一整式的乘法
整式乘法法则知识点总结
整式乘法法则知识点总结一、整式乘法法则的定义整式乘法法则是指在代数中,两个整式相乘得到的结果仍为整式。
简单来说,整式乘法就是指对两个整式进行乘法运算,得到的结果仍然是整式。
整式乘法的结果可以表示为一个新的整式,它由被乘数和乘数的各项的乘积相加得到。
整式乘法法则的定义包括以下几点:1. 整式乘法的定义:两个整式相乘得到的结果仍为整式。
2. 整式的乘法形式:当两个整式相乘时,可以将它们的各项进行对应的乘法运算,然后将乘积相加得到结果。
3. 乘法的交换律:在整式的乘法中,乘法的交换律成立,即乘数的顺序可以交换,结果不变。
整式乘法法则的定义是整式乘法的基础,理解了这个定义,我们就能够正确地进行整式的乘法。
接下来,我们将介绍整式乘法法则的性质,以及整式乘法的具体运算规则。
二、整式乘法法则的性质整式乘法法则有许多重要的性质,这些性质包括了整式乘法的基本规律和运算法则。
了解整式乘法法则的性质,可以帮助我们更好地理解整式乘法的运算规则。
下面是整式乘法法则的性质:1. 分配律:整式乘法满足分配律,即加法和乘法的结合性。
对于任意的整式a、b、c,有a*(b+c) = a*b + a*c。
2. 乘法的交换律:整式乘法满足交换律,即乘数的顺序可以交换,结果不变。
对于任意的整式a、b,有a*b = b*a。
3. 乘法的结合律:整式乘法满足结合律,即乘法的顺序可以变换,结果不变。
对于任意的整式a、b、c,有(a*b)*c = a*(b*c)。
4. 零乘法则:任何整式与0相乘,结果都为0。
即0*a = 0。
5. 单位元素法则:任何整式与1相乘,结果都为它本身。
即1*a = a。
整式乘法法则的性质是整式乘法的基本规律,它们对于整式乘法的具体运算具有重要的指导作用。
了解了整式乘法法则的性质,我们就能够更好地运用整式乘法进行代数运算。
接下来,我们将介绍整式乘法的具体运算规则,以及整式乘法法则在具体应用中的运用。
三、整式乘法法则的运算规则整式乘法法则的具体运算规则是在整式乘法的基础上,根据乘法法则的性质进行整式的具体运算。
整式的加减乘除法则总结
整式的加减乘除法则总结一、整式的定义整式是由数字、字母和运算符号(加号、减号、乘号)通过运算得出的式子。
例如,2x - 5y + 3 是一个整式。
二、整式的加法法则整式加法法则可以总结为下列两条规则:1.对于整式的同类项进行合并,即将相同字母的幂次相同的项合并。
例如:2x - 3x + 4x + 5 可以合并为 3x + 5。
2.对合并后的同类项进行系数相加。
例如:3x - 2y + 4x - 5y 可以合并为 7x - 7y。
三、整式的减法法则整式减法法则是整式加法法则的特例,即将减号后面的各项取相反数后,按整式加法法则进行运算。
例如:5x^2 - 3x + 2y - (2x^2 - 4x + 3y) = 5x^2 - 3x + 2y - 2x^2 + 4x - 3y = 3x^2 + x - y。
四、整式的乘法法则整式乘法法则可以总结为下列规则:1.将两个整式的每一项按照乘法分配律进行相乘。
例如:(2x - 3)(4x + 5) 可以按乘法分配律展开为 2x(4x + 5) - 3(4x + 5) = 8x^2 + 10x - 12x - 15 = 8x^2 - 2x - 15。
2.将展开后的各项进行合并。
例如:3x(2x - 1) + 5y(3x + 2y) 可以合并为 6x^2 - 3x^2 + 15xy + 10y^2。
五、整式的除法法则整式除法法则可以总结为下列规则:1.将除法转化为乘法。
即将被除数乘以除数的倒数。
例如:(4x^2 + 8x) / 2x 可以转化为 (4x^2 + 8x) * (1 / 2x)。
2.化简分式。
例如:(4x^2 + 8x) * (1 / 2x) 可以化简为 2x + 4。
六、整式的总结通过以上的总结,可以得出整式的加减乘除法则:1.加法法则:合并同类项后,进行系数相加。
2.减法法则:减号后面的各项取相反数,按照整式加法法则进行运算。
3.乘法法则:按乘法分配律展开,并合并同类项。
整式的乘法运算
整式的乘法运算整式的乘法运算是数学中的基本运算之一,它涉及到多项式之间的相乘。
在本文中,我们将探讨整式的乘法运算原理以及应用。
同时,我们还将介绍一些乘法运算的基本性质和技巧。
一、整式的定义首先,我们需要了解整式的概念。
整式是由常数、变量及其乘积,并通过加法和减法连接而成的表达式。
一般形式为:f(x) = a0 + a1x + a2x^2 + ... + anxn其中,a0, a1, a2, ..., an为常数系数,x为变量,n为整数。
整式可以包含多个项,每个项都由常数系数乘以变量的幂次构成。
