初中数学竞赛第04讲 直角三角形 真题讲解
第04讲 角度计算(含解答)
九年级数学竞赛专题第四讲角度计算一、选择题1.如图1,在△ABC中,∠,∠B的外角平分线分别交对边CB、AC的延长线于D、E,且AD=AB=BE,则∠A的度数是()A.10°B.11°C.12°D.14°(1) (2) (3)2.如图2,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5 C.4:5:6 D.以上结果都不对3.如图3,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°4.如图4,在△ABC中,AD是BC边上的中线;∠ADB,∠ADC的平分线各交AB,AC 于M,N,MN交AD于P,连结PB,PC,则∠BPC是()A.锐角B.直角C.钝角D.以上都可能(4) (5) (6)5.如图5,点P是正方形ABCD内的一点,若PA=a,PB=2a,PC=3a,(a>0),那么∠APB 的大小是()A.100°B.120°C.135°D.150°二、填空题1.已知一个凸十一边形由若干个边长为1的等边三角形和边长为1的正方形无重叠,无间隙拼成,则该凸十一边形的各内角中,最小的内角大小为____________。
2.如图6,在等腰直角三角形ABC中,∠A=90°,P是△ABC内一点,PA=1,PB=3,PC=7,那么∠CPA=_____________.3.如图7,直角三角形ABC中,∠C=90°,BC被点D、E三等分,且BC=3AC,那么∠AEC+∠ADC+∠ABC=_____________。
(7) (8) (9)4.如图8,等腰三角形ABC中,AB=AC,∠A=20°,D是AB边上一点,AD=BC,连结CD,那么∠BDC的大小是__________。
初中数学湘教版九年级上册《4.4解直角三角形的应用(1)》优质课公开课比赛获奖课件面试试讲课件
B B
C
变式2: 分析:已知: 如图AC ⊥ BC,垂足为C,AC=400 米, A ∠BAC=60 ° , ∠EAC=45 ° 求:BE
45 ° 60 ° ┌ ┌ E E C C
B
解:根据题意得:在Rt△ABC中,∠BCA =90°, ∠BAC =60° AC =400m,
求上海 东方明珠塔的高。 (结果精确到1m.)
B
A 1.7 E D 1000
讲述
铅垂线 视线 仰角 铅垂线 眼 睛 水平线
水平线
俯角 视线
眼 睛
在观察物体时,若视线在眼睛所在水平 线上方,则这个夹角叫仰角;若在眼睛所在 水平线下方,则这个夹角叫俯角。
应用提高
例1:如图所示,在离上海东方明珠塔1000m的 A处,用仪器测得塔顶的仰角为25 ° ,仪器距地面高 为1.7m。
变式1:如图所示,上海东方明珠塔高约为468米, 某人在塔上400米的A处观光台上俯视地面,发现俯角 为30 °B处,正是他所乘坐观光车停车处。 求观光车距离塔底C多远?
分析:已知: Rt⊿ABC中 AC=400米, ∠BAC=60 ° D 求:AC
A 30 ° 60 °
B
┌
C
解:根据题意得:在Rt△ABC中,∠BCA =90°, ∠BAC =60° AC =400m,
C
a
B
a b c
2 2
2
两锐角间的数量关系: ∠A+∠B=90°
的对边 tan 的邻边
探求新知
情景1: 周末,去超市购物,乘电梯上楼,已知电 梯的长度8 m,倾斜角为300,则一楼至二楼的高度是 __________m 4 分析:已知:如图Rt ⊿ABC,
九年级秋季班-第4讲:解直角三角形
1 / 17解直角三角形是九年级上学期第二章第二节的内容,通过本节的学习,需要掌握直角三角形中,除直角外其余五个元素之间的关系,并熟练运用锐角三角比的意义解直角三角形,以及解直角三角形的相关应用.重点在于理解仰角、俯角、方向角、坡度、坡角等概念,并能利用其解决实际问题;难点在于,若一个三角形不是直角三角形,要有意识把它化归为解直角三角形的问题.1、 解直角三角形在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形. 在t R ABC ∆中,如果=90C ∠︒,那么它的三条边和两个锐角之间有以下的关系: (1)三边之间的关系:222a b c +=(2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系: sin cos a A B c ==,cos sin bA B c ==tan cot a A B b ==,cot tan b A B a== 解直角三角形内容分析知识结构模块一:解直角三角形知识精讲2 / 17A BO xy ABCDE【例1】 ABC ∆中,90C ∠=︒,已知AB = 6.4,40B ∠=︒,则A ∠=______,AC =______,BC =______.(sin400.64︒≈,sin500.77︒≈,边长精确到0.1)【难度】★ 【答案】 【解析】【例2】 若菱形的周长为8,相邻两内角之比为3 : 1,则菱形的高是______. 【难度】★ 【答案】 【解析】【例3】 如图,OAB ∆中,OA = OB ,125AOB ∠=︒.已知点A 的坐标是(4,0),则点B的坐标是____________.(用锐角三角比表示)【难度】★★ 【答案】 【解析】【例4】 如图,在ABC ∆中,90BAC ∠=︒,AB = AC ,D 为边AC 的中点,DE BC ⊥于点E ,连接BD ,则tan DBC ∠的值为( )A .13B .21-C .23-D .14【难度】★★ 【答案】 【解析】例题解析3/ 17AAB CDEOAB CDAB CAB C 【例5】如图,在矩形ABCD中,对角线AC、BD相交于点O,E是边AD的中点,若AC = 10,DC=5BO=______,EBD∠的度数约为____°____'(参考数据:1tan2634'2︒≈).【难度】★★【答案】【解析】【例6】在锐角ABC∆中,AB = 14,BC = 14,84ABCS∆=,求cot C的值.【难度】★★【答案】【解析】【例7】如图,ABC∆中,23AB=AC = 2,边BC上的高3AD求ABCS∆和BAC∠的大小.【难度】★★【答案】【解析】【例8】如图,在锐角ABC∆,4sin5B=,tan2C=,且40ABCS∆=,求BC的长.【难度】★★【答案】【解析】【例9】如图,ABC∆中,30B∠=︒,45C∠=︒,22AB AC-=BC的长.【难度】★★【答案】【解析】【例10】如图,先将斜边AB长6 cm,30A∠=︒的直角三角板ABC绕点C顺时针方向旋转90°至''A B C∆位置,再沿CB向左平移,使点B落在原三角板ABC位置的斜4/ 17CDFABC DAB CDAB CDENM边AB上,则平移的距离为______.【难度】★★【答案】【解析】【例11】如图,正方形ABCD中,E为边BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若1tan3AEN∠=,DC + CE =10.(1)求ANE∆的面积;(2)求sin ENB∠的值.【难度】★★【答案】【解析】【例12】如图,四边形ABCD中,90A C∠=∠=︒,120B∠=︒,AB = 4,BC = 2,求四边形的面积.【难度】★★★【答案】【解析】【例13】如图,在四边形ABCD中,已知AD = AB = BC,连接AC,且30ACD∠=︒,23tan BAC∠=CD = 3,求AC的长.【难度】★★★【答案】【解析】【例14】小智在学习特殊角的三角比时发现,将如图所示的矩形纸片ABCD沿过B点的直线折叠,使点A落在BC上的点E处,折痕BM.还原后,再沿过点E的直线5 / 17xyO折叠,使点A 落在BC 上的点F 处,折痕EN .利用这种方法,可以求出tan67.5︒的21,试证明之.【难度】★★★ 【答案】 【解析】【例15】在平面直角坐标系内,放置了5个如图所示的正方形(用阴影表示).点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 在x 轴上.已知正方形1111A B C D 的边长为1,1160B C O ∠=︒,11B C //22B C //33B C ,则点3A 到x 轴的距离是( )A 33+ B 31+ C 33+ D 31+【难度】★★★ 【答案】 【解析】6 / 17仰角 视线水平线视线俯角铅垂线北北偏东30°南偏西45° 北偏西70°南偏东50°30° 70° 45° 50°hl1、 仰角与俯角在测量过程中,常常会遇到仰角和俯角.如图,当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角.2、 方向角指北或指南方向线与目标方向线所成的小于90°的角叫做方向角. 如图:北偏东30°,北偏西70°,南偏东50°,南偏西45°.3、 坡度(坡比)、坡角在修路、挖河、开渠等设计图纸上,都需要注明斜坡的倾斜程度.如图,坡面的铅垂高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作i ,即h i l=. 坡度通常写成1 : m 的形式,如1:1.5i =. 坡面与水平面的夹角叫做坡角,记作α.坡度i 与坡角α之间的关系:tan hi lα==.模块二:解直角三角形的应用知识精讲7 / 17ABOC ABDABP 北ABC【例16】如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角ABO ∠为α,则树OA 的高度为( )A .30tan αB .30sin αC .30tan αD .30cos α【难度】★ 【答案】 【解析】【例17】如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处.如果海轮沿着正南方向航行到灯塔的正东方向,那么海轮航行的距离AB 的长是( )海里A .2B .2sin 55°C .2cos 55°D .2tan 55°【难度】★ 【答案】 【解析】【例18】如图所示,某公园入口处原有三级台阶,每级台阶高为18厘米,深为30厘米,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i = 1 : 5,那么AC 的长度是______厘米.【难度】★ 【答案】 【解析】【例19】如图,斜面AC 的坡度为1 : 2,AC =35米,坡顶有一旗杆BC ,旗杆顶端B点与A 点有一条彩带相连,若AB = 10米,则旗杆BC 的高度为( )米A .5B .6C .8D .3+5【难度】★★ 【答案】 【解析】【例20】如图,要在宽为22米的大道AB 两边安装路灯,路灯的灯臂CD 长2米,且例题解析8 / 17ABCDOABCDAC PQ与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直.当灯罩的轴线DO 通过公路路面中心线时照明效果最佳.此时,路灯的灯柱BC 的高度应该设计为( )米A .1122-B .1123-C .11322D .1134【难度】★★ 【答案】 【解析】【例21】如图,为测得一栋大厦CD 的高度,一人先在附近一楼房的底端A 点观测大厦顶端C 处的仰角是60°,然后爬到该楼房顶端B 处观测大厦底部D 处的俯角是30°,已知楼房高AB 约是45 m ,根据以上观测数据可求大厦的高CD 是______m .【难度】★★ 【答案】 【解析】【例22】如图,小智在大楼30米高(即PH = 30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°.已知山坡的坡度为3,点P 、H 、B 、C 、A 在同一平面上,点H 、B 、C 在同一直线上,且PH HC ⊥.则山坡上A 、B 两点间的距离为______.【难度】★★ 【答案】 【解析】【例23】某单位拟建造地下停车库,设计师提供了车库入口设计示意图(如图),按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,9 / 17AB CDABA 'B 'O 'O为标明限高,请你计算图中CE 的长.