函数的单调性与最大值(2)导学案
2-2第三章小结复习导学案
主备人:审核:包科领导:年级组长:使用时间:第三章小结与复习知识网络函数的单调性函数的极值函数的最值利润最大优化问题成本最低效率最高用料最省【自主探究】1.函数)(xfy=是定义在R上的可导函数,则0)(='xf是x为函数)(xfy=极值点的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.函数123+-+=xxxy在区间]1,2[-上的最小值为()A.2722B.2C.1-D.4-3.函数2xaxxy-⋅=)0(>a的单调递增区间为_____________,递减区间为_____________.4.函数1)(3++=xaxxf有极值的充要条件是_____________.5.已知函数)()(2aaxxxxf+-⋅=在Rx∈上是增函数,求实数a的取值范围.【合作探究】1.若axxxf2)(2+-=与xaxg+=1)(在区间]2,1[上都是减函数,则a的取值范围是()A.)1,0()0,1(-B.]1,0()0,1(-C.)1,0(D.]1,0(2.下面命题中正确的是()A.可导的奇函数的导函数仍是奇函数B.可导的偶函数的导函数仍是偶函数C.可导的周期函数的导函数仍是周期函数D.可导的单调函数的导函数仍是单调函数3.若函数xaxxf+=3)(恰好有三个单调区间则a的取值范围是_____________.4.设132<<a,函数)11(23)(23≤≤-+-=xbaxxxf的最大值是1,最小值是26-,求常数a、b.5.已知a为实数,))(4()(2axxxf--=.(1)求导数)(xf';(2)若0)1(=-'f,求)(xf在]2,2[-上的最大值和最小值;(3)若)(xf在]2,(--∞和),2[+∞上都是递增的,求a的取值范围.【巩固提高】1. 设函数1)1(32)(23+--=x a x x f ,其中1≥a .(1) 求)(x f 的单调区间;(2) 讨论)(x f 的极值.★2.已知c x x x x f +--=221)(23若对]2,1[-∈x ,2)(c x f <恒成立,求c 的取值范围.★3.过椭圆)0(12222>>=+b a b y a x上第一象限内的点引椭圆的切线,此切线与坐标轴围成一个三角形,求此三角形面积的最小值.。
单调性与最大(小)值(第二课时)教案
1.3 函数的基本性质1.3.1 单调性与最大(小)值(第二课时)一、教材分析:二、学习目标:①通过实例,使学生体会、理解函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识;②能够用函数的性质解决日常生活中简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.三、教学重点:理解函数的最大(小)值的概念及其几何意义.四、教学难点:了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.五、课时安排:1课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m2的矩形新厂址,新厂址的长为x m,则宽为m,所建围墙y m,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?2、自主探索,尝试解决老师给出学生们一些问题让学生思考,并对学生的回答进行点评,然后一起总结得出结论.层层引入,完成本节课学习的主题.问题1:作出函数y=-x2-2x,y=-2x+1(x∈[-1,+∞)),y=f(x)的图象如图所示.观察这三个图象的共同特征.函数y=-x2-2x图象有最高点A,函数y=-2x+1,x∈[-1,+∞)图象有最高点B,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.问题2:你是怎样理解函数y=f(x)的图象的?函数图象是点的集合,是函数y=f(x)的一种表示形式,其上每一点的坐标(x,y)的意义是:自变量x的取值为横坐标,相应的函数值y为纵坐标.图象从“形”的角度描述了函数的变化规律.问题3:你是怎样理解函数图象最高点的?图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.问题4:问题1中,在所作函数y=f(x)的图象上任取一点A,设图像最高点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象的最高点C?由于点C是函数y=f(x)图象的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.3、信息交流,揭示规律问题5:在数学中,形如问题1中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?函数最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.问题6:函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.问题7:函数最大值的几何意义是什么?函数图象上最高点的纵坐标,体现了数形结合思想的应用.问题8:函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.问题9:点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?不是,因为该函数的定义域中没有-1.问题10:由这个问题你发现了什么值得注意的地方?讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.问题11:类比函数的最大值,请大家思考一下给出函数最小值的定义及其几何意义.函数最小值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.函数最小值的几何意义:函数图象上最低点的纵坐标.问题12:类比问题10,你认为讨论函数最小值应注意什么?讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.(二)、合作学习 让学生合作做练习,教师巡视指导然后讲解例题. 【例1】“菊花”烟花是最壮观的烟花之一. 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度h m 与时间t s 之间的关系为h (t ) = – 4.9t 2 + 14.7t + 18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m )?解:作出函数h (t ) = – 4.9t 2 + 14.7t + 18的图象(如图). 显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t ) = – 4.9t 2 + 14.7t +18,我们有:当t =14.72( 4.9)-⨯-=1.5时,函数有最大值h =24( 4.9)1814.74( 4.9)⨯-⨯-⨯-≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29m.【例2】已知函数y =21x -(x [2,6]),求函数的最大值和最小值.分析:由函数y =21x -(x [2,6])的图象可知,函数y =21x -在区间[2,6])的图象可知,函数y =21x -在区间[2,6]上递减. 所以,函数y =21x -在区间[2,6]的两个端点上分别取得最大值和最小值.解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1) – f (x 2) =122211x x --- =21122[(1)(1)](1)(1)x x x x -----=21122()(1)(1)x x x x ---. 由2≤x 1<x 2≤6,得x 2 –x 1>0,(x 1–1) (x 2–1)>0,于是 f (x 1) – f (x 2)>0,即 f (x 1)>f (x 2).所以,函数y =21x -是区间[2,6]上是减函数. 因此,函数y =21x -在区间[2,6]的两个端点上分别取得最大值与最小值,即在x =2时取得的最大值,最大值是2,在x = 6时的最小值,最小值是0.4(三)、当堂检测1、课本题组题,1,5,3932B p p2、已知函数f (x ) = x 2 – 2x – 3,若x ∈[t ,t +2]时,求函数f (x )的最值.解:∵对称轴x = 1,(1)当1≥t +2即t ≤–1时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (t +2) = t 2 +2t –3.(2)当22t t ++≤1<t +2,即–1<t ≤0时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (1) = – 4.(3)当t ≤1<22t t ++,即0<t ≤1,f (x )max = f (t +2) = t 2 + 2t – 3,3、.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.解:设商品售价定为x 元时,利润为y 元,则y=(x-8)[60-(x-10)·10]=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16).当且仅当x=12时,y 有最大值160元,即售价定为12元时可获最大利润160元.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)请同学们从下列几方面分组讨论:1.最值的概念2.应用图象和单调性求最值的一般步骤.3..函数的最值及几何意义如何?4..你学了哪几种求函数最值的方法?5..求函数最值时,要注意什么原则?七.课外作业课本P39习题1.3 A组第5题,B组第1,2题.八、教学反思:。
函数的单调性与最值导学案
学案5 函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.自主梳理1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是______________.(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是________. (3)单调区间:如果函数y =f (x )在某个区间上是增函数或减函数,那么说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的__________.(4)函数y =x +a x(a >0)在 (-∞,-a ),(a ,+∞)上是单调________;在(-a ,0),(0,a )上是单调______________;函数y =x +a x(a <0)在______________上单调递增. 2.最值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的____________.自我检测1.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ) A .增函数 B .减函数C .先增后减D .先减后增2.设f (x )是(-∞,+∞)上的增函数,a 为实数,则有 ( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)>f (a )3.下列函数在(0,1)上是增函数的是 ( )A .y =1-2xB .y =x -1C .y =-x 2+2xD .y =54.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是 ( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定5.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为 ( )A .[c,55+c ]B .[-43+c ,c ] C .[-43+c,55+c ] D .[c,20+c ] 探究点一 函数单调性的判定及证明例1 设函数f (x )=x +a x +b(a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性.