二、整式的乘法原理整式的乘法运算遵循分配律的原则,即整式A乘以整式B的结果等于A的每一项分别乘以B的每一项,然后将结果相加。
具体而言,假设A和B分别为两个整式,其形式如下:A = a0 + a1x + a2x^2 + ... + anxnB = b0 + b1x + b2x^2 + ... + bmxm则A乘以B的结果为:AB = (a0b0) + (a0b1)x + (a0b2)x^2 + ... + (a0bm)xm + (a1b0)x +(a1b1)x^2 + ... + (a1bm)x^(m+1) + ... + (anbn)x^(n+m)根据以上乘法原理,我们可以进行整式的乘法运算。
三、整式乘法的基本性质整式乘法具有以下几个基本性质:1. 乘法交换律:整式的乘法满足交换律,即A乘以B等于B乘以A。
2. 乘法结合律:整式的乘法满足结合律,即(A乘以B)乘以C等于A乘以(B乘以C)。
3. 乘法分配律:整式的乘法满足分配律,即A乘以(B加上C)等于A乘以B加上A乘以C。
基于这些性质,我们可以灵活运用乘法运算。
四、整式乘法的技巧在进行整式乘法时,我们可以运用一些技巧来简化计算过程。
下面介绍几个常用的技巧:1. 使用加法运算简化:当整式的某些项相乘时,我们可以先将这些项相加,然后再进行乘法运算。
2. 同类项的乘法:如果两个整式中含有相同的变量和相同的幂次,我们可以将它们的系数相乘,然后保留相同的变量和幂次。
整式的加减乘除
整式的加减乘除整式是代数表达式的一种形式,由数和字母通过加法、减法、乘法、除法等基本运算符号连接而成。
在数学中,整式的加减乘除是重要的基础知识,本文将从加法、减法、乘法和除法四个方面对整式的运算进行详细介绍。
一、整式的加法整式的加法是指将两个或多个整式相加的运算。
在进行整式的加法时,需要注意以下两点:1. 同类项相加:同类项是指具有相同字母的指数项,如4x²和3x²就是同类项,可以直接相加。
例如,将3x²+2x²相加,结果为5x²。
2. 系数相加:对于同类项,可以直接将系数相加。
例如,将3x²+2x²相加,结果为5x²。
二、整式的减法整式的减法是指将一个整式减去另一个整式的运算。
在进行整式的减法时,需要注意以下两点:1. 减去一个整式可以转化为加上这个整式的相反数。
例如,将5x²-3x²相减,可以转化为5x²+(-3x²)的运算。
2. 同类项相减:对于同类项,可以直接将系数相减。
例如,将5x²-3x²相减,结果为2x²。
三、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。
在进行整式的乘法时,需要按照分配律和乘法公式进行展开和合并。
例如,将(3x+2)(2x-1)展开乘法运算,结果为6x²+2x-3。
四、整式的除法整式的除法是指将一个整式除以另一个整式的运算。
在进行整式的除法时,需要使用长除法的方法进行计算。
例如,将6x³+3x²-2x-1除以2x+1,可以通过长除法得到商为3x²+2x-1,余数为0。
综上所述,整式的加减乘除是代数学中基本的运算,熟练掌握整式的加减乘除运算对于理解和解决复杂的代数问题至关重要。
通过不断练习和巩固,相信大家在整式的运算能力上会有所提升,为解决数学问题提供更加有效的方法和工具。
整式的乘法与除法
整式的乘法与除法整式是指由常数、变量及它们的乘积和积的和差组成的代数式。
整式的乘法与除法是代数学中重要的运算,本文将从定义、性质及计算方法等方面进行探讨。
一、整式的定义整式是由常数、变量及它们的乘积和积的和差组成的代数式。
常数称为零次整式,单个变量称为一次整式,以此类推。
整式可以表示为:f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀其中,a₀、a₁、...、aₙ为系数,n为自然数,x为变量。
二、整式的乘法整式的乘法是将两个或多个整式相乘得到一个新的整式。
要进行整式的乘法,需要遵循以下规则:1. 同类项相乘:将相同指数的项的系数相乘,并将指数保持不变。
例如:(3x²)(4x³) = 12x⁵。
2. 多项式相乘:将一个整式中的每一项都与另一个整式的每一项相乘,然后将结果相加。
例如:(3x + 2)(4x + 5) = 12x² + 22x + 10。
3. 分配律:整式的乘法满足分配律。
例如:a(b + c) = ab + ac。
三、整式的除法整式的除法是将一个整式除以另一个整式,得到商式和余式。
要进行整式的除法,需要注意以下几点:1. 除数不为零:除数不为零,否则除法无意义。
2. 长除法:使用长除法的步骤进行计算,以下以一个例子作说明:例如:(2x³ + 3x² - 4x + 1) ÷ (x - 1)首先将被除式按降幂排列:2x³ + 3x² - 4x + 1然后进行第一步的除法,将2x³ ÷ x进行计算,得到2x²,并将结果写在商式上。
