分式方程及其应用

合集下载

分式方程解法的原理及应用

分式方程解法的原理及应用

分式方程解法的原理及应用1. 分式方程的定义和形式分式方程即含有分式的方程,通常以分式形式表达,一般的形式为:\\frac{P(x)}{Q(x)} = R(x)其中,P(x)、Q(x) 和 R(x) 分别表示多项式函数,分子和分母的系数和幂次。

2. 分式方程的解法原理解决分式方程的方法主要包括化简、等式法、代换法等。

2.1 化简方法化简是解决分式方程的基本思路之一。

通过对方程的分子和分母进行因式分解、约分或通分等操作,将分式方程转化为较简单的形式,以便于求解。

2.2 等式法等式法是解决分式方程的常用方法之一。

通过设法使方程中的各项相等,从而建立一个等式,通过求解等式得到方程的解。

2.3 代换法代换法是解决分式方程的另一种常用方法。

通过引入合适的变量或代换,将复杂的分式方程转化为较简单的形式,从而求解方程。

3. 分式方程的应用分式方程在实际生活和工作中具有广泛的应用,包括但不限于以下几个方面:3.1 金融领域在金融领域,分式方程可以用来计算利息、贷款等金融问题。

例如,可以通过解析贷款利率的分式方程,计算每月的还款额,帮助借款人做出合理的还款计划。

3.2 物理学和工程学领域在物理学和工程学领域,分式方程常常用于描述复杂的物理现象和工程问题。

例如,分式方程可以用来描述弹性力学中的受力和变形关系,帮助工程师设计合适的结构和材料。

3.3 统计学和经济学领域在统计学和经济学领域,分式方程经常用于描述经济和社会现象的变化规律。

例如,在经济学中,可以通过分式方程来描述供求关系、价格变化等。

3.4 生活中的实际问题除了以上领域,分式方程还可以应用于日常生活中的实际问题。

例如,分式方程可以用来求解食物烹饪过程中的配方比例、化妆品的混合比例等。

4. 总结分式方程的解法原理主要包括化简、等式法和代换法。

这些方法可以帮助我们解决实际生活和工作中的问题。

分式方程在金融、物理学、工程学、统计学和经济学等领域有着广泛的应用。

了解分式方程的解法原理和应用,有助于我们更好地理解和运用数学知识解决实际问题。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指含有分数形式的方程,其中包含了分数的加减乘除运算。

解决分式方程需要运用一些特定的解法和技巧,以及理解分式方程在实际生活中的应用。

本文将介绍分式方程的解法和应用,并讨论其在数学和日常生活中的重要性。

一、分式方程的解法分式方程的解法有多种方法,以下是其中常见的几种:1. 清除分母法:当分式方程中存在分母时,可以通过乘以适当的整数或者多项式的方法,将方程的分母消除,从而转化为含有整数或多项式的方程。

通过进行这样的清除分母操作,可以简化方程的求解过程。

2. 相同分母法:当分式方程中存在多个分式且分母相同的情况时,可以通过将这些分式相加或相减,生成一个分子相加或相减的新分式,从而将分式方程转化为一个更简单的方程。

然后,可以继续使用其他解方程的方法求解。

3. 倒数法:当分式方程的分子或分母中含有复杂的表达式时,可以通过倒数的方式,将方程进行转化。

将方程的分母转化为分子,分子转化为分母,然后利用等式的性质进行化简,最后得到一个更为简单的方程。

二、分式方程的应用分式方程在实际生活中有着广泛的应用。

以下是一些常见的应用场景:1. 比例问题:比例问题是分式方程的常见应用之一。

在计算比例时,常常需要解决分式方程。

例如,在商业领域中,计算销售增长率、成本与利润的关系等问题,都需要运用分式方程进行计算。

2. 涉及面积和体积的问题:分式方程在计算面积和体积相关问题时也很有用。

例如,计算不规则形状的面积、计算容器中液体的体积等都可能涉及到分式方程的应用。

3. 财务问题:在处理财务问题时,分式方程同样发挥着重要的作用。

例如,在计算股票交易、利息计算以及贷款还款等问题时,常常需要解决分式方程来进行计算。

总结:分式方程是一种特殊的方程类型,运用特定的解法和技巧可以解决。

掌握分式方程的解法不仅在数学学科中重要,也在实际生活中具有广泛的应用。

通过应用不同的解法,我们能够更好地理解和解决涉及分数运算的各类问题,提高解决实际问题的能力。

分式方程及其应用

分式方程及其应用

分式方程及其应用一、知识要点1. 分式方程的概念分母里含有未知数的方程叫做分式方程。

2. 如何解分式方程(1)解分式方程的基本思想是“转化”的数学思想,即把分式方程的分母去掉,使分式方程转化成整式方程,就可以利用整式方程的解法求解了。

(2)解分式方程的步骤:①转化:在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③检验:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

(3)“增根”是怎样产生的?把分式方程“转化”为整式方程时,需要用最简公分母乘方程的两边,如果所得的解恰好使最简公分母为零,那么这个根就是“增根”。

(4)注意的问题:①把分式方程“转化”为整式方程的条件是去掉分式方程中的分母。

如何去掉分式方程中的分母是解分式方程的“关键”步骤。

②用分式方程中各式的最简公分母乘方程的两边,从而约去分母。

但要注意用最简公分母乘方程两边的每一分式或项,切勿漏项。

③解分式方程可能产生“增根”的情况,那么验根就是解分式方程必要的步骤。

3. 分式方程的应用解分式方程应用题的分析方法,解题步骤与解一元一次方程或二元一次方程组应用题基本相同,不同之处在于它侧重于用分式表示数量关系列代数式和寻找等量关系列方程。

