小学奥数数论讲义 第十六讲 四大杯赛中的数论综合思想竞赛篇

合集下载

六年级奥数培训教材

六年级奥数培训教材

六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四那么混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题〔1〕第8讲较复杂的分数应用题〔2〕第9讲阶段复习与测试〔略〕第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习〔略〕第15讲测试〔略〕第16讲复杂的利润问题〔2〕第一讲 定义新运算在加.减.乘.除四那么运算之外,还有其它许多种法那么的运算。

在这一讲里,我们学习的新运算就是用“ #〞“*〞“Δ〞等多种符号按照一定的关系“临时〞规定的一种运算法那么进展的运算。

例1:如果A*B=3A+2B ,那么7*5的值是多少?例2:如果A#B 表示3B A + 照这样的规定,6#〔8#5〕的结果是多少?例3:规定YX XY Y X +=∆ 求2Δ10Δ10的值。

例4:设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1) 计算〔14 *10〕*6(2) 计算 〔58*43〕 *〔1 *21〕例5:如果任何数A 和B 有A ¤B=A ×B-〔A+B 〕求〔1〕10¤7〔2〕〔5¤3〕¤4〔3〕假设2¤X=1求X例6:设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞〔X ∞ 1/4〕的值是多少?例7:规定X*Y=XY Y AX +,且5*6=6*5那么〔3*2〕*〔1*10〕的值是多少?例8:▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇11 3211212112=+++=∇))((A 那么20218▽2021=?稳固练习1、2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规那么类推(1) 3▽2 〔2〕5▽3〔3〕1▽X=123,求X 的值2、1△4=1×2×3×4;5△3=5×6×7计算〔1〕〔4△2〕+〔5△3〕 〔2〕〔3△5〕÷〔4△4〕3、如果A*B=3A+2B,那么〔1〕7*5的值是多少?〔2〕〔4*5〕*6 〔3〕〔1*5〕*〔2*4〕4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求〔1〕{8,0.8}〔2〕{{1.9,1.901}1.19}5、N为自然数,规定F〔N〕=3N-2 例如F〔4〕=3×4-2=10试求:F〔1〕+F〔2〕+F〔3〕+F〔4〕+F〔5〕+……+F〔100〕的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?〔第四届小学生“迎春杯〞数学决赛试题〕7、假设“+、-、×、÷、=、〔〕〞的意义是通常情况,而式子中的“5”却相当于“4”。

第十六讲 四大杯赛中的数论综合思想强化篇

第十六讲 四大杯赛中的数论综合思想强化篇

第十六讲 四大杯赛中的数论综合思想强化篇
【例1】(2008年希望杯第六届六年级二试第4题) 一种三位数abc ______
与它的反序cba ______的和等于888,这样的三位数有______个。

【例2】(第六届华杯赛初赛试题第8题)
哥德巴赫猜想是数:“每个大于2的偶数都可以表示成两个质数之和”。

问:168是
哪两个两位数的质数之和,并且其中的一个的个位数字是1?
【例3】(2009年第七届走美初赛六年级第8题)
有一串数1,1,2,3,5,8,…,从第三个数起,每个数都是前两个数之和,在这串
数的前2009个数中,有______个是5的倍数。

【例4】(2006年第11届华杯赛初赛第12题)
将从1开始到103的连续奇数依次写成一个多位数:
A=13579111315171921…9799191193。

则数A 共有______位,数A 除以9的余数是______。

【例5】(2010迎春杯高年级组复赛第11题)
用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数。

那么,其中的四位完全平方数最小是______。

学而思小学奥数个精彩讲座总汇全

学而思小学奥数个精彩讲座总汇全

第1讲计算综合(一)繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:71147 18262 13581333416⨯+⨯-÷【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×.具体过程如下:原式=5919(3 5.22)19930.41.6910()52719950.5199519(6 5.22)950+-⨯÷+⨯-+=5191.3219930.440.40.59()519950.419950.5191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987-+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少【分析与解】方法一:1118x68114x112x7111+11148x62+214x1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25.方法二:有11131118821x4+==+++,所以18222133x4+==++;所以13x42+=,那么x=.5.求944,43,443,...,44 (43)个这10个数的和.【分析与解】方法一:944+43+443...44 (43)++个=1044(441)(4441)...(44...41)+-+-++-个=104444444...44 (49)++++-个=1094(999999...999...9)99⨯++++-个=1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++--个=914111.1009=49382715919⨯-个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=;再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=;再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=;再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=;再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=;再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=;再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=;再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4.所以,这10个数的和为91.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少【分析与解】因为每个端点均有三条线段通过,所以这6条线段的长度之和为:1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○=○=.符号“△”表示选择两数中较小数的运算,例如:△=△=.请计算:23155 (0.625)(0.4)33384 1235(0.3)( 2.25) 3104⨯+【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1【分析与解】因为1116124+=,所以12,14,16,112的和为l,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如.那么在所有这种数中。

五年级数学奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲(总87页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)2第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。

我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。

这样的解题方法,我们通常把它叫做“消去法”。

例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。

(1)买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元?例1学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。

