二阶、三阶行列式及n阶行列式的概念.ppt23页PPT
第一节 二阶与三阶行列式
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
n 阶行列式定义
将n2个数排成n行n列的数表,按下列规
则计算出的数,即
D ( 1) a1 p1 a 2 p2 a np n n! a n1 a nn
2 D1 ( 1) ( 1) 1 x1 , 2 D ( 1) ( 2) 2
( 1) D2 x2 2 ( 1) ( 2) D
2
1 , 2
2 2 ( 1) ( 1) D3 x3 2 D ( 1) ( 2)
ci 2 ai 1b12 ai 2b22 ainbn 2 , (i 1,2,, n)
D
a11 a 21 a n1 1
a12 a1n a 22 a 2 n a n 2 a nn 1 1
再证唯一性.假设
x j c j , j 1,2,, n 也是(1)的解.
在(2)两端同时乘以cj
a11 a1 j c j a1n cjD an1 anj c j ann
a11 (a11c1 a1 j c j a1n cn ) a1n an1 (an1c1 anj c j anncn ) ann
例6.2 问λ在什么条件下,方程组
ì λx1 + x2 = 0, ï ï í ï ï î x1 + λx2 = 0
有非零解?
解 由定理6.5知,若方程组有非零解,则其系数行列
式必为零.
D
1
1
0 2 1 0,
第二章 行列式
pi 这个元素的逆序数是 τi,即:
τ ( p1 p2 …pn)= τ 1 + τ 2 +…+ τ n
就是这个排列的逆序数 逆序数。 逆序数 例1 求排列13…(2n − 1)24…(2n)的逆序数。 解:在该排列中,1 ~(2n−1)中每个奇数的逆 序数全为0,2的逆序数为(n − 1),4的逆序数为 (n − 2),…,(2n − 2)的逆境序数为1,2n的逆序数 为0,于是该排列的逆序数为 τ=(n-1)+(n-2)+…+1+0=n(n-1)/2
τ1 =τ (l1l2 Lln )
2011-9-1
τ2 = τ (s1s2 L sn )
19
这就表明,对换乘积项中两元素的位置, 这就表明,对换乘积项中两元素的位置, 从而行标排列与列标排列同时做了相应的对 换,但行标排列与列标排列的逆序数之和的 奇偶性并不改变。 奇偶性并不改变。
2011-9-1
2011-9-1
... ... ... ... ... ... ... ...
0 0 = a11a22...ann ... ann a1n a2n = a11a22...ann ... ann
17
3)次上三角行列式 次上三角行列式
4)次下三角行列式 次下三角行列式
2011-9-1
18
定理2: 阶行列式 阶行列式D= 定理 :n阶行列式 aij的一般项可以记为
λn
0 0 = λλ2...λn 1 ...
=1+ 2 + ... + (n − 2) + (n −1) n (n −1) = 2
λ1
0 = (−1) ... 0
一二阶与三阶行列式-PPT精品文档
三阶行列式
a11 D a 21 a 31
a12 a 22 a 32
a13
a a a a a a a a a a 23 11 22 33 12 23 31 13 21 32
a 33
a a a a a a a a a 13 22 31 12 21 33 11 23 32
a 11 A a 21 a 31
a 12 a 22 a 32
a 13 a 23 a11a22a33 a12a23a31a13a21a32 a 33 a13a22a31a12a21a33a11a23a32
例:
2 1 1
0 4 8
1 1 3
118 0(1 ) (1 ) 4 )3 2(
a b b a 1 a 11 11 2 1 21 x 2 a a a a A a 21 11 22 12 21
a 12 a 22
b1 b2
2.