变式迁移1 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+1f (x ),讨论F (x )的单调性,并证明你的结论.探究点二 函数的单调性与最值例2 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.变式迁移2 已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.探究点三 抽象函数的单调性例3 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.变式迁移3 已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.分类讨论及数形结合思想 例 (12分)求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.【(满分:75分)一、选择题(每小题5分,共25分)1“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .74.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是 A .(-1,0)∪(0,1) B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能题号 1 2 3 4 5答案 6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号).①y =[f (x )]2是增函数;②y =1f (x )是减函数; ③y =-f (x )是减函数;④y =|f (x )|是增函数.8.设0<x <1,则函数y =1x +11-x的最小值是________. 三、解答题(共38分)9.(12分)(湖州模拟)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.10.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.11.)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它;(2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.。
高三理科数学导学案函数的单调性
富县高级中学高三理科数学导学案 班级: 姓名: 小组: 备写人: 课题函数的单调性与最值 课型 复习课 编号 20140919 使用时间第 周 星期复习目标1、能从数、形两个角度理解、认识函数的单调性;2、会根据具体题目选择合适的方法判断函数的单调性、求函数的单调区间,特别要求会用求导的方法判断函数的单调性、求函数的单调区间;3、能会用函数的单调性求参数的取值范围。
. 重 点选择合适的方法判断函数的单调性、求函数的单调区间。
难点 利用单调性求参数的取值范围。
学 习 过 程 师生笔记一、知识梳理1、 判断函数单调性的方法:(1)定义法(取值、作差、变形、定号、下结论);(2)图像法(从图像上观察函数的单调性);(3)利用已知函数的单调性法(增+增=增,减+减=减,增-减=增,减-增=减);(4)利用导数(根据导数的正负来判断原函数的单调性);(5)复合函数的单调性(同增异减)2.函数的最值若)()(0x f x f ≥,则)(0x f 为函数)(x f 的最小值; 若)()(0x f x f ≤,则)(0x f 为函数)(x f 的最大值。
二、学情自测1.下列函数中既是奇函数又是增函数的是:( )A .1+=x yB .2-x y =C .xy 1= D .x x y = 2.函数b x k y ++=)12(在),(∞+∞-是减函数,则( )A.21>kB. 21<kC. 21->kD.21-<k 3.函数)1(-11)(x x x f -=的最大值是( )A.54B. 45C. 43D.344、函数11)(-=x x f 在[]3,2上的最小值是 ,最大值是 。
三、课堂探究题型一:判断函数的单调性 【例1】讨论函数1)(2+=x x x f 的单调性。
题型二:求函数的单调区间【例2】求出下列函数的单调区间:(1)f (x )=x 2-4|x |+3;(2)f (x )=|x 2-4x +3|;(3)f (x )=log 2(x 2-1).题型三:利用单调性求参数范围【例3】若函数f (x )=ax -1x +1在(-∞,-1)上是减函数,求实数 a 的取值范围.四、复习检测1.下列函数中,既是偶函数又是在),(∞+0单调递增的是( )A .3x y =B .1+=x yC .1-2+=x yD .x y -2= 2.若函数a x x f +=2)(在[]∞+,3上是单调递增函数,则a =( )3.已知函数x a x x x f ++=2)(2,若对于任意[)∞+∈,1x , 0)(>x f 恒成立,则实数a的取值范围是 。
导数的应用复习教案
1.3导数的应用教材分析:本章内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用.本章先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题.本章共分三节,第三节是“导数的应用”,内容包括利用导数判断函数的单调性;利用导数研究函数的极值;导数的实际应用.在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题.教学目标:1、能熟练应用导数研究函数的单调性、极值和最值.2、掌握利用导数知识解决实际生活中的最优化问题.教学重点:理解并掌握利用导数判断函数的单调性;利用导数研究函数的极值;利用导数知识解决实际生活中的最优化问题.教学难点:解决实际生活中的最优化问题的关键是建立函数模型.学法:本节课是在学习了导数的概念、运算的基础上来学习的导数的应用,学生已经了解了数学建摸的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。
在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。
教法数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。
202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析
第二节函数的单调性与最值课标要求考情分析1。
理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质。
1。
主要考查函数单调性的判定、求单调区间、比较大小、解不等式、求最值及不等式恒成立问题.2.题型以选择题、填空题为主,若与导数交汇命题则以解答题的形式出现,属中高档题.知识点一函数的单调性1.增函数、减函数的定义定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2:(1)增函数:当x1〈x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;(2)减函数:当x1〈x2时,都有f(x1)〉f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.注意以下结论1.对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.2.对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,错误!].3.在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.4.函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.知识点二函数的最值1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数.(√)(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.(×)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)解析:(2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)〈f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)〈f(x2)成立才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.2.小题热身(1)下列函数中,在区间(0,+∞)内单调递减的是(A)A.y=错误!-x B.y=x2-xC.y=ln x-x D.y=e x(2)函数f(x)=-x+错误!在区间错误!上的最大值是(A)A.错误!B.-错误!C.-2 D.2(3)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为[-1,1]和[5,7].(4)函数f(x)=错误!的值域为(-∞,2).(5)函数f(x)=错误!在[2,6]上的最大值和最小值分别是4,错误!.解析:(1)对于A,y1=错误!在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=e x 在(0,+∞)上是增函数.(2)∵函数y=-x与y=错误!在x∈错误!上都是减函数,∴函数f(x)=-x+错误!在错误!上是减函数,故f(x)的最大值为f(-2)=2-错误!=错误!.(3)由图可知函数的增区间为[-1,1]和[5,7].(4)当x≥1时,f(x)=log错误!x是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).(5)函数f(x)=错误!=错误!=2+错误!在[2,6]上单调递减,所以f(x)min=f(6)=错误!=错误!。
新教材高中数学第三章函数的概念与性质 单调性与最大小值第二课时学案新人教A版必修第一册
第2课时 函数的最大(小)值[课程目标] 1.理解函数的最大(小)值的概念及其几何意义;2.理解函数的最大(小)值是在整个定义域上研究函数,体会求函数最值是函数单调性的应用之一;3.会求一些简单函数的最值.知识点一 函数的最大(小)值的定义及几何意义 设y =f(x)的定义域为I,如果存在实数M 满足: 【思辨】 判断正误(请在括号中打“√”或“×”). (1)函数f(x)=-x 2+1≤2总成立,则f(x)的最大值是2.( × ) (2)函数的最大值或最小值一定是函数值域中的元素.( √ ) (3)函数f(x)的值域是(0,+∞),则函数f(x)的最小值为0.( × )(4)若函数f(x)在区间[a,b]上具有单调性,则f(a)或f(b)是函数f(x)的最大值或最小值.( √ )【解析】 (1)函数f(x)的定义域中不存在x 0,使f(x 0)=2,所以2不是f(x)的最大值. (2)函数的最大值和最小值也是函数值,所以函数的最大值或最小值一定是函数值域中的元素.(3)函数的值域中不包含0,所以0不是函数的最小值. (4)根据函数最大(小)值的定义知说法正确.知识点二 求函数的最值的常用方法1.图象法:作出y =f(x)的图象,观察最高点与最低点,最高(低)点的纵坐标即为函数的最大(小)值.2.运用已学函数的值域. 3.运用函数的单调性(1)若判断y =f(x)在区间[a,b]上单调递增,则y max =__f(b)__,y min =__f(a)__. (2)若判断y =f(x)在区间[a,b]上单调递减,则y max =__f(a)__,y min =__f(b)__. (3)若y =f(x)是定义在区间(a,b)或R 上的连续函数,则函数y =f(x)的最大(小)值要根据具体函数而定.4.分段函数的最大(小)值是指各段上的最大(小)值中的最大(小)的那个. 【思辨】 判断正误(请在括号中打“√”或“×”).(1)函数y =-2x +3在(2,5]上有最小值-7,没有最大值.( √ ) (2)函数y =1x 在[1,2]上有最大值1,最小值12 .( √ )(3)函数y =x 2+2x +3的最小值为2.( √ )(4)函数y =x 2+2x +4(x∈[-3,-2])的最小值为2.( × )【解析】 (1)函数y =-2x +3在(2,5]上单调递减,所以当x =5时,取得最小值-7,没有最大值.