然后将2x²与(x - 1)相乘,并进行减法得到2x³ + 2x²。
依次进行下一步的除法计算,直到无法再继续进行为止。
四、整式乘法与除法的性质1. 乘法的交换律与结合律:整式的乘法满足交换律与结合律,即a ·b = b · a,(a · b) ·c = a · (b · c)。
【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)
(ab)n anbn,(其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4,( 1 a2b)3,(2xy2 )3,(a3b2 )3 2
温故知新 4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
名师归纳
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法 的基础.其逆向运用可将问题化繁为简,负数乘方 结果的符号,奇次方得负,偶次方得正.
举一反三
1.下列计算不正确的是( D )
A.2a3 ·a=2a4
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4 )4 a44 a8,[(b2 )3]4 b234 b24 (x2 )2n1 x4n2,(a4 )m (am )4 (a2m )2
温故知新 3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再 把所得的幂相乘。(即等于积中各因式乘方的积。)
(一)整式的乘法
1、同底数的幂相乘 2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式 6、单项式乘以多项式
7、多项式乘以多项式 8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
温故知新 (一)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
名师归纳
整式的乘法运算
整式的乘法运算整式是由数字、字母和乘法、加法运算符组成的代数表达式。
在数学中,整式的乘法运算是一项基本且常见的操作。
通过对整式的乘法运算,我们可以得到一个新的整式,从而求解复杂的代数问题。
下面将介绍整式的乘法运算及其相关概念和规则。
1. 整式的乘法定义整式的乘法是指将两个或多个整式相乘,得到一个新的整式。
整式的乘法运算通常涉及到乘法分配律和乘法合并同类项的规则。
乘法分配律表示:对于任意的整式a、b和c,有a×(b+c) = a×b + a×c。
乘法合并同类项是指将相同字母的乘积合并为一个同类项。
例如,将3x与2x 相乘得到6x²,其中6是系数,x²是字母的乘积。
2. 整式的乘法规则在进行整式的乘法运算时,需要注意以下几个规则:(1) 系数相乘:将两个整式的系数相乘得到新的系数。
(2) 字母相乘:将两个整式中相同字母的指数相加得到新的指数。
(3) 合并同类项:将相同字母的乘积合并为一个同类项。
(4) 乘法交换律:整式的乘法满足交换律,即a×b = b×a。
3. 实例演示为了更好地理解整式的乘法运算,我们来看几个实例:(1) 将3x²与2x相乘。
3x² × 2x = 6x³通过系数相乘,得到6;通过字母相乘,x²与x相乘得到x³,因此结果是6x³。
(2) 将4ab²与(-5a²b³)相乘。
4ab² × (-5a²b³) = -20a³b⁵系数相乘得到-20,字母相乘时,a与a²相乘得到a³,b²与b³相乘得到b⁵,因此结果是-20a³b⁵。
4. 注意事项在进行整式的乘法运算中,需要注意一些特殊情况和要点:(1) 乘法的顺序:乘法运算符具有优先级,在计算整式的乘法时,需要按照从左到右的顺序进行计算。
七年级下册数学整式的乘除
七年级下册数学整式的乘除整式的乘法:包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘。
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘除法法则:1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:a m .a n =a m+n (其中m 、n 为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。