a11x1 a12x2 a13x3 b 1 类似地,为讨论三元线性方程组 a21x a22x2 a23x3 b 1 2 a x a x a x b 31 1 32 2 33 3 3
a 13 a 23 a 33
a 14 a 24 a 34
a21 a23 a24 M12 a31 a33 a34 a41 a43 a44
1 2 M A 1 M 12 12 12
a 43 aa444 4
a11 a12 a13 M44 a21 a22 a23 a31 a32 a33
a 12 a 22
算出来是一个数。
(2) 记忆方法:对角线法则 主对角线上两元素之积 - 副对角线上两元素之积
A
线性代数-行列式PPT课件
矩阵的秩和行列式
矩阵的秩和行列式之间也存在关系。矩阵的 秩等于其行向量或列向量生成的子空间的维 数,而行向量或列向量生成的子空间的维数 又等于该矩阵的阶数与非零特征值的个数之 和减去一,而一个矩阵的非零特征值的个数 又等于该矩阵的行列式的值。
05
特殊行列式介绍
二阶行列式
定义
二阶行列式表示为2x2的矩 阵,其计算公式为a11*a22a12*a21。
对于任何n阶方阵A,其行列式|A|和转置行列式|A^T|相等,即|A^T| = |A|。
行列式的乘法规则
总结词
行列式的乘法规则
详细描述
行列式的乘法规则是两个矩阵的行列式相乘等于它们对应元素相乘后的行列式。即,如果矩阵A和B分别是m×n 和n×p矩阵,那么它们的行列式相乘|AB| = |A||B|。
向量和向量的外积
行列式可以用来描述向量的外积,即两个向量的叉积。叉积 的结果是一个向量,其方向垂直于作为叉积运算输入的两个 向量,大小等于这两个向量的模的乘积与它们之间夹角的正 弦的乘积。
在线性方程组中的应用
解线性方程组
行列式可以用来判断线性方程组是否有 解,以及解的个数。如果一个线性方程 组的系数矩阵的行列式不为零,则该线 性方程组有唯一解;如果系数矩阵的行 列式为零,则该线性方程组可能无解、 有唯一解或有无穷多解。
线性代数-行列式ppt课件
• 引言 • 行列式的计算方法 • 行列式的性质 • 行列式的应用 • 特殊行列式介绍 • 行列式的计算技巧
01
引言
主题简介
01
行列式是线性代数中的基本概念 之一,用于描述矩阵的某些性质 和运算规则。
02
行列式在数学、物理、工程等领 域有广泛的应用,是解决实际问 题的重要工具。
二章行列式ppt课件
a11x1+a12x2+a13x3=b1
a11 a12 a13
a21x1+a22x2+a23x3=b2
a21 a22 a23
a31x1+a32x2+a33x3=b3
定义3.2 三阶行列式
a11 a12 a13 a21 a22 a23
a31 a32 a33
对角线 法则
a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
132 1 0 1, 奇排列 负号,
a a a 11
12
13
a a a (1) a a a . 21
22
23
( p1 p2 p3 ) 1 p1 2 p2 3 p3
a a a 31
32
33
定义 6 由 n2 个数组成的 n 阶行列式等于所有
取自不同行不同列的 n 个元素的乘积
的代数和
说明: (1)项数:2阶行列式含2项, 3阶行列式含6项, 这恰好就是2!,3!. (2)每项构成: 2阶和3阶行列式的每项分别是位于 不同行不同列的2个和3个元素的乘积. (3)各项符号: 2阶行列式含2项,其中1正1负, 3阶 行列式6项,3正3负.
对角线法则只适用于二阶与三阶行列式.
1 4 2 例1 计算行列式 D 3 0 3 .
例4 证明
a11
a12
an1,1 an1
an1,2
a1n
n( n1)
1
a a 2 1n 2,n1
上面的行列式中,未写出的元素都是0。
an1,2an1
证: 行列式的值为
二阶和三阶行列式
a11 D
a12
a13 a23 a33 a43
a12
a14 a24 a34 a44
a13 a23 a33
a21 a22 a31 a32 a41 a42
a11
a21 a23 M 12 a31 a33 a41 a43
1 2
a24 a34 a44
A12 1 M 12 M 12
M 44 a21 a22 a31 a32
a41 a42 a43 a44
a 32 的代数余子式 A32 ( 1)32 M 32 a13 的代数余子式 A ( 1)13 M 13 13
a21 a31 a41
完
a22b1 a12 a21b1 x2 a11a22 a12a21
a11 a12 D a11a22 a12a21 , a21 a22
a12 a22
主对角线 a11 a21 称 D 为二阶行列式。 副对角线
(-)
a13 a11 a33 a31
(+)
a12 a32
(+) (+)
a23 a21 a22
(-)
(-)
三元线性方程组
a11 x1 a12 x2 a13 x3 b1 设有三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b 31 1 32 2 33 3 3
解 计算二阶行列式
D
2 1 3 2
7 , D1
5 11
1 2
21 , D2
2
5
3 11
7 .