数学竞赛中的数论问题

数学竞赛中的数论问题

数学竞赛中的数论问题 罗增儒引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数.这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=.就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越. ●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:(1)奇数与偶数(奇偶分析法、01法);(2)约数与倍数、素数与合数;(3)平方数;(4)整除;(5)同余;(6)不定方程;ϕ欧拉函数;(7)数论函数、[]x高斯函数、()n(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足 a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a =.一个功能:可以把对整数的研究转化为对非负整数的研究. 定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k ma b =.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.证明1 先证存在性.作序列,3.2,,0,,2,3,b b b b b b ---则a 必在上述序列的某两项之间,从而存在一个整数q ,使()1qb a q b ≤<+,即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,但12q q -为整数,故120q q -=,得12q q =,从而12r r =.注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ⎡⎤≤-<⎢⎥⎣⎦, 有 0a a b b b⎡⎤≤-<⎢⎥⎣⎦,记a r a b b⎡⎤=-⎢⎥⎣⎦,故存在,,0a a q r a b r b b b ⎡⎤⎡⎤==-≤<⎢⎥⎢⎥⎣⎦⎣⎦使()0a qb r r b =+≤<.证明3 只证存在性,作集合{}|,0M a bx x Z a bx =-∈-≥这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.再证r b <,若不然,r b ≥,记1r b r =+,有()()111a qb r qb b r b q r =+=++=++()11r a b q M =-+∈即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =.证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.任取||||d a d c a bqd A d B A B d b d b=-⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨⎩⎩, 任取||||d b d bd B d A B A d c d a bq c ⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨=+⎩⎩,得 A B =.有A 中元素的最大值B =中元素的最大值,即()(),,a b b c =.注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ⋅=.证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,有[],a b a q b=且[],a b b为整数,故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有[]()[],,,ab q a b a b a b =<. ①设()(),,ab b k a a b a b ==,可见k 是a 的倍数,同样()(),,ab ak b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k ma b =,有()[][],,,abm a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ⋅=.注 也可以由[]()(),1,,ab a b k q m ab a b a b q≤===,得(),q a b ≥,与(),q a b <矛盾.两步[](),,,ab q a b ab a b k ==可以交换吗?定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +.(2)由(1)有00ax by +|10a b a +=, 00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但a 不能被p 整除,(),a p p ≠,得(),1a p =.推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=.(8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(),1ma b =.同样,由(),1ma b =可得(),1m n a b =.定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而21q a q a ≤=,开方得q ≤定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个.2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =,即 c a .(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.(7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=,因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾. 注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,()12a c m q q -=+,得(mod )a c m ≡.(2)若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡. 证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡.(3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有,,a b mk k k均为整数,且a b mq k k k=+, 得mod a b m k k k ⎛⎫≡ ⎪⎝⎭. 定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()()nna b a b--.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性)证明1 先证明,正整数n 可分解为素数的乘积12m n p p p =. ①如果大于1的正整数n 为素数,命题已成立.当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有11n p a =,11a n <<.如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有11122n p a p p a ==,211a a n <<<.这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积12m n p p p =.下面证明分解式是唯一的.假设n 还有另一个分解式 12t n q q q =, ② 则有 1212m t p p p q q q =. ③因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有11p q =.把等式③两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=. ④但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.证明2 用第二数学归纳法证明12m n p p p =,12m p p p ≤≤≤.(1)当2n =,因为2为素数,命题成立.(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积//////1212//////1212, ,, ,s s s s t s s ta p p p p p pb p pp pp p ++++=≤≤≤=≤≤≤得 //////1212s s s t n p p p q q q ++=,适当调整/i p 的顺序,可得命题对于正整数n 成立.由数学归纳法,命题对一切大于1的正整数n 成立.下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式12m n p p p =,12m p p p ≤≤≤, 12t n q q q =,12t q q q ≤≤≤,得 1212m t p p p q q q =.有 112|t p q q q 且112|m q p p p ,这就存在,i j q p ,使1|i p q 且1|j q p ,但11,,,i j p q q p 均为为素数,所以11,i j p q q p ==,又 111i j p q q p p =≥=≥, 所以 11p q =.把等式两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=.但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积 ()()()12010101111222k kk k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()110101111kk k S n p p p pp p αα=++++++121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和. 画线示意50!中2的指数.35678912450!23571113171923293137414347ααααααααα=定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --.证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,222a pq r =+,20r p ≤<……()111p p p a pq r ---=+,10p r p -≤<由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r -均不为0,只能取1,2,,1p -.下面证明121,,,p r r r -各不相等.若不然,存在,,11t s t s p ≤<≤-,使,,,s s t t s t sa pq r ta pq r r r =+=+=相减 ()()s t s t a p q q -=-.应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由11t s p ≤<≤-可得02s t p p <-≤-<, 要素数p 整除()s t -是不可能的,得121,,,p r r r -各不相等.有()()1211211!p rr r p p -=-=-.再把上述1p -个等式相乘,有 ()11211!p p p a Mp rr r ---=+,即 ()()11!1!p p a Mp p --=+-, 其中M 是一个整数.亦即 ()()11!1p p a Mp ---=.由于p 是素数,不能整除()1!p -,所以素数p 整除11p a --,得证()11p p a--证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡. 只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1i p p C i p =-,故有()11111ppp p p p k k C kC k --+=++++()11mod pk k p ≡+≡+.(用了归纳假设) 这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a--.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.证明 用容斥原理.设{}1,2,,S n =,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k =),用i A 表示i A 中元素的个数,有 i inA p =,1212,,i j k i jkn n A A A A A p p p p p ==.易知,{}1,2,,S n =中与n 互素的正整数个数为12k A A A ,由容斥原理得()12111211k i i ji ki j kkijm k i j m kA A A S A A A A A A A A A ≤≤≤<≤≤<<≤=-+-++-∑∑∑()()1111211112121111*********.ki ki j k i j m k i i j i j mk ki ki j k i j m k i i j i j mk k n n nn n p p p p p p p p p n p p p p p p p p p n p p p ≤≤≤<≤≤<<≤≤≤≤<≤≤<<≤=-+-++-⎡⎤=-+-++-⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ 注 示意3n =的容斥原理.推论 对素数p 有()()11,p p p p p αααϕϕ-=-=-.定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c .证明 记(),d a b =.(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,,x x y y =⎧⎨=⎩,则00ax by c +=,由|,|d a d b , 有00|d ax by +,得证(),|a b c .(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足00ax by +(),a b =.两边乘以e ,得()()00a ex b ey c +=这表明方程有解00,.x ex y ey =⎧⎨=⎩定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ①证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有00ax by c +=,又方程的任意一个解(),x y 满足ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有00,x x y y t t Z b a--==∈- 得方程的任意一个整数解可以表示为 00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈.定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.第二讲 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k -=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”. 类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n .证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有2222122311121(1)(1)1k kn n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .证明 先证n 为偶数,若不然,由121n n a a a a n -=知,121,,,,n n a a a a -全为奇数,其和必为奇数,与其和为0(偶数),故n 必为偶数.(121,,,,n n a a a a -中至少有1个偶数)再证n 为4的倍数,若不然,由n 为偶数知,121,,,,n n a a a a -恰有一个为偶数,其余1n -个数全为奇数,奇数个奇数之和必为奇数,加上一个偶数,总和为奇数,与121,,,,n n a a a a -之和为0矛盾,所以,n 为4的倍数,4|n .(121,,,,n n a a a a -中至少有2个偶数)评析 要证4|n ,只须证121,,,,n n a a a a -中至少有2个偶数,分两步,第一步证至少有1个偶数,第二步证至少有2个偶数.例6 在数轴上给定两点1,在区间内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时. 与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法)1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-…另一方面 12233412()()()()n n a a a a a a a a ++…21231212()1n n n a a a a a a a -++===-…,得()11k-=-,故k 为奇数. 评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108. 解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得 ()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=.方法2 辗转相除法.883811015381207831261232823223229或23214221313823226110158381232232783812029232261q q q q r r r r ========或 ()()()()()8381,1015261,1015261,23229,23229,029=====. []()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由2144 180 108272 90 54336 30 27312 10 9 4 5 3得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 .解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =.例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?解 相当于求不定方程15276x y +=的整数解. 由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=, 从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得()132d q p =-, ④ 的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明()()131432214n n =+-+, 可见 ()214,1431n n ++=. 由此获得2个解法.证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++()71,143n n =++ ④ ()71,1n =+ ⑤1=.解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式()1110m m m m f n a n a n a n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数. 三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.。

三年级数学奥赛教材

三年级数学奥赛教材

三年级奥数完整讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举能力测试(一)第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律 (45)第17讲时间与日期……………第18讲推理……………能力测试(二) (63)第19讲循环………………第20讲最大和最小…………………………第21讲最短路线…………………………第22讲图形的分与合…………………第23讲格点与面积第24讲一笔画阶段测试(三)第25讲移多补少与求平均数第26讲上楼梯与植树第27讲简单的倍数问题第28讲年龄问题第29讲鸡兔同笼问题第30讲盈亏问题第31讲还原问题第32讲周长的计算第33讲等量代换第34讲一题多解能力测试(四)第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