(2)函数y =1x 在[1,2]上单调递减,所以在定义域区间的端点取得最值.(3)由二次函数的图象或单调性知,函数的最小值为2.(4)由函数y =x 2+2x +4(x∈[-3,-2])图象知,函数在区间的右端点取得最小值,最小值为4.利用函数的图象求最值例1 已知函数f(x)=x 2-2ax +3,求f(x)在区间[0,2]上的最小值g(a)和最大值h(a). 解:f(x)=(x -a)2+3-a 2,对称轴为直线x =a, f(a)=3-a 2,f(0)=3,f(2)=7-4a,∴g(a)=⎩⎪⎨⎪⎧3,a ≤0,3-a 2,0<a<27-4a ,a ≥2.,h(a)=max{f(0),f(2)}=⎩⎪⎨⎪⎧7-4a ,a ≤1,3,a>1.活学活用1.求函数f(x)=x 2-2ax +2在[-1,1]上的最小值.解:函数f(x)图象的对称轴为直线x =a,且函数图象开口向上,如图1,当a>1时,f(x)在[-1,1]上单调递减, 故f(x)min =f(1)=3-2a ;如图2,当-1≤a≤1时,f(x)在[-1,1]上先减后增, 故f(x)min =f(a)=2-a 2;如图3,当a<-1时,f(x)在[-1,1]上单调递增, 故f(x)min =f(-1)=3+2a.综上可知,f(x)min =⎩⎪⎨⎪⎧3-2a ,a>1,2-a 2,-1≤a≤1,3+2a ,a<-1.2.已知函数f(x)=x 2+4x +3,求f(x)在区间[t,t +1]上的最小值g(t)和最大值h(t). 解:由f(x)=(x +2)2-1,对称轴为直线x =-2,f(-2)=-1,f(t)=t 2+4t +3,f(t +1)=t 2+6t +8,结合图象可知 g(t)=⎩⎪⎨⎪⎧t 2+6t +8,t ≤-3,-1,-3<t<-2,t 2+4t +3,t ≥-2.h(t)=max{f(t),f(t +1)}=⎩⎪⎨⎪⎧t 2+4t +3,t ≤-52,t 2+6t +8,t>-52.分段函数求最值例2 某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在如图所示中的两条线段上.该股票在30天内的日交易量Q(万股)与时间t(天)的部分数据如下表所示:(1)根据提供的图象,写出该股票每股交易价格P(元)与时间t(天)所满足的函数关系式;(2)根据表中数据,确定该股票日交易量Q(万股)与时间t(天)的函数关系式; (3)用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求出在这30天中第几天日交易额最大,最大是多少.解:(1)由图象知,前20天满足递增的直线方程,且过(0,2),(20,6)两点,易求得直线方程为P =15 t +2.从第20天到第30天满足递减的直线方程,且过(20,6),(30,5)两点,易求得直线方程为P =-110t +8.故函数关系式为P =⎩⎪⎨⎪⎧15t +2,0<t<20,t ∈N ,-110t +8,20≤t ≤30,t ∈N .(2)由表易知,Q 与t 满足一次函数关系式, 即Q =-t +40,0<t ≤30,t ∈N .(3)由(1)(2)可知,y =⎩⎪⎨⎪⎧-15(t -15)2+125,0<t<20,t ∈N ,110(t -60)2-40,20≤t ≤30,t ∈N ,当0<t<20且t =15时,y max =125; 当20≤t≤30时,y 随t 的增大而减小,所以x =20时,y max =120.因为120<125,所以这30天中第15天的日交易额最大,最大值为125万元. [规律方法]1.分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数的最大或最小值,应先求各段上的最值,再比较即可得函数的最大、最小值.2.如果函数的图象容易作出,画出分段函数的图象,观察图象的最高点与最低点,并求其纵坐标即可得函数的最大值、最小值.活学活用设函数f(x)=x|x -1|+m,当m>1时,求f(x)在[0,m]上的最大值.解:f(x)=x|x -1|+m =⎩⎪⎨⎪⎧-x 2+x +m ,0≤x ≤1,x 2-x +m ,1<x ≤m.当0≤x≤1时,f(x)=-x 2+x +m =-⎝ ⎛⎭⎪⎫x -12 2+m +14 ≤m+14 ;当1<x≤m 时,f(x)=x 2-x +m =⎝ ⎛⎭⎪⎫x -12 2+m -14 , ∴函数f(x)在(1,m)上单调递增,∴f(x)max =f(m)=m 2.∴f(x)max=max ⎩⎨⎧⎭⎬⎫m +14,m 2=⎩⎪⎨⎪⎧m +14,1<m<1+22,m 2,m ≥1+22.利用单调性求最值例3 已知函数f(x)=x 2+2x +3x ,x ∈[2,+∞).(1)求f(x)的最小值;(2)若f(x)>a 恒成立,求a 的取值范围.解:(1)任取x 1,x 2∈[2,+∞),且x 1<x 2,f(x)=x +3x +2,则f(x 1)-f(x 2)=(x 1-x 2)⎝⎛⎭⎪⎫1-3x 1x 2 .因为x 1<x 2,所以x 1-x 2<0.又因为x 1≥2,x 2>2,所以x 1x 2>4,1-3x 1x 2>0, 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故f(x)在[2,+∞)上单调递增,所以当x =2时,f(x)有最小值,最小值为f(2)=112 .(2)因为f(x)的最小值为f(2)=112 ,所以f(x)>a 恒成立,只需f(x)min >a,得a<112 .活学活用求函数f(x)=x2x -3 在区间[1,2]上的最大值和最小值.解:因为f(x)=x2x -3 ,∀x 1,x 2∈[1,2],且x 1<x 2,则f(x 1)-f(x 2)=x 21 x 1-3 -x 22x 2-3=x 21 x 2-3x 21 -x 1x 22 +3x 22 (x 1-3)(x 2-3)=(x 2-x 1)[3(x 1+x 2)-x 1x 2](x 1-3)(x 2-3).因为1≤x 1<x 2≤2,所以x 1-3<0,x 2-3<0,2<x 1+x 2<4, 即6<3(x 1+x 2)<12.又1<x 1x 2<4,x 2-x 1>0, 故f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),所以函数f(x)=x2x -3 在区间[1,2]上单调递减,所以f(x)max =f(1)=-12 ,f(x)min =f(2)=-4.[规律方法]1.函数的最值与单调性的关系.(1)若f(x)在[a,b]上单调递减,则f(x)在[a,b]上的最大值为f(a),最小值为f(b); (2)若f(x)在[a,b]上单调递增,则f(x)在[a,b]上的最大值为f(b),最小值为f(a). 2.利用函数的单调性求最值,要熟练掌握一些常见函数的基本性质. 【迁移探究】 已知函数f ()x =x -1x +2,x ∈[]3,5 . (1)若不等式f ()x >a 在[]3,5 上恒成立,求实数a 的取值范围; (2)若不等式f ()x >a 在[]3,5 上有解,求实数a 的取值范围.解:(1)由题意可得,即求f(x)的最小值,f(x)=x -1x +2 =1-3x +2 ,判断可得函数f(x)在[]3,5 上单调递增,故f(x)min =f(3)=25 ,故a<25.(2)由题意可得,即求f ()x 的最大值,f(x)=x -1x +2 =1-3x +2,判断可得函数f(x)在[]3,5 上单调递增,故f(x)max =f(5)=47 ,故a<47.1.函数f(x)的部分图象如图所示,则该函数在[-2,2]上的最小值、最大值分别是( C )A .f(-2),f(3)B .0,2C .f(-2),2D .f(2),2【解析】 由图象可知,x =-2时,f(x)取得最小值f(-2);x =1时,f(x)取得最大值f(1)=2.故选C.2.函数y =2x 2+1,x ∈N *的最值情况是( B ) A .无最大值,最小值是1 B .无最大值,最小值是3 C .无最大值,也无最小值 D .不能确定最大、最小值【解析】 因为x∈N *,且函数在(0,+∞)上单调递增,故函数在x =1时取得最小值,最小值为3,无最大值.故选B.3.函数f(x)=1x 2 在区间⎣⎢⎡⎦⎥⎤12,2 上的最大值是( C )A .14 B .-1 C .4 D .-4【解析】 因为f(x)=1x 2 在区间⎣⎢⎡⎦⎥⎤12,2 上单调递减,所以f(x)max =f ⎝ ⎛⎭⎪⎫12 =4.4.若函数y =kx(k>0)在[2,4]上的最小值为5,则k =__20__.【解析】 因为k>0,所以函数y =k x 在[2,4]上单调递减,所以当x =4时,y =kx 最小,由题意知k4=5,得k =20.5.函数f(x)=x 2+3x +a 在区间(-3,3)上的最小值为__a -94__.【解析】 因为f(x)=x 2+3x +a =⎝ ⎛⎭⎪⎫x +32 2+a -94 ,-3<x<3,所以f(x)在(-3,3)上的最小值为f ⎝ ⎛⎭⎪⎫-32 =a -94 .温馨说明:课后请完成高效作业16。
函数的单调性导学案
鸡西市第十九中学学案2014年( )月( )日 班级 姓名2.1.3函数的单调性学习 目标 1. 理解函数单调性的概念 2. 能由函数图象写出函数单调区间 3. 会证明函数的单调性 重难函数单调性的概念和证明下图是鸡西9月16日气温变化图:分别作出下列函数的图象,并且观察自变量变化时,函数值有什么变化规律? (1)()2f x x =+(2)()2f x x =-+(3)2()f x x =(4)1()f x x=1x 2x )(1x f )(2x f )(x f 图3yx1x 2x )(1x f )(2x f )(x f 图4yx从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是______,若图象是下降的,则此函数是_____________ 增函数减函数前提一般地,设函数()f x 的定义域为I :如果对于定义域内某个区间D 上的任意两个自变量的值12,x x ,定义当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数.如右图所示.当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.如右图所示.图象描述自左向右看图象是___________自左向右看图象是__________【注意】函数的单调性是一个局部概念单调区间:如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f (x )的单调区间.例1、如图,定义在[-5,5]上的f (x ),根据图象说出单调区间及单调性.xx f 1)(=在),0(+∞和(-∞上均为减函数,)(x f 在整个定义域上是否为减函数?例2、如何从解析式的角度说明2)(x x f =在),0[+∞上为增函数?。
导学案007(函数的单调性)
函数的单调性编号:007一、考纲要求:函数的基本性质二、复习目标:1.理解函数的单调性2.能判断或证明函数的单调性三、重点难点:判断或证明函数的单调性四、要点梳理:1.函数的单调性(1)单调函数的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.五、基础自测:1.判断下列说法是否正确:(1)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的单调增函数; (2)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是单调减函数; (3)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间[0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数;(4)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数.2、下列函数 (1)2()(1)f x x =- (2)()x f x e = (3)()ln(1)f x x =+ (4) 111y x =-- (5)||y x x =在(,0)x ∈-∞是减函数的序号是_________________ 4.六、典例精讲:例1 (1)判断函数()f x = (2)判断函数1()ln 1xf x x-=+的单调性,并证明你的结论.例2(1) 函数32()15336f x x x x =--+的单调递增区间为 . (2) 函数20.7log (32)y x x =-+的单调减区间是____________________例3.已知函数()f x 对任意x ,y ∈R ,总有()()()f x f y f x y +=+,且当0x >时,()0f x <, ,求证:()f x 是R 上的减函数.七、千思百练:1.函数1()f x x x=-的单调增区间为 . 2、设函数()f x 是减函数,且()0f x >,下列函数中为增函数的是_________(1)1()y f x =-(2)12log ()y f x = (3)()2f x y = (4)[]2()y f x =(5)32()y x f x =-3.函数()f x 是R 上的减函数,a ∈R ,记2()m f a =,(1)n f a =-,则m ,n 的大小关系是 .4、(必修1第37页第7题)函数21()21x x f x -=+的单调区间是_______________________5、(必修1第55页第12题)对于任意的12,,x x R ∈若函数1()()2xf x =,则1212()()()22f x f x x xf ++与的大小关系是__________________八、反思感悟:1、判断函数单调性的常见方法:(1)图像法 (2)定义法 (3)导数法2、复合函数单调性的判断:同增异减法。
