=p 4=p 322->p p03p <<2=p 24y x =8. 【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.9. 【答案】B 【解析】试题分析:因为截面是正方形,所以,则平面平面,PQMN //,//PQ MN QM PN //PQ ,//ACD QM BDA 所以,由可得,所以A 正确;由于可得截面//,//PQ AC QM BD PQ QM ⊥AC BD ⊥//PQ AC //AC ,所以C 正确;因为,所以,由,所以是异面直线与PQMN PN PQ ⊥AC BD ⊥//BD PN MPN ∠PM BD所成的角,且为,所以D 正确;由上面可知,所以,而045//,//BD PN PQ AC ,PN AN MN DN BD AD AC AD==,所以,所以B 是错误的,故选B. 1,AN DN PN MN ≠=BD AC ≠考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.10.【答案】D【解析】解:由等差数列的性质可得:S 15==15a 8=45,则a 8=3.故选:D . 11.【答案】C 【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想. 12.【答案】B.【解析】,故2323()4()()44()a b ab a b ab ab -=⇒+=+11a ba b ab++≤⇒≤,而事实上,2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤12ab ab +≥=∴,∴,故选B.1ab =log 1a b =-13.【答案】B【解析】解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,底面圆的半径为1,高为2,所以该几何体的体积为V 几何体=×π•12×2=.故选:B .【点评】本题考查了利用空间几何体的三视图求几何体体积的应用问题,是基础题目. 14.【答案】C【解析】解:由f ′(x )=3x 2﹣3=3(x+1)(x ﹣1)=0得到x 1=1,x 2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0,∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m 由题意知,f (1)=m ﹣2>0 ①;f (1)+f (1)>f (2),即﹣4+2m >2+m ②由①②得到m >6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值15.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.二、填空题16.【答案】 (,0) .【解析】解:y′=﹣,∴斜率k=y′|x=3=﹣2,∴切线方程是:y﹣3=﹣2(x﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.17.【答案】 ①②④ .【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.18.【答案】 2 .【解析】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣A1B1C1D1的体积V==2.故答案为:2.19.【答案】[]1,1-【解析】考点:函数的定义域.三、解答题20.【答案】【解析】解:证明:,∴,∴.2()10f x x x x =⇔+-=2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩21122211λλλλ⎧-=⎪⎨-=⎪⎩∵, (3分)12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+,,11120a a λλ-≠-120λλ≠∴数列为等比数列. (4分)12n na a λλ⎧⎫-⎨⎬-⎩⎭(Ⅱ)证明:设,则.m =()f m m =由及得,,∴.112a =111n n a a +=+223a =335a =130a a m <<<∵在上递减,∴,∴.∴,(8分)()f x (0,)+∞13()()()f a f a f m >>24a a m >>1342a a m a a <<<<下面用数学归纳法证明:当时,.n N *∈2121222n n n n a a m a a -++<<<<①当时,命题成立. (9分)1n =②假设当时命题成立,即,那么n k =2121222k k k k a a m a a -++<<<<由在上递减得()f x (0,)+∞2121222()()()()()k k k k f a f a f m f a f a -++>>>>∴2222321k k k k a a m a a +++>>>>由得,∴,2321k k m a a ++>>2321()()()k k f m f a f a ++<<2422k k m a a ++<<∴当时命题也成立, (12分)1n k =+由①②知,对一切命题成立,即存在实数,使得对,.n N *∈m n N *∀∈2121222n n n n a a m a a -++<<<<21.【答案】【解析】解:(1)交线围成的四边形EFCG (如图所示).(2)∵平面A 1B 1C 1D 1∥平面ABCD ,平面A 1B 1C 1D 1∩α=EF ,平面ABCD ∩α=GC ,∴EF ∥GC ,同理EG ∥FC .∴四边形EFCG 为平行四边形,过E 作EM ⊥D 1F ,垂足为M ,∴EM =BC =10,∵A 1E =4,D 1F =8,∴MF =4.∴GC =EF ===,EM 2+MF 2102+42116∴GB ===4(事实上Rt △EFM ≌Rt △CGB ).GC 2-BC 2116-100过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .∴平面α将长方体分成的右边部分由三棱柱EHG FC 1C 与三棱柱HB 1C 1GBC 两部分组成.其体积为V 2=V 三棱柱EHG FC 1C +V 三棱柱HB 1C 1GBC =S △FC 1C ·B 1C 1+S △GBC ·BB 1=×8×8×10+×4×10×8=480,1212∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800.∴==,V 1V 280048053∴其体积比为(也可以).533522.【答案】(1)最大值为,最小值为;(232-【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(216f x x π=--再利用的性质可求在上的最值;(2)利用,可得,()sin()(0,||)2f x A x b πωϕωϕ=++><[0,]2π()0f B =B 再由余弦定理可得,再据正弦定理可得.1AC sin A 试题解析:(2)因为,即()0f B =sin(2)16B π-=∵,∴,∴,∴(0,)B π∈112(,)666B πππ-∈-262B ππ-=3B π=又在中,由余弦定理得,ABC ∆,所以.22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=AC =由正弦定理得:,所以.sin sin b a B A =3sin A =sin A =考点:1.辅助角公式;2.性质;3.正余弦定理.()sin()(0,||)2f x A x b πωϕωϕ=++><【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.23.【答案】【解析】(Ⅰ))(x f 的定义域),0(+∞,当时,,3a =1()23ln f x x x x=--2'2213231()2x x f x x x x -+=+-=令得,或;令得,,'()0f x >102x <<1x >'()0f x <112x <<故的递增区间是和;()f x 1(0,2(1,)+∞的递减区间是.()f x 1(,1)2(Ⅱ)由已知得,定义域为,x a xx x g ln 1)(+-=),0(+∞,令得,其两根为,222111)(xax x x a x x g ++=++='0)(='x g 012=++ax x 21,x x 且,2121240010a x x a x x ⎧->⎪+=->⎨⎪⋅=>⎩24.【答案】(1);(2).x y 82=964【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定2MF 2MF MP =义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四AC BD 边形面积.当直线和的斜率都存在时,不妨设直线的方程为,则直ABCD 22b S =AC BD AC ()2-=x k y 线的方程为.分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,BD ()21--=x ky AC .利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,BD ABCD BD AC S 21=即可得出.(2)当直线的斜率存在且不为零时,直线的斜率为,,,则直线的斜率为,AC AC ),(11y x A ),(22y x C BD k1-直线的方程为,联立,得.111]AC )2(-=x k y ⎪⎩⎪⎨⎧=+-=148)2(22y x x k y 0888)12(2222=-+-+k x k x k ∴,.2221218k k x x +=+22212188k k x x +-=.由于直线的斜率为,用代换上式中的。