(参考数据:sin180.309︒≈,cos180.951︒≈,tan180.325︒≈,cot18 3.078︒≈,结果精确到0.1 m )【难度】★★ 【答案】 【解析】【例24】小方在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面高'2OO =米.当吊臂顶端由点A 抬升至点'A (吊臂长度不变)时,地面B 处的重物(高度不计)被吊至'B 处,紧绷着的吊缆''A B AB =.AB 垂直地面'O B 于点B ,直线''A B 垂直地面'O B 于点C ,吊臂长度'10OA OA ==米,且3cos 5A =,1sin '2A =.(1)求重物在水平方向移动的距离BC ;(2)求重物在竖直方向提升的高度'B C .【难度】★★ 【答案】 【解析】【例25】如图,是一座人行天桥的示意图,天桥的高度是10米,CB DB ⊥,坡面AC的坡角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为3:3i =.若新坡角下需留3米宽的人行道,问离原坡角(A 点处)10米的建筑物是否需要拆除?(参考数据:2 1.414≈,3 1.732≈)【难度】★★ 【答案】 【解析】【例26】数学兴趣小组准备利用所学的知识测量公路旁某广告牌的高度.如图所示,先在水平面上点A 处测得对广告牌上沿点C 的仰角为30°,然后沿AH 方向前进10米至点B 处,测得对广告牌下沿点D 的仰角为60°.已知矩形广告牌垂直于地面的AB C D E9 m0.5 m10 / 17ABC DP NMQH A BCD O 北东一边CD 高2米.求广告牌的高度GH (结果保留根号).【难度】★★ 【答案】 【解析】【例27】如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C处,测得45CAO ∠=︒.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km /h 和36 km /h .经过0.1 h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得58DBO ∠=︒.此时B 处距离码头O 有多远?(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)【难度】★★ 【答案】 【解析】【例28】如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且30BDN ∠=︒,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为H .如果汽车沿着从M 到N 的方向在MN 上行驶, 当汽车到达点P 处时,噪音开始影响这一排居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这 一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1米,参考数据:3 1.7≈)【难度】★★★ 【答案】 【解析】【例29】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象部门观测,某沿海城市A 正南方向相距220 km 的B 处有一台风中心,中心最大风力为12级,每远离台风中心20 km ,风力就会减弱一ABCD G H广告牌ABC D EFN MP JHABC级.现台风中心正以15 km /h 的速度沿北偏东30°方向移动,如图所示.若城市所受风力达到或超过4级,则称为受台风影响.(1)设台风中心风力不变,该城市是否会受到这次台风的影响?请说明理由. (2)如该城市受台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响时的最大风力为几级?【难度】★★★ 【答案】 【解析】【例30】某水库大坝的横截面积是如图所示的四边形ABCD ,其中AB // CD .瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 的俯角45β=︒.已知MN 所在直线与PC 所在直线垂直,垂足为E ,PE 长为30米.(1)求两渔船M 、N 之间的距离(结果精确到1米)(2)已知坝高24米,坝长100米,背水坡AD 的坡度i = 1 : 0.25.为了提高大坝的防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝顶加宽3米,背水坡FH 的坡度为i = 1 : 1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan310.60︒≈,sin310.52︒≈)【难度】★★★ 【答案】 【解析】A BCDABCDABC DE FG AB CD【习题1】 如图,菱形ABCD 的边长为15,3sin 5BAC ∠=,则对角线AC 的长为______. 【难度】★ 【答案】 【解析】【习题2】 有一个相框的侧面抽象为如图所示的几何图形,已知BC = BD = 15 cm ,40CBD ∠=︒,则点B 到CD 的距离为______cm .(参考数据:sin200.342︒≈,cos200.940︒≈,sin400.642︒≈,cos400.766︒≈,结果精确到0.1 cm )【难度】★ 【答案】 【解析】【习题3】 如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB 为( )A .503米B .51米C .()503+1米D .101米【难度】★★ 【答案】 【解析】【习题4】 如图,ABC ∆中,90C ∠=︒,3sin 5B =.D 是BC 上一点,已知45ADC ∠=︒,DC = 6,求tan BAD ∠的值.【难度】★★ 【答案】 【解析】随堂检测ABCDABCDEFABC30°45° 【习题5】 如图,ABC ∆和ADE ∆都是等边三角形,AB = 2AD ,已知45BAD ∠=︒,AC与DE 相交于点F ,ABC ∆3【难度】★★ 【答案】 【解析】【习题6】 如图,在四边形ABCD 中,45A C ∠=∠=︒,105ADB ABC ∠=∠=︒.(1)若AD = 2,求AB ;(2)若232AB CD +=,求AB . 【难度】★★ 【答案】 【解析】【习题7】 2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度为20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方C 处有生命迹象.在废墟一侧某面上选两探测点A 、B ,点A 、B 相距2米,探测线与该面的夹角分别是30°和45°(如图),试确定生命所在的点C 2 1.414,3 1.732≈)【难度】★★ 【答案】 【解析】【习题8】 利用几何图形,求sin 18°的值. 【难度】★★★ 【答案】 【解析】【习题9】 如图,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°方向上.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离ABCO北北东ABCA 1B 1C 1港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去. (1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离. 【难度】★★ 【答案】 【解析】 【习题10】 如图所示,已知边长为2的正三角形ABC 沿直线l 顺时针滚动.(1)当ABC ∆滚动一周到111A B C ∆的位置时,A 点所运动的路程约为______;(精确到0.1)(2)设ABC ∆滚动240°,C 点的位置为'C ,当ABC ∆滚动480°时,A 点的位置再'A ,请你利用正切的两角和公式()tan tan tan 1tan tan αβαβαβ++=-,求出''CAC CAA ∠+∠的度数.【难度】★★★ 【答案】 【解析】ABCD EFABC北东ABCDEFABCD【作业1】 如图,将正方形ABCD 的边BC 延长到点E ,使得CE = AC ,AE 与CD 相交于点F ,求E ∠的余切值.【难度】★ 【答案】 【解析】【作业2】 如图,在矩形ABCD 中,AB = 8,BC = 12,E 是BC 的中点,连接AE ,将ABE∆沿AE 折叠,点B 落在点F 处,连接FC ,则sin EFC ∠的值为______.【难度】★★ 【答案】 【解析】【作业3】 如图,AD 是ABC ∆的中线,1tan 3B =,2cosC =,2AC =.求:(1)BC 的长;(2)sin ADC ∠的值.【难度】★★ 【答案】 【解析】【作业4】 如图,轮船从B 处以每小时60海里的速度沿南偏东20°的方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上.轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A .20海里B .40海里C .2033海里D .4033海里【难度】★★ 【答案】 【解析】课后作业ABCDABCDDABC ABNM 【作业5】 如图,在ABC ∆中,45B ∠=︒,56AB =,D 是BC 上一点,AD = 5,CD = 3,求ADC ∠的度数及AC 的长.【难度】★★ 【答案】 【解析】【作业6】 如图,点D 在ABC ∆的边BC 上,C BAD DAC ∠+∠=∠,4tan 7BAD ∠=,65AD =,CD = 13,求线段AC 的长.【难度】★★ 【答案】 【解析】【作业7】 如图,一栋楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC = 17.2米.设太阳光线与水平地面的夹角为α,当60α=︒时,测得楼房在地面上的影长AE = 10米.现有一只小猫睡在台阶的MN 这层上晒太阳.3 1.73) (1)楼房的高度约为多少米?(2)过了一会儿,当45α=︒时,问小猫能否还晒到太阳?请说明理由. 【难度】★★ 【答案】 【解析】【作业8】 如图,CD 是ABC ∆的中线,已知90ACD ∠=︒,3cos 5A =,求tan BCD ∠的值. 【难度】★★★ 【答案】 【解析】【作业9】 如图,在梯形ABCD 中,AD // BC ,AB = 4,BC = 6,DAC B AEF ∠=∠=∠,ABCDEF点E 、F 分别在BC 、AC 上(点E 与B 、C 不重合),设BE = x ,AF = y . (1)求cos B ;(2)求证:ABE ∆∽ECF ∆; (3)求y 关于x 的代数式;(4)当点E 在BC 上移动时,AEF ∆是否有可能是直角三角形?若有可能,请求出BE 的长;若不能,请说明理由.【难度】★★★ 【答案】 【解析】【作业10】 如图(a )所示,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:ADG ∆≌ABE ∆;(2)连接FC ,观察并猜测FCN ∠的度数,并说明理由;(3)如图(b )所示,将图(a )中正方形ABCD 改为矩形ABCD ,AB = a ,BC = b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,FCN ∠的大小是否总保持不变,若FCN ∠的大小不变,请用含a 、b 的代数式表示tan FCN ∠的值;若FCN ∠的大小改变,请举例说明.【难度】★★★ 【答案】 【解析】ABCD E FNM GA BCDEFNM G图(a )图(b )。
初中数学专题04几何最值存在性问题(解析版)
专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。