其方法和步骤可归纳如下:①审清题意,分清已知量和未知量;②设未知数;③根据题意寻找已知的或隐含的等量关系,列分式方程;④解方程,并验根;⑤写出答案。

二、问题举例例1. 解方程 。

; 32651222-=+----x x x x x x x 例2. 解下列方程:()()x x x x ++++=151602 3. (2003年吉林省)如图,小明家、王老师家、学校在同一条路上。

小明家到王老师家的路程为3km ,王老师家到学校的路程为0.5km 。

由于小明的父亲战斗在抗击“非典”第一线,为了使小明能按时到校,王老师每天骑自行车接他上学。

已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用20min 。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用在数学中,分式方程是含有分数的方程,通常形式为一个或多个包含有未知数的分式等于一个已知数或者另一个分式。

解分式方程的过程需要注意一些特殊的技巧和方法。

本文将介绍解分式方程的常用方法,并探讨分式方程在现实生活中的应用。

一、一次分式方程的解法对于一次分式方程,即含有一个未知数的分式方程,我们可以通过以下步骤来求解:1. 将分式方程的分母清零,即使分子等于0。

这样可以排除分母为0的情况。

2. 化简方程。

将方程两端的分式进行通分,并将分式约简到最简形式。

3. 消去分母。

将方程两端的分母消去,得到一个一次方程。

4. 求解一次方程。

将消去分母后的方程进行移项和合并同类项的运算,得到未知数的解。

二、二次分式方程的解法对于二次分式方程,即含有未知数的平方的分式方程,我们可以通过以下步骤来求解:1. 将方程的分母清零,使分子等于0。

2. 化简方程,将方程两端的分式通分,并将分式约简到最简形式。

3. 进行配方法。

对于二次分式方程,我们可以通过配方法将方程转化为一次分式方程。

4. 解一次分式方程。

按照一次分式方程的解法,求解配方法后得到的一次分式方程。

5. 核对解的有效性。

将求得的解代入原分式方程,并检查是否成立。

三、分式方程的应用分式方程在现实生活中有着广泛的应用,下面举几个例子:1. 比例问题:分式方程可以用于解决比例问题,比如某个产品的销售量与价格之间的关系。

2. 浓度计算:在化学领域,分式方程可用于计算溶液的浓度,如溶液A中含有5%的某种物质,溶液B中含有10%的同种物质,问如何将溶液A和溶液B混合得到含有8%的溶液。

3. 财务分析:在财务领域,分式方程可用于计算财务指标,如利润率、毛利率等。

4. 随机问题:分式方程可以用于解决随机问题,如抛硬币的概率问题、抽奖问题等。

通过上述例子,我们可以看到分式方程在实际生活中的应用十分广泛。

综上所述,解分式方程的方法根据方程的次数和具体形式有所区别,但总体思路是将方程转化为一次方程进行求解。

分式方程及应用

分式方程及应用

分式方程及应用1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代入或 。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

1.把分式方程的两边同时乘以(x-2), 约去分母,得( )A.1-(1-x)=1 B.1+(1-x)=1 C.1-(1-x)=x-2 D.1+(1-x)=x-22. 方程的根是( )A.-2 B. C.-2, D.-2,13.当=_____时,方程的根为4.如果,则 A=____ B=________.5.若方程有增根,则增根为_____,a=________.6.解下列分式方程:7. 若关于x的分式方程有增根,求m的值。

1.方程去分母后,可得方程( )2.解方程,设,将原方程化为( )3. 已知方程的解相同,则a等于( )A.3 B.-3 C、2 D.-24. 分式方程有增根x=1,则 k的值为________5.满足分式方程的x值是( )A.2 B.-2 C.1 D.06.解方程:(本题写出主要思想和步骤)7.某煤厂原计划天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为 .8.小军家距学校5千米,原来他骑自行车上学,现在乘车,若乘车速度是他骑车速度的2倍,现在小军乘车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为。