高中数学:专题-函数的单调性与最值导学案
专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.( )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(5)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(6)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( )考点一 求函数的单调性(区间)A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)(2)函数f (x )=lg x 2的单调递减区间是________.(3)判断并证明函数f (x )=axx 2-1(其中a >0)在x ∈(-1,1)上的单调性.(二次除以一次的处理; 拓展一次除以一次) [方法引航] 判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论. (2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减. (4)性质法:增函数与减函数的加减问题。
1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x C .y =ln x D .y =|x |2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=x +1在[1,2]上的最大值和最小值分别是________. (2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________.1.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y< B .22log log x y < C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________.[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x 4.函数f (x )=xx -1(x ≥2)的最大值为________. 5.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增D .先递增再递减2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞)3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤05.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-36.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.7.y =-x 2+2|x |+3的单调增区间为________.8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2)D .(-2,0)3.函数f (x )=log 5(2x +1)的单调递增区间是________.4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f(x)为单调递减函数;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.。
1.3.1单调性与最大(小)值(2)导学案
1.3.1《单调性与最大(小)值》(2)导学案【使用说明】1、认真阅读课本,提前预习,明确基本概念,完成课前导学与自测部分,要求:人人参与并独立完成;2、课堂积极讨论,大胆展示,发挥高效学习小组作用,完成合作探究部分;3、针对学生在预习环节可能解决不了的问题,课堂上教师进行点拨指导。
【学习目标】1、理解函数的最大(小)值及其几何意义;2、学会运用函数图象理解和研究函数的性质.【课前导学与自测】预习教材第30-32页,找出疑惑之处,完成新知学习1、思考:先完成下表,上述表格体现了函数值的什么特征?问题:最高点的函数值与其它函数值有什么关系?最低点呢?2、归纳定义:设函数y =f (x )的定义域为I ,如果存在实数M 满足:对于 x ∈I ,都有 ;存在 ,使得 . 那么,称M 是函数y =f (x )的最大值(Maximum Value ).试试:仿照最大值定义,给出最小值(Minimum Value )的定义.1. 函数2()2f x x x =-的最大值是( ). A. -1 B. 0 C. 1 D. 22.函数f (x )=2x 2+4x+5,x ∈[-3,-2]的最小值是 ( )A .1B .2C .3D .5 3.函数f (x )=3│x │+2的最小值是 ( ) A .2 B .3 C .4 D .54.函数f (x )=x 2+2x+b 的最小值为5,则b= 。
【合作探究】首先独立思考探究,然后合作交流展示对于函数94)(2++-=x x x f ,求在下列区间上的最值:;)1(R x ∈ [];0,3)2(-∈x ](;6,3)3(∈x [];6,3)4(-∈x由此归纳:求二次函数的最值的方法是应该注意什么 。
我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。
【精讲点拨】例1.求32y x =-在区间[3,6]上的最大值和最小值.变式:求3,[3,6]2xy x x +=∈-的最大值和最小值.反思:你现在有什么方法可以求最大(小)值? 探究:32y x =-的图象与3y x=的关系?例2.求二次函数[]4,222)(2在+-=ax x x f 的最小值。
《函数单调性与最大(小)值(第2课时)》教学设计
第三节 函数的基本性质1.3.1 第二课时 函数的最大(小)值(李波)一、教学目标(一)核心素养教材以二次函数2()f x x =图象为例,观察出函数图象的最低点(0,0),这给我们提供了一种求函数最值的方法“图象观察法”,这也是一种最直接,最直观的方法.结合上一课时函数的单调性,学生通过函数图象,研究函数性质,寻求最值.在实际生活中,常遇到最值问题,我们是通过建立函数模型来进行研究,体现了数学与社会生活紧密联系.本节课,在探究函数的最值问题中,不断培育学生的数学运算、数学抽象、数学建模等数学核心素养.(二)学习目标1.通过函数图象,理解函数最大(小)值及几何意义.2.结合函数单调性求最大(小)值.3.函数最大(小)值的实际问题中的应用.(三)学习重点1.理解函数最大(小)值的概念及几何意义.2.求函数的最大(小)值.(四)学习难点结合函数单调性求最大(小)值.二、教学设计(一)课前设计1.预习任务一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有______;(2)存在0x I ∈,使得_______,那么我们称M 是函数()y f x =的最____值. 详解:()f x M ≤;0()f x M =;大或 ()f x M ≥;0()f x M =;小.2.预习自测(1)作函数22y x x =-+的图象,指出函数是否有的最值?若有,请求出最值. 详解:有最大值,无最小值;最大值为1.(二)课堂设计1.知识回顾(1)常见初等函数的图象.(2)函数的单调性.2.问题探究探究一 通过函数图象,函数最高(低)点的位置特征及几何意义●活动① 学生作函数y x =,1y x =,2y x =图象,观察图象的最高(低)点生:y x =图象上下无限延伸,没有最高点,也没有最低点;1y x=图象上下无限延伸,没有最高点,也没有最低点,且中间断开; 2y x =图象往上无限延伸,没有最高点,最低点在(0,0)处;师:结合图像观察结论,能否阐述函数图象最高(低)点的位置特质及几何意义? 生:2y x =图象最低点在(0,0)处.仔细观察发现,位置特征:最低点位于函数图象上,不是图像外的其他点;几何意义:函数图象上所有点在坐标系中的位置都高于它或和它一样高(最低点本身).【设计意图】观察图象易找到最高(低)点,教学时对最高(低)点的位置特征、几何意义进行探究,展现数学概念生成的过程,培养学生严谨的逻辑推理能力. ●活动② 图象的最高(低)点所体现的函数对应关系本质师:点之间位置高度的如何量化,更显数学的严谨性.由第一课时函数单调性推导,我们在描述()f x 随着x 的增大而增大,任取点11(,)A x y 到22(,)B x y ,其中12x x <刻画x 的增大,因此,我们是借助于点的坐标来探究.同学们可以想一想:在坐标系中,图象的点的高度,是由构成图象点的纵坐标决定的.师:下面以2y x =图象最低点在(0,0)O 为例,探究函数对应关系本质图象上其他点的位置不低于点O⇔图象上任意点(,)Q x y 位置不低于点(0,0)O⇔任意点(,)Q Q Q x y 的纵坐标Q y 的值与(0,0)O 纵坐标O y 的值关系:Q O y y ≥;而任意点(,)Q Q Q x y 的横坐标Q x 的值与(0,0)O 横坐标O x 的关系:,Q O x x R ∈(定义域) ⇔定义域R 内,寻求纵坐标的最小值因此,我们可以下结论:函数图象的最高(低)点(,)Q Q Q x y 的实质是:函数在定义域内任取x 所对应的y 值小于或等于(大于或等于)该点的函数值Q y ;也可以这样描述,函数整个定义域I 内的函数值y 在Q x x =处有最大(小)值Q y ,称Q y 为函数的最大(小)值.关系流程如图:【设计意图】从图象的最高(低)点的“形”,如何过渡到最大(小)值这个“数”,是教学设计的重点.我们从最高(低)点的位置特征,几何意义分析,让学生充分认识到点的坐标,是图象的构成元素点的数量体现,对“形”的认识自然过渡到“数”的分析.点的坐标由横、纵坐标组成,在坐标系中图象上的点投影在x 轴所覆盖的范围、y 轴所覆盖的范围,分别对应了函数的定义域和值域.最高(低)点的横、纵坐标,在坐标系中该点投影在x 轴是其横坐标取值、y 轴上是其纵坐标取值,与其他点投影到y 轴上的值相比较,是最大(小)值,同时该点横、纵坐标分别对应了定义域内某个值,值域内的最大(小)值.●活动③函数最大(小)值的概念师:由以上的推导,我们能否生成函数最大(小)值的概念?生:存在某个值使得所有函数值都比它大(小)也可相等.师:由几何特征,这个值在值域中吗?请继续完善.生:这个值在值域中.值域中存在某个值,使得所有函数值都比它大(小). 师:函数定义域优先,值域中某个值是否有一个x 与之对应?生:至少有一个x 与之对应,即存在性.师:一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有()f x M ≤(()f x M ≥);(2)存在0x I ∈,使得0()f x M =,那么我们称M 是函数()y f x =的最大(小)值.【设计意图】学生要充分认识图象的最高(低)点的位置、该点坐标形式、坐标的对应实质这三者之间的联系,才能从“形”的位置特征及几何意义,到“数”对应方式,呈现了函数最大(小)值概念的生成过程.探究二 结合函数单调性求最大(小)值●活动①由图象观察函数最值.例1已知函数()11f x x x =++-.