初中数学复习几何模型专题讲解4---等腰直角三角形构造三垂直模型
初中数学复习几何模型专题讲解专题04 等腰直角三角形构造三垂直模型一、解答题1.如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).(1)求k值与一次函数y=k1x+b的解析式;(2)在x轴上有一动点P,求当PB+PC最小时P点坐标.(3)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;【答案】(1)k= 43,y=23x+2;(2)P(1,0);(3)(﹣5,3)或(﹣2,5)【分析】(1)根据待定系数法求解即可;(2)作点B关于x轴对称的点B',连接B'C,交x轴于点P,此时PB+PC最小,求出直线B'C的解析式,求出直线B'C与x轴的交点坐标即可;(3)分两种情况讨论:①当∠DAB=90°时;②当∠D'BA=90°时,添加辅助线构造全等三角形进行求解即可.【详解】解:(1)由题意,将点C(3,4)代入y=kx 中,得:4=3k ,解得:k= 43, 再将点C(3,4)、点A (﹣3,0)代入y =k 1x +b 中,得:113034k b k b -+=⎧⎨+=⎩, 解得:1232k b ⎧=⎪⎨⎪=⎩, ∴函数y =k 1x +b 的解析式为:y=23x+2; (2)如图,作点B 关于x 轴对称的点B ',连接B 'C ,交x 轴于点P ,此时PB+PC 最小,在y=23x+2中,令x=0,则y=2, ∴B(0,2),则B '(0,﹣2),设直线B 'C 的解析式为y =k 2x ﹣2,将C (3,4)代入得:4=3k 2﹣2,解得:k 2=2,∴直线B 'C 的解析式为y =2x ﹣2,令y=0,由0=2x ﹣2得:x=1,∴点P 坐标为(1,0);(3)根据题意,OA=3,OB=2,分两种情况:①当∠DAB=90°时,DA=AB ,过点D作DM⊥x轴于E,∵∠DAM+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠DMA=∠AOB=90°,DA=AB,∴△DAM≌△ABO(AAS),∴DM=OA=3,MA=OB=2,∴D(﹣5,3);②当∠D'BA=90°时,D'B=AB,过D'作D'N⊥y轴于N,同理可证△D'BN≌△BAO(AAS),∴BN=OA=3,D'N=OB=2,∴D'(﹣2,5),故点D的坐标为(﹣5,3)或(﹣2,5).【点睛】本题是一次函数的综合题,主要考查待定系数法求一次函数的解析式、同角的余角相等、全等三角形的判定与性质、一次函数与几何图形及最短路径相关问题、解二元一次方程组等知识,熟练掌握一次函数的相关知识,添加辅助线构造全等三角形和利用分类讨论的数学思想是解答的关键.2.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.【答案】(1)见解析;(2)见解析;(3)DE=BE﹣AD【分析】(1)由题意易得∠DAC+∠ACD=90°,则∠DAC=∠BCE,进而可证△ADC≌△CEB,然后根据全等三角形的性质可求解;(2)由题意易得∠CEB=∠ADC=90°,则可求∠CAD=∠BCE,进而可证△CAD≌△BCE,然后根据全等三角形的性质可求解;(3)根据题意可证△CAD≌△BCE,然后根据全等三角形的性质可求解.【详解】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB ,ADC CEBDAC ECB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴CD =BE ,AD =CE ,∴DE =CE+CD =AD+BE ;(2)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD =90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ,∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=BE﹣AD.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,熟练掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.3.课间,小明拿着老师的等腰三角板玩,不小心掉在两墙之间,如图所示:(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)【答案】(1)见详解;(2)砌墙砖块的厚度a为5cm.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)利用(1)中全等三角形的性质进行解答.【详解】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中ADC CEBDAC BCE AC BC∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC+CE=BE+AD=7a=35,∴a=5,答:砌墙砖块的厚度a为5cm.【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.4.已知,A(-1,0).(1)如图1,B(0,2),以B点为直角顶点在第二象限作等腰直角△ABC.①求C点的坐标;②在坐标平面内是否存在一点P (不与点C 重合),使△PAB 与△ABC 全等? 若存在,直接写出P 点坐标; 若不存在,请说明理由;(2)如图2,点E 为y 轴正半轴上一动点,以E 为直角顶点作等腰直角△AEM ,设M (a ,b ),求a-b 的值.【答案】(1)①()2,3C -;②存在,()2,1P 或()1,1-或()3,1-;(2)1.【分析】(1)作CD ⊥y 轴于D ,证△CEB ≌△BOA ,推出CE=OB=2,BE=AO=1,即可得出答案;(2)分为三种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;(3)作MF ⊥y 轴于F ,证△EFM ≌△AOE ,求出EF ,即可得出答案.【详解】(1)①作CE ⊥y 轴于E ,如图1,∵A (-1,0),B (0,2),∴OA=1,OB=2,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°,∠CBE+∠ABO=90°, ∴∠ECB=∠ABO ,在△CBE 和△BAO 中ECB ABO CEB AOB BC AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△CBE ≌△BAO ,∴CE=BO=2,BE=AO=1,即OE=1+2=3,∴C (-2,3).②存在一点P ,使PAB △与ABC 全等,分为三种情况:①如图2,过P 作PE x ⊥轴于E ,则90PAB AOB PEA ∠=∠=∠=,90EPA PAE ∴∠+∠=,90PAE BAO ∠+∠=,EPA BAO ∴∠=∠,在PEA 和AOB 中EPA BAO PEA AOB PA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,PEA ∴≌AOB ,1PE AO ∴==,2EA BO ==,123OE ∴=+=,即P 的坐标是()3,1-;②如图3,过C 作CM x ⊥轴于M ,过P 作PE x ⊥轴于E ,则90CMA PEA ∠=∠=, CBA ≌PBA ,45PAB CAB ∴∠=∠=,AC AP =,90CAP ∴∠=,90MCA CAM ∴∠+∠=,90CAM PAE ∠+∠=, MCA PAE ∴∠=∠,在CMA 和AEP △中,CMA PEA AC AP ⎪∠=∠⎨⎪=⎩,CMA ∴≌AEP △,PE AM ∴=,CM AE =,()2,3C -,()1,0A -,211PE ∴=-=,0312OE AE A =-=-=,即P 的坐标是()2,1;③如图4,过P 作PE x ⊥轴于E ,CBA ≌PAB △,AB AP =∴,90CBA BAP ∠=∠=,则90AEP AOB ∠=∠=,90BAO PAE ∴∠+∠=,90PAE APE ∠+∠=,BAO APE ∴∠=∠,在AOB 和PEA 中,AOB PEA AB AP ⎪∠=∠⎨⎪=⎩,AOB ∴≌PEA ,1PE AO ∴==,2AE OB ==,0211E AE AO ∴=-=-=,即P 的坐标是()1,1-,综合上述:符合条件的P 的坐标是()3,1-或()1,1-或()2,1.(2)过M 作MF y ⊥轴于F ,得到下图5∵(),M a b∴,MF a FO b ==,由上图得:90AEM EFM AOE ∠=∠=∠=,90AEO MEF ∠+∠=,90MEF EMF ∠+∠=,AEO EMF ∴∠=∠,在AOE △和EMF △中AOE EFM AEO EMF AE EM ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEO ∴≌()EMF AAS ,1EF AO ∴==,MF OE =,MN x ⊥轴,MF y ⊥轴,90MFO FON MNO ∴∠=∠=∠=,∴四边形FONM 是矩形,MN OF ∴=,1a b MF OF EO OF EF OA -=-=-===.【点睛】本题考查全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.5.公路上,A ,B 两站相距25千米,C 、D 为两所学校,DA AB ⊥于点A ,CB AB ⊥于点B ,如图,已知15DA =千米,现在要在公路AB 上建一报亭H ,使得C 、D 两所学校到H 的距离相等,且90DHC ∠=︒,问:H 应建在距离A 站多远处?学校C 到公路的距离是多少千米?【答案】H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【分析】先根据垂直的定义可得90A B ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得D BHC ∠=∠,然后根据三角形全等的判定定理与性质可得,15AH BC DA HB ===千米,最后根据线段的和差可得.【详解】由题意得:DH HC =,25AB =千米,,DA AB CB AB ⊥⊥,90A B ∴∠=∠=︒,90D AHD ∠∴∠+=︒,90DHC ∠=︒,18090BH D HD C C H A ∴∠+∠=︒-∠=︒,D BHC ∴∠=∠,在ADH 和BHC △中,A B D BHC DH HC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADH BHC AAS ∴≅,,AH BC DA HB ∴==,15DA =千米,25AB =千米,15HB ∴=千米,10BC AH AB HB ∴==-=千米,答:H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【点睛】本题考查了垂直的定义、直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.6.如图所示,在ABC ∆和DBC ∆中,∠ACB=∠DBC=90°,点E 是BC 的中点,EF ⊥AB ,垂足为F ,且AB=DE .(1)求证:BC=BD;(2)若BD=10厘米,求AC的长.【答案】(1)证明见解析;(2)5厘米【分析】(1)由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC;(2)由(1)可知△ABC≌△EDB,根据全等三角形的对应边相等,得到AC=BE,由E是BC的中点,得到BE=12BC=12BD=5厘米.