学而思想奥数全能版目录

学而思想奥数全能版目录

第一专题:计算专题共34讲【强化篇17讲竞赛篇17讲】一、计算竞赛篇共17讲竞赛1-加减法巧算之凑整与组合思想之竞赛篇(第1讲)竞赛2-乘除法巧算之提取公因式与组合思想之竞赛篇(第2讲)竞赛3-四则混合巧算只综合技巧之竞赛篇(第3讲)竞赛4-定义新运算之速算与巧算之竞赛篇(第4讲)竞赛5-数列求和与公式技巧之竞赛篇(第5讲)竞赛6-多位计算与归纳思想之竞赛篇(第6讲)竞赛7-小数计算与换元思想之竞赛篇(第7讲)竞赛8-数表计算与代数公式应用之竞赛篇(第8讲)竞赛9-循环小数互化与错位相减技巧之竞赛篇(第9讲)竞赛10-分数(繁分数)计算综合与比例转化之竞赛篇(第10讲)竞赛11-比较与估算综合技巧之竞赛篇(第11讲)竞赛12-分数计算之拆分、裂项与通项归纳之竞赛篇(第12讲)竞赛13-分数计算之换元与缩放之竞赛篇(第13讲)竞赛14-定义新运算之复杂运算与抽象运算之竞赛篇(第14讲)竞赛15-四大杯赛中的计算综合思想之竞赛篇(第15讲)竞赛16-计算综合之复杂分数裂项计算综合之复杂整数裂项之竞赛篇(第16讲) 竞赛17-计算综合之复杂公式与复杂换元计算之竞赛篇(第17讲)二、计算强化篇共17讲第一讲加减法巧算之凑整与组合思想(第18讲)第二讲乘除法巧算之提取公因式与组合思想(第19讲)第三讲四则混合巧算只综合技巧(第20讲)第四讲定义新运算之速算与巧算(第21讲)第五讲数列求和与公式技巧(第22讲)第六讲多位计算与归纳思想(第23讲)第七讲小数计算与换元思想(第24讲)第八讲数表计算与代数公式应用(第25讲)第九讲循环小数互化与错位相减技巧(第26讲)第十讲分数(繁分数)计算综合与比例转化(第27讲)第十一讲比较与估算综合技巧(第28讲)第十二讲分数计算之拆分、裂项与通项归纳(第29讲)第十三讲分数计算之换元与缩放(第30讲)第十四讲定义新运算之复杂运算与抽象运算(第31讲)第十五讲四大杯赛中的计算综合思想(第32讲)第十六讲计算综合之复杂分数裂项与整数裂项(第33讲)第十七讲计算综合之复杂公式与复杂换元计算(第34讲)第二专题数论专题计算专题共38讲【强化篇19讲竞赛篇19讲】一、数论竞赛篇第一讲奇偶数的性质与应用之竞赛篇(第35讲)第二讲有趣余数之性质与周期之竞赛篇(第36讲)第三讲整数分拆之分类与计数之竞赛篇(第37讲)第四讲整数分拆之最值与应用之竞赛篇(第38讲)第五讲数的整除之性质与求法之竞赛篇(第39讲)第六讲数的整除之代数思想与运用之竞赛篇(第40讲)第七讲数的整除之四大判断法综合运用之竞赛篇(第41讲)第八讲质数、合数与两大约数定理之竞赛篇(第42讲)第九讲因数与倍数之最大公因数与最小公倍数之竞赛篇(第43讲)第十讲因数与倍数之综合应用之竞赛(第44讲)第十一讲完全平方数之竞赛篇(第45讲)第十二讲带余除法之竞赛篇(第46讲)第十三讲同余问题之竞赛篇(第47讲)第十四讲中国剩余定理之竞赛篇(第48讲)第十五讲进制与位值原理之竞赛篇(第49讲)第十六讲四大杯赛的数论综合思想之竞赛篇(第50讲)第十七讲数论综合之整除相关问题之竞赛篇(第51讲)第十八讲数论综合之余数相关问题之竞赛篇(第52讲)第十九讲数论在方程、计数、最值、行程等问题中的应用之竞赛篇(第53讲) 二、数论强化篇第一讲奇偶数的性质与应用(第54讲)第二讲有趣余数之性质与周期(第55讲)第三讲整数分拆之分类与计数(第56讲)第四讲整数分拆之最值与应用(第57讲)第五讲数的整除之性质与求法(第58讲)第六讲数的整除之代数思想与运用(第59讲)第七讲数的整除之四大判断法综合运用(第60讲)第八讲质数、合数与两大约数定理(第61讲)第九讲因数与倍数之最大公因数与最小公倍数(第62讲)第十讲因数与倍数之综合应用(第63讲)第十一讲完全平方数(第64讲)第十二讲带余除法(第65讲)第十三讲同余问题(第66讲)第十四讲中国剩余定理(第67讲)第十五讲进制与位值原理(第68讲)第十六讲四大杯赛中的数论综合思想(第69讲)第十七讲数论综合之整除相关问题(第70讲)第十八讲数论综合之余数相关问题(第71讲)第十九讲数论在方程、计数、最值、行程等问题中的应用之竞赛篇(第72讲) 第三专题行程专题计算专题共30讲【强化篇15讲竞赛篇15讲】一、行程竞赛篇第一讲基础行程之竞赛篇(第73讲)第二讲简单相遇、追及之竞赛篇(第74讲)第三讲复杂相遇、追及之竞赛篇(第75讲)第四讲猎狗追兔之竞赛篇(第76讲)第五讲火车过桥之竞赛篇(第77讲)第六讲多次相遇之竞赛篇(第78讲)第七讲多人行程之竞赛篇(第79讲)第八讲流水行船之竞赛篇(第80讲)第九讲简单环形之竞赛篇(第81讲) 第十讲复杂环形之竞赛篇(第82讲) 第十一讲接送问题之竞赛篇(第83讲) 第十二讲间隔发车之竞赛篇(第84讲) 第十三讲电梯问题之竞赛篇(第85讲) 第十四讲变速变道之竞赛篇(第86讲) 第十五讲综合行程之竞赛篇(第87讲) 二、行程强化篇第一讲基础行程(第88讲)第二讲简单相遇、追及(第89讲)第三讲复杂相遇、追及(第90讲)第四讲猎狗追兔(第91讲)第五讲火车过桥(第92讲)第六讲多次相遇(第93讲)第七讲多次行程(第94讲)第八讲流水行船(第95讲)第九讲简单环形(第96讲)第十讲复杂环形(第97讲)第十一讲接送问题(第98讲)第十二讲间隔发车(第99讲)第十三讲电梯问题(第100讲)第十四讲变速变道(第101讲)第十五讲综合行程(第102讲)第四专题应用题专题共16讲一应用题1和差倍问题(第103讲)盈亏问题(第104讲)二应用题2还原问题(第105讲)鸡兔同笼(第106讲)三应用题3年龄问题(第107讲)周期问题(第108讲)四应用题4平均数问题(第109讲)统筹与规划问题(第110讲)五应用题5分数百分数问题(第111讲)牛吃草(第112讲)六应用题6比和比例(第113讲)工程问题(第114讲)七应用题7经济问题(第115讲)浓度问题(第116讲)八应用题8方程解复杂应用题(第117讲)应用题综合(第118讲)第五专题:几何专题计算专题共4讲【5级2讲6级2讲】一、几何专题能力进阶五级:五大模型及常用思维与方法第一讲五大模型(第119讲)第二讲常用思维与方法(第120讲)二、几何专题能力进阶六级:曲线型与立体几何第一讲曲线型(第121讲)第二讲立体几何(第122讲)。

六年级奥数讲义-数论综合(含答案)