分式方程的解法和应用

分式方程的解法和应用

分式方程的解法和应用分式方程,又称有理方程,是指包含了分数的方程。

解决分式方程问题可以在数学中发挥很大的作用,因为它们可以用来描述实际问题,特别是在科学和工程领域中。

本文将介绍一些常见的分式方程的解法以及它们在实际应用中的应用。

一、一次分式方程的解法一次分式方程是指分式的分子和分母的次数均为1的方程。

例如,2/x + 3 = 1/2。

解决这类问题的一种常见方法是通过消去分母,使方程转化为线性方程。

在这种情况下,可以通过以下步骤来解决方程:1. 将分数转化为一个等于0的分式形式,例如将2/x转化为2/x - 1/2。

2. 通过求公倍数来消去分母,例如通过乘以2来消去分母。

3. 合并同类项并将方程转化为一元一次方程,例如2 - x = 1/2。

4. 将方程解题得到x的值,检查解的合法性。

二、二次分式方程的解法二次分式方程是指分式的分子或者分母的次数为2的方程。

例如,1/x^2 + 1/x = 2。

解决这类问题的一种常见方法是通过将方程转化为二次方程,然后使用二次方程的解决方法来求解。

在这种情况下,可以通过以下步骤来解决方程:1. 将分数转化为一个等于0的分式形式,例如将1/x^2转化为1/x^2 - 2。

2. 将方程中的分数转化为一个多项式方程,例如通过乘以x^2来消去分母。

3. 合并同类项并将方程转化为二次方程,例如x^2 - 2x + 1 = 0。

4. 使用求解二次方程的方法,例如配方法、因式分解法或者公式法,得到x的值。

5. 检查解的合法性。

三、分式方程的应用分式方程在实际应用中有广泛的用途,常见的应用包括以下几个方面:1. 比例问题:比例问题可以通过设置分式方程来解决。

例如,一个图书馆中有1000本书,其中有3/10是故事书,那么故事书的数目可以表示为(3/10)*1000=300本。

2. 涉及速度、距离和时间的问题:速度、距离和时间之间有一定的关系,可以通过设置分式方程来解决相关问题。

例如,一个人以每小时60公里的速度行驶,问他行驶1小时可以行驶多远,可以通过设置方程60/1=x/1解决。

分式方程及其应用课件

分式方程及其应用课件

04
分式方程的练习题及解答
分式方程的练习题
总结词:巩固提高
练习题2:某种植物生长速度很快,已知它1天前的高 度,求现在的高度。
练习题1:小明打篮球,每场得分相同,已知他1场比 赛得分,求他打了多少场。
练习题3:已知一个矩形的面积和长,求宽。
分式方程的解答
总结词:解题技巧
解答1:通过观察, 发现分母可以约掉, 化简得分式方程即可 。
03
分式方程的注意事项
解分式方程的步骤
整理方程
将方程化为最简形式,以便后 续步骤。
确定根
通过交叉相乘等方法,确定方程 的根。
验根
通过代入法,验证方程的根是否正 确。
分式方程的局限性
适用范围有限
分式方程适用于可以化成分母 中带有未知数的形式的问题, 但有些问题可能无法使用分式
方程求解。
解法有限
分式方程的解法有限,常用的 只有几种,如部分分式、对数
超越分式方程:分母是超越式的分式方 程,如 $\frac{x}{e^x}$
分式方程的解法
约分法:将方程中的因子约掉, 化简方程
图象法:画出方程中变量的图象 ,通过交点求解方程
分式方程的求解方法包括以下几 种
换元法:引入新的变量,将方程 转化为容易求解的形式
逐步迭代法:通过逐步迭代,逼 近方程的解
02
2023
分式方程及其应用课件
目录
• 分式方程的基本概念 • 分式方程的应用 • 分式方程的注意事项 • 分式方程的练习题及解答 • 分式方程的应用实例
01
分式方程的基本概念
分式方程的定义
1
分式方程是一种描述两个变量之间关系的数学 模型
2
它的一般形式为 $f(x) = \frac{B}{A}$,其中A 和B是两个整式

分式方程及其应用

分式方程及其应用

分式方程是一种常见的数学方程,用于描述两个有关的量之间的关系。

常见的分式方程的形式如下:
ax+b = cy+d
其中,a、b、c、d是常数,x、y是未知数。

分式方程的应用
解决实际问题:例如,你想知道跑步消耗卡路里的规律,可以通过分式方程来描述跑步距离与卡路里之间的关系。

计算不同条件下的结果:例如,你想知道不同温度下水的沸点,可以通过分式方程来描述温度与沸点之间的关系,并计算不同温度下的沸点。

绘制函数图像:分式方程可以用来描述函数的规律,通过绘制函数图像,可以更直观地理解函数的特征。

分式方程是一种重要的数学工具,能够帮助我们解决实际问题、计算结果、绘制图像等。

分式方程的求解
在解决分式方程时,需要注意以下几点:
先将分式方程化简,去掉分母,使得方程的形式更简单。

解决未知数的值,即求解未知数的数值解。

检查解的正确性,即将求得的解代回原方程,看是否满足原方程。

下面是一个具体的例子:
例如,求解方程:2x+3 = x+1。

解:
首先,将方程化简,得:x=1。

然后,代回原方程,得:2*1+3=1+1。

因此,x=1是方程的一个数值解。

注意,有些分式方程可能有多个解,因此需要计算多个解,并检查解的正确性。

希望以上内容能够帮助你更好地理解分式方程的求解方法。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是数学中的一种常见形式,它包含有分数的方程。

解决分式方程的过程需要运用一些特定的方法和技巧,同时,分式方程在实际生活中也有着广泛的应用。

本文将介绍分式方程的解法以及其在实际问题中的应用。

一、分式方程的解法解决分式方程的关键是将其转化为简单的等式,然后求解。

下面将介绍几种常用的分式方程解法。

1. 通分法当分式方程中含有多个分母时,可以使用通分法来简化方程。

首先找到方程中所有分母的最小公倍数,然后将方程两边同时乘以最小公倍数,将分母消去,得到一个简化的等式。

最后,通过移项和化简,求得方程的解。

2. 倒数法倒数法是解决分式方程中含有倒数的情况。

首先将方程中的倒数部分转化为分数形式,然后通过移项和化简,求得方程的解。

3. 分解法对于一些特殊的分式方程,可以使用分解法来解决。

例如,对于形如$\frac{1}{x}+\frac{1}{y}=1$的方程,可以将其分解为$\frac{x+y}{xy}=1$,然后通过移项和化简,求得方程的解。

二、分式方程的应用分式方程在实际生活中有着广泛的应用。

下面将介绍几个典型的应用案例。

1. 比例问题比例问题是分式方程的一种常见应用。

例如,某商品原价为$x$元,现在打折后的价格为原价的$\frac{2}{3}$,求打折后的价格。

通过建立方程$\frac{2}{3}x=x-\frac{1}{3}x$,可以求得打折后的价格为$\frac{1}{3}x$。

2. 浓度问题浓度问题也是分式方程的一种常见应用。

例如,某种饮料中含有$30\%$的果汁,现在要制作$1$升含有$20\%$果汁的饮料,需要加入多少升的纯果汁?通过建立方程$\frac{x}{1+x}=0.2$,可以求得需要加入的纯果汁的升数。