【详解】解:(1)∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB,在△ABC和△EDB中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ;(2)∵△ABC ≌△EDB ,∴AC=BE ,∵E 是BC 的中点,BD=10厘米,∴BE=12BC =12BD =5厘米. 【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.7.综合与实践特例研究:将矩形ABCD 和Rt CEF 按如图1放置,已知90,,,FCE AD CD CE CF CF CD ∠=︒==>,连接',BF DE .()1如图1,当点D 在CF 上时,线段BF 与DE 之间的数量关系是__ ;直线BF 与直线DE 之间的位置关系是_ ;拓广探索:()2图2是由图1中的矩形ABCD 绕点C 顺时针旋转一定角度得到的,请探索线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由.【答案】(1),BF DE BF DE =⊥;(2),BF DE BF DE =⊥,理由见解析【分析】()1,BF DE BF DE =⊥,延长ED 交B F 于点G 先证△FBC ≌△EDC (SAS ),可知,BF DE CED CFB =∠=∠,由∠DCE=90º,可得∠DEC+∠CDE=90º,可推出∠FDG+∠GFD=90º即可,()2先下结论,,BF DE BF DE =⊥,再证明,证法与(1)类似,延长ED 交CF 于点,M 交FB 于点N .由四边形ABCD 为矩形且AD=CD 可得CD CB =,()DCE BCF SAS ≅可推出,BF DE CED CFB =∠=∠.由90,FCE ∠=︒知90CME CED ∠+∠=︒.由,CME FMN ∠=∠可用等量代换得90,FMN CFB ∠+∠=︒由三角形内角和得90,FNE ∠=︒即可.【详解】解:()1,BF DE BF DE =⊥,延长ED交B F于点G,∵四边形ABCD为矩形,且AD=DC,∴BC=CD,∴∠=∠=90º,BC CEF D由旋转的FC=EC,∴△FBC≌△EDC(SAS),BF DE CED CFB=∠=∠,,∵∠DCE=90º,∴∠DEC+∠CDE=90º,∴∠FDG+∠GFD=90º∠FGD=90º,()2,=⊥,BF DE BF DE理由如下:M交FB于点N.如答图,延长ED交CF于点,,90FCE ∠=︒,四边形ABCD 为矩形,BCD FCE ∴∠=∠,FCB FCD ECD FCD ∠+∠=∠+∠,FCB ECD ∴∠=∠,AD CD =,∴矩形ABCD 为正方形.CD CB ∴=,在DCE 和BCF △中,,,CD CB ECD FCB CE CF =⎧⎪∠=∠⎨⎪=⎩,()DCE BCF SAS ∴≅.,BF DE CED CFB ∴=∠=∠.90,FCE ∠=︒90CME CED ∴∠+∠=︒.,CME FMN ∠=∠90,FMN CFB ∴∠+∠=︒90,FNE ∴∠=︒BF DE ∴⊥.【点睛】本题考查旋转中两线段的数量与位置关系问题,关键是把两线段置于两个三角形中利用全等解决问题,会利用旋转找全等条件,会计算角的和差,和证垂直的方法. 8.已知:在ABC 中,∠BAC =90°,AB =CA ,直线m 经过点A ,BD ⊥直线m 于点D ,CE ⊥直线m 于点E .求证:BDA AEC ≅△△;【答案】证明见解析.【分析】先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得BAD ACE =∠∠,然后根据三角形全等的判定定理即可得证.【详解】,BD m CE m ⊥⊥,90ADB CEA ∴∠=∠=︒,90ACE CAE ∴∠+∠=︒,90BAC ∠=︒,18090BAD CAE BAC ∴∠+∠=︒-∠=︒,BAD ACE ∴∠=∠,在BDA 和AEC 中,ADB CEA BAD ACE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDA AEC AAS ∴≅.【点睛】本题考查了垂直的定义、直角三角形的性质、三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.9.(提出问题)如图1,在直角ABC 中,∠BAC =90°,点A 正好落在直线l 上,则∠1、∠2的关系为(探究问题)如图2,在直角ABC 中,∠BAC =90°,AB =AC ,点A 正好落在直线l 上,分别作BD ⊥l 于点D ,CE ⊥l 于点E ,试探究线段BD 、CE 、DE 之间的数量关系,并说明理由.(解决问题)如图3,在ABC 中,∠CAB 、∠CBA 均为锐角,点A 、B 正好落在直线l 上,分别以A 、B 为直角顶点,向ABC 外作等腰直角三角形ACE 和等腰直角三角形BCF ,分别过点E 、F 作直线l 的垂线,垂足为M 、N .①试探究线段EM 、AB 、FN 之间的数量关系,并说明理由;②若AC =3,BC =4,五边形EMNFC 面积的最大值为【答案】提出问题:1290∠+∠=︒;探究问题:BD CE DE +=,理由见解析;解决问题:①EM FN AB +=,理由见解析;②492. 【分析】 提出问题:根据平角的定义、角的和差即可得;探究问题:先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得2ABD ∠=∠,然后根据三角形全等的判定定理与性质可得,BD AE AD CE ==,最后根据线段的和差即可得;解决问题:①如图(见解析),同探究问题的方法可得,EM AD FN BD ==,再根据线段的和差即可得;②如图(见解析),同探究问题的方法可得,ACD EAM BCD FBN ≅≅,再根据三角形全等的性质可得,ACD EAM BCD FBN S S S S ==,然后利用三角形的面积公式将五边形EMNFC 面积表示出来,由此即可得出答案.【详解】提出问题:12180,90BAC BAC ∠+∠+∠=︒∠=︒,2190∴∠+∠=︒,故答案为:1290∠+∠=︒;探究问题:BD CE DE +=,理由如下:,BD l CE l ⊥⊥,90ADB CEA ∴∠=∠=︒,190ABD ∴∠+∠=︒,由提出问题可知,1290∠+∠=︒,2ABD ∴∠=∠,在ABD △和CAE 中,2ADB CEA ABD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴≅,,BD AE AD CE ∴==,DE AE AD BD CE ∴=+=+,即BD CE DE +=;解决问题:①EM FN AB +=,理由如下:同探究问题的方法可证:,EM AD FN BD ==,AB AD BD EM FN ∴=+=+,即EM FN AB +=;②如图,过点C 作CD l ⊥于点D ,同探究问题的方法可证:,ACD EAM BCD FBN ≅≅,,ACD EAM BCD FBN S S S S ∴==, ACE 和BCF △都是等腰直角三角形,且3,4AC BC ==,3,4AE AC BF BC ∴====, 191,8222ACE BCF S AC AE S BC BF ∴=⋅==⋅=, ∴五边形EMNFC 面积为EAM ACE ACD BCD BCF FBN S S S S S S +++++, 982ACD ACD BCD BCD S S S S =+++++, ()2522ACD BCD SS =++, 2522ABC S =+, 则当ABC 面积取得最大值时,五边形EMNFC 面积最大,设ABC的BC边上的高为h,则122ABCS BC h h=⋅=,在ABC中,CAB∠、CBA∠均为锐角,∴当90ACB∠=︒时,h取得最大值,最大值为3AC=,ABC∴面积的最大值为236ABCS=⨯=,则五边形EMNFC面积的最大值为2549 2622⨯+=,故答案为:492.【点睛】本题考查了垂直的定义、三角形全等的判定定理与性质、等腰直角三角形的定义等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.10.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.【答案】见解析【分析】根据题意易得Rt△ACE≌Rt△CBF,则有∠EAC=∠BCF,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt △ACE 和Rt △CBF 中,AC BC AE CF=⎧⎨=⎩, ∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.11.如图1,在△ABC 中,∠ACB =90°,AC =BC ,过C 在△ABC 外作直线MN ,AM ⊥MN 于点M ,BN ⊥MN 于点N .(1)求证:MN =AM +BN ;(2)如图2,若过点C 作直线MN 与线段AB 相交,AM ⊥MN 于点M ,BN ⊥MN 于点N (AM >BN ),(1)中的结论是否仍然成立?说明理由.【答案】(1)见解析;(2)不成立,理由见解析【分析】(1)根据垂直的定义得到∠AMC=∠CNB=90°,则∠MAC+∠ACM=90°,又∠ACB=90°,则∠ACM+∠NCB=90°,于是根据等量代换得到∠MAC=∠NCB ,根据“AAS ”可证明△ACM ≌△CBN ,根据全等的性质得到AM=CN ,CM=BN ,则MN=MC+CN=AM+BN .(2)根据已知条件能证得△ACM ≌△CBN ,利用全等的性质得到AM=CN ,CM=BN ,而MN=CN-CM=AM-BN .【详解】解:(1)∵AM ⊥MN 于点M ,BN ⊥MN 于点N ,∴∠AMC=∠CNB=90°,∴∠MAC+∠ACM=90°,∵∠ACB=90°,∴∠ACM+∠NCB=90°,∴∠MAC=∠NCB ,在△ACM 和△CBN 中,AMC CNB MAC NCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩\ ∴ACM ≌△CBN ,∴AM=CN ,CM=BN ,∴MN=MC+CN=AM+BN .(2)题(1)中的结论不成立,同题(1)证明可知:ACM ≌△CBN ,∴AM=CN ,CM=BN ,∴MN=CN-CM=AM-BN ,【点睛】本题主要考查的是全等三角形的性质与判断,正确的掌握全等三角形的性质与判断是解题的关键.12.在平面直角坐标系中,函数443y x =-+的图像分别交x 轴、y 轴于点A C 、,函数y ax b =+的图象分别交x 轴、y 轴于点,B C ,且4OC OB =,过点C 作射线//CR x 轴. (1)求直线BC 的解析式;(2)点P 自点C 沿射线CR 以每秒1个单位长度运动,同时点Q 自点A 沿线段AC 以每秒1个单位长度的速度向终点C 运动,其中一个点停止运动时,另一个点也停止运动,连接PQ .设POC ∆的面积为S ,点Q 的运动时间为t (秒),求S 与t 的函数关系式,并直接写出t 的取值范围;(3)在(2)的条件下,过点P 作//PF CB ,交x 轴于点F ,连接QF ,在P Q 、运动的过程中,是否存在t 值,使得45PFQ ︒∠=,若存在,求t 值:若不存在,请说明理由.【答案】(1)44y x =+;(2)()222055S t t t =-+<<;(3)存在,1511或257【分析】(1)利用待定系数法求出A ,C 两点坐标,再求出点B 坐标即可解决问题; (2)想办法用t 表示点Q 坐标,利用三角形面积公式计算即可;(3)分两种情形,通过辅助线构造等腰直角三角形,利用相似三角形解决问题.【详解】解:(1)函数443y x =-+的图象分别交x 轴、y 轴于点A ,C , (3,0)A ∴,(0,4)C ,3OA =,4OC =,4OC OB =,1OB =∴,(1,0)B ∴-,设直线BC 的解析式为y kx b =+,则有40b k b =⎧⎨-+=⎩, 解得44k b =⎧⎨=⎩, ∴直线BC 的解析式为44y x =+.