六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。

四年级奥数数论专题讲义

四年级奥数数论专题讲义

一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”.在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制.比如二进制,八进制,十六进制等.2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”.因此,二进制中只用两个数字0和1.二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20.二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一.注意:对于任意自然数n,我们有n 0=1.3.进制:一般地,对于k 进位制,每个数是由0,1,2,,共k 个数码组成,且“逢k 进一”.进位制计数单位是,,,.如二进位制的计数单位是,,,,八进位制的计数单位是,,,.4.进位制数可以写成不同计数单位的数之和的形式十进制表示形式:;二进制表示形式:;为了区别各进位制中的数,在给出数的右下方写上,表示是进位制的数如:,,,分别表示八进位制,二进位制,十二进位制中的数.5.进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的.二、进制间的转换:一般地,十进制整数化为进制数的方法是:除以取余数,一直除到被除数小于为止,余数由下到上按从左到右顺序排列即为进制数.反过来,进制数化为十进制数的一般方法是:首先将进制数按的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:进位制知识框架k 1k -()1k k >()0k 1k 2k 021222 081828 k 1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+ ()1010101010n n n n N a a a --=+++ 1010222n n n n N a a a --=+++ k k 8352()21010()123145()k k k k k k k k【例 1】把9865转化成二进制、五进制、八进制,看看谁是最细心的.【巩固】;【例 2】将二进制数化为十进制数为多少?【巩固】同学们请将化为十进制数,看谁算的又快又准.例题精讲852567(((===)))2(11010.11)258(11010101),(4203),(7236)【例 3】二进制数10101011110011010101101转化为8进制数是多少?【巩固】将二进制数11101001.1011转换为十六进制数.【例 4】①________;②;③________;【巩固】①在八进制中,________;②在九进制中,________.【例 5】若,则________.【巩固】在几进制中有?222(101)(1011)(11011)⨯-=2222(11000111(10101(11(-÷=))))88888(63121)(1247)(16034)(26531)(1744)----=1234456322--=1443831237120117705766+--+=(1030)140n =n =413100⨯=【例 6】有个吝啬的老财主,总是不想付钱给长工.这一次,拖了一个月的工钱,还是不想付.可是不付又说不过去,便故作大方地拿出一条金链,共有7环.对长工说:“我不是要拖欠工资,只是想连这一个月加上再做半年的工资,都以这根金链来付.”他望向吃惊的长工,心中很是得意,“本人说话,从不食言,可以请大老爷作证.”大老爷可是说一不二的人,谁请他作证,他当作一种荣耀,总是分文不取,并会以命相拼也要兑现的.这越发让长工不敢相信,要知道,这在以往,这样的金链中的一环三个月的工钱也不止.老财主越发得意,终于拿出杀手锏:“不过,我请大老爷作证的时候,提到一项附加条件,就是这样的金链实在不能都把它断开,请你只能打开一环,以后按月来取才行!”当长工明白了老财主的要求后,不仅不为难,反倒爽快地答应了,而且,从第一个月到第七个月,顺利地拿到了这条金链,你知道怎么断开这条金链吗?【巩固】现有1克,2克,4克,8克,16克的砝码各1枚,在天平上能称多少种不同重量的物体?【例 7】如果只许在天平的一边放砝码,要称量100g以内的各种整数克数,至少需要多少个砝码?【巩固】如果允许在天平的两边放砝码,要称量100g以内的各种整数克数,至少需要多少个砝码?【例 8】有10箱钢珠,每个钢珠重10克,每箱600个.如果这10箱钢珠中有1箱次品,次品钢珠每个重9克,那么,要找出这箱次品最少要称几次?【巩固】一些零件箱,每个零件10g ,每箱600个,共有10箱,结果发现,混进了几箱次品进去,每个次品零件9克,但从外观上看不出来,聪明的你能只称量一次就能把所有的次品零件的箱子都找出来吗?【例 9】已知正整数的八进制表示为,那么在十进制下,除以7的余数与除以9的余数之和是多少?【巩固】在8进制中,一个多位数的数字和为十进制中的68,求除以7的余数为多少?N 8(12345654321)N N N【例 10】在美洲的一个小镇中,对于200以下的数字读法都是采取20进制的.如果十进制中的147在20进制中的读音是“seyth ha seyth ugens ”,而十进制中的49在20进制中的读音是“naw ha dew ugens ”,那么20进制中读音是“dew ha naw ugens ”的数指的是十进制中的数____________.【巩固】一个自然数,在3进制中的数字和是2007,它在9进制中的数字和最小是 ,最大是 .【随练1】某数在三进制中为12120120110110121121,则将其改写为九进制,其从左向右数第位数字是几?【随练2】算式是几进制数的乘法?【随练3】茶叶店老板要求员工提高服务质量,开展“零等待”活动,当顾客要买茶叶的时候,看谁最快满足顾客的需要则为优秀.结果有一个员工总是第一名,而且顾客到他那儿不需要等待.原来他把茶叶先称出若干包来,放在柜台上,顾客告诉他重量,他就拿出相应重量的茶叶.别的伙计看在眼课堂检测115342543214⨯=里,立即学习,可是柜台上却放不下许多包.奇怪的是,最佳员工的柜台上的茶叶包裹却不是很多.于是有员工去取经,发现最佳员工准备的茶叶数量是:1,2,4,8,16,32,64,128,256.你能解释一下其中的道理么?这些重量可以应付的顾客需要的最高重量是多少?【随练4】古代英国的一位商人有一个磅的砝码,由于跌落在地碎成块,后来,称得每块碎片的重量都是整磅数,而且可以用这块来称从至磅之间的任意整数磅的重物(砝码只能放在天平的一边).那么这块砝码碎片各重 , , ,【作业1】计算;【作业2】在几进制中有?【作业3】向电脑输入汉字,每个页面最多可输入1677个五号字.现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字.每次复制和15441154家庭作业4710(3021)(605)()+=12512516324⨯=粘贴为1次操作,要使整个页面都排满五号字,至少需要操作 次.【作业4】成语“愚公移山”比喻做事有毅力,不怕困难.假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推.愚公和它的子孙每人一生能搬运100吨石头.如果愚公是第1代,那么到了第代,这座大山可以搬完.(已知10个2连乘之积等于1024)【作业5】10个砝码,每个砝码重量都是整数克,无论怎样放都不能使天平平衡,这堆砝码总重量最少为_________克.【作业6】计算机存储容量的基本单位是字节,用B 表示,一般用KB 、MB 、GB 作为存储容量的单位,它们之间的关系是,,.小明新买了一个MP3播放器,存储容量为,它相当于_____.1012KB B =1012MB KB =1012GB MB =256MB B一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

小学奥数中的数论问题

小学奥数中的数论问题

小学奥数中的数论问题在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。

一、小学数论究包括的主要内容我们小学所学习到的数论内容主要包含以下几类:整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容)余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小)(2)同余的性质和运用奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理一、两个自然数分别除以它们的最大公约数,所得的商互质。

二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

(2)约数个数决定法则(小升初常考内容)整数及分数的分解与分拆:这一部分在难度较高竞赛中常出现,属于较难的题型。

二、数论部分在考试题型中的地位在整个数学领域,数论被当之无愧的誉为“数学皇后”。

翻开任何一本数学辅导书,数论的题型都占据了显著的位置。

在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。

出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。

三、孩子在学习数论部分常常会遇到的问题数学课本上的数论简单,竞赛和小升初考试的数论不简单。

有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数?这道题就经常在孩子们平时的作业里和单元测试里出现。

可是小升初考题里则是:例2:求3600有多少个约数?很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划算。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