3. 财务问题财务问题中也常常涉及到分式方程的应用。

例如,某人的年收入为$x$元,他的生活开销占年收入的$\frac{1}{4}$,求他的生活开销。

通过建立方程$\frac{1}{4}x=x-\frac{3}{4}x$,可以求得他的生活开销为$\frac{3}{4}x$。

分式方程的实际应用

分式方程的实际应用

分式方程的实际应用分式方程在实际生活中有很多应用。

下面我将举例说明几种常见的实际应用。

1.比例问题比例问题是分式方程的一个典型应用。

例如,在购物时,我们常常会遇到“打折”或“降价”的情况。

假设一家商店原价出售一件商品,现在将商品以折扣价出售,打折比例为x。

那么,我们可以得到以下分式方程:折扣价=原价*(1-x)通过解这个分式方程,我们可以计算出打折后的价格。

这个方程可以帮助我们在购物时做出更明智的决策。

2.涉及速度的问题分式方程也可用于涉及速度的问题。

例如,在旅行中,当我们知道辆车每小时行驶v英里时,我们可以计算出x小时后车辆所行驶的总英里数,这可以表示为以下分式方程:总英里数=v*x这个方程可以帮助我们计算出车辆在任意时间内的行驶距离,从而帮助我们规划旅行路线或者估算到达目的地所需时间。

3.混合液体问题分式方程还可用于混合液体问题。

例如,假设我们有两种浓度不同的溶液,其中一种浓度为x,另一种浓度为y,我们想要得到一定浓度的混合液体,我们可以通过以下分式方程求解:所需浓度*所需体积=x*体积1+y*体积2通过解这个方程,我们可以计算出需要的溶液体积,以及每种溶液的体积比例,从而准确地配制出我们所需要的混合液体。

4.长方形的长和宽问题分式方程还可以用于解决长方形的长和宽问题。

例如,假设我们知道一个长方形的面积为A,我们希望找到一个长方形,使得其一边长为x,另一边长为y,那么我们可以用以下分式方程来表示这个问题:A=x*y通过解这个方程,我们可以计算出长方形的长和宽,从而绘制出所需要的长方形。

综上所述,分式方程在实际生活中有许多应用。

从求解比例问题、涉及速度的问题到混合液体问题和长方形的长和宽问题,分式方程都能够提供一种有效的工具来解决这些实际问题。

了解分式方程的实际应用可以帮助我们更好地理解和应用这个数学概念,并将其运用到日常生活中的各种情境中。

分式方程的解法及应用

分式方程的解法及应用

分式方程的解法及应用分式方程是数学中常见的一类方程,其特点是方程中含有分式表达式。

解决分式方程的关键是找到合适的方法,以求得方程的解。

本文将介绍几种常见的分式方程解法,并探讨其在实际应用中的一些案例。

一、通分法通分法是解决分式方程的基本方法之一。

当方程中含有多个分式时,我们可以通过通分的方式,将其转化为一个分子为0的分式方程。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$,我们可以通过通分得到$yz+xz=xy$,进而得到$xy-xz-yz=0$。

这样,我们就将原方程转化为了一个分子为0的分式方程,可以更方便地求解。

二、代换法代换法是解决分式方程的另一种常用方法。

通过合理的代换,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=2$,我们可以令$u=\frac{1}{x}$,$v=\frac{1}{y}$,则原方程可以转化为$u+v=2$。

这样,我们就将原方程转化为了一个线性方程,可以通过求解线性方程的方法得到解。

三、消元法消元法是解决分式方程的另一种常见方法。

通过巧妙地选择消元的方式,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{x}{y}+\frac{y}{x}=3$,我们可以通过乘以$x$和$y$的方式,得到$x^2+y^2=3xy$。

这样,我们就将原方程转化为了一个二次方程,可以通过求解二次方程的方法得到解。

在实际应用中,分式方程的解法有着广泛的应用。

以下是几个具体的案例:案例一:物体的速度假设一个物体以速度$v$匀速运动,经过时间$t$后的位移为$s$。

根据运动学公式,位移与速度和时间的关系可以表示为$s=vt$。

现在假设物体的速度是变化的,速度与时间的关系可以表示为$v=\frac{a}{t}$,其中$a$是一个常数。

我们可以通过求解分式方程$\frac{s}{t}=\frac{a}{t}$,得到物体的位移与时间的关系。

分式方程及其应用

分式方程及其应用

12、分式方程及其应用【知识精读】1. 解分式方程的基本思想:把分式方程转化为整式方程。

2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。

3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

下面我们来学习可化为一元一次方程的分式方程的解法及其应用。

【分类解析】例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

第6讲 分式方程及其应用

第6讲 分式方程及其应用

经检验,x=40 是分式方程的根.
∴B 采样点送检车的平均速度为 40×1.5=60(km/h),
∴B 采样点送检车的行驶时间为 45÷60=0.75(h).
∵3.2+0.75=3.95<4,∴B 采样点采集的样本不会失效.
1.(2021 恩施)分式方程
A.x=1

C.x=


+1=
-

的解是( D )



A.x=
B.x=
C.x=
D.x=






[变式 2](2021 连云港)解方程:
+
(x+1)2-4=(x+1)(x-1),
整理,得2x-2=0,解得x=1.
检验:当x=1时,(x+1)(x-1)=0,
∴原方程无解.