(2)如图1中,由题意AQ PC t ==,易知3(35Q t -,4)5t ,2142(4)2(05)255S t t t t t ∴=-=-+<< (3)存在;情形①如图2中,取点(4,3)M ,连接CM ,BM ,作MG CR ⊥垂足为G 交OA 于K ,作QH OA ⊥垂足为H .4CG CO ==,90CGM COB ∠=∠=︒,1MG BO ==()CGM COB ASA ∴≅△△,GCM OCB ∴∠=∠,CB CM =,90BCM OCG ∴∠=∠=︒,BCM ∴∆的等腰直角三角形,1345∴∠=∠=︒,//PF BC ,2145∴∠=∠=︒,445∠=︒,24∴∠=∠,//FQ BN ∴,QFH MBK ∴∠=∠,90QHF MKB ∠=∠=︒,QHF MKB ∴△∽△, ∴QH FH MK BK =,∴433(1)5535t t t ---=, 1511t ∴=. 情形②如图3中,由2445∠=∠=︒,可知90MNF ∠=︒,由QHF BKM △∽△得到QH HF BK MK=, ∴43(4)5553t t t --=, 257t ∴=, 综上所述1511t或257. 【点睛】此题考查一次函数的应用,直角三角形的性质及全等三角形以及相似三角形的判定及性质,属于综合性较强的题目,对于此类动点型题目,首先要确定符合题意的条件下动点所在的位置,然后用时间t 表示出有关线段的长度,进而建立关于线段的关系式,学会添加常用辅助线,构造特殊三角形解决问题,难度较大.13.已知:如图,在平面直角坐标系中,点A (a ,0)、C (b ,c ),且a 、b 、c满足()2b 32c -++∣=0. (1)求点A 、C 的坐标;(2)在x 轴正半轴上有一点E ,使∠ECA =45°,求点E 的坐标;(3)如图2,若点F 、B 分别在x 轴正半轴和y 轴正半轴上,且OB=OF ,点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.【答案】(1)(-3,0);(3,-2);(2)(2,0);(3)证明见详解【分析】(1)根据题意,由算术平方根,绝对值和平方数的非负性,求出a 、b 、c 的值,即可得出点A 、C 的坐标;(2)通过辅助线作图,构造一线三垂直模型,证明ALG CKA S≌S ,求出点G 的坐标,由等面积法求出AE 长度即可求出点E 坐标;(3)作EO ⊥OP 交PG 的延长线于E ,连接EB 、EN 、PB ,只要证明四边形ENPB 是平行四边形即可.【详解】(1()2b 32c -++∣=0, 所以a=-3,b=3,c=-2,点A 坐标为(-3,0),点C 坐标为(3,-2),故答案为:(-3,0);(3,-2);(2)过点A 作AC 的垂线,交CE 的延长线于点G ,过点A 作x 轴的垂线KL ,过点C 作KL 的垂线于点K ,过点G 作KL 的垂线于点L ,过点G 作x 轴的垂线于M ,过点C作x 轴的垂线于N ,∵∠ECA =45°,AG ⊥AC ,∴∠CAG=90°,AG=AC ,△CAG 为等腰直角三角形,由一线三垂直模型可知,∠GAL=∠ACK ,在△ALG 和△CKA 中90GAL ACKAG A AC LG CKA ∠=∠∠=∠==︒⎧⎪⎨⎪⎩∴ALG CKA S ≌S ,∴AL=CK=AN=3+3=6,LG=AK=CN=2,∴GM=6,OM=3-2=1,∴点G 坐标为(-1,3),在Rt △ANC 中,AN=6,CN=2,由勾股定理得,由等面积法,得11()22AC AG AE GM CN ⨯⨯=⨯⨯+,∴11822AE ⨯⨯⨯, ∴AE=5,∴OE=AE-OA=5-3=2,故点E 坐标为(2,0),故答案为:(2,0);(3)如图,作EO ⊥OP 交PG 的延长线于E ,连接EB 、EN 、PB ,∵∠EOP=90°,∠EPO=45°,∴∠OEP=∠EPO=45°,∴EO=PO ,∵∠EOP=∠BOF=90°,∴∠EOB=∠POF ,在△EOB 和△POF 中,BO OF EOB POF OE OP =⎧⎪∠=∠⎨⎪=⎩∴△EOB ≌△POF ,∴EB=PF=PN ,∠1=∠OFP ,∵∠2+∠PMO=180°,∵∠MOF=∠MPF=90°,∴∠OMP+∠OFP=180°,∴∠2=∠OFP=∠1,∴EB ∥PN ,∵EB=PN ,∴四边形ENPB 是平行四边形,∴BG=GN ,即点G 是BN 的中点.【点睛】本题考查了算术平方根,绝对值和平方数的非负性,一线三垂直模型,等面积法求线段长度,三角形全等的判定和性质,平行四边形的判定和性质应用,熟练掌握图形的判定和性质是解题的关键.14.在平面直角坐标系中,已知点(),0A a 、()0,C b 满足2(2)0+=a(1)直接写出:a =____________,b =________.(2)点B 为x 轴正半轴上一点,如图1,BE AC ⊥于点E ,交y 轴于点D ,连接OE ,若OE 平分AEB ∠,求直线BE 的解析式.(3)在(2)的条件下,点M 为直线BE 上一动点,连OM ,将线段OM 绕点M 逆时针旋转90︒,如图2,点O 的对应点为N ,当点M 运动时,判断点N 的运动路线是什么图形,并说明理由.【答案】(1)2-,5-;(2)2y x 25=-;(3)点N 的运动路线是直线32077=--y x ,理由见解析【分析】(1)根据题意得到关于a 、b 的方程,求a 、b 即可;(2)如图1,过点O 作OF OE ⊥,交BE 于F ,分别证明EOC FOB ∆∆≌,AOC DOB ∆∆≌,得到OB OC =,OA OD =,确定点B 、D 坐标,利用待定系数法即可求解; (3)如图2,过点M 作MG x ⊥轴,垂足为G ,过点N 作⊥NH GM 交GM 的延长线于H ,证明NOM ∆为等腰直角三角形,得到=OG MH ,=GM NH ,设2,25⎛⎫- ⎪⎝⎭M m m ,则3,25--⎛⎫ ⎪⎝⎭H m m ,得到732,255⎛⎫--- ⎪⎝⎭N m m ,即752-=m x ,325--=m y ,消去m ,即可得到点N 运动轨迹.【详解】解:(1)由题意得a+2=0,b+5=0,解得a=2-,b=5-,故答案为:2-,5-;(2)如图1,过点O 作OF OE ⊥,交BE 于F ,∵BE AC ⊥,OE 平分AEB ∠,∴EOF ∆为等腰直角三角形,∴OE=OF ,∠BOF=∠COE=45°,∵BE AC ⊥于点E ,∴∠1+∠BAC=90°,∵∠2+∠BAC=90°,∴∠1=∠2,∴EOC FOB ∆∆≌,∴OB OC =,∵∠1=∠2, ∠AOC=∠DOB=90°,∴AOC DOB ∆∆≌,∴OA OD =,∵()2,0A -,()0,5C -,∴()0,2D -,()5,0B ,设直线BD 解析式为y kx b =+,∴250b k b =-⎧⎨+=⎩, ∴ 225b k =-⎧⎪⎨=⎪⎩, ∴直线BD ,即直线BE 的解析式为2y x 25=-;(3)由题意得,NOM ∆为等腰直角三角形如图2,过点M 作MG x ⊥轴,垂足为G ,过点N 作⊥NH GM 交GM 的延长线于H , ∵NOM ∆为等腰直角三角形,∴≌∆∆GOM HMN ,∴=OG MH ,=GM NH ,由(2)得直线BD 的解析式2y x 25=-, 设2,25⎛⎫- ⎪⎝⎭M m m ,则3,25--⎛⎫ ⎪⎝⎭H m m , ∴732,255⎛⎫--- ⎪⎝⎭N m m , 令752-=m x ,325--=m y , ∴32077=--y x , 即点N 的运动路线是直线32077=--y x .【点睛】本题为一次函数综合题,考查了三角形全等判定,等腰直角三角形性质,待定系数法等,综合性强,根据题意构造全等,理解函数图象是点的运动轨迹是解题的关键.15.如图,将Rt△ABC的斜边BC绕点B顺时针旋转90°得边BD,过点D作AB的垂线,交AB延长线于点E,求证:△EDB≌△ABC.【答案】见解析.【分析】先由旋转的性质得到BC=BD,∠DBC=90°=∠CAB,再运用“AAS”证得△EDB≌△ABC 即可.【详解】证明:∵BC绕点B顺时针旋转90°得边BD,∴BC=BD,∠DBC=90°=∠CAB,∴∠ABC+∠ACB=90°,∠ABC+∠DBE=90°,∴∠ACB=∠DBE,又∵∠CAB=∠DEB=90°,∴△EDB≌△ABC(AAS).【点睛】本题考查了全等三角形的判定和旋转的性质,根据旋转的性质得到判定全等三角形的条件是解答本题的关键.16.如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE 长.【答案】(1)见解析;(2)7【分析】(1)此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF了.【详解】解:(1)∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC,BE=AF.∴EF=EB+CF.(2)解:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC=3,BE=AF=10.∴EF=AF﹣CF=10﹣3=7.【点睛】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.17.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,(1)当直线MN绕点C旋转到图(1)的位置时,请你探究线段DE、AD、BE之间的数量关系并加以证明;(2)当直线MN绕点C旋转到图(2)的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.【答案】(1)DE=AD+BE,理由见详解;(2)发生变化,AD=BE+DE,理由见详解;(3)BE=AD+DE.【分析】(1)由题意易得∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠DCA+∠DAC=90°,则有∠DAC=∠ECB,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可求证;(2)由题意易得∠CDA=∠BEC=90°,∠DCA+∠CAD=90°,∠DCA+∠BCE=90°,则有∠DAC=∠ECB,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可求证;(3)由题意易得∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠EBC+∠BCE=90°,则有∠ACD=∠CBE,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可得解.【详解】解:(1)DE=AD+BE,理由如下:∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠DCA+∠DAC=90°,∴∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,CD=BE,DE=DC+CE∴DE=AD+BE;(2)发生变化,AD=BE+DE,理由如下:∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠CDA=∠BEC=90°,∠DCA+∠CAD=90°,∠DCA+∠BCE=90°,∴∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,CD=BE,CE=DC+DE∴AD=BE+DE;(3)BE=AD+DE,理由如下:同理(2)的方法可得△ADC≌△CEB,∴AD=CE,CE=AD,CD=EC+DE∴BE=AD+DE.【点睛】本题主要考查三角形全等的判定与性质,熟练掌握三角形全等的性质与判定是解题的关键.18.如图,在ABC 中∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)求证:ADC CEB △≌△;(2)若AD=2,BE=3,求ABC 的面积.