高斯小学奥数六年级上册含答案第16讲数论综合提高二

高斯小学奥数六年级上册含答案第16讲数论综合提高二

第十六讲数论综合提高二本讲知识点汇总:一、约数、倍数1.基本概念(1)如果a能被b整除(也就是b|a),贝U b是a的约数(因数),a是b的倍数;(2 )约数具有“配对”性质:大约数对应小约数.2.约数个数( 1 ) 分解质因数,指数加1 再相乘;( 2 ) 平方数有奇数个约数,非平方数有偶数个约数.3.约数和公式(1 ) 如果一个数的质因数分解式为a2 b3,贝约数和为1 a a2 1 b b2b3;( 2 ) 如果一个数的质因数分解式为a b c2,贝约数和为1 a 1 b 1 c c2;二、公约数、公倍数1.基本概念(1)如果a是若干个数公有的约数,则称a是它们的公约数,其中最大的叫做最大公约数;(2)如果b是若干个数公有的倍数,则称b是它们的公倍数,其中最小的叫做最小公倍数;(3)公约数是最大公约数的约数,公倍数是最小公倍数的倍数.2.计算方法( 1 ) 短除法;(2)分解质因数法;(3)辗转相除法(只用于计算两个数的最大公约数) .3.基本性质(1) a b a,b a, b ;(2)两个数的最大公约数是它们和或差的约数;(3)已知两个未知数的最大公约数,可利用最大公约数把这两个数表示出来:例如,甲、乙的最大公约数是5,则可以把甲乙分别设为5a和5b,其中a、b 互质,此时甲乙的最小公倍数是5ab.4.两个最简分数的最大公约数、最小公倍数:a c a,c ;a c a,c—, - ---------- > —5 ------------b d b,d b d b,dI经典题型一、约数、倍数1. 约数的配对思想;2. 约数个数与完全平方数的关系;3. 求约数个数;4. 求约数的和;5. 利用约数个数反推原数的质因数分解形式.二、公约数、公倍数1. 基本计算;2. 带有应用题背景的公约数公倍数计算;3. 有关最大公约数和最小公倍数的反求问题;4. 最大公约数、最小公倍数的质因数的分配.例1.庆祝高思学校4周岁的生日,预计在12月5日高思成立日的当天举行大型的庆祝活动,由编号1~100的100名高思小明星们组成的方阵,开始都面朝东方站立,第一次所有编号是1的倍数的向左转,第二次所有编号是2的倍数的小朋友再向左转,第三次编号是3的倍数的小朋友再向左转,……,最后一次所有编号是100的倍数的小朋友再向左转,最后所有小朋友中有多少名小朋友面朝南方?「分析」首先分析出转几次的人会面朝南方,这些次数排成一列,找出这组数列的规律.练习1、有2012盏灯,分别对应编号为1至2012的2012个开关.现在有编号为1至2012的2012个人来按动这些开关.已知第1个人按的开关的编号是1的倍数,第2个人按的开关的编号是2的倍数,第3个人按的开关的编号是3的倍数,……,依次做下去,第2012个人按的开关的编号是2012的倍数•如果最开始的时候,灯全是亮着的,那么这2012个人按完后,还有多少盏灯是亮着的?例2.一个数有15 个约数,这个数最小是多少?第二小是多少?「分析」根据约数个数公式分析出含有15 个约数的数的分解质因数形式.练习2、有10个约数的自然数最小是多少?有8 个约数的最小的奇数是多少?例3.在35 的倍数中,恰有35 个约数的最小数是多少?(请写出质因数分解式)「分析」所求数一定含有35 的质因数,再结合含有35 个约数的数的分解质因数形式即可找到解题的突破口.练习3、42的倍数中,恰好有42 个约数的数有多少个?例4.三个自然数乘积为86400,且这三个数的约数个数分别为8、9、10 个.那么这三个自然数分别是多少?「分析」把含有8、9、10 个约数的数的分解质因数形式及86400 中个质因数的个数结合在一起进行分析.练习4、三个自然数乘积为5184,且这三个数的约数个数分别为A个、A+1个、A+2个.那么这三个自然数分别是多少?例5.两个整数的差为7,他们的最小公倍数和最大公约数的差是689,则这两个数分别是多少?「分析」列不定方程求解.例6.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长,亮亮每步长54厘米,爸爸每步长72 厘米,由于两个人的脚印有重合,所以雪地上只留下60 个脚印.问:这个花圃的周长是多少米?「分析」这是一道公约数、公倍数的问题,首先回忆一下公约数、公倍数的求法,再思考一下题中各数据之间的关系.亲和数(Amicable Pair)亲和数是一种古老的数.遥远的古代,人们发现某些自然数之间有特殊的关系:如果两个数a和b,a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数.相传,毕达哥拉斯的一个门徒向他提出这样一个问题:“我结交朋友时,存在着数的作用吗?”毕达哥拉斯毫不犹豫地回答:“朋友是你的灵魂的倩影,要象220和284一样亲密•什么叫朋友?就象这两个数,一个是你,另一个是我. ”后来,毕氏学派宣传说:人之间讲友谊,数之间也有“相亲相爱”•从此,把220和284叫做“亲和数”(也叫“朋友数”或叫“相亲数”)•这就是“亲和数”这个名称的来源.毕达哥拉斯首先发现220与284就是一对亲和数,在以后的1500年间,世界上有很多数学家致力于探寻亲和数,面对茫茫数海,无疑是大海捞针,虽经一代又一代人的穷思苦想,有些人甚至为此耗尽毕生心血,却始终没有收获.公元九世纪,伊拉克哲学、医学、天文学和物理学家泰比特依本库拉曾提出过一个求亲和数的法则,因为他的公式比较繁杂,难以实际操作,再加上难以辨别真假,故它并没有给人们带来惊喜,或者走出困境•数学家们仍然没有找到第二对亲和数.距离第一对亲和数诞生2500多年以后,历史的车轮转到十七世纪,1636年,法国“业余数学家之王”费马终于找到了第二对亲和数17296和18416,这个发现也重新点燃寻找亲和数的火炬•两年之后,“解析几何之父” 一一法国数学家笛卡尔于1638年3月31日宣布找到了第三对亲和数9437506和9363584.费马和笛卡尔在两年的时间里,打破了二千五百年的沉寂,激起了数学界重新寻找亲和数的波涛.在十七世纪以后的岁月,许多数学家投身到寻找新的亲和数的行列,他们企图用灵感与枯燥的计算发现新大陆. 可是,无情的事实使他们省悟到,已经陷入了一座数学迷宫,不可能出现法国人的辉煌了.正当数学家们真的感到绝望的时候,平地又起了一声惊雷. 1747年,年仅39岁的瑞士数学家欧拉竟向全世界宣布:他找到了30对亲和数,后来又扩展到60对,不仅列出了亲和数的数表,而且还公布了全部运算过程.时间又过了120年,到了1867年,意大利有一个爱动脑筋,勤于计算的16岁中学生白格黑尼,竟然发现数学大师欧拉的疏漏一一让眼皮下的一对较小的亲和数1184和1210溜掉了•这戏剧性的发现让数学家们大为惊叹.在以后的半个世纪的时间里,人们在前人的基础上,不断更新方法,陆陆续续又找到了许多对亲和数•到了1923年,数学家麦达其和叶维勒汇总前人研究成果与自己的研究所得,发表了1095对亲和数,其中最大的数有25位.同年,另一个荷兰数学家里勒找到了一对有152位数的亲和数.电子计算机诞生以后,结束了笔算寻找亲和数的历史,人们利用计算机,可以更有效率的寻找和分析亲和数,但直到今天,亲和数仍有许多未解之谜,等待着数学家和计算机专家来解决.作业1. 300 共多少个约数?其中有多少个是6 的倍数?有多少个不是4的倍数?2. 把一张长108 厘米,宽84 厘米的长方形纸裁成同样大小的正方形,且纸无剩余,至少能裁成多少个正方形?3. 一个小于200 的自然数,其最小的三个约数之和是31,那么这个自然数是多少?(请写出所有答案)4. 已知两个三位数M 和N 互为反序数( M>N) ,且它们的最大公约数是6,那么N 最小值是多少?5. 两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是多少?第十六讲数论综合提高二例7.答案:5详解:从向东转向南方,可以转3次、7次、11次、15次等,即约数个数是3、7、11、…….100 之内的数的约数个数最多的只有12个(有5个).有3个约数的是4、9、25、49 ;有7 个约数的是64;有11个约数的数最小是1024 •所以有5名小朋友最后是面朝南方.例&答案:144、324详解:有15个约数的数,质因数分解式为匚14或匚|2口4 .前者最小是214,次小的是3 ,都很大;后者最小的是2 3 ,次小的是3 2 ,这个数最小是144,次小是324.例9.答案:56 74详解:因为35含有质因数5、乙恰有35个约数的数只能含有这两个质因数,所以这个数最小是5674.例10 . 答案:30 , 36, 80详解:86 4 0 0 2 7 33 5 2, 8 2 2 2 , 9 3 3 , 10 2 5易知所求三个数为30,36, 80.例11 . 答案:23和30详解:两数之差为7,则他们的最大公约数可能为7或1,而689也可被最大公约数整除,所以两数的最大公约数为1,即两数互质,所以两数的最小公倍数,即两数之积为690,易知相差7且乘积为690的两个数为23和30.例12 . 答案:21.6米练习:练习1、答案:1968简答:易知第n号灯被按的次数等于n的约数的个数,如果n号灯被按灭则灯被按了奇数次,即n有奇数个约数,也就是n每个质因子的质数为偶数,即n为完全平方数.易知小于2012的完全平方数有44 个, 所以还有1968 盏灯亮着.练习2、答案:48;105练习3、答案:4032 个简答:因为42含有质因数2、3、7,恰有42个约数的数只能含有这三个质因数,所以这个数最小是26 32 7 4032练习4、答案:12、16、2764简答:把5184 分解质因数得:5184 2 3,可凑出三个数是12、16、27,质数个数分别是 6 个、5 个、4个作业6. 答案:18, 6, 12简答:通过分解质因数可得答案为18, 6, 12.7. 答案:63简答:正方形边长为108和84的最大公约数12,所以可裁成63个正方形.8. 答案:25, 125, 161简答:首先最小的约数可知为1,则另外两个较小的约数之和为30,可知另外两个较小约数可以是5和25,则答案为25和125; 7和23,则答案为161 ; 11和19,则答案为209; 13和17,则答案为221 .其中小于200的为25, 125, 161.9. 答案:204简答:设这M abc, N cba,则由M和N是6的倍数,可知M N 99(a c)是6的倍数,则a c是2的倍数,又由M是偶数可知,c可能取2、4、6或8,带入尝试可求得N 可以为204, 228, 246, 258, 294, 426, 438, 456, 498, 618, 678,最小的是204.10. 答案:29简答:两数相差5,所以它们的最大公约数为5或1,所以分类讨论可得这两个数为12与17,其和为29.。