数学符号表示:(a m )n =a mn (其中m 、n 为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的积。
)数学符号表示:(ab )n =a n b n (其中n 为正整数)4、同底数的幂除法:法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:a m ÷a n =n -m a (其中m 、n 为正整数,a ≠0)5、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
6、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
7、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
疑难点解析:例题:1.(1)2--)(a a ⋅注意:①a -的指数是1,不是0;②由同底数幂相乘的法则知,能运用它的前提必须是“同底”,注意最后结果中的底数不能带负号,如3)(x -不是最后结果,应写成3x -才是最后结果。
例题:2.)()(232x x x -⋅⋅-注意:区别2)(x -与)(2x -的不同,222)(x x x =⋅-,而221x x ⋅-=-对应练习:n x -与n x )(-的关系正确的是( )A .相等B .互为相反数C .当n 为奇数时它们互为相反数,当n 为偶数时它们相等D .当n 为奇数时它们相等,当n 为偶数时它们互为相反数例题:3.已知3,2==n n y x ,求n y x 22)(的值。
整式的乘法公式
整式的乘法公式整式的乘法公式是数学中的重要概念,它可以帮助我们快速、准确地进行整式的乘法运算。
在本文中,我将详细介绍整式的乘法公式及其应用。
一、整式的乘法公式整式是由常数和变量的乘积以及它们之间的加减运算所构成的代数式。
在乘法运算中,可以利用整式的乘法公式来简化计算。
整式的乘法公式包括以下几条:1. 乘法分配律:对于任意的整式a、b和c,有如下公式:a(b+c) = ab + ac(b+c)a = ba + ca这条乘法分配律的应用非常广泛,它可以用于加法和乘法的结合。
例如,对于整式3(x+2),根据乘法分配律,我们可以得到:3(x+2) = 3x + 62. 平方差公式:对于任意的整式a和b,有如下公式:(a+b)(a-b) = a^2 - b^2这条平方差公式在整式乘法中十分常用,可以用来求平方差的计算。
例如,对于整式(x+3)(x-4),根据平方差公式,我们可以得到:(x+3)(x-4) = x^2 - 4x + 3x - 12 = x^2 - x - 123. 三角形式乘法公式:对于任意的整式a、b和c,有如下公式:(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c) - abc这条三角形式乘法公式常用于多项式的乘法运算。
例如,对于整式(x+1)(x+2)(x+3),根据三角形式乘法公式,我们可以得到:(x+1)(x+2)(x+3) = (x^2+3x+x+2)(x+3) - (x+1)(x+2)(x+3) =(x^2+4x+2)(x+3) - (x^2+3x)(x+3) = x^3 + 6x^2 +11x + 6二、整式的乘法公式的应用整式的乘法公式在代数学中有着广泛的应用。
下面我将通过实际例子来说明整式的乘法公式的应用。
例题1:计算(2x+3)(x+1)。
根据乘法分配律,我们可以按照以下步骤进行计算:(2x+3)(x+1) = 2x(x+1) + 3(x+1) = 2x^2 + 2x + 3x + 3 = 2x^2 + 5x + 3例题2:计算(3x+2)(3x-2)。
整式的乘法乘法公式
先算乘方,再算乘除,最后算 加减;
运用分配律
将括号内的代数式展开,并运用 分配律进行计算;
合并同类项
将同类项进行合并,得到最简结果 。
整式乘法公式的计算技巧
熟记公式
熟练掌握整式乘法公式,如平 方差公式、完全平方公式等;
化简代数式
在计算过程中,尽量化简代数 式,减少计算量;
灵活运用运算法则
整式乘法公式是一种简化的运算方法,适用于任何两个整式 的乘法运算。
整式乘法公式的特点
1
整式乘法公式具有普遍适用性,适用于任何两 个整式的乘法运算。
2
整式乘法公式可以简化复杂的计算过程,提高 运算效率。
3
整式乘法公式有助于培养学生的数学思维能力 和符号意识。
整式乘法公式的历史与发展
01
整式乘法公式是数学运算中的基本工具,有着悠久的历史和广 泛的应用。
2023
《整式的乘法乘法公式》
contents
目录
• 整式乘法公式概述 • 整式乘法公式的形式与证明 • 整式乘法公式的计算方法与技巧 • 整式乘法公式的应用实例
01