(1)画出()f x 的图象;(2)根据图象写出()f x 的最小值.【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】(1)解:()11f x x x =++-2,12,112,1x x x x x -≤-⎧⎪=-<<⎨⎪≥⎩其图象如图所示:(2)由图象,得函数()f x 的最小值为2.【思路点拨】画出函数()y f x =的图象,依据函数最值的几何意义,借助图象写出最值.【答案】(1)略;(2)2.同类训练 如图为函数()y f x =,[4,7]x ∈-的图象,指出它的最大值、最小值.【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是( 1.5,2)--,所以当3x =时取得最大值,最大值是3;当 1.5x =-时取得最小值,最小值是-2.【思路点拨】从左至右观察图象,在最高(低)点对应的纵坐标值,为函数的最大(小)值.【答案】3,-2.【设计意图】考查学生如何观察函数最值●活动②利用函数单调性求最值例2:求函数21y x =-在区间[2,6]上的最大值和最小值. 【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】解:12,[2,6]x x ∀∈,且12x x <211212122()22()()11(1)(1)x x f x f x x x x x --=-=----, 12,[2,6]x x ∈,12(1)(1)0x x ∴-->.12x x <,120x x ∴->,12()()0f x f x ∴->,即12()()f x f x >.21y x ∴=-是区间[2,6]上的减函数. 因此,函数21y x =-在区间[2,6]的两个端点分别取得最大值与最小值,即在2x =时取得最大值,最大值为2,在6x =时取得最小值,最小值为0.4.【思路点拨】由图象可观察函数单减,在2x =处有最大值,在6x =处有最小值.在实际解答题中,能说明函数的单调性应先证明,再求最值.【答案】2,0.4.同类训练 求函数4()f x x x=+在[1,2]x ∈上的最大值与最小值. 【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】解:12,[1,2]x x ∀∈,且12x x <,则121212121212444()()()()()x x f x f x x x x x x x x x --=+-+=-. 12x x <,120x x ∴-<,1212,[1,2](1,4)x x x x ∈∴∈,,1212401x x x x ∴-<,>,1212()()0()().f x f x f x f x ∴->,即>4()f x x x∴=+在[1,2]x ∈上是减函数. 从而函数的最大值是(1)145f =+=,最小值是(2)224f =+=.【思路点拨】由函数单调性求最值.【答案】5,4.【设计意图】求函数最值时,首先判定函数在给定区间的单调性,结合函数图象,在区间的端点值处取得最值.●活动③二次函数的最值问题例3求函数2()22f x x ax =-+在[2,4]上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x ax =-+的对称轴是x a =,当2a <时,()f x 在[2,4]上单增,min ()(2)64f x f a ==-,当4a >时,()f x 在[2,4]上单减,min ()(4)188f x f a ==-,当24a ≤≤时,2min ()()2f x f a a ==-.综上所述2min64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩同类训练 求函数2()22f x x x =-+在[,1]t t +上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x x =-+的对称轴是1x =.当110t t +<⇒<时,()f x 在[,1]t t +上单减,2min ()(1)1f x f t t =+=+; 当1t >时,()f x 在[,1]t t +上单增,2min ()()22f x f t t t ==-+;当1101t t t ≤≤+⇒≤≤时,min ()(1)1f x f ==.综上所述2min21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩例4 函数2()34f x x x =--的定义域为[0,]m (0m >),值域为25[,4]4--,求m 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:2()34(4)(1)f x x x x x =--=-+如图min 325()()24f x f ==-,=-43[,3]2m ∴∈. 【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.同类训练:函数2()23f x x x =-+在[0,]a (0a >)上最大值是3,最小值是2,求a 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:22()23(1)2f x x x x =-+=-+如图:要取到最小值2,a 必须对称轴1x =右侧取值.最大值为3,则a 的必须在对称轴1x =左侧取值.[1,2]a ∴∈.【答案】[1,2]a ∈.【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.【设计意图】通过值域寻求定义域的问题,结合二次函数图象,找出对应的坐标轴的取值范围.●活动④函数关系中恒成立问题例5已知函数223()x x f x x++=([2,)x ∈+∞). (1)求()f x 的最小值;(2)若()f x a >恒成立,求a 的取值范围.【知识点】函数单调性求最值,恒成立问题转化.【数学思想】变量分离思想、等价转化思想.【解题过程】解:(1) 12,[2,)x x ∀∈+∞,且12x x <,223()x x f x x++=则12121212(3)()()()x x f x f x x x x x --=-.12x x <,120x x ∴-<,12,[2,)x x ∈+∞,124x x ∴>,1230x x ∴->,12()()0f x f x ∴-<,即12()()f x f x <. 故函数223()x x f x x++=在[2,)+∞上为增函数. ∴当2x =时,()f x 有最小值,即11(2)2f =. (2) ()f x 有最小值为11(2)2f =. ()f x a >恒成立,只需min ()f x a >,即112a <. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题.【答案】(1)112;(2)112a <. 同类训练 函数2()3f x x x a =++-,[1,1]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】函数单调性、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想.【解题过程】解:[1,1],()0x f x ∈-≥恒成立,23a x x ∴≤++,[1,1]x ∈-时恒成立.记:2()3g x x x =++, 只需min 11()4a g x ≤=,即114a ≤. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题. 【答案】114a ≤. 例6 函数2()3,f x x ax a =++-若[2,3]a ∈-时,()0f x ≥恒成立,求实数x 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想、分类讨论思想.【解题过程】解:22()3(1)(3)f x x ax a a x x =++-=-++,[2,3]a ∈-,()0f x ≥恒成立,记:2()(1)(3)g a a x x =-++,转化为()0g a ≥恒成立,[2,3]a ∈-.当1x =时,()40g a =>恒成立1x ∴=…………….①当1x >时,2()(1)(3)g a a x x =-++在[2,3]-上单增,22min ()(2)25(1)40g a g x x x =-=-+=-+>恒成立,1x ∴>…………….②当1x <时,2()(1)(3)g a a x x =-++在[2,3]-上单减,2min ()(3)30g a g x x ==+> 31x x ∴≤-≤<或0…………….③由①②③:(,3][,)x ∈-∞-⋃+∞0.【思路点拨】也可用二次函数图象问题求解,若向一次函数图象问题转化,问题变得相对容易.【答案】(,3][,)-∞-⋃+∞0.同类训练 函数2()3,f x x ax a =++-[2,2]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】分类讨论思想.【解题过程】函数2()3f x x ax a =++-图象的对称轴是2a x =-. 当22a -≤-,即4a ≥时,()f x 在[2,2]-上单增,min ()(2)730f x f a =-=-≥73a ∴≤. a ∴∈Φ………….① 当22a -≥,即4a ≤-时,()f x 在[2,2]-上单减,min ()(2)70f x f a ==+≥7a ∴≥-, [7,4]a ∴∈--.…………….②当222a -<-<,即44a -<<时,2min 412()()024a a a f x f ---+==≥62a ∴-≤≤, (4,2]a ∴∈-.………….③由①②③:[7,2]a ∈-.【思路点拨】对称轴与给定区间位置不同关系,由函数图象观察单调性,结合最值求解.【答案】[7,2]a ∈-.【设计意图】函数的最值与单调性的关系:若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为()f a ,最小值为()f b ;若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为()f b ,最小值为()f a .探究三 函数最大(小)值的实际问题中的应用●活动① 生活问题构建函数模型例7 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:2400,0400()280000,400x x x R x x ⎧-≤≤⎪=⎨⎪>⎩,其中x 是仪器的月产量. (1)将利润表示为月产量的函数()f x ;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:(1)月产量为x 台,则总成本为20000100x +元,从而⎪⎩⎪⎨⎧>-≤≤-+-=)400(,10060000)4000(,2000030021)(2x x x x x x f(2)当0400x ≤≤时,21()(300)25000,2f x x =--+ 当300x =时,max ()25000f x =;当400x >时,()60000100f x x =-是减函数,()60001004002000025000.f x <-⨯=<综上所述:300x ∴=时,max ()25000f x =.即每月生产300台仪器时利润最大,最大利润为25000元.【思路点拨】分段函数模型要注意x 的不同取值范围,所对应的利润求值问题.【答案】(1)2130020000,(0400)()260000100,(400)x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)每月生产300台仪器时利润最大,最大利润为25000元.同类训练 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少?【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:设售价为x 元,利润为y 元,单个涨价50x -元,销量减少10(50)x -个. 2(40)[50010(50)](40)(100010)10(70)9000.y x x x x x =---=--=--+故当70x =时,max 9000y =所以售价为70元时,利润最大为9000元.【思路点拨】构建一元二次方程求最值.【答案】售价为70元时,利润最大为9000元.