【6年级奥数课本(上)】第16讲 数论综合提高二

【6年级奥数课本(上)】第16讲 数论综合提高二

小学奥数创新体系6年级(上册授课课本) 最新讲义小学奥数第十六讲 数论综合提高二本讲知识点汇总:一、约数、倍数1. 基本概念(1) 如果a 能被b 整除(也就是),则b 是a 的约数(因数),a 是b 的倍数; (2)约数具有“配对”性质:大约数对应小约数. 2. 约数个数(1)分解质因数,指数加1再相乘; (2)平方数有奇数个约数,非平方数有偶数个约数. 3. 约数和公式(1) 如果一个数的质因数分解式为,则约数和为; (2)如果一个数的质因数分解式为,则约数和为;二、公约数、公倍数1. 基本概念(1)如果a 是若干个数公有的约数,则称a 是它们的公约数,其中最大的叫做最大公约数;(2)如果b 是若干个数公有的倍数,则称b 是它们的公倍数,其中最小的叫做最小公倍数;(3)公约数是最大公约数的约数,公倍数是最小公倍数的倍数. 2. 计算方法(1)短除法; (2)分解质因数法; (3)辗转相除法(只用于计算两个数的最大公约数). 3. 基本性质(1) ; (2)两个数的最大公约数是它们和或差的约数; (3)已知两个未知数的最大公约数,可利用最大公约数把这两个数表示出来: 例如,甲、乙的最大公约数是5,则可以把甲乙分别设为5a 和5b ,其中a 、b互质,此时甲乙的最小公倍数是5ab .4. 两个最简分数的最大公约数、最小公倍数:()[],,a b a b a b ⨯=⨯()()()2111a b c c +⨯+⨯++ 2a b c ⨯⨯ ()()22311a a b b b ++⨯+++23a b ⨯ |b a;一、约数、倍数 1. 约数的配对思想;2. 约数个数与完全平方数的关系;3. 求约数个数;4. 求约数的和;5. 利用约数个数反推原数的质因数分解形式.二、公约数、公倍数 1. 基本计算;2. 带有应用题背景的公约数公倍数计算;3. 有关最大公约数和最小公倍数的反求问题;4. 最大公约数、最小公倍数的质因数的分配.例1. 庆祝高思学校4周岁的生日,预计在12月5日高思成立日的当天举行大型的庆祝活动,由编号1~100的100名高思小明星们组成的方阵,开始都面朝东方站立,第一次所有编号是1的倍数的向左转,第二次所有编号是2的倍数的小朋友再向左转,第三次编号是3的倍数的小朋友再向左转,……,最后一次所有编号是100的倍数的小朋友再向左转,最后所有小朋友中有多少名小朋友面朝南方?「分析」首先分析出转几次的人会面朝南方,这些次数排成一列,找出这组数列的规律.练习1、有2012盏灯,分别对应编号为1至2012的2012个开关.现在有编号为1至2012的2012个人来按动这些开关.已知第1个人按的开关的编号是1的倍数,第2个人按的开关的编号是2的倍数,第3个人按的开关的编号是3的倍数,……,依次做下去,第2012个人按的开关的编号是2012的倍数.如果最开始的时候,灯全是亮着的,那么这2012个人按完后,还有多少盏灯是亮着的?经典题型 []()a c a c b d b d ⎡⎤=⎢⎥⎣⎦,,, ()[]a c a c b d b d ⎛⎫= ⎪⎝⎭,,,例2.一个数有15个约数,这个数最小是多少?第二小是多少?「分析」根据约数个数公式分析出含有15个约数的数的分解质因数形式.练习2、有10个约数的自然数最小是多少?有8个约数的最小的奇数是多少?例3.在35的倍数中,恰有35个约数的最小数是多少?(请写出质因数分解式)「分析」所求数一定含有35的质因数,再结合含有35个约数的数的分解质因数形式即可找到解题的突破口.练习3、42的倍数中,恰好有42个约数的数有多少个?例4.三个自然数乘积为86400,且这三个数的约数个数分别为8、9、10个.那么这三个自然数分别是多少?「分析」把含有8、9、10个约数的数的分解质因数形式及86400中个质因数的个数结合在一起进行分析.练习4、三个自然数乘积为5184,且这三个数的约数个数分别为A个、A+1个、A+2个.那么这三个自然数分别是多少?例5.两个整数的差为7,他们的最小公倍数和最大公约数的差是689,则这两个数分别是多少?「分析」列不定方程求解.例6.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长,亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印.问:这个花圃的周长是多少米?「分析」这是一道公约数、公倍数的问题,首先回忆一下公约数、公倍数的求法,再思考一下题中各数据之间的关系.亲和数(Amicable Pair)亲和数是一种古老的数.遥远的古代,人们发现某些自然数之间有特殊的关系:如果两个数a和b,a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数.相传,毕达哥拉斯的一个门徒向他提出这样一个问题:“我结交朋友时,存在着数的作用吗?”毕达哥拉斯毫不犹豫地回答:“朋友是你的灵魂的倩影,要象220和284一样亲密.什么叫朋友?就象这两个数,一个是你,另一个是我.”后来,毕氏学派宣传说:人之间讲友谊,数之间也有“相亲相爱”.从此,把220和284叫做“亲和数”(也叫“朋友数”或叫“相亲数”).这就是“亲和数”这个名称的来源.毕达哥拉斯首先发现220与284就是一对亲和数,在以后的1500年间,世界上有很多数学家致力于探寻亲和数,面对茫茫数海,无疑是大海捞针,虽经一代又一代人的穷思苦想,有些人甚至为此耗尽毕生心血,却始终没有收获.公元九世纪,伊拉克哲学、医学、天文学和物理学家泰比特·依本库拉曾提出过一个求亲和数的法则,因为他的公式比较繁杂,难以实际操作,再加上难以辨别真假,故它并没有给人们带来惊喜,或者走出困境.数学家们仍然没有找到第二对亲和数.距离第一对亲和数诞生2500多年以后,历史的车轮转到十七世纪,1636年,法国“业余数学家之王”费马终于找到了第二对亲和数17296和18416,这个发现也重新点燃寻找亲和数的火炬.两年之后,“解析几何之父”——法国数学家笛卡尔于1638年3月31日宣布找到了第三对亲和数9437506和9363584.费马和笛卡尔在两年的时间里,打破了二千五百年的沉寂,激起了数学界重新寻找亲和数的波涛.在十七世纪以后的岁月,许多数学家投身到寻找新的亲和数的行列,他们企图用灵感与枯燥的计算发现新大陆.可是,无情的事实使他们省悟到,已经陷入了一座数学迷宫,不可能出现法国人的辉煌了.正当数学家们真的感到绝望的时候,平地又起了一声惊雷.1747年,年仅39岁的瑞士数学家欧拉竟向全世界宣布:他找到了30对亲和数,后来又扩展到60对,不仅列出了亲和数的数表,而且还公布了全部运算过程.时间又过了120年,到了1867年,意大利有一个爱动脑筋,勤于计算的16岁中学生白格黑尼,竟然发现数学大师欧拉的疏漏——让眼皮下的一对较小的亲和数1184和1210溜掉了.这戏剧性的发现让数学家们大为惊叹.在以后的半个世纪的时间里,人们在前人的基础上,不断更新方法,陆陆续续又找到了许多对亲和数.到了1923年,数学家麦达其和叶维勒汇总前人研究成果与自己的研究所得,发表了1095对亲和数,其中最大的数有25位.同年,另一个荷兰数学家里勒找到了一对有152位数的亲和数.电子计算机诞生以后,结束了笔算寻找亲和数的历史,人们利用计算机,可以更有效率的寻找和分析亲和数,但直到今天,亲和数仍有许多未解之谜,等待着数学家和计算机专家来解决.作业1.300共多少个约数?其中有多少个是6的倍数?有多少个不是4的倍数?2.把一张长108厘米,宽84厘米的长方形纸裁成同样大小的正方形,且纸无剩余,至少能裁成多少个正方形?3.一个小于200的自然数,其最小的三个约数之和是31,那么这个自然数是多少?(请写出所有答案)4.已知两个三位数M和N互为反序数(M>N),且它们的最大公约数是6,那么N最小值是多少?5.两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是多少?。