整式乘法公式概述
整式乘法公式的定义
整式乘法公式定义:整式乘法公式是单项式与单项式相乘, 把他们的系数,相同字母的幂分别相乘,其余字母连同他的 指数不变,作为积的因式的运算。
交换律公式
$(a+b)(c+d)=(a+b)(c+d)$
整式乘法公式的证明方法
分配律公式的证明
根据乘法分配律,可以得出$(a+b)(c+d)=ac+ad+bc+bd$。
结合律公式的证明
根据乘法结合律,可以得出$(a+b)(a+b)=a^2+2ab+b^2$。
整式的乘除
整式的乘除整式是指由常数、变量及它们的乘、除运算符号经有限次组合而成的代数表达式。
整式是代数学中一个重要的概念,掌握整式的乘除运算是解决代数问题的关键。
一、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。
在整式的乘法中,我们需要遵循如下规则:1.同底数的幂相乘,底数不变,指数相加。
例如:am* an = am+n2.乘法满足交换律和结合律。
3.不同底数幂相乘时,可以将其视为两个不同的因数。
例如:am * bn = abn下面是一个整式乘法的示例:假设有整式 a = 2ab2,b = 3a2b,c = 4a2b2。
要求计算整式 d = a * (b + c) 的值。
根据乘法分配律,我们可以将乘法转化为加法运算,即:d = a * b + a * c。
将 a、b、c 的值代入计算,有:d = 2ab2 * 3a2b + 2ab2 * 4a2b2化简上式,将幂相加,并化简系数,得到:d = 6a3b3 + 8a3b4因此,整式 d 的值为 6a3b3 + 8a3b4。
二、整式的除法整式的除法是指将一个整式除以另一个整式的运算。
在整式的除法中,我们需要遵循如下规则:1.除法满足结合律,但不满足交换律。
2.同底数的幂相除,底数不变,指数相减。
例如:am/ an = am-n3.除法中,除数不为零。
下面是一个整式除法的示例:假设有整式 p = 5a3b2c 和 q = 10a2c2。
要求计算整式 r = p / q 的值。
根据整式除法的规则,我们需要将p 和q 化简到最简形式,然后进行除法运算。
首先,我们将 p 和 q 化简,并将指数按照从大到小的顺序排列:p = 5a3b2c,q = 10a2c2进行除法运算,将 p 中每一项除以 q 中的对应项,并将指数进行相减:r = (5a3b2c) / (10a2c2)再化简这个分式,我们可以将分子和分母都除以其最大公因式 5ac,得到最简形式:r = (a2b2) / (2c)因此,整式 r 的值为 (a2b2) / (2c)。
整式的乘法与因式分解
整式的乘法与因式分解整式是由字母或字母与常数的乘积所组成的代数式。
在代数中,整式的乘法和因式分解是非常重要的运算。
本文将详细介绍整式的乘法与因式分解。
一、整式的乘法整式的乘法是指利用分配律将两个或多个整式相乘的过程。
整式的乘法规则如下:1. 当两个整式相乘时,先将系数相乘,再将字母相乘,最后将结果相加。
例如,计算 (2x + 3)(4x + 5) 的结果:(2x + 3)(4x + 5) = 2x * 4x + 2x * 5 + 3 * 4x + 3 * 5= 8x^2 + 10x + 12x + 15= 8x^2 + 22x + 152. 当整式中含有多个字母时,需要将对应字母的项相乘,并按照指数的规则进行运算。
例如,计算 (2xy + 3xz)(4xy - 5xz) 的结果:(2xy + 3xz)(4xy - 5xz) = 2xy * 4xy + 2xy * (-5xz) + 3xz * 4xy + 3xz * (-5xz)= 8x^2y^2 - 10x^2z^2 + 12x^2yz - 15xz^2整式的乘法在代数中非常常见,掌握好整式的乘法规则可以方便进行复杂的代数运算。
二、因式分解因式分解是指将一个整式表示为几个整式乘积的形式。
因式分解在解方程、求极限、计算函数值等方面都有广泛的应用。
下面介绍两种常见的因式分解方法。
1. 公因式提取法公因式提取法是指将整式中的公因式提取出来,并将整式分解为公因式与其他部分的乘积。
例如,对于整式 4x^2 + 8x,可以提取公因式 4x,得到 4x(x + 2)。
2. 完全平方公式完全平方公式是指将一个二次多项式表示为两个一次多项式的平方差形式。
例如,对于整式 x^2 + 12x + 36,可以通过完全平方公式将其分解为 (x + 6)^2。
通过因式分解,可以简化复杂的整式,方便进行进一步的计算和问题求解。
综上所述,整式的乘法和因式分解是代数中重要的运算。
整式的乘法和因式分解知识点汇总
整式的乘法和因式分解知识点汇总整式乘除与因式分解在研究代数的过程中,整式乘除与因式分解是非常重要的知识点。