由 D 7 0 知方程组有唯一解:
D1 D2 x1 3 , x2 1. D D
高等数学线性代数行列式教学ppt(1)
1) 217986354
解: 2 1 7 9 8 6 3 5 4 01 00 13 4 45
t 5 4 4 3 1 0 0 1 0 18
1.2 行列式的性质
一、行列式的性质 二、利用性质计算行列式
返回
一、行列式的性质
a11
记D
a22
ann
a11
DT
a22
ann
行列式 DT 称为行列式 D 的转置行列式.
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此行 列式的性质凡是对行成立的对列也同样成立.
a11 a12 a1n 上三角行列式 0 a22 a2n
0 0 ann
a11a22 ann .
性质2 互换行列式的两行(列),行列式变号.
an1 an2
ann an1 an2
a1n bin . ann
性质6 把行列式的第 j 行(列)元素的 k 倍加到第 i 行(列)的对应元素上去,行列式值不变.
1
2 2, 1
2 2r1r2 1
2 2.
34
34 58
二、利用性质计算行列式
计算行列式常用方法:利用运算 ri krj把行列式 化为上三角形行列式,从而算得行列式的值.
a11 a1n
ai1 ain
ai1 Aj1 ain Ajn
,
ai1 ain
第i行
相同
第 j行
当 i j 时,
an1 ann
ai1 Aj1 ai 2 Aj2 ain Ajn 0, (i j).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j).
同济大学《线性代数》 PPT课件
称为三阶行列式.
二阶行列式的对角线法则 并不适用!
三阶行列式的计算 ——对角线法则
a11 a12 a13 D a21 a22 a23
a31 a32 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31a12a21a33 a11a23a32
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
结论 三阶行列式可以用二阶行列式表示.
思考题 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第j 列划后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作 M ij .
验证 1 7 5 6 6 2 196
175 3 5 8 196
358
662
175 175 于是 6 6 2 3 5 8
358 662
推论1 如果行列式有两行(列)完全相同,则此行列式为零.
证明 互换相同的两行,有 D D,所以
. D0
性质3 行列式的某一行(列)中所有的元素都乘以同一个
结论 因为行标和列标可唯一标识行列式的元素,所以行列 式中每一个元素都分别对应着一个余子式和一个代数余子式.
二、行列式按行(列)展开法则
定理1 行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即
D
ai1
Ai1
ai 2
Ai
2
L
二阶和三阶行列式
第二章 行列式本章说明与要求:行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克拉默法则).本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克拉默法则).要掌握克拉默法则并注意克拉默法则应用的条件.。
本章的重点:行列式性质;行列式的计算。
本章的难点:行列式性质;高阶行列式的计算;克拉默法则。
§2.1 二阶和三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组⎩⎨⎧=+=+22221211112111b x a x a b x a x a (1)用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=211222112112112211222112122211a a a a a b b a x a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记22211211a a a a D =,2221211a b a b D =,2211112b a b a D =则当D ≠0时,方程组(1) 的解(2)可以表示成2221121122212111a a a a a b a b DD x ==, 2221121122111122a a a ab a b a DD x ==, (3)象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x 2的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组⎩⎨⎧=+=+231422121x x x x解:这时 0214323142≠=⨯-⨯==D , 5243132411-=⨯-⨯==D ,3112221122=⨯-⨯==D , 因此,方程组的解是2511-==D D x ,2322==D D x , 对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212- 1062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=令 333231232221131211a a a a a aa a a D = 3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =. 