关于小升初奥数数论综合常考内容讲义

关于小升初奥数数论综合常考内容讲义

关于小升初奥数数论综合常考内容讲义第1篇:关于小升初奥数数论综合常考内容讲义【内容概述】涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.第一种情况:当n为4时,如果其内含有5的倍数(个位数字为o或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.第二种情况:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.第三种情况:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,未完,继续阅读 >第2篇:关于六年级奥数数论综合讲座【分析与解】555555=5×111×1001数论综合进位制的概念、四则运算法则及整数在不同进位制之间的转化,利用恰当的进位制解数论问题.取整符号[]与取小数部分符号{}的定义与基本*质,包含这两种符号的算式与方程的求解.两次与分式不定方程,不便直接转化为不定方程的数论问题.各种数论*题.典型问题【分析与解】注意到尾数,在足够大的进位制中有乘积的个位数字为4×5=20,但是现在为4,说明进走20-4=16,所以进位制为16的约数:16、8、4、2.2.求方程19[x]-96{x}=0的解的个数.【分析与解】有{x}为一个数的小数部分,显然小于1,则96{x}小于96,而19[x]=96{x},所以19[x]小于96,即[x]小于,又[x]为整数,所以[x]可以取0,1,2,3,4,5,对应有6组解.4.将表示成两个自然数的倒数之和,请给出所有的*.【分析与解】记标有1为第1号,序号顺时针的依次增大.当超过一圈时,编号仍然依次增加,如1号也是2001号,4001号,……4.对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?6.*、乙两人进行下面的游戏:两人先约定一个自然数n,然后由*开始,轮流把未完,继续阅读 >第3篇:关于小升初1—6年级奥数天天练的内容长沙奥数天天练每日1-6年级各精选一道题,每天坚持做天天练,轻松应对长沙。