下面将对这些知识点进行详细讲解。
一.幂的运算性质幂的运算性质是代数中最基本的知识之一。
其中,同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。
例如,对于表达式(-2a)2(-3a2)3,可以先计算幂的乘方,然后再将同底数幂相乘。
二.乘方的运算乘方的运算也是代数中的基本知识。
根据乘方的运算法则,积的乘方等于各因式乘方的积。
例如,对于表达式(-a5)5,可以将其分解为a的5次方的积,然后再进行乘方运算。
三.同底数幂的除法同底数幂的除法也是代数中的基本知识之一。
根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减。
例如,对于表达式x÷x,可以将其化简为x的0次方,即1.四.零指数幂和负指数幂在代数中,零指数幂和负指数幂也是非常重要的概念。
任何一个不等于零的数的零指数幂都等于1;任何一个不等于零的数的负指数幂,等于这个数的指数幂的倒数。
例如,对于表达式(2a3b)1,可以通过代数式的运算,求出a和b的取值范围。
五.单项式和多项式的乘法单项式和多项式的乘法也是代数中的基本知识之一。
对于单项式相乘,需要将系数和同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
对于单项式与多项式相乘,需要用单项式和多项式的每一项分别相乘,再把所得的积相加。
对于多项式与多项式相乘,需要先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
通过对整式乘除与因式分解的研究,可以更好地理解代数的基本概念和运算法则,为后续的研究打下坚实的基础。
1.计算 (3×10^8)×(-4×10^4) = -1.2×10^132.计算 2x·(-2xy)·(-3) = 12x^2y3.若n为正整数,且x^(2n)=3,则(3x^(3n))^2的值为 274.如果 (anb·abm)^3 = a^9b^15,那么 mn 的值是 55.-[-a^2(2a^3-a)] = 2a^5 - a^36.(-4x^2+6x-8)·(-1/2x) = 2x^3-3x^2+4x7.2n(-1+3mn^2) = -6mn^2+2n8.若 k(2k-5)+2k(1-k) = 32,则 k = 49.(-3x^2)+(2x-3y)(2x-5y)-3y(4x-5y) = -10x^2+31xy-15y^210.在 (ax^2+bx-3)(x^2-x+8) 的结果中不含 x^3 和 x 项,则a = 1/2,b = -311.一个长方体的长为 (a+4)cm,宽为 (a-3)cm,高为(a+5)cm,则它的表面积为 2a^2+22a+32,体积为 (a+4)(a-3)(a+5) = a^3+6a^2-7a-60.若将长方形的长和都扩大了2cm,则面积增大了 8cm^2.12.一个长方形的长是 10cm,宽比长少6cm,则它的面积是 40cm^2.当长和都扩大了2cm时,面积增大了 44cm^2.13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式。
整式的乘法法则公式
整式的乘法法则公式在代数学中,整式的乘法法则公式是指用来计算两个整式相乘的规则和公式。
整式是由数、变量和运算符号(加减乘除)组成的代数表达式。
整式的乘法法则公式是代数学中非常重要的一部分,它能够帮助我们简化复杂的代数表达式,解决各种数学问题。
本文将介绍整式的乘法法则公式,并通过一些例子来说明如何应用这些公式进行计算。
首先,让我们来看一下整式的基本形式。
一个整式通常由若干个单项式相加或相减而成。
例如,3x^2 + 2xy - 5y^2就是一个整式,其中3x^2、2xy和-5y^2分别是三个单项式。
整式的乘法法则公式适用于任意两个整式的相乘,无论它们是单项式还是多项式。
整式的乘法法则公式可以总结为以下几条规则:1. 单项式乘单项式:两个单项式相乘时,只需要将它们的系数相乘,并将它们的字母部分相乘。
例如,3x乘以4y等于12xy。
2. 单项式乘多项式:一个单项式与一个多项式相乘时,只需要将单项式的系数依次与多项式的每一项相乘,并将它们的字母部分相乘。
然后将得到的各项再相加。
例如,2x乘以(3x^2 + 4y)等于6x^3 + 8xy。
3. 多项式乘多项式:两个多项式相乘时,需要将一个多项式的每一项依次与另一个多项式的每一项相乘,并将它们的结果相加。
这其实就是分配律的运用。
例如,(3x + 2y)乘以(4x - 5y)等于12x^2 - 15xy + 8xy - 10y^2,再将相同项合并得到12x^2 - 7xy- 10y^2。