【答案】(1)见解析;(2)132【分析】 (1)根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证出△ADC 和△CEB 全等即可;(2)由(1)可推出CD =BE ,AD =CE ,进而可得到AC=AB=△ABC 面积即可.【详解】解:(1)证明:∵∠ACB =90°,AD ⊥MN ,BE ⊥MN ,∴∠BEC =∠ACB =∠ADC =90°,∴∠ACE+∠BCE =90°,∠BCE+∠CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中ADC=BEC ACD=CBE AC=BC ⎧⎪⎨⎪⎩∠∠∠∠,∴△ADC ≌△CEB (AAS );(2)∵△ADC ≌△CEB∴BE =CD ,AD =CE ,AC=BC ,又AD=2,BE=3,∴∴△ABC 的面积为11322=, 故△ABC 的面积为132.【点睛】全等三角形的性质和判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、填空题19.一个等腰直角三角尺不小心掉到两墙之间(如图),已知90,ACB AC BC ∠=︒=,从三角尺的刻度可知20,AB cm AD =为三块砖的厚度,BE 为两块砖的厚度,小聪很快就知道了砌墙所用砖块的厚度(每块砖的厚度相等,两块砖间的缝隙忽略不计)为____________cm .【答案】13【分析】设砖块的厚度为xcm ,由题意可知:AD=3x ,BE=2x ,根据等腰直角三角形的性质和勾股定理求出AC ,利用AAS 即可证出△DAC ≌△ECB ,从而得出CD=BE=2xcm ,利用勾股定理列出方程即可求出x .【详解】解:设砖块的厚度为xcm ,由题意可知:AD=3xcm ,BE=2xcm∵90,ACB AC BC ∠=︒=,20AB cm =∴222AC BC AB +=解得AC BC ==由题意可知:∠ADC=∠CEB=90°∴∠DAC +∠ACD=90°,∠ECB +∠ACD=90°∴∠DAC=∠ECB∴△DAC ≌△ECB∴CD=BE=2xcm在Rt △ADC 中,222AD DC AC +=即()()(22232x x +=解得:x=13. 【点睛】此题考查的是等腰直角三角形的性质、勾股定理和全等三角形的判定及性质,掌握等腰直角三角形的性质、勾股定理和全等三角形的判定及性质是解题关键.20.如图,在平面直角坐标系中,A(0,5),B(2,0),点C是第一象限内的点,且△ABC 是以AB为直角边,满足AB=AC,则点C的坐标为________.【答案】(5,7)【分析】依题∠BAC=90°,AB=AC,画出C点位置,利用全等三角形的判定与性质,即可求得点C的坐标.【详解】解:如图:当∠BAC=90°,AB=AC时,过点C作CD⊥y轴于点D,在△OAB和△DCA中,AOB CDA OAB DCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△OAB ≌△DCA (AAS ),∴AD=OB=2,CD=OA=5,∴OD=OA+AD=7,∴点C 的坐标为(5,7);【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的性质,注意掌握数形结合思想的应用.21.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B . C 作过点A 的直线的垂线BD 、CE ,垂足分别为D 、 E ,若BD=4,CE=2,则DE=___.【答案】6【分析】先证明∠DBA=∠CAE ,从而根据AAS 定理证明△BDA ≌△AEC ,根据全等三角形的性质可得AD=CE=2,AE=BD=4,进而得到答案.【详解】解:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD ⊥DE ,∴∠BDA=90°,∴∠BAD+∠DBA=90°,∴∠DBA=∠CAE ,∵CE ⊥DE ,∴∠AEC=90°,在△BDA 和△AEC 中,ABD CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDA ≌△AEC (AAS ),∴AD=CE=2,AE=BD=4,∴DE=AD+AE=2+4=6;故答案为:6.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,关键是掌握全等三角形的判定定理与性质定理.22.如图,直线a 经过正方形ABCD 的顶点A ,已知BE a ⊥于点E ,DF a ⊥于点F .若3BE =,8DF =,则线段EF 的长为______.【答案】11【分析】根据题意易得△AEB ≌△DFA ,则有BE=AF ,DF=AE ,进而问题可得解.【详解】解:∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=90°,∵BE a ⊥,DF a ⊥,∴∠DFA=∠AEB=90°,∴∠FAD+∠ADF=90°,又∵∠FAD+∠BAE=90°,∴∠ADF=∠BAE ,∴△AEB ≌△DFA ,∵3BE =,8DF =,∴BE=AF=3,DF=AE=8,∴EF=AF+AE=3+8=11;故答案为11.【点睛】本题主要考查全等三角形的判定与性质及正方形的性质,熟练掌握全等三角形的判定与性质及正方形的性质是解题的关键.23.如图,AO⊥OM,OA=7,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P 点,当点B在射线OM上移动时,则PB的长度____________.【答案】7 2【分析】根据题意过点E作EN⊥BM,垂足为点N,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE并分析即可得出答案.【详解】解:如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,。
解直角三角形应用中考题课件
中考中解直角三角形的解题
03
技巧
掌握基本公式和定理
01 掌握锐角三角函数的定义和性质
了解正弦、余弦、正切等基本概念,熟悉其性质 和变化规律。
02 掌握解直角三角形的基本公式
如勾股定理、正弦、余弦、正切等公式,能够熟 练运用。
03 掌握特殊角的三角函数值
对于30°、45°、60°等特殊角的三角函数值应牢记 ,以便快速解题。
培养数学建模意识,学会将实际问题转化为数学问题,并运用数学知识进行解决。
THANKS
感谢观看
04
点分析
角度和边长的计算错误
总结词
在解直角三角形时,学生常常因为计 算错误而导致结果偏离正确答案。
详细描述
这可能是由于学生在进行三角函数计 算时,未能正确理解和运用三角函数 的概念,或者在计算过程中出现了简 单的算术错误。
忽视题目中的隐含条件
总结词
学生常常忽视题目中的隐含条件,导致解题思路出现偏差。
特点
解直角三角形通常涉及到三角函数的应用,通过已知条 件求解未知量。
解直角三角形在中考中的重要性
01
考查重点
解直角三角形是中考数学中的重要考点之一,主 要考查学生的数学应用能力和问题解决能力。
02
难度
解直角三角形题目难度较大,需要学生具备扎实 的基础知识和灵活的解题技巧。
解直角三角形的基本方法
01 三角函数法
灵活运用各种解题方法
分析法
通过对题目的深入分析, 找出已知条件和未知量之 间的关系,从而确定解题 方向。
综合法
综合运用所学公式和定理 ,推导出所需结论或所求 值。
代数法
在解直角三角形时,通过 代数运算来求解未知量。
九年级数学解直角三角形4
每年国家电网校园招聘的同学需通过国家电网有限公司人力资源招聘,按照网上申报流程报名。奕诚老师来告诉你,填写报名信息时你需要具备哪些招聘条件。。 国家电网人力资源招聘中国高等教育学生信息网 1、学历。 一般电气类专业会招聘一部分有专科学历考生;其它专业一般要求二本以上学历。 2、专业。 专业类型分为十三类:电气类、通信类、计算机类、财会类、机械动力类、土木建筑类、自动控制类、环化材料类、管理科学与工程类、人力资源类、经济学类、金融学类、法学类。 (ps:一部分单位会找少量的其它专业,具体请仔细阅读各个单位的招聘信息。) 3、年龄。 一般情况下:专科生不超过23周岁;本科生不超过25周岁;硕士研究生不超过28周岁;博士研究生成绩合格无挂科,以免影响毕业。 5、英语、计算机等级证书。(部分单位对英语、计算机等级证书无明确要求) 一般情况下要求:本科生要英语四级,计算机二级;研究生要英语六级,计算机三级; 6、学校就业推荐表(需加盖学校公章) 7、中国高等教育学生信息网《教育部学籍在线验证报告》。 备注:还需要填写学籍验证码(二者缺一不可) 8、其它各类获奖证书等。(获奖证书最好以国家级为佳)
九年级数学竞赛讲座解直角三角形附答案
【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB的长为.26思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( ) A.60° B.67.5° C.75° D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长.思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米) 思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD= .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 . 12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G . (1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响. (1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A 、D 、C 三点可看到塔顶端H .可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下: ①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A 、D 间距离,用m 表示;如果测D 、C 间距离,用n 表示;如果测角,用α、β、γ等表示.测角器高度不计). (2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
第04讲 解三角形(八大题型)2024高考数学一轮复习+PPT(新教材)
sin
cos
(2)由题意可知cos =
= sinsin,所以sin( − )sin = sinsincos,
即sincossin − cossinsin = sinsincos,
2 + 2 −2
2
− ⋅
2 + 2 −2
【解析】 − cos < 0,
在三角形中sin > 0,
所以由正弦定理可得2sin − 2sincos < 0
所以cos < 0,
所以sin − sincos < 0,
所以为钝角,
所以sin( + ) − sincos < 0,
所以sincos + cossin − sincos < 0,
∴△ 为等腰三角形或直角三角形.
故选:D.
)
题型三:判断三角形的形状
【对点训练4】(2023·全国·高三专题练习)在△ 中,角,,的对边分别为,,,且 − cos < 0,则△
形状为(
)
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰直角三角形
【答案】C
所以sincos < 0,
2024
高考一轮复习讲练测
第04讲 解三角形
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析
(1)掌握正弦定理、余弦定
理及其变形.