=1.
- -
解:方程两边同乘(x+1)(x-1),得
∴x=1是增根,应舍去.
-
8.(2021 潍坊)若 x<2,且

0
+|x-2|+x-1=0,则 x=
-
.
1 .
9.(2021 东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展
荒山绿化,打造美好家园,促进旅游发展.某工程队承接了 90 万平方米的荒山绿化任务,为了迎接雨
季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了任务.设原计划每
1.(2022 方城期中)给出下列方程:
-

+


+

分式方程的应用

分式方程的应用

分式方程的应用分式方程是数学中重要的概念,它在各个领域中都发挥着重要的作用。

本文将探讨分式方程的应用,并重点介绍分式方程在代数和实际问题中的具体应用。

一、分式方程的定义与性质分式方程是具有一个或多个未知数的等式,其中包含有分式表达式。

例如,$\frac{x+1}{2} = 3$ 就是一个分式方程。

分式方程的解是使得方程成立的未知数的值。

分式方程的性质包括唯一性、可交换性、可消去性等。

二、代数中的应用1. 求解方程分式方程在求解方程问题中起着重要的作用。

举个例子,假设需要求解下列方程:$\frac{x}{5} + \frac{2}{x} = 3$。

我们可以通过将分式转化为通分式,再将方程化简为二次方程来求解。

2. 求解不等式分式方程在求解不等式问题中也有广泛的应用。

例如,可以通过分式方程求解$\frac{x}{3} > \frac{x-1}{2}$这样的不等式。

我们可以通过整理不等式,转化为分式方程,再求解不等式的解集。

三、实际问题中的应用分式方程在实际问题中的应用非常广泛,下面举几个例子来说明:1. 比例问题在比例问题中,常常需要利用分式方程来求解。

例如,假设一辆汽车以每小时50公里的速度行驶,那么在$t$小时后,行驶的距离可以表示为$d=50t$。

如果要求在2小时内行驶的距离,则可以通过解分式方程$\frac{d}{t} = 50$来求解。

2. 液体混合问题在液体混合问题中,也需要应用分式方程。

例如,假设有两种浓度为$c_1$和$c_2$的液体A和B,分别含有$v_1$和$v_2$的体积。

将这两种液体混合后,得到一种含有$c$浓度的液体。

我们可以通过分式方程$\frac{c_1v_1 + c_2v_2}{v_1+v_2} = c$来求解$c$的值。

3. 工作效率问题在工作效率问题中,也需要运用分式方程来求解。

例如,假设工人A和工人B合作完成一项工作需要4小时,而工人A独立完成同样的工作需要6小时。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指方程中含有分式的方程,通常形式为分子中含有未知数的方程。