整式的乘法法则公式可以帮助我们快速准确地计算整式的乘法。
通过这些规则,我们可以将复杂的整式相乘的问题简化为一系列简单的乘法运算。
下面我们通过一些例子来演示如何应用整式的乘法法则公式进行计算。
例1:计算(3x + 2)(4x - 5)。
根据整式的乘法法则公式,我们将第一个多项式的每一项依次与第二个多项式的每一项相乘,并将结果相加。
即(3x乘以4x) + (3x乘以-5) + (2乘以4x) + (2乘以-5)。
《整式的乘法》知识全解
《整式的乘法》知识全解课标要求1、探索并了解单项式与单项式、单项式与多项式和多项式与多项式(仅指一次式之间以及一次式与二次式相乘)相乘的法则,并运用它们进行运算;2、让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力。
知识结构1、单项式乘单项式,用各单项式系数的积,作为积的系数;用相同字母的指数和,作为积里这个字母的指数;只在一个单项式里含有的字母,连同它的指数也作为积的一个因式。
2、单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得积相加。
3、多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
内容解析1.单项式乘以单项式:法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式中出现的字母,连同它的指数作为积的一个因式。
解读:(1)单项式的乘法可分为三步:①把它们的系数相乘,包括符号的计算;②同底数幂相乘;③单独字母的处理。
三部分的乘积作为计算的结果。
(2)积的系数等于各系数的积,这部分是有理数的乘法运算,应先确定符号再计算绝对值;相同字母相乘,是同底数幂的乘法,按法则进行计算;注意不要把只在一个单项式中含有的字母去掉。
(3)单项式与单项式相乘其结果仍是单项式。
2.单项式乘以多项式:法则:单项式乘以多项式,就是用单项式去乘多项式的每一项再把所得的积相加。
即()(,,,)m a b c am bm cm m a b c ++=++都是单项式。
解读:(1)单项式与多项式相乘,实质上是将单项式看成一个整体对多项式运用乘法分配律。
(2)单项式乘以多项式,结果是一个多项式,其项数与多项式的项数相同,计算时要注意符号问题,多项式中的每一项都包含它前面的符号,同时还要注意单项式的符号。
3.多项式乘以多项式:法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。
初中数学 什么是整式的乘法
初中数学什么是整式的乘法整式的乘法指的是将两个或多个整式相乘得到一个新的整式。
整式是由常数、变量及它们的乘积和幂次的和或差组成的代数式。
下面将详细介绍整式的乘法运算的定义、性质以及如何进行整式的乘法。
一、整式的乘法定义设有两个整式A和B,表示为:A = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀B = bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀其中,aₙ、aₙ₋₁、...、a₂、a₁、a₀和bₙ、bₙ₋₁、...、b₂、b₁、b₀为常数系数,x为变量,n和m 为幂次。
整式A和B的乘积表示为A * B,即:A *B = (aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀) * (bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀)二、整式乘法的性质整式的乘法具有以下性质:1. 乘法交换律:对于任意两个整式A和B,有A * B = B * A。
即整式的乘法满足交换律。
2. 乘法结合律:对于任意三个整式A、B和C,有(A * B) * C = A * (B * C)。
即整式的乘法满足结合律。
3. 乘法分配律:对于任意三个整式A、B和C,有A * (B + C) = A * B + A * C。
即整式的乘法满足左分配律。
三、整式的乘法运算整式的乘法运算可以通过展开和合并同类项的方法进行。
例如,设有两个整式A和B,表示为:A = 2x² + 3xy - 4y²B = 5x - 2y我们将A与B相乘,即A * B,得到:A *B = (2x² + 3xy - 4y²) * (5x - 2y)按照乘法分配律的定义进行展开和合并,得到:A *B = 2x² * 5x + 2x² * (-2y) + 3xy * 5x + 3xy * (-2y) - 4y² * 5x - 4y² * (-2y)进一步计算,得到:A *B = 10x³ - 4x²y + 15x²y - 6xy² - 20xy² + 8y³将上述结果进行合并同类项,得到最后的乘积结果:A *B = 10x³ + 11x²y - 26xy² + 8y³总结:整式的乘法是将两个或多个整式相乘得到一个新的整式。