当 D ≠0时,(4)的解可简单地表示成D D x 11=,D Dx 22=,DD x 33= (6)它的结构与前面二元一次方程组的解类似.例3 解线性方程组⎪⎩⎪⎨⎧=-+=-+=+-423152302321321321x x x x x x x x x 解:28231523112=---=D , 132345211101=---=D , 472415131022=--=D , 214311230123=-=D . 所以,281311==D D x ,284722==D D x ,43282133===D D x . 例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数).解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.思考题:当a 、b 为何值时,行列式022==b a ba D .。
线性代数第一章课件
(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第
j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元
。
把
a11 到 a22 的实联线称为主对角
到
线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1
高等数学基础第十二章
第十二章 线性代数概论
主讲:
线性代数概论
二阶、三阶行列式 n阶行列式 克莱姆法则 矩阵的概念及运算 逆矩阵 矩阵的秩与初等变换 线性方程组的矩阵求解
退出
12.1二阶、三阶行列式—定义
返回
12.1二阶、三阶行列式—定义
返回
12.1二阶、三阶行列式—行列式的性质
返回
12.1二阶、三阶行列式—行列式的性质
返回
12.4 矩阵的概念及运算—运算
返回
12.4 矩阵的概念及运算—运算
返回
12.4 矩阵的概念及运算—运算
返回
12.5 逆矩阵—方阵的行列式
返回
12.5 逆矩阵
返回
12.5 逆矩阵
返回
12.6 矩阵的秩与初等变换—矩阵的秩
返回
12.6 矩阵的秩与初等变换— 矩阵的初等变换
返回
12.6 矩阵的秩与初等变换— 用初等变换求矩阵的秩
返回
12.7 线性方程组的矩阵求解— 线性方程组解的结构
返回
本章结束
请选择: 重学一遍 退出
返回
12.6 矩阵的秩与初等变换— 用初等变换解— 线性方程组的消元解法
返回
12.7 线性方程组的矩阵求解— 线性方程组的消元解法
返回
12.7 线性方程组的矩阵求解— 线性方程组解的结构
返回
12.7 线性方程组的矩阵求解— 线性方程组解的结构
返回
12.7 线性方程组的矩阵求解— 线性方程组解的结构
返回
12.1二阶、三阶行列式—行列式的性质
返回
12.2 n阶行列式—行列式的展开
返回
12.2 n阶行列式
返回
12.2 n阶行列式—行列式的计算
线性代数 第一章 第一节 n阶行列式的定义
k
21 k 1k 1
2 k k ,
当 k 为奇数时,排列为奇排列.
23:10 24
小结
1 n 个不同的元素的所有排列种数为 n!.
2 排列具有奇偶性.
3 计算排列逆序数常用的方法有2 种. 4 n 阶全排列逆序数的范围: 最小的逆序总数: 最大的逆序总数:
23:10 23
3 2k 12k 122k 232k 3k 1k
解
2k 1 2k 1 2 2k 2 3 2k 3k 1 k
0 1
1
2
2
t 0 1 1 2 2 k 1 k 1 k
计算物理教研室201831811n阶行列式的定义111二三阶行列式的定义112n阶行列式的定义12行列式的主要性质13行列式按行列展开131按一行列展开行列式132拉普拉斯定理第一章行列式2018318一内容提要行列式是研究线性代数的一个重要工具近代被广泛运用到理工科各个领域特别在工程技术和科学研究中有很多问题需要用到行列式这个数学工具
2 2 3 1 D2 3 2 1 (1) 7, 1 2
二元一次方程组的解为:
23:10
1 2 5 2 8,
D1 8 x1 D 11 ; D 7 x2 2 . D 11
9
类似地,为了得出关于三元线性方程组:
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a x a x a x b 3 31 1 32 2 33 3
a 21 b2
第一讲 二阶、三阶、N阶行列式