数学竞赛中的数论问题

数学竞赛中的数论问题

数学竞赛中的数论问题罗增儒引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数. 这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=.就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越.●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算; 简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x ],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型: (1)奇数与偶数(奇偶分析法、01法); (2)约数与倍数、素数与合数; (3)平方数; (4)整除; (5)同余; (6)不定方程;(7)数论函数、[]x 高斯函数、()n ϕ欧拉函数;(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足 a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a =.一个功能:可以把对整数的研究转化为对非负整数的研究. 定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r 也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k ma b =.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性. 证明1 先证存在性.作序列则a 必在上述序列的某两项之间,从而存在一个整数q ,使()1qb a q b ≤<+, 即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,但12q q -为整数,故120q q -=,得12q q =,从而12r r =.注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ⎡⎤≤-<⎢⎥⎣⎦, 有 0a a b b b⎡⎤≤-<⎢⎥⎣⎦,记a r a b b ⎡⎤=-⎢⎥⎣⎦,故存在,,0a a q r a b r b b b⎡⎤⎡⎤==-≤<⎢⎥⎢⎥⎣⎦⎣⎦使()0a qb r r b =+≤<.证明3 只证存在性,作集合这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.再证r b <,若不然,r b ≥,记1r b r =+,有 即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.定理2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =. 证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.任取||||d a d c a bq d A d B A B d b d b =-⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨⎩⎩,任取||||d b d bd B d A B A d c d a bq c⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨=+⎩⎩, 得 A B =.有A 中元素的最大值B =中元素的最大值,即()(),,a b b c =.注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ⋅=.证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,有 [],a b a qb=且[],a b b为整数,故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有[]()[],,,ab q a b a b a b =<. ①设()(),,ab b k a a b a b ==,可见k 是a 的倍数,同样()(),,ab ak b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k ma b =,有()[][],,,abm a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ⋅=.注 也可以由[]()(),1,,aba b kq m ab a b a b q≤===,得(),q a b ≥,与(),q a b <矛盾.两步[](),,,ab q a b ab a b k ==可以交换吗?定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +.(2)由(1)有00ax by +|10a b a +=, 00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =.证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但a 不能被p 整除,(),a p p ≠,得(),1a p =.推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=.(8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(),1m a b =. 同样,由(),1m a b =可得(),1m n a b =.定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而21q a q a ≤=,开方得q ≤定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个. 2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =, 即 c a .(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.(7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=,因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾.注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,()12a c m q q -=+,得(mod )a c m ≡.(2)若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡. 证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡.(3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有,,a b mk k k 均为整数,且 a b mq k k k=+, 得mod a b m k k k ⎛⎫≡ ⎪⎝⎭. 定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()()nna b a b--.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性)证明1 先证明,正整数n 可分解为素数的乘积12m n p p p =. ①如果大于1的正整数n 为素数,命题已成立.当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有11n p a =,11a n <<.如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有11122n p a p p a ==,211a a n <<<.这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积12m n p p p =.下面证明分解式是唯一的.假设n 还有另一个分解式 12t n q q q =, ② 则有 1212m t p p p q q q =. ③因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有11p q =.把等式③两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=. ④但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的.将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.证明2 用第二数学归纳法证明12m n p p p =,12m p p p ≤≤≤.(1)当2n =,因为2为素数,命题成立.(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积得 //////1212s s s t n p p p q q q ++=,适当调整/i p 的顺序,可得命题对于正整数n 成立.由数学归纳法,命题对一切大于1的正整数n 成立.下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式12m n p p p =,12m p p p ≤≤≤, 12t n q q q =,12t q q q ≤≤≤,得 1212m t p p p q q q =.有 112|t p q q q 且112|m q p p p ,这就存在,i j q p ,使1|i p q 且1|j q p ,但11,,,i j p q q p 均为为素数,所以11,i j p q q p ==,又 111i j p q q p p =≥=≥, 所以 11p q =.把等式两边约去11p q =,得2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=.但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的.将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积 ()()()12010101111222k kk k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+. 定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和.画线示意50!中2的指数.定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --.证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,222a pq r =+,20r p ≤<……()111p p p a pq r ---=+,10p r p -≤<由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r -均不为0,只能取1,2,,1p -.下面证明121,,,p r r r -各不相等.若不然,存在,,11t s t s p ≤<≤-,使 相减 ()()s t s t a p q q -=-.应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由11t s p ≤<≤-可得 02s t p p <-≤-<, 要素数p 整除()s t -是不可能的,得121,,,p r r r -各不相等.有()()1211211!p rr r p p -=-=-.再把上述1p -个等式相乘,有 ()11211!p p p aMp rr r ---=+,即 ()()11!1!p p aMp p --=+-,其中M 是一个整数.亦即 ()()11!1p p a Mp ---=.由于p 是素数,不能整除()1!p -,所以素数p 整除11p a--,得证证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod p a a p ≡. 只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1i p p C i p =-,故有()11mod p k k p ≡+≡+.(用了归纳假设) 这表明,命题对1a k =+是成立. 由数学归纳法得()mod p a a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a--.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.证明 用容斥原理.设{}1,2,,S n =,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k =),用iA 表示i A 中元素的个数,有i inA p =,1212,,i j k i jkn n A A A A A p p p p p ==.易知,{}1,2,,S n =中与n 互素的正整数个数为12k A A A ,由容斥原理得注 示意3n =的容斥原理. 推论 对素数p 有()()11,p p ppp αααϕϕ-=-=-.定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c . 证明 记(),d a b =.(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,,x x y y =⎧⎨=⎩,则00ax by c +=,由|,|d a d b , 有00|d ax by +,得证(),|a b c .(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足00ax by +(),a b =.两边乘以e ,得这表明方程有解00,.x ex y ey =⎧⎨=⎩定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ①证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有00ax by c +=,又方程的任意一个解(),x y 满足ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有00,x x y y t t Z b a--==∈- 得方程的任意一个整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈.定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.第二讲 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用.关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;.(4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod 2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n 的倍数.(11)()11k -=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数. (12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.解法 2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”.类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n .证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有2222122311121(1)(1)1k kn n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .证明 先证n 为偶数,若不然,由121n n a a a a n -=知,121,,,,n n a a a a -全为奇数,其和必为奇数,与其和为0(偶数),故n 必为偶数.(121,,,,n n a a a a -中至少有1个偶数)再证n 为4的倍数,若不然,由n 为偶数知,121,,,,n n a a a a -恰有一个为偶数,其余1n -个数全为奇数,奇数个奇数之和必为奇数,加上一个偶数,总和为奇数,与121,,,,n n a a a a -之和为0矛盾,所以,n 为4的倍数,4|n .(121,,,,n n a a a a -中至少有2个偶数)评析 要证4|n ,只须证121,,,,n n a a a a -中至少有2个偶数,分两步,第一步证至少有1个偶数,第二步证至少有2个偶数.例6 在数轴上给定两点1,在区间内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使 与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法) 记11i i a a +=-的线段有k 条,一方面 另一方面 12233412()()()()n n a a a a a a a a ++…21231212()1n n n a a a a a a a -++===-…,得()11k-=-,故k 为奇数. 评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108. 解(1)方法1 分解质因数法.由 得 ()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=.方法2 辗转相除法.或23214221313823226110158381232232783812029232261q q q q r r r r ========或 ()()()()()8381,1015261,1015261,23229,23229,029=====. []()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 . 解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =.例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?解 相当于求不定方程15276x y +=的整数解. 由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=, 从而存在(),,,1p q p q =,使 消去n ,()()3322⨯-⨯,得()132d q p =-, ④ 的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明 ()()131432214n n =+-+, 可见 ()214,1431n n ++=. 由此获得2个解法.证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++ ()71,143n n =++ ④ ()71,1n =+ ⑤1=.解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式()1110mm m m f n a n a na n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使 ()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数. 三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod 8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.(9)直角三角形的三边均为整数时,我们把满足222a b c +=的整数(),,a b c 叫做勾股数.勾股数的公式为其中,m n 为正整数,(),1m n =且,m n 一奇一偶.这个公式可给出全部素勾股数.2.平方数的证明方法 (1)反证法. (2)恒等变形法.(3)分解法.设a 为平方数,且a bc =,(),1b c =,则,b c 均为平方数. (4)约数法.证明该数有奇数个约数. 3.非平方数的判别方法(1)若()221n x n <<+,则x 不是平方数.(2)约数有偶数个的数不是平方数.(3)个位数为2,3,7,8的数不是平方数. (4)同余法:满足下式的数n 都不是平方数.()2mod3n ≡, ()23mod4n ≡或, ()23mod5n ≡或,()23567mod8n ≡或或或或, ()2378mod10n ≡或或或.(5)末两位数不是:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.如个位数与十位数都是都是奇数的数, 个位数是6、而十位数是偶数的数.例13 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的。

小学学而思奥数36个精彩讲座总汇

小学学而思奥数36个精彩讲座总汇

第1讲计算综合(一)繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:71147 18262 13581333416⨯+⨯-÷【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×0.5.具体过程如下:原式=5919(3 5.22)19930.41.6 910()52719950.51995 19(6 5.22)950+-⨯÷+⨯-+=5 191.3219930.440.40.59()519950.419950.5191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987-+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少?【分析与解】方法一:1118x68114x112x7111+11148x62+214x1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25.方法二:有11131118821x4+==+++,所以18222133x4+==++;所以13x42+=,那么x=1.25.5.求944,43,443,...,44 (43)个这10个数的和.【分析与解】方法一:944+43+443...44...43++个=1044(441)(4441)...(44...41)+-+-++-个=104444444...44...49++++-个=1094(999999...999...9)99⨯++++-个=1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++--个 =914111.1009=49382715919⨯-个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=; 再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=; 再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=; 再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=; 再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=; 再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=; 再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=; 再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4. 所以,这10个数的和为4938271591.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?【分析与解】因为每个端点均有三条线段通过,所以这6条线段的长度之和为:1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算:23155(0.625)(0.4)333841235(0.3)( 2.25)3104⨯+【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少?【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1? 【分析与解】因为1116124+=,所以12,14,16,112的和为l,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929.那么在所有这种数中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档