整式的乘法与因式分解知识点
整式的乘法与因式分解知识点整式的乘法和因式分解是初中数学中的重要知识点,也是后续学习代数、方程和不等式的基础。
本文将详细介绍整式的乘法和因式分解的定义、性质和方法。
一、整式的乘法整式是由常数和单项式相加(减)得到的代数式,其中单项式是指只包含一个变量的项。
整式的乘法是指将两个或多个整式相乘的运算。
1.单项式的乘法:单项式的乘法遵循以下运算法则:-同底数幂相乘,底数不变,指数相加。
例如,a^m*a^n=a^(m+n)。
-不同底数幂相乘,指数相乘。
例如,a^m*b^n=a^m*b^n。
- 系数相乘。
例如,k * t = kt。
2.多项式的乘法:多项式的乘法通过将每一项都与另一个多项式的每一项相乘,并将结果相加得到。
例如,(a+b+c)(x+y+z) = ax+ay+az+bx+by+bz+cx+cy+cz。
这个过程通常称为“分配律”。
二、整式的因式分解整式的因式分解是指将一个整式表示成几个单项式的乘积的运算。
因式分解的基本思路是找到整式的公因式,然后使用“提公因式法”将整式表示为公因式与其余部分的乘积。
1.提公因式法:假设整式ax+bx有一个公因式x,则可以将其改写为x(a+b)。
这个过程是因式分解中最基本的方法。
根据此原理,我们可以使用提公因式法因式分解更复杂的整式。
2.完全平方公式的因式分解:完全平方公式是指一个二次三项式(即一元二次多项式)的平方可以被因式分解成两个平方的和或差。
例如,a^2+2ab+b^2可以因式分解为(a+b)^2,而a^2-2ab+b^2可以因式分解为(a-b)^23.完全立方公式的因式分解:完全立方公式是指一个三次三项式(即一元三次多项式)的立方可以被因式分解成两个立方的和或差。
例如,a^3+3a^2b+3ab^2+b^3可以因式分解为(a+b)^3,而a^3-3a^2b+3ab^2-b^3可以因式分解为(a-b)^34.分组分解法:分组分解法是指根据整式中各项之间的关系将整式进行分组,以便使用提公因式法进行因式分解。
第一章:整式的乘除(1)
第一章:整式的乘除知识要求:1、理解、掌握整式的有关概念2、牢固地掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;3、加强运算能力,以及分析问题、解决问题的能力知识重点:整式的乘法及乘法公式,幂的相关运算性质。
知识难点:熟练掌握整式的有关计算及相关运用:幂的运算,整式乘法,整式除法。
知识点:一、整式的有关概念整式:可以看成是分母不含有字母的代数式,注意:一是分母不含有字母但可以是数字,二要是代数式不能含有等号或表示数量关系的符号。
单项式与多项式统称为整式。
(1)定义:表示数与字母的积的代数式。
单独的一个数是单项式。
1、 单独字母也是单项式。
单 (2)系数:单项式中的数字因数叫做单项式的系数。
项 注意系数包括前面的符号,式 系数是1时通常省略,π是系数,72xyz -的系数是72- 单独字母的系数是1。
a=1×a单独数字的系数是本身。
3=3×a 0(3)次数:单项式的次数是指所有字母的指数的和。
单独字母的次数是1.单独一个非零数字的次数是0.2、多项式:(1)几个单项式的和叫做多项式。
(几次几项式)(2)每一个单项式叫做多项式的项, 注意项包括前面的符号。
(3)多项式的次数:多项式中次数最高的项的次数。
项的次数是几就叫做几次项,(4)不含字母的项叫做常数项。
2、多项式二、整式的加减:实质是合并同类项①先去括号; (注意括号前有数字因数)②再合并同类项。
(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。
m n m n a a a +=• ⇔ m n a a •=+m n a (m,n 都是正整数)2、幂的乘方:底数不变,指数相乘。
nm m n a a =)( ⇔ m n a )(a nm =(m,n 都是正整数)3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
n n n b a ab =)( ⇔ n ab)(=n n b a (n 为正整数)4、零指数幂:任何一个不等于0的数的0次幂等于1。
初中数学整式的乘法(含答案)
第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。