初中数学竞赛专题选讲 解三角形(含答案)
初中数学竞赛专题选讲(初三.16)解三角形一、内容提要1. 由三角形的已知元素,求出所有未知元素的过程叫做解三角形.2. 解直角三角形所根据的定理 (在Rt △ABC 中,∠C=Rt ∠). ① 边与边的关系: 勾股定理----――c 2=a 2+b 2. ② 角与角的关系:两个锐角互余----∠A+∠B=Rt ∠ ③ 边与角的关系:(锐角三角函数定义)SinA=c a , CosA=c b , tanA=b a , CotA=ab. ④ 互余的两个角的三角函数的关系:Sin(90-A)= CosA , Cos(90-A)= SinA , tan(90-A)= CotA, Cot(90-A)= tanA. ⑤;余弦、余切随着角度的增大而减小(即减函数).3. 解斜三角形所根据的定理 (在△ABC 中)① 正弦定理:SinCcSinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系:Sin(180-A)= sinA , Cos(180-A)= - cosA , tan(180-A)=-cotA , cotA(180-A)=-tanA. ④ S △ABC =21absinC=21bcsinA=21casinB.4. 与解三角形相关的概念:水平距离,垂直距离,仰角,俯角,坡角,坡度,象限角,方位角等. 二、例题例1. 已知:四边形ABCD 中,∠A =60,CB ⊥AB ,CD ⊥AD ,CB =2,CD =1.求:AC 的长.解:延长AD 和BC 相交于E ,则∠E =30.在Rt △ECD 中,∵sinE=CECD, ∴CE=30sin 1=1÷21=2. EB =4. 在Rt △EAB 中, ∵tanE=EBAB,∴AB=EBtan30。
2024九年级数学解直角三角形数学讲解线上教学
学讲解线上教学•直角三角形基本概念与性质•解直角三角形方法概述•三角函数在解直角三角形中应用•相似直角三角形与解直角三角形关系•复杂图形中解直角三角形技巧•线上教学特点与策略•总结回顾与拓展延伸目录01直角三角形基本概念与性质直角三角形定义及特点直角三角形定义有一个角为90度的三角形称为直角三角形。
直角三角形特点直角三角形具有两条直角边和一条斜边,其中斜边是最长的一边,对应直角。
勾股定理在直角三角形中,直角边的平方和等于斜边的平方,即$a^2 + b^2 = c^2$,其中$a$和$b$为直角边,$c$为斜边。
直角三角形边长比例关系对于某些特殊的直角三角形(如30°-60°-90°三角形或45°-45°-90°三角形),其边长之间存在一定的比例关系。
直角三角形角度和为180°在一个直角三角形中,三个内角的和总是等于180°。
直角三角形中的锐角直角三角形中除了一个直角外,还有两个锐角,这两个锐角的和为90°。
如上所述,直角三角形的两条直角边的平方和等于斜边的平方。
毕达哥拉斯定理(勾股定理)直角三角形斜边上的中线等于斜边的一半。
直角三角形的中线定理在直角三角形中,斜边上的高是两条直角边在斜边上的射影的乘积除以斜边长度。
直角三角形的射影定理如果两个直角三角形的对应角相等,则它们的对应边成比例,因此它们是相似的。
直角三角形的相似性质02解直角三角形方法概述若已知直角三角形的两条直角边,可利用勾股定理求出斜边长度。
勾股定理正切函数角度计算若已知直角三角形的一条直角边和斜边,可利用正切函数求出另一锐角的大小。
在求出边长后,可利用三角函数求出其他角度的大小。
030201已知两边求第三边和角度若已知直角三角形的一个锐角和斜边,可利用正弦定理求出另一直角边的长度。
正弦定理若已知直角三角形的一个锐角和一条直角边,可利用余弦定理求出斜边的长度。
2021年中考吉林省专用数学知识精讲第四章 第四节解直角三角形及其应用课件
解:(1)测角仪 (2)皮尺 计算过程:∵四边形BCDE是矩形, ∴DE=BC=a,BE=CD=b.
在Rt△ADE中,AE=ED·tan α=a·tan α, ∴AB=AE+EB=a·tan α+b.
考法2 方向角问题 (2015·吉林)如图,一艘海轮位于灯塔P的北偏东53°方向,距
相距35 m的C处,用高1.5 m的测角仪CD测得该塔顶端A的仰角∠EDA为36°. 求塔AB的高度(结果精确到1 m).(参考数据:sin 36°≈0.59, cos 36°≈0.81,tan 36°≈0.73)
【思路分析】设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出 AF,即可得出答案. 【规范解答】解:设AB与DE交于点F,如图所示.
【思路分析】(1)根据方向角的定义结合已知条件在图中画出点B,作 PC⊥AB于C,先解Rt△PAC,得出PC,再解Rt△PBC,得出PB; (2)由∠CBP=45°,PB的长,即可得解. 【规范解答】解: (1)作图如下.如图,作PC⊥AB于C.
,
解得x=4( 3 +1)≈10.93, 即PC≈10.93.∵10.93>10, ∴海轮继续向正东方向航行,没有触礁的危险.
5.(2019·吉林延边二模)在数学活动课上,九年级(1)班数学兴趣小组的 同学们要测量某公园人工湖亭子A与它正东方向的亭子B之间的距离,现测 得亭子A位于点P北偏西30°方向,亭子B位于点P北偏东42°方向,测得点 P与亭子A之间的距离为200米,求亭子A与亭子B之间的距离.(结果精确到 1米,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90,
∴AB=AC+BC=100+90 3 ≈100+155.7≈256(米), 答:亭子A与亭子B之间的距离约为256米.
九年级奥数培训解直角三角形-奥数精讲与测试
知识点、重点、难点直角三角形中角与角之间关系为两锐角互余;边与边之问的关系为勾股定理;边与角之间的关系则可由两锐角的正余弦、正余切公式给出。
三角形A BC 中,2sin sin sin a b cR A B C===,其中a 、b 、c 分别为 ∠A 、∠B 、∠C 所对的边,R 为△ABC 外接圆半径,称为三角形的正弦定理。
图中BD =c cos B ,DC = a -c cos B .所以2222b AC AD DC ==+22(sin )(cos )c B a c B =+- 222cos a c ac B =+-①同理可得 2222cos .a b c bc A =+- ②2222cos .c a b ab C =+-③上述三式称为三角形的余弦定理。
将①②③式变形可得222222cos ,cos ,22a c b b c a B A ac bc+-+-== 222cos .2a b c C ab+-=此三式用于已知三角形三边求三角形内角,而且容易验证:当三角形内角为钝角时,其余弦值小于零,这为判断钝角增加了一种新方法。
三角形的面积的另一个公式为:三角形面积等于两边及其夹角正弦的乘积的一半,即111sin sin sin .222ABC S ab C bc A ac B ∆=== 直角三角形的边角关系、三角形的正余弦定理,为解直角三角形和有关三角形边角的问题提供了多种方法。
例题精讲例1:如图,△ABC 中,∠C =90°,AB =10,AC =6,AD 是∠BAC 的平分线,求点B 到直线AD 的距离BH . 已知Rt △ABH 中AB =10,要求BH ,可求出∠BAH 的正弦值,而∠BAH =∠CAD ,因而可先 求出DC 的长。
解:作DE ⊥AB 于E ,有AE =AC =6,ED =CD .设DC =3k ,由三角形内角平分线性质有106BD DC =,则5.BD k =Rt △BDE 中,222,DE BE BD +=即222(3)(106)(5)k k +-=,得 1.k =2233,6335CD k AD ===+=,sin ,105BHDAC ∠==故2 5.BH =例2:如图,证明单位圆(半径为1)上的锐角三角形的三个角的余弦之和小于该三角形周长之半。
八年级上学期数学奥赛专题直角三角形的性质及判定(2)
直角三角形的性质及判定(2)一、知识要点1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形两直角边的平方和等于斜边的平方ABCa b c弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边2、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。
3、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 4、勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段二、知识运用典型例题例1、已知:在∆ABC 中,三条边长分别为a 、b 、c ,a =12-n ,b =2n ,c =12+n (n >1) 试说明:∠C=︒90。
例2、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
例3、梯子滑动问题:(1)一架长2.5m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m (如图),如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将向左滑动 米(2)如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)86例4、折叠问题:1.如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?2.如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积DCBAF E3.如图,∠B=90°,AB=BC=4,AD=2,CD=6 (1)△ACD 是什么三角形?为什么?(2)把△ACD 沿直线AC 向下翻折,CD 交AB 于点E ,若重叠部分面积为4,求D'E 的长。
北师大版九年级下册数学 4 解直角三角形
AD=4 3 ,解此直角三角形。
C
B
“斜而未倒”
AB=54.8m
BC=5.2m
你能求出塔偏离垂
直中心线有多少度
α
吗?
A
课堂小结
今天你有什么收获?
在遇到解直角三形的问题时,最好先画一个直角三角形 的草图,按题意标明哪些元素是已知的,哪些元素是未 知的。以得于分析解决问题 选取关系式时要尽量利用原始数据,以防止“累积错误” 解直角三角形的方法遵循“有斜用弦,无斜用切; 宁乘勿除,化斜为直”
作业
1、课本P101中1题和2题
2、预习下一节内容,要求了解什么是仰角和 俯角
补充作业:
3 、如图,根据图中已知数据,求 △ABC其余各 边的长,各角的度数和△ABC的面积.
A
4cm
450
B
300
C
结束寄语
下课了!
悟性的高低取决于有无悟“心”,其 实,人与人的差别就在于你是否去思考, 去发现.去总结
C
B
“斜而未倒”
AB=54.8m
BC=5.2m
你能求出塔偏离垂
直中心线有多少度
α
吗?
A
中卫市第四中学 祝学荣
自主学习
1、什么是解直角三角形? 2、一直角三角形有几个元素? 3、猜想并归纳解直角三角形已知条 件的类型。
知 识回 顾
(1)三边之间的关系: (2)锐角之间的关系:
a2+b2=c2(勾股定理);
Cos350≈0.82
B
c a
A bC
比一比
在四边形ABCD中,∠ A= 60°,AB⊥BC,AD⊥DC,
AB=20cm,CD=10cm,求AD,BC的长(保留根 号)?