【设计意图】 (1)解决实际问题,首先要理解题意,然后建立数学模型转化成数学问题解决.(2)分清各种数据之间的关系是正确构造函数关系式的关键.3. 课堂总结知识梳理(1)通过函数图象,探究函数最大(小)值及几何意义.(2)结合函数单调性求函数最大(小)值.(3)函数最大(小)值在实际问题中的应用.重难点归纳(1)函数最大(小)值概念的生成.(2)求函数最大(小)值.(三)课后作业基础型 自主突破1.若函数()f x x =则( ) A ()f x 的最大值为0,无最小值 B ()f x 无最大值,最小值为0C ()f x 的最大值为+∞,最小值为0D ()f x 的最大值为0,最小值为-∞【知识点】图象应用【数学思想】数形结合思想【解题过程】如图: ()f x x =在(,0),[0,)-∞+∞在0x =处有最小值(0)0f =,无最大值【思路点拨】由图象观察求最值【答案】B 2.若函数26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩,则()f x 的最大值、最小值分别为( ) A 10,6 B 10,8 C 8,6 D 8,8【知识点】一次函数图象性质【数学思想】【解题过程】解:由一次函数单调性26,(1,2]y x x =+∈,7,[1,1]y x x =+∈-,因此26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩在区间[1,2]x ∈-,min max ()(1)6,()(2)10f x f f x f =-===【思路点拨】也可用图象观察的方法.【答案】A3.函数2()2f x x x =+(1)在(2,5]-的最大值,最小值分别是________(2)在(1,2]-的最大值,最小值分别是________【知识点】二次函数图象【数学思想】数形结合思想【解题过程】函数2()2f x x x =+对称轴1x =-(1)(2,5]x ∈-,函数在1x =-处有最小值,min ()(1)1f x f =-=-在5x =处有最大值,max ()(5)35f x f ==(2)函数在(1,2]-上单增,在2x =处有最大值,max ()(2)8f x f ==【思路点拨】给定区间求最值,作图观察.【答案】(1)35,-1;(2)8,无4.函数1()12f x x=--在(2,5]x ∈上的值域是______ 【知识点】函数单调性【数学思想】数形结合思想【解题过程】解:函数11()122x f x x x-=-=--,定义域为(,2)(2,)-∞⋃+∞ 由一次分函数图象知: ()f x 在(2,5]上单减min 4()(5)3f x f ==,函数无最大值【思路点拨】可用定义法证明函数单调性,也可分析法2y x =-在(2,5]为减,12y x =-在(2,5]为增, 112y x=--在(2,5]为减. 【答案】4[,)3+∞ 5. 已知二次函数()f x 满足且()f x 的最大值为8,求此二次函数的解析式【知识点】待定系数法求函数解析式 【数学思想】函数与方程的思想【解题过程】解:设2()(0)f x ax bx c a =++≠ (2)(1)1f f =-=-,()f x 的最大值为824211484a b c a b c ac b a ⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得447a b c =-⎧⎪=⎨⎪=⎩2()447f x x x ∴=-++【思路点拨】也可以用顶点式、两点式求解【答案】2()447f x x x =-++6. ()1f x ax =+在[1,2]上的最大值与最小值之差为2,求a 的值【知识点】一次函数单调性【数学思想】分类讨论思想【解题过程】解:()1f x ax =+当0a =时,()1f x =常值函数,在[1,2]上无单调性当0a >时,()1f x ax =+在[1,2]上单增,min max ()(1)1,()(2)21f x f a f x f a ==+==+ max min ()()(21)(1)2f x f x a a a ∴-=+-+==当0a <时,()1f x ax =+在[1,2]上单减,max min ()(1)1,()(2)21f x f a f x f a ==+==+max min ()()(1)(21)22f x f x a a a a ∴-=+-+=-=⇒=-【思路点拨】一次函数y kx b =+的单调性,0,();0,()k f x k f x ><【答案】2或-2能力型 师生共研7.已知2()2(1)2f x x a x =+-+在区间[1,5]上的最小值为(5)f ,求a 的范围【知识点】二次函数单调性【数学思想】数形结合思想【解题过程】解:2()2(1)2f x x a x =+-+对称轴为1x a =- min ()(5)f x f =2()2(1)2f x x a x ∴=+-+在区间[1,5]单减,称轴为154x a a =-≥⇒≤-【思路点拨】【答案】4a ≤-8.设1()1f x kx x =--,其中1k >,若()f x 在[2,)+∞上有最小值,求k 的值 【知识点】单调性应用【数学思想】【解题过程】解:11()11f x kx kx x x =-=+--,其中y kx =,11y x =-在[2,)+∞均单调递增1()1f x kx x ∴=--在[2,)+∞单增min 3()(2)2f x f k ⇒=⇒= 【思路点拨】性质法判断函数单调性【答案】32k = 探究型 多维突破9.若函数2(),[1,1]f x ax x a x =+-∈-的最大值为178,求a 的值.【知识点】二次函数根的分布【数学思想】数形结合思想、分类讨论思想【解题过程】解:函数2(),[1,1]f x ax x a x =+-∈-当0a =时,()f x x =在[1,1]-上单增,max ()(1)1f x f ==矛盾当0a >时,函数2()f x ax x a =+-图象对称轴102x a =-< max ()(1)1f x f ∴==矛盾当0a <时,函数2()f x ax x a =+-图象对称轴102x a=-> 当112a -≤,即12a ≤-时, 2max14117()()248a f x f a a --=-==,2a ∴=- 当112a ->,即102a -<<时max ()(1)1f x f ∴== 矛盾 综上所述:2a =-【思路点拨】二次函数根的分布问题,结合函数图象及函数在区间上的单调性讨论【答案】2a =-10.建造一个容积为6400立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元.(1)把总造价y 元表示为池底的一边长x 米的函数;(2)由于场地原因,蓄水池的一边长不能超过40米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?【知识点】数学建模【数学思想】函数与方程思想【解题过程】解:(1)由已知池底的面积为640016004=平方米,底面的另一边长为1600x 米, 则池壁的面积为:160024()x x⨯⨯+平方米. 所以总造价: 16001600()160000,(0,)y x x x=++∈+∞ (2)由题意知16001600()160000,(0,40]y x x x=++∈ 设12040x x <<≤,则121212121212(1600)160016001600()1600()1600()x x y y x x x x x x x x --=+-+=- 12040x x <<≤,120x x ∴-<,1201600x x ∴<<1216000x x ∴-<,120y y ∴->即12y y >从而这个函数在(0,40]上是减函数,故当40x =时,min 288000y =所以当池底是边长为40米的正方形时,总造价最低为288000元.【思路点拨】函数单调性求最值【答案】边长为40米的正方形时,总造价最低为288000元.自助餐1.函数2()43,[1,4]f x x x x =-+∈,则()f x 的最大值为( )A. -1B.0C.3D.-2【知识点】二次函数求最值【数学思想】数形结合思想【解题过程】解:2()43(1)(3)f x x x x x =-+=--, 如图:max ()(4)3f x f ==【思路点拨】给定区间求最值【答案】C2.函数()21f x x x =-+的值域为( )A.1[,)2+∞B.1(,]2-∞ C.[1,)+∞ D.(0,)+∞ 【知识点】函数值域【数学思想】等价转化思想【解题过程】()21f x x x =-+定义域1[,)2+∞ 21,y x y x =-=在1[,)2+∞上单增 ()21f x x x ∴=-+在1[,)2+∞上单增,∴值域1[,)2+∞ 【思路点拨】性质法判断函数单调性,再求最值【答案】A3. 函数2202,()02,x x x f x x x -≤≤⎧--=⎨<≤⎩,则()f x 的最大值、最小值分别为______ 【知识点】分段函数求最值【数学思想】数形结合思想【解题过程】解:如图所示max ()(2)2f x f ==min ()(2)(0)0f x f f =-==【思路点拨】分段函数在对应区间求一次函数、二次函数的最值【答案】2,04.函数2()45f x x x =-+在[0,]m 上的最大值5,最小值1,则m 的取值范围______【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:22()45(2)1f x x x x =-+=-+如图所示:max ()(0)(4)5f x f f ===min ()(2)1f x f == [2,4]m ∴∈【思路点拨】由值域反推定义域【答案】[2,4]5.已知函数2()22,[5,5]f x x ax x =++∈-(1)当1a =-时,求函数()f x 的最大值和最小值(2)函数()y f x =在区间[5,5]-上是单调函数,则a 的取值范围【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:(1)当1a =-时,22()22(1)1f x x x x =++=++ [5,5]x ∈-,min ()(1)1f x f ∴=-=,max ()(5)37f x f =-=(2)22()()2f x x a a =++-,函数对称轴x a =-函数在区间[5,5]-上是单调函数,5a ∴≤-或5a ≥【思路点拨】二次函数的对称轴与开口方向,决定了函数单调区间6.求函数223,[1,2]y x ax x =--∈的最大值()M a 和最小值()m a .【知识点】二次函数单调性【数学思想】分类讨论思想【解题过程】解:函数2()23f x x ax =--的对称轴是x a = 当1a <时,()f x 在[1,2]上单增,min ()(1)22()f x f a m a ==--=max ()(2)14()f x f a M a ==-=当2a >时,()f x 在[1,2]上单减,max ()(1)22()f x f a M a ==--=min ()(2)14()f x f a m a ==-=当12a ≤≤时,2min ()()3()f x f a a m a ==--= 最大值由区间端点与对称轴决定1 1.5a ≤≤max ()(2)14()f x f a M a ==-=1.52a <≤max ()(1)22()f x f a M a ==--=综上所述:222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩ 【思路点拨】对称轴与区间的位置关系,分类讨论【答案】222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩。
函数的单调性导学案(经典)
《函数的单调性》导学案
一、教学目标
(1)知识与技能:使学生理解函数单调性的概念,并能从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.
(2)过程与方法:从生活实际和已有旧知出发,引导学生探索函数的单调性的概念,通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
(3)情感态度价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,也培养学生细心观察、归纳、分析的良好习惯和不断探求新知识的精神.
二、教学重难点
教学重点:(1)函数单调性的概念及其应用;
(2)常见函数的单调区间的求法.
教学难点:利用函数图象、单调性的定义判断和证明函数的单调性.