解决分式方程问题的关键是找到其中的未知数的值,使等式成立。

本文将介绍常见的分式方程解法以及其在实际问题中的应用。

一、基本解法1. 消去分母将分数方程中的分母通过乘以最小公倍数或通分的方法消去,从而得到一个等式。

然后继续将未知数移到方程的一边,常数移到另一边,最终求得未知数的值。

2. 通分并整理将分式方程的分子进行通分,并整理为一个等式。

然后通过移项和整理,将未知数移到一边,常数移到另一边,继而求解未知数的值。

3. 求最小公倍数对于一些特殊的分式方程,我们可以先求出方程中分母的最小公倍数,然后将方程中的所有分式统一化。

接着,将分母消去,得到一个整式方程,进而解决。

二、分式方程的应用1. 比例问题分式方程经常用于解决比例相关的问题。

比如,A车和B车以不同的速度驶向一个目的地,已知A车比B车快1小时到达目的地,而A 车比B车慢1小时赶上B车。

求A车和B车单独行驶到达目的地所需的时间。

通过建立分式方程可得到两车的速度比,从而解决问题。

2. 涉及水池、容器等物理问题假设有一个水池,一根管子可以独立进行排水,另一根管子可以独立进行注水。

已知两根管子独立工作时分别需要6小时和8小时将水池排干或注满。

求填满一半的水池所需的时间。

通过建立分式方程可得到两根管子的工作效率,进而解决问题。

3. 财务问题分式方程在解决财务问题时也具有重要应用。

例如,某人通过两种不同的投资方式投资了一笔钱,两种方式的年利率分别为4%和6%。

已知一年后获得的总收益为800元。

求该人分别投资了多少钱。

通过建立分式方程可得到两种投资的金额比例,从而解决问题。

4. 混合液体问题当涉及到两种不同浓度的液体混合时,我们可以利用分式方程解决问题。

例如,混合含有30%盐的溶液和50%盐的溶液,已知混合后的溶液含有40%盐。

求两种溶液的混合比例。

通过建立分式方程可得到两种溶液的体积比例,进而解决问题。

分式方程及其应用

分式方程及其应用

分式方程及其应用分式方程是带分母的方程,如x/(x+1)=2。

它是数字、字母及参加运算的符号所组成的算式之间的等式。

在分式方程中,有未知量的分子和分母一般都是多项式,其中分母不能为0。

下面我们来看一些关于分式方程的基本定义和应用。

一、分式方程的定义在一个方程中,如果方程中至少有一个未知数的系数、常数、系数常数的乘积以及未知数的幂等组成分数形式,那这个方程就是分式方程。

分式方程是一种比较特殊的方程,通常都含有分数,并且要求求解该方程中的未知数不能使分母为零。

二、分式方程的解法解分式方程的方法一般有以下几种:1. 通分消去法:将方程的分式部分转化为分母相同的形式,从而进行运算。

2. 消去法:把方程中的分式去掉,使方程变为整式方程,然后直接求解。

3. 代数法:通过代数计算,逐步化简等式,推导出未知数的值。

三、分式方程的应用分式方程在实际生活中有着广泛的应用,特别是在实际问题的解决过程中,我们经常会遇到各种涉及分式方程的情况。

以下是几个常见的应用示例:1. 比例问题:如两支笔的长度比是3:5,其中一支比另一支长12cm,则求这两支笔的长度。

设较短的笔的长度为x,则较长的笔的长度为5x,根据题意得到等式3/5=12/x,解此分式方程得x=20,因此较长的笔的长度为100cm。

2. 水泥拌合问题:如果两名工人A、B一起拌水泥,A每小时拌水泥的能力是B的1.5倍,第一小时两个人共拌水泥30kg,求每个人每小时拌水泥的能力。

设工人B每小时拌水泥x kg,则工人A每小时拌水泥为1.5x kg,根据题意得到等式1.5x+x=30,解此分式方程得x=10,因此工人B每小时拌水泥10kg,工人A每小时拌水泥15kg。

3. 赛跑问题:A、B两人进行百米赛跑,A比B领先10米跑完全程,若A的速度是B的1.5倍,求A和B的速度。

设B每小时的速度为x km/h,则A每小时的速度为1.5x km/h,根据题意得到等式100/(1.5x)-10/x=0,解此分式方程得x=20,A的速度为30 km/h,B的速度为20 km/h。

分式方程的应用与实际解题

分式方程的应用与实际解题

分式方程的应用与实际解题分式方程是数学中一种常见的方程形式,它在实际问题的解决中起着重要的作用。

本文将探讨分式方程的应用,并介绍如何在实际解题中运用这一方法。

一、什么是分式方程分式方程是含有分式的方程,其中通常包含零个或多个未知数。

其一般形式为:$\frac{A(x)}{B(x)} = \frac{C(x)}{D(x)}$,其中$A(x)$、$B(x)$、$C(x)$、$D(x)$表示多项式。

二、分式方程的应用领域分式方程广泛应用于不同领域,包括数学、物理、化学、经济等。

以下列举几个常见的应用场景。

1.比例问题在比例问题中,分式方程可以用来表示两组数据的比例关系。

例如,在一个食谱中,需要用2杯面粉和3杯牛奶制作蛋糕。

如果要制作6杯蛋糕,需要多少杯面粉和牛奶?设面粉的量为$x$杯,牛奶的量为$y$杯,则可以建立如下的分式方程:$\frac{x}{2} = \frac{y}{3} = \frac{6}{2} = \frac{9}{3}$通过解这个分式方程,可以得到$x=4$和$y=6$,即制作6杯蛋糕需要4杯面粉和6杯牛奶。

2.速度问题在速度问题中,分式方程可以用来表示物体的速度和时间的关系。

例如,一辆汽车以60公里/小时的速度行驶,需要2个小时才能到达目的地。

如果要在3个小时内到达目的地,汽车的速度应该如何调整?设新的速度为$x$公里/小时,则可以建立如下的分式方程:$\frac{x}{60} = \frac{3}{2}$通过解这个分式方程,可以得到$x=90$,即汽车需要以90公里/小时的速度行驶才能在3个小时内到达目的地。

3.混合物问题在混合物问题中,分式方程可以用来表示不同成分的比例关系。

例如,需要制作一种含有30%酒精的溶液,已知有20毫升含有50%酒精的溶液和30毫升的纯水,还需要加入多少毫升的纯酒精?设纯酒精的体积为$x$毫升,则可以建立如下的分式方程:$\frac{x}{20+30+x} = \frac{0.3}{1}$通过解这个分式方程,可以得到$x=15$,即需要加入15毫升的纯酒精。