第一讲Ⅰ 授课题目(章节):§1.1 二阶、三阶行列式;§1.2 n 阶行列式 Ⅱ 教学目的与要求:理解排列的概念,以及逆序数的计算方法;了解行列式的定义和性质,会用行列式的定义及性质计算一些较简单的行列式; 掌握二、三阶行列式的计算法;Ⅲ 教学重点与难点:重点:n 阶行列式的定义 难点:n 阶行列式的定义 Ⅳ 讲授内容: §1.1 二阶、三阶行列式一、二元线性方程组与二阶行列式二元一次方程组的代入消元解法:⎩⎨⎧=+=+)2.....()1.....(2222111211b y a x a b y a x a 1211a a 、不可能同时为0,不妨设011≠a ,则: )()1(1121a a -⨯得:)3.........(1121111211221a ab y a a a x a -=-- )3()2(+得(消去x ):112111121121122211a ab a b y a a a a a -=-即:)4( (21)122211211211a a a a a b b a y --=将(4)代入(1)得:21122211212221a a a a b a a b x --=可见,方程组的解完全可由方程组中的未知数系数22211211,,,a a a a 以及常数项21,b b 表示出来⎪⎪⎩⎪⎪⎨⎧--=--=2112221121121121122211212221a a a a a b b a y a a a a b a a b x ,如果规定记号2112221122211211a a a a a a a a -=,则有:222121212221a b a b b a a b =-,221111211211b a b a a b b a =-因此二元一次方程组的解可以表示为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==2221121122111122211211222121a a a a b a b a y a a a a a b a b x定义1. 1 记号22211211a a a a 表示代数和21122211a a a a -,称为二阶行列式。
《高等代数行列式》课件
高等代数行列式的注意事项 与易错点
第六章
计算过程中的符号问题
行列式的定义与性质 展开式中的符号规律 计算过程中的符号变化 易错点:符号使用不当导致的错误
计算过程中的化简问题
符号问题:行列式 中的正负号容易混 淆,需要注意区分
矩阵的逆:利用行列式和矩阵的性质,求出矩阵的逆,进而求解线性方程 组
矩阵的运算
矩阵加法 矩阵乘法 矩阵转置 矩阵求逆
向量的内积与外积
向量的内积定义:两个向量的点乘,表示它们的夹角和长度之间的关系
向量的外积定义:两个向量的叉乘,表示它们之间的垂直关系和长度之间的关系
向量的内积和外积的性质:内积为实数,外积为向量,它们的性质和运算规则
感谢您的观看
汇报人:PPT
03
代数余子式:行列式中任意一行或一列去掉后得到的子行列式称为代数 余子式。
04
拉普拉斯展开式:行列式可以按照某一行或某一列展开,得到的结果是 该行或该列的代数余子式的乘积之和。
05
行列式的展开定理:行列式可以按照某一行或某一列展开,得到的结果 是该行或该列的代数余子式的乘积之和。
06
行列式的计算公式:行列式的计算公式是对于n阶行列式,其 计 算 公 式 为 D = a 1 *A 1 + a 2 *A 2 + . . . + a n *A n , 其 中 A1,A2,...,An为行列式中不同行不同列的元素构成的代数余子 式。
特点:适用于具有某种规律性的数列,如等差数列、等比数列等
应用:在高等代数行列式中,递推法可以用于计算行列式的值
注意事项:在使用递推法时,需要注意初始项和递推公式是否正确,以及递推的终止 条件是什么
线性代数课件第一章
逆序. 一个排列中所有逆序的总数叫做这个排列的逆 序数.
在一个 n 阶排列中,任何一个数对不是构成逆序 就是构成顺序.如果我们把顺序的个数称为顺序数,则 一个 n 阶排列的顺序数与逆序数的和为 n(n –1)/2 .
a12a21) a12a21)
x1 x2
b1a22 a11b2
a12b2 b1a21
, .
当 a11a22 – a12a21 0 时,求得方程组(1)的解为
x1
x2
b1a22
a11a22 a11b2
a11a22
a12b2
a12a21 b1a21
a12a21
, .
(2)
为了记忆该公式,引入记号
(为偶排列). 带负号的三项列标排列:132 , 213 , 321
(为奇排列). 故三阶行列式可以写成
a11 a12 a13
a21 a22 a23 (1)t a1p1 a2 p2 a3 p3 ,
a31 a32 a33
其中 t 为排列 p1p2p3 的逆序数, 表示对1,2,3 三个 数的所有排列 p1p2p3 求和.
a11 a21
a12 a22
a11a22 a12a21
并称之为二阶行列式.其中 aij 称为行列式的元素,
aij 的两个下标表示该元素在行列式中的位置,第一个下
标称为行标, 表示该元素所在的行,第二个下标称为列
标,表示该元素所在的列,常称 aij 为行列式的(i , j ) 元1由a11成a11baaa1a1111b122二12二aaa22122b222阶22阶22ba1abaa行行11112aa22baa22ba11a1列12列22a22122baaa112式12式1222,.1b12的,,. 定即bb12 义aa,12(22 ,(22a)11b)2