三、课堂导学。
高中数学选择性必修二 5 3 1函数的单调性新 导学案
5.3.1函数的单调性(2) 导学案1.掌握利用导数判断函数的单调性的一般步骤.2.探究函数增减的快慢与导数的关系.3.学会处理含参函数的单调性问题重点:导数判断函数的单调性的一般步骤难点:含参函数的单调性问题1.函数f (x)的单调性与导函数f ′(x)正负的关系定义在区间(a,b)内的函数y=f (x):f ′(x)的正负 f (x)的单调性f ′(x)>0单调递____f ′(x)<0单调递____增;减2.判断函数y=f (x)的单调性第1步:确定函数的______;第2步:求出导数f ′(x)的____;第3步:用f ′(x)的____将f (x)的定义域划分为若干个区间,列表给出f ′(x)在各区间上的____,由此得出函数y=f (x)在定义域内的单调性.定义域 ;零点 ;零点 ;正负3.函数图象的变化趋势与导数值大小的关系一般地,设函数y =f (x ),在区间(a ,b )上:导数的绝对值函数值变化函数的图象 越大 __ 比较“____”(向上或向下) 越小__比较“____”(向上或向下)快;陡峭 ;慢;平缓探究1. 形如f(x)=ax 3+bx 2+cx+d(a≠0)的函数应用广泛,下面我们利用导数来研究这类函数的单调性。
例3. 求函数f (x )=13x 3−12x 2−2x +1的单调区间.如果不用导数的方法,直接运用单调性的定义,你如何求解本题?用解不等式法求单调区间的步骤 1确定函数f x 的定义域; 2求导函数f ′x ;3解不等式f ′x >0或f ′x <0,并写出解集; 4根据3的结果确定函数f x 的单调区间. 跟踪训练1.求下列函数的单调区间: (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2e -x .探究2:研究对数函数y =lnx 与幂函数y =x 3在区间(0,+∞)上增长快慢的情况.例4.设x>0,f(x)=lnx,g(x)=1−1x,两个函数的图像如图所示。
函数第2节函数的单调性与最值教案北师大版
函数的单调性与最值[考试要求]1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图像分析函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A 当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间A上是增加的当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间A上是减少的图像描述自左向右看图像是上升的自左向右看图像是下降的如果函数y=f(x)在区间A是增加的或减少的,那么称A为单调区间.提醒:(1)单调区间只能用区间表示,不能用不等式或集合表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.2.函数的最值前提设函数y=f(x)的定义域为D,如果存在实数M满足条件①对于任意的x∈D,都有f(x)≤M;②存在x0∈D,使得f(x0)=M①对于任意的x∈D,都有f(x)≥M;②存在x0∈D,使得f(x0)=M结论M为y=f(x)的最大值M为y=f(x)的最小值1.函数单调性的结论(1)对任意x 1,x 2∈D (x 1≠x 2),⇔f (x )在D 上是增函数;⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数.(4)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )的单调性相反. (5)函数y =f (x )在公共定义域内与y =1f (x )的单调性相反.(6)复合函数y =f [g (x )]的单调性与函数y =f (u )和u =g (x )的单调性关系是“同增异减”. 2.函数最值存在的两个结论(1)闭区间上的连续函数一定存在最大值和最小值. (2)开区间上的“单峰”函数一定存在最大(小)值.一、易错易误辨析(正确的打“√”,错误的打“×”) (1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)闭区间上的单调函数,其最值一定在区间端点取到.( ) [答案] (1)× (2)× (3)× (4)√ 二、教材习题衍生1.下列函数中,定义域为R 且为减函数的是( ) A .y =e -x B .y =x 3 C .y =ln xD .y =|x |A [函数y =e -x 定义域为R 且为减函数.y =x 3定义域为R 且为增函数.函数y =ln x 定义域为(0,+∞).函数y =|x |定义域为R ,但在(-∞,0]上是减函数,在[0,+∞)上是增函数,故选A.]2.函数f (x )=x 2-2x 的单调递增区间是________.[1,+∞) [f (x )=x 2-2x =(x -1)2-1,因此函数f (x )的单调递增区间为 [1,+∞).]3.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.⎝⎛⎭⎫-∞,-12 [因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.]4.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )max =f (2)=2,f (x )min =f (6)=25.]考点一 求函数的单调区间2.求复合函数单调区间的一般步骤 (1)求函数的定义域(定义域先行); (2)求简单函数的单调区间;(3)求复合函数的单调区间,其依据是“同增异减”. [典例1] 求下列函数的单调区间: (1)f (x )=-x 2+2|x |+1; (2)f (x )=2x +1x +1; (3)f (x )=x 2+x -6. [解] (1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图像如图所示.由图像可知,函数的单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)由x +1≠0得x ≠-1,即函数f (x )的定义域为(-∞,-1)∪(-1,+∞), f (x )=2x +1x +1=2(x +1)-1x +1=2-1x +1,其图像如图所示. 由图像知,函数f (x )的单调递增区间为(-∞,-1)和(-1,+∞).(3)由x 2+x -6≥0得x ≤-3或x ≥2,即函数f (x )的定义域为(-∞,-3]∪[2,+∞), 令u =x 2+x -6, 则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).[母题变迁]若把本例T (1)函数解析式改为f (x )=|x 2-4x +3|,试求函数f (x )的单调区间. [解] 先作出函数y =x 2-4x +3的图像,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数y =|x 2-4x +3|的图像.如图所示.由图可知f (x )在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f (x )的单调递增区间为[1,2],[3,+∞),单调递减区间为(-∞,1],[2,3].点评:(1)求函数的单调区间,应先求定义域,在定义域内求单调区间. (2)重视函数f (x )=ax +bcx +d (ac ≠0)的图像与性质(对称中心、单调性、渐近线).[跟进训练]1.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0] C .(0,2]D .[2,+∞)A [由题意得,f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,[2,+∞)是函数f (x )的单调递增区间;当x <2时,(-∞,1]是函数f (x )的单调递增区间,[1,2]是函数f (x )的单调递减区间.] 2.函数y =ln(-x 2+2x +3)的递减区间是( ) A .(-1,1] B .[1,3) C .(-∞,1]D .[1,+∞)B [令t =-x 2+2x +3,由t >0得-1<x <3. 故函数的定义域为(-1,3).又t =-x 2+2x +3在(-1,1)上是增函数,在[1,3)上是减函数,且y =ln t 在(0,+∞)上单调递增,由复合函数单调性可知函数y =ln(-x 2+2x +3)的递减区间为[1,3),故选B.]3.函数f (x )=xx -1的单调递减区间为________.(-∞,1)和(1,+∞) [由x -1≠0得x ≠1,即函数f (x )的定义域为(-∞,1)∪(1,+∞),又f (x )=xx -1=(x -1)+1x -1=1+1x -1,其图像如图所示,由图像知,函数f (x )的单调递减区间为(-∞,1)和(1,+∞).]考点二 函数单调性的判断与证明2.判断函数单调性的四种方法(1)图像法;(2)性质法;(3)导数法;(4)定义法. 3.证明函数单调性的两种方法 (1)定义法;(2)导数法. [典例2] 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. [解] 法一:设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.法二:f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为减函数, 当a <0时,f (x )在(-1,1)上为增函数. [跟进训练]判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性.[解] 设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+ax 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点三 函数单调性的应用1.比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.2.求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).此时要特别注意函数的定义域.3.利用单调性求参数的范围(或值)的策略(1)视参数为已知数,依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.(2)解决分段函数的单调性问题,要注意上、下段端点函数值的大小关系.比较函数值的大小[典例3-1] 已知函数f (x )的图像向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >cD [根据已知可得函数f (x )的图像关于直线x =1对称,且在(1,+∞)上是减函数.所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,f (2)>f (2.5)>f (3),所以b >a >c .] 点评:本例先由[f (x 2)-f (x 1)](x 2-x 1)<0得出f (x )在(1,+∞)上是减函数,然后借助对称性,化变量-12,2,3于同一单调区间,并借助单调性比较大小.解函数不等式[典例3-2] 已知函数f (x )=-x |x |,x ∈(-1,1),则不等式f (1-m )<f (m 2-1)的解集为________.(0,1) [f (x )=⎩⎪⎨⎪⎧x 2, -1<x ≤0,-x 2, 0<x <1,则f (x )在(-1,1)上单调递减,不等式f (1-m )<f (m 2-1)可转化为⎩⎪⎨⎪⎧-1<1-m <1,-1<m 2-1<1,m 2-1<1-m ,解得0<m <1.]点评:解答此类题目时,应注意隐含条件,如本例⎩⎪⎨⎪⎧-1<1-m <1,-1<m 2-1<1.求参数的值或取值范围[典例3-3] (1)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .{-3}B .(-∞,3)C .(-∞,-3]D .[-3,+∞)(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a的取值范围是( )A.(1,2)B.⎝⎛⎦⎤1,32 C.⎣⎡⎭⎫32,2D.⎝⎛⎭⎫32,2 (1)C (2)C [(1)y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -(a +2),由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3. 所以a 的取值范围是(-∞,-3]. (2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是⎣⎡⎭⎫32,2.故选C.]点评:分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.如本例(2). [跟进训练]1.若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]B [因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1.所以a 的取值范围是(1,+∞).故选B.]2.定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)C [因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C.]3.若函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.(-∞,-4) [函数y =log 3(x -2)在(3,+∞)上是增函数. y =2x +k x -2=2(x -2)+4+k x -2=2+4+k x -2,由题意知函数y =4+k x -2在(3,+∞)上是增函数,则有4+k <0,解得k <-4.]4.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为________.⎣⎡⎭⎫18,13 [由题意知,⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎨⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13.]考点四 函数的最值(值域)求函数最值的五种常用方法[典例4] (1)若函数f (x )=⎩⎪⎨⎪⎧(x -a )2(x ≤0),x +1x+a (x >0)的最小值为f (0),则实数a 的取值范围是( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2] (2)函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.(3)函数y =x -x (x ≥0)的最大值为________.(1)D (2)3 (3)14 [(1)当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1x, 即x =1时,等号成立.故当x =1时取得最小值2+a ,∵f (x )的最小值为f (0),∴当x ≤0时,f (x )=(x -a )2单调递减,故a ≥0,此时的最小值为f (0)=a 2,故2+a ≥a 2,得-1≤a ≤2.又a ≥0,得0≤a ≤2.故选D.(2)∵f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上单调递减,∴f (x )max =f (-1)=3-log 21=3.(3)令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,当t =12,即x =14时,y max =14.] [跟进训练]1.函数f (x )=x +x -1的最小值为________.1 [法一:(换元法)令t =x -1,且t ≥0,则x =t 2+1,所以原函数变为y =t 2+1+t ,t ≥0.配方得y =⎝⎛⎭⎫t +122+34, 又因为t ≥0,所以y ≥14+34=1, 故函数y =x +x -1的最小值为1.法二:(单调性法)因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在[1,+∞)内为增函数,所以y min =1.]2.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2 x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.1 [法一:在同一坐标系中,作函数f (x ),g (x )图像,依题意,h (x )的图像如图所示.易知点A (2,1)为图像的最高点,因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧ log 2 x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2 x 是增函数,当x >2时,h (x )=3-x 是减函数,所以h (x )在x =2时取得最大值h (2)=1.。
2014—2015学年高一数学必修一导学案:2.2.1函数的单调性(2)
3 (2)已知 y f ( x) ,在 [0 , ) 上是减函数,试比较 f ( ) 与 f (a 2 a 1) 的大小 4 关系 .