分式方程及其应用

分式方程及其应用

分式方程及其应用一、分式方程的基本解法:1.分式方程的概念:分母中含有未知数的方程叫作分式方程.2.可化为一元一次方程的分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:(1)增根能使最简公分母等于0;(2)增根是去分母后所得整式方程的根.3.解分式方程产生增根的原因:增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0 ,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.【例1】解下列分式方程:(1)131x x+=-(2)31244xx x-+=--(3)21122xx x=---(4)11222xx x-=---(5)212xx x+=+(6)2216124xx x--=+-【例2】(1)若关于x 的方程1233mx x=+--有增根,则m =________.(2)解关于x 的方程2224222x a a x x+-=--会产生增根,则a 的值是________.(3)若关于x 的分式方程11044a xx x---=--无解,则a 的值为________.(4)若关于x 的分式方程2111m x x+=--的解为整数,则m 的取值范围是________.(5)若关于x 的分式方程311x a x x--=-无解,则a =________.二、巧解分式方程: 【例3】(1)111141086x x x x +=+---- (2)2263503x x x x-++=-(3)()()()()()1111111220212022x x x x x x x +++=------…(4)方程222313x x x x-+=-中,如设23y x x =-,原方程可化为整式方程:________.【拓1】观察下列方程及其解的特征:①12x x+=的解为121x x ==; ②152x x +=的解为12x =,212x =;③1103x x +=的解为13x =,213x =;…… 解答下列问题: ①请猜想:方程1265x x +=的解为________; ②请猜想:关于x 的方程1x x +=________的解为1x a =,21x a=(0a ≠); ③上题中的结论可以证明是正确的,请用该结论来解方程:315132x x x x -+=-.【拓2】24111181111x x x x +++=-+++.三、分式方程的应用:【例4】(20宝应模拟)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .600060001520x x -=+ B .600060001520x x -=+ C .600060002015x x -=- D .600060002015x x-=-【拓3】某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+【例5】一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来的1.5倍,并比原计划提前40分钟到达目的地,求前一小 时的平均速度.【拓4】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独 完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队 先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超 过79000元,则两工程队最多可以合作施工多少天?四、真题演练:1.(21扬州三模)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3 B .5 C .3或5 D .3或42.(19仪征期中)定义:如果一个关于x 的分式方程a b x=的解等于1a b -,我们就说这个方程叫差解方程.比如:243x =就是个差解方程.如果关于x 的分式方程2mm x =-是一个差解方程,那么m 的值是( ) A .2 B .12 C .12- D .2-3.(20邗江月考)扬州轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( ) A .30301.50.5x x +=B .30301.50.5x x -= C .30300.5 1.5x x +=D .30300.5 1.5x x-=4.(21高邮期末)如果关于x 的不等式组521113()22m x x x -≥⎧⎪⎨-<+⎪⎩有且仅有四个整数解,且关于y的分式方程28122my y y --=--有非负数解,则符合条件的所有整数m 的和是( ) A .13 B .15 C .20 D .225.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(21邗江期末)关于x 的方程1122m x x-=--有增根,则m 的值为________.7.(19宝应月考)若关于x 的分式方程21011m x x -=-+无解,则m =________.8.(18高邮期中)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是________.9.(19江都期中)若关于x 的方程4122ax x x =+--无解,则a 的值是________.10.(20广陵期中)要使方程121x x a=--有正数解,则a 的取值范围是________.11.(21仪征期末)若关于x 的分式方程12221(2)(1)x x x ax x x x --+-=-+-+的解为负数,则a 的取值范围是________.12.(19邗江月考)对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为________.13.(20仪征期中)对于两个不相等的实数a 、b ,我们规定{in }m h a b 、表示a 、b 中较小的数的一半,如min 2{}31h =、,那么方程22{i }m n h x x xx=-+、的解为________.14.(20仪征期中)定义运算“※”: , , aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若52x =※,则x 的值为________.15.(20仪征期中)若32248168224816321111111a x x x x x x x =+++++--+++++,则a 的值是________.16.(2021·扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问:原先每天生产多少万剂疫苗?17.(20邗江月考)疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题: (1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?18.(21邗江期末)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为0,则x a =或x b =.因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+的两个解分别为1x a =,2x b =.利用上面建构的模型,解决下列问题: (1)若方程px q x+=的两个解分别为11x =-,24x =.则p =________,q =________;(2)已知关于x 的方程222221n n x n x +-+=+两个解分别为1x ,2x (12x x <).求12223x x -的值.19.(21高邮期末)八年级学生去距学校12km 的珠湖小镇游玩,一部分学生骑自行车先走,其余学生20min 后乘汽车出发,结果他们同时到达、已知汽车的速度是骑车学生速度的3倍.(1)求骑车学生的速度;(2)游玩中八(4)班班主任为增强班级凝聚力决定让全班学生在户外拓展区参加一次户外拓展活动,班主任根据该项目收费标准支付了1575元,请根据该项目收费信息确定全班人数.户外拓展收费标准:人数 收费 不超过30人 人均收费50元超过30人每增加1人,人均收费降低1元,但人均收费不低于40元20.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单:商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.。

分式方程及其应用课件

分式方程及其应用课件

分式方程及其应用课件xx年xx月xx日•分式方程的基本概念•分式方程的应用•分式方程的解题技巧目录•分式方程的应用题•分式方程的注意事项•分式方程与实际生活的联系•课后习题与答案01分式方程的基本概念分式方程是一种含有未知数和分母的方程,其未知数是分子,分母是常数。

定义例如,x/3=2就是一个简单的分式方程,其中x是未知数,3是分母。

示例分式方程的定义简单分式方程只有一个分式和一个未知数,且未知数在分母中。

复杂分式方程包含多个分式和未知数,或者未知数在分子或分母中。

分式方程的分类1分式方程的解法23将分式方程转化为整式方程,求解整式方程得到未知数的值。

转化法画出分式方程对应的函数图像,通过交点或切线求解未知数。

图像法联系实际应用问题,建立分式方程并求解,用于解决实际问题。

应用法02分式方程的应用总结词通过已知速度和时间,求路程详细描述在匀速直线运动中,速度与时间的关系可以用以下方程表示:速度 = 路程 / 时间。

已知速度和时间,就可以求出路程。

例如,已知速度为60公里/小时,行驶了10小时,那么行驶的路程是600公里。

速度与时间的关系总结词通过已知密度和质量,求体积详细描述密度是物质的质量除以其体积,可以用以下方程表示:密度 = 质量 / 体积。

已知密度和质量,就可以求出体积。

例如,已知水的密度是1克/立方厘米,质量为100克的水,其体积是100立方厘米。

密度与质量的关系效率与成本的关系总结词通过已知效率和成本,求产量或收益详细描述在生产或服务过程中,效率与成本的关系可以用以下方程表示:效率 = 产量 / 成本。

已知效率和成本,就可以求出产量或收益。

例如,已知一家工厂的生产效率是每小时生产100个产品,总成本为500元,那么每小时的产量是100个产品。

03分式方程的解题技巧换元法是一种常用的解分式方程的方法,通过引入新的变量来简化方程的形式,从而方便求解。

在解分式方程时,如果方程中存在复杂的分式或多项式,可以引入一个新的变量来代替这些复杂的表达式,从而将方程简化成更容易求解的形式。

分式方程应用

分式方程应用

分式方程应用
分式方程是指方程中包含有分式表达式的方程。

它们的应用十分广泛,例如在经济学、物理学和化学等科学领域中常常用到。

下面我们将介绍分式方程的一些常见应用。

一、比例问题
比例问题可以转化为分式方程的形式,例如:
已知两种货币之间的汇率为1:7,如果我拥有100美元,那么我可以换成多少卢布
解法:假设1美元可以换成x卢布,则有分式方程100/1 = x/7,通过解方程可以得到x=700,因此100美元可以换成700卢布。