人教版九年级数学上学期数学奥赛 解直角三角形
解直角三角形一、 竞赛知识要点利用直角三角形中的已知元素(至少一边)求得其余元素的过程叫做解直角三角形。
一般地,涉及到解直角三角形的问题有如下几类:1. 利用直角三角形的边角关系求解问题;2.构造直角三角形解题;3.解直角三角形与其他知识的综合;4.解直角三角形在实际中的应用。
二、 经典题型分析例1:已知电线杆AB 直立于地面,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成45°,60A ∠=°,CD=4m,BC=m,求电线杆的长。
【解题反思】例2:若直角三角形的两个∠A 和∠B 的正弦值是方程20x px q ++=的两个根。
(1) 那么实数p,q 应满足哪些条件?(2) 如果p ,q 的所有条件,那么方程20x px q ++=的两个根是否等于直角三角形两个锐角的正弦?请说明理由。
【解题反思】例3:如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成的角为30°,在教室地面的影长NM=,若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为( )米。
【解题反思】B C D FE三、 课堂拓展巩固1、如图在四边形ABCD 中,AB=4∠B=135°,∠C=90°求∠D 的度数。
2、如图,护城河CC ˊ处直角转弯,宽度保持为4米,从A 处往B 处,经过两座桥DD ′, EE ′设护城河是东西—南北方向,A 、B 在东西方向上相距64米,在南北方向上相距84米。
求A 到B 的最短路程。
3、如图,在梯形ABCD 中,AD ∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,则CE 的长为 。
四、竞赛实战演练 1、如图,∠AOB=30°,OP 平分∠AOB ,PC ∥OB,PD ⊥DB,如果PC=6,那么PD=( )2、如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射在B 点,若入射角为 α,AC ⊥CD,BD ⊥CD,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A DBC AD D ′ C C ′E E ′ B A BC D E A B O C P D A BD CE α。
九年级数学下册1_4解直角三角形专题讲座素材新版北师大版
例8、如图7所示,河对岸有一座铁塔AB,假设在河这边C、D处别离用测角仪器测得塔顶B的仰角为30°,60°。已知测角仪器高为1.5米,CD=20米,求铁塔的高。(精准到0.1米)。
解:设BG=x,在Rt△BGF中,∵cot∠BFG= ,∴FG=BG·cot∠BFG=x·cot60°= x,
在Rt△BGE中,EG=BG·cot∠BEG= x。
(2)假设∠ABC=α,∠ADC=β,求证:tanβ=2tanα。
(1)分析:由AD是BC边的中线,只知DC一条边长,仅此无法直接在Rt△ADC中求解AD。而在Rt△ABC中,由已知BC边和∠B能够先求出AC,从而使Rt△ADC可解。
解:在Rt△ABC中,∵BC=2BD=2 ,∠B=30°,
∴AC=BC ·tanB=2 ,
。
以上每一个边角关系式都可看做方程,解直角三角形的思路,确实是依照已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
二、解直角三角形的大体类型和方式
咱们明白,由直角三角形中已知的元素求出未知元素的进程叫作解直角三角形,而在直角三角形中,除直角之外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?若是已知两个锐角可否解直角三角形呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
A
第6讲 直角三角形
看不起欧氏几何,就好像是从国外回来看不起自己的故乡。
——H.G.弗德
知识方法扫描
有一个角是直角的三角形叫做直角三角形。
它的两个锐角互为余角;两直角边的平方和等于斜边的平方(即勾股定理,我们会在另外一讲专题讨论)。
关于直角三角形有如下两个重要的定理:
①直角三角形斜边上的中线等于斜边的一半;
②直角三角形中,如果有一个锐角是30º,那么它所对的直角边等于斜边的一半。
上述两个命题的逆命题也是成立的:
①如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;
②直角三角形中,若有一条直角边等于斜边的一半,则它所对的角等于30 º 判定两个直角三角形全等,除了一般的三角形全等的方法外,还有“斜边、直角边”的方法。
经典例题解析
例1.(2002年湖北省黄冈市初中数学竞赛试题)如图,已知Rt △ABC 中,∠C =90°,沿过点B 的一条直线BE 折叠这个三角形,使点C 落在AB 边上的点为D ,要使点D 恰为AB 的中点,问在图中还需添加什么条件?
(1)写出两个满足边的条件;
(2)写出两个满足角的条件;
(3)写出一个满足除过、角以外的其他条件。
解 要使D 为AB 的中点,可添加下列条件之一:
角的关系:
①∠A =∠DBE ; ②∠A =∠CBE ;
③∠DEA =∠DEB ; ④∠DEA =∠BEC ;
⑤∠A =30°; ⑥∠CBD =60°;
⑦∠CED =120°; ⑧∠AED =60°。
边的关系:
①AB =2BC ;②AC =3BC ;③2AC =3AB ; ④BE =AE 。
三角形的关系:△BEC ≌△AED 。
例2.(1995年广州,武汉,福州,西安,洛阳五市初中数学联赛试题)如图,D ,E 是等边△ABC 两边上的两个点,且AE=CD , 连结BE ,AD 交于点P ,过B 点作BQ ⊥AD 于Q ,
求证:BP :PQ=2。
证明 在△CAD 与△ABE 中,CA=AB ,
B C
B
A
∠C=∠EAB,CD=AE,
故△CAD≌△ABE。
于是∠CAD=∠ABE。
于是∠QPB=∠PAB+∠PBA=∠PAB+∠PAE=60º。
又BQ⊥AD,所以∠QBP=30º,于是PQ=1
2
BP,即BP:PQ=2。
例3.(1986年成都市初二数学竞赛试题)已知△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB于E,求证:BE=3AE。
证明因AB=AC,∠A=120°,故∠B=∠C=30°。
又D是BC的中点,故AD⊥BD。
在Rt△ADB中,AD=1
2 AB。
因DE⊥AB,∠ADE=90º-∠B AD=∠B=30°,
所以AE=1
2
AD 。
于是
BE=AB-AE=2AD-AE=4AE-AE=3AE。
例4.如图, 已知△ABC中, ∠B=30°, ∠C=15°, D是BC上一点,
∠CAD=90°, 求证:CD=2AB.
证明取DC中点M, 连结AM, 则AM=NC=MD,于是∠CAM=∠C,所以∠AMD=∠CAM+∠C= 2∠C=30°=∠B, 即AM=AB。
故CD=2AM=2AB.
例5.如图,ΔABC中,BD,CE是两条高,
F,G分别是BC,DE的中点,求证:FG⊥DE。
证明如图,连接FD,FE。
∵BD⊥AC, F为BC的中点,
∴DF=1
2 BC.
同理,EF=1
2
BC,∴DF=EF.
而G为DE的中点,∴FG⊥DE.
例6(1993年北京市初中数学竞赛试题)△ABC中,∠B=900,M为AB上一点,使AM=BC,N为BC上一点,使得CN=BM,连接AN,CM交于P点,试求∠APM的度数,并写出你的推理证明的过程。
解如图,过C作CD∥AB,且CD=AM,连接
DN,则四边形AMCD为平行四边形,有AD∥
AD=CM。
因AM=BC,故DC=BC,
2
3
B C 又∠DCN=∠B=900,CN=BM ,故Rt △DCN ≌Rt △CBM,
所以DN=CM. 从而有DN=AD ,
而且 ∠ADN=∠MQN= ∠MCB+∠QNC= ∠MCB+∠CMB =900,
故△AND 是等腰直角三角形,∠DAN=450.于是∠APM=∠DAN=450. 例7. (1998-1999学年度天津市初二数学竞赛试题)
如图所示.∠A=90°,AB=AC ,M 是AC 边的中点,
AD ⊥BM 交BC 于D ,交BM 于E .求证:
∠AMB=∠DMC .
分析 从图形观察∠AME 与∠DMC 所在的两个三角形△AME 与△DMC 显然不全等,但是这两个三角形中有其他相等元素:AM=MC .若能利用已知条件在现有的三角形中构造出新的对应相等的元素,形成全等三角形,这是理想不过的事.由于∠C=45°,∠A=90°,若作∠A 的平分线AG ,则在△AGM 中,
∠GAM=45°=∠C .结合求证中的∠AMB=∠DMC(这当然不能作为已知,但在分析中可以“当作已知”来考虑,以便寻找思路),我们可以断言△AGM“应该”与△CDM 全等!为此,只要在这两个三角形中求得一组边相等即可.图形及条件启发我们可考虑去证明△AGB ≌△CDA .
证明 作∠BAC 的平分线AG ,交BM 于G 。
在△AGB 与△CDA 中,因为AB=CA ,∠BAG=∠ACD=45°,
∠ABG=90°-∠AMB , ①
∠MAD=90°-∠EAB . ②
由于在Rt △MAB 中,AE ⊥BM ,所以∠AMB=∠EAB .由①,②,
∠ABG=∠MAD ,所以△AGB ≌△ADC(ASA),于是 AG=CD .
在△AMG 与△CMD 中,还有 AM=MC ,∠GAM=∠DCM=45°,所以 △AMG ≌△CMD ,从而 ∠AMB=∠DMC .
例8.(1999年武汉市初中选拔赛试题)如图,在RtΔABC 中,CD 是斜边AB 上的高,O ,O 1,O 2分别是ΔABC ,ΔACD ,ΔBCD 的角平分线的交点,求
证:(1)O 1O ⊥CO 2;(2)O 1O=CO 2。
证明 (1)由题设O,O 1都在∠A 的平分线上,
设该平分线交C O 2于E 。
因∠A=∠DCB,故∠EAC=∠O 2CB ,
于是∠EAC+∠ACE=∠O 2CB+∠ACE=90º,
故∠AEC=90º,O 1O ⊥CO 2。
(2)由于点O 1 ,O 2分别在∠ACD 和∠DCB
角的平分线上,故∠O 1 CO 2=45 º, 由(1)∠O 1EC=90º,有CE=E O 1 。
同理设O 2O 交C 于F ,则O 2F ⊥CF ,∠O O 2 E=45 º,有O 2 E =EO 。