二、利润分配问题
利润分配问题也可以转化为分式方程的形式,例如:
甲、乙两人合伙做生意,利润分成3:7,请问他们的利润分别是多少
解法:假设总利润为x元,则甲、乙的利润分别为3x/10和7x/10,因此有分式方程3x/10 + 7x/10 = x,通过解方程可以得到x=10,因此甲、乙的利润分别为3元和7元。

三、速度问题
速度问题也可以转化为分式方程的形式,例如:
已知甲、乙两人同时从A点出发,沿同一方向行驶,甲速度为30km/h,乙速度为50km/h。

如果乙比甲迟出发30分钟,则乙需要行驶多久才能追上甲
解法:假设乙行驶的时间为t小时,则甲行驶的时间为t+1/2小时,两人之间的距离为50t-30,30(t+1/2),因此有分式方程50t-30=30(t+1/2),通过解方程可以得到t=3,因此乙需要行驶3小时才能追上甲。

以上就是分式方程的一些常见应用,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程及其应用
【教材回归训练】
1.解方程
1111x x x
+=--的结果是( ) A .1x = B .0x = C .1x =- D .无解
2.一艘轮船在两个码头之间航行,顺水航行60km 所用的时间与逆水航行48km 所用的时间相同,已知水流速度为2km/h ,则轮船在静水中的航行速度为________.
3.张丽3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书,问李强单独清点这批图书需要几小时?若设李强单独清点这批图书需要x 小时,则可列方程为( )
A .11() 1.213x +⨯=
B .111() 1.232
x +⨯= C .11() 1.216x +⨯= D .111() 1.262x +⨯= 【重难点突破】
重难点1:解分式方程
1.分式方程323
x x =-的解为__________. 2.解方程2216124
x x x --=+-.
重难点2:由分式方程的解的情况求字母的值
3.若关于x 的分式方程121
k x -=+的解是负数,则k 的取值范围是_______. 4.若关于x 的分式方程2
233
x m x x -=--的解无解,则m 的取值范围是_______. 5.若关于x 的分式方程211
x m x x -=--无解,则m 的值为_______. 6.若关于x 的分式方程2213m x x x
+-=-无解,则m 的值为_______. 7.若关于x 的分式方程622x mx x x
-=--无解,则m 的值为_______. 8.若关于x 的分式方程3211m x x x
+-=-无解,则m 的值为_______. ※ 分式方程无解及分式方程有解的理解 分式方程无解的含义:要么由分式方程转化得到的整式方程无解;要么由分式方程转化得到的整式方程有解,但导致最简公分母为0.
分式方程有解的含义:由分式方程转化得到的整式方程有解,而且代入最简公分母结果不为0. 重难点3:分式方程分应用
9.2019年,在创建文明城市的进程中我市为美化城市环境,计划种植树木30万棵,由于志愿者的
加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是( )
A .30305(120%)x x
-=+ B .3030520%x x -= C .
3030520%x x -= D .30305(120%)x x -=+ 10.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )
A .60048040x x =-
B .60048040x x =+
C .48060040x x =+
D .48060040x x
=- 11. 甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的3
1,这时乙队加入,两队还需同时施工15天,才能完成该项工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
【中考真题体验】
命题点1:分式方程的解法
1.方程
2131
x x =+-的解是( ) A .53
x = B .5x = C .4x = D .5x =- 2.用换元法解方程22124312x x x x --=-,设212x y x -=,则原方程可化为( ) A .130y y --= B .430y y --= C .130y y -+= D .430y y
-+=
3.解分式方程:2311
x x x x +=--
命题点2:分式方程的解
4.若关于x 的分式方程
121m x -=-的解为非负数,则m 的取值范围是( ) A .m >﹣1 B .m ≥1 C .m >﹣1且m ≠1 D .m ≥﹣1且m ≠1
5.若关于x 的分式方程2
233
x m x x -=--的解是正数,则m 的取值范围是_______. 6.若关于x 的分式方程2134416
m m x x x ++=-+-无解,则m 的值为_______. 命题点3:分式方程的实际应用
7.某校学生利用双休时间去距学校10km 的炎帝故里参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.
8.黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普图书和文学类图书平均每本的价格各是多少元?
9.在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?
10.端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?
11.如图,Rt △ABC 中,∠B =90°,AB =3cm ,BC =4cm ,点D 在AC 上,AD =1cm ,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿C A B C →→→的路径匀速运动.两点同时出发,在B 点处首次相遇后,点P 的运动速度每秒提高了2cm ,并沿A C B →→的路径匀速运动;点Q 保持速度不变,并继续沿原路径匀速运动,两点在D 处再次相遇后停止运动.设点P 原来的速度为x cm/s.
(1)点Q 的速度为 cm/s (用含x 的代数式表示);
(2)求点P 原来的速度.。

相关文档
最新文档