3、已知函数 f ( x) 2x 2 mx 1 ,在 [2,) 上是增函数,在 (,2] 上是减函数, 则 f ( 2) 是函数 f ( x) 的最 值。
4 、 函 数 f ( x) 2 x 2 mx 1 , 当 x (2,) 时 是 减 函 数, 则 m 的 取 值 范 围 是 。
y 3 2 -1.5 1 -4 -3 -2 -1 O
7 1 2 3 4 5 6 -1 -2 x
三、课堂研讨
例 1. 求下列函数的最值: (1) y x 2 x
2
(2) y
1 , x [1,3] x
2 例 2、已知函数 f ( x) x mx 1, 且 f (1) 3 ,求函数 f ( x) 在区间[2,3]内的最 值。
四、学后反思
2
函数的单调性:第 2 课时 检测案 班级: 【课堂检测】
1、函数 y 2 x 1 在 [1,2] 上的最大值和最小值分别是____ 2、函数 y x 2 x 在 [3,0] 上的最大值和最小值分别是_______ 3、函数 y _____。 ___。
姓名:
学号:
第
学习小组
2 1 在 [1,3] 上的最大值为__________,最小值为_________。 x
4、求函数 f ( x) 2 x 2 3x 1 在 [2,1] 上的最值。
5、已知函数 y f ( x) 在定义 R 域上是单调减函数,且 f (a 1) f (2a) ,求 a 的取 值范围。
1.3 1函数单调性与导数 导学案 (教师版)
§1.3导数在研究函数中的应用1.3.1函数的单调性与导数内容要求 1.结合实例,借助几何直观探索并了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性.3.会求不超过三次的多项式函数的单调区间.知识点1函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)函数的单调性导数单调递增f′(x) ≥0单调递减f′(x)≤0常函数f′(x)=0【预习评价】思考在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?提示必要不充分条件.知识点2利用导数求函数的单调区间求可导函数单调区间的基本步骤:(1)确定定义域;(2)求导数f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【预习评价】函数f(x)=13-x2-3x+2的单调增区间是________.3x解析 f ′(x )=x 2-2x -3,令f ′(x )>0,解得x <-1或x >3,故f (x )的单调增区间是(-∞,-1),(3,+∞). 答案 (-∞,-1),(3,+∞)题型一 利用导数判断(或证明)函数的单调性【例1】 证明:函数f (x )=sin x x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递减.证明 f ′(x )=x cos x -sin x x 2,又x ∈⎝ ⎛⎭⎪⎫π2,π,则cos x <0,∴x cos x -sin x <0, ∴f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.规律方法 关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f ′(x )>0(或<0),则f (x )为单调递增(或递减)函数;但要特别注意,f (x )为单调递增(或递减)函数,则f ′(x )≥0(或≤0).【训练1】 证明:函数f (x )=ln xx 在区间(0,e)上是增函数. 证明 ∵f (x )=ln xx ,∴f ′(x )=x ·1x -ln x x 2=1-ln x x 2.又0<x <e ,∴ln x <ln e =1. ∴f ′(x )=1-ln xx 2>0,故f (x )在区间(0,e)上是增函数.题型二 利用导数求函数的单调区间 【例2】 求下列函数的单调区间:(1)f (x )=2x 3+3x 2-36x +1; (2) f (x )=sin x -x (0<x <π); (3)f (x )=3x 2-2ln x ; (4) f (x )=x 3-3tx .解 (1) f ′(x )=6x 2+6x -36.由f ′(x )>0得6x 2+6x -36>0,解得x <-3或x >2; 由f ′(x )<0解得-3<x <2.故f (x )的增区间是(-∞,-3),(2,+∞);减区间是(-3,2). (2)f ′(x )=cos x -1.因为0<x <π,所以cos x -1<0恒成立, 故函数f (x )的单调递减区间为(0,π). (3)函数的定义域为(0,+∞), f ′(x )=6x -2x =2·3x 2-1x . 令f ′(x )>0,即2·3x 2-1x >0, 解得-33<x <0或x >33. 又∵x >0,∴x >33. 令f ′(x )<0,即2·3x 2-1x <0, 解得x <-33或0<x <33. 又∵x >0,∴0<x <33.∴f (x )的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3x2-3t.令f′(x) >0,得3x2-3t>0,即x2>t,∴当t≤0时,f′(x)>0恒成立,函数的增区间是(-∞,+∞);当t>0时,由x2>t解得x>t或x<-t;由f′(x)<0解得-t<x<t,函数f(x)的增区间是(-∞,-t)和(t,+∞),减区间是(-t,t).综上,当t≤0时,f(x)的增区间是(-∞,+∞);当t>0时,f(x)的增区间是(-∞,-t),(t,+∞),减区间是(-t,t).规律方法求函数的单调区间的具体步骤:(1)优先确定f(x)的定义域;(2)计算导数f′(x);(3)解f′(x)>0和f′(x)<0;(4)定义域内满足f′(x)>0的区间为增区间,定义域内满足f′(x)<0的区间为减区间.【训练2】求函数f(x)=x3+3x的单调区间.解方法一函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3⎝⎛⎭⎪⎫x2-1x2.由f′(x)>0,解得x<-1或x>1.由f′(x)<0,解得-1<x<1,且x≠0.所以函数f(x)的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,0),(0,1).方法二函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3(x2-1x2);令f′(x)=0,得x=±1.当x 变化时,f ′(x )与f (x )的变化情况如下表: x (-∞,-1)-1 (-1,0) (0,1) 1 (1,+∞)f ′(x )+0 --0 + f (x ) 单调递增Z -4单调递减] 单调递减]4单调递增Z0),(0,1).方向1 已知函数的单调性求参数的取值范围【例3-1】 已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围.解 f ′(x )=2x -a x 2=2x 3-ax 2.要使f (x )在[2,+∞)上是单调递增的,则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)时恒成立. ∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .∵x ∈[2,+∞)时,y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞))有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].方向2利用函数的单调性证明不等式【例3-2】已知a,b为实数,且b>a>e,其中e为自然对数的底,求证:a b>b a.证明当b>a>e时,要证a b>b a,只要证b ln a>a ln b,即只要证ln aa>ln bb.构造函数y=ln xx(x>0),则y′=1-ln xx2.因为当x>e时,y′=1-ln xx2<0,所以函数y=ln xx在(e,+∞)内是减函数.又因为b>a>e,所以ln aa >ln bb.故a b>b a.规律方法(1)已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f′(x)≥0(f′(x)≤0)在区间I上恒成立,再用有关方法可求出参数的取值范围.(2)“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.【训练3】若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m的取值范围.解f′(x)=3x2+2x+m.因为f(x)是R上的单调函数,所以f′(x)≥0恒成立或f′(x)≤0恒成立.因为二次项系数3>0,所以只能有f′(x)≥0恒成立.因此Δ=4-12m≤0,故m≥13.当m =13时,使f ′(x )=0的点只有一个x =-13,也符合题意.故实数m 的取值范围是⎣⎢⎡⎭⎪⎫13,+∞.课堂达标1.函数f (x )=x +ln x 在(0,6)上是( ) A.增函数 B.减函数C.在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D.在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数解析 ∵f ′(x )=1+1x >0, ∴函数在(0,6)上单调递增. 答案 A2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 答案 D3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A.[1,+∞)B.a =1C.(-∞,1]D.(0,1)解析 ∵f ′(x )=3x 2-2ax -1,又f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立,∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1. 答案 A4.函数y =x 2-4x +a 的增区间为______,减区间为______. 解析 y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2, 所以y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2). 答案 (2,+∞) (-∞,2)5.若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,则实数a 的取值范围是________.解析 f ′(x )=1x -ax -2=-ax 2+2x -1x.因为函数f (x )存在单调递减区间,所以f ′(x )≤0有解.又因为函数f (x )的定义域为(0,+∞),所以ax 2+2x -1≥0在(0,+∞)内有解. ①当a >0时,y =ax 2+2x -1为开口向上的抛物线,ax 2+2x -1≥0在(0,+∞)内恒有解;②当a <0时,y =ax 2+2x -1为开口向下的抛物线, 若ax 2+2x -1≥0在(0,+∞)内恒有解,则⎩⎨⎧Δ=4+4a ≥0,x =-1a >0,解得-1≤a <0, 而当a =-1时,f ′(x )=x 2-2x +1x =(x -1)2x ≥0,不符合题意,故-1<a <0;③当a =0时,显然符合题意.综上所述,a 的取值范围是(-1,+∞). 答案 (-1,+∞)课堂小结1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.基础过关1.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)解析 f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,即(x -2)e x >0,解得x >2,故选D. 答案 D2.y =x ln x 在(0,5)内的单调性是( ) A.单调递增 B.单调递减C.在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增D.在⎝ ⎛⎭⎪⎫0,1e 内单调递增,在⎝ ⎛⎭⎪⎫1e ,5内单调递减解析 函数的定义域为(0,+∞).y ′=ln x +1,令y ′>0,得x >1e ;令y ′<0,得0<x <1e .所以函数y =x ln x 在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增.答案 C3.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( ) A.增函数 B.减函数 C.常数D.既不是增函数也不是减函数解析 求函数的导函数f ′(x )=3x 2+2ax +b ,导函数对应方程f ′(x )=0的Δ=4(a 2-3b )<0,所以f ′(x )>0恒成立,故f (x )是增函数. 答案 A4.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.解析 函数y =f (x )为减函数的区间,反映在图象上图象是下降的. 答案 ⎣⎢⎡⎦⎥⎤-13,1∪[2,3)5.当x >0时,f (x )=x +2x 的单调递减区间是________.解析 f ′(x )=1-2x 2=x 2-2x 2=(x -2)(x +2)x 2.由f ′(x )<0且x >0得0<x < 2. 答案 (0,2)6.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).7.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.解 由题意得f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上f ′(x )≥0恒成立.即t ≥3x 2-2x 在区间(-1,1)上恒成立.令函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为x =13,开口向上的抛物线,故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.故t的取值范围是[5,+∞).能力提升8.已知函数f(x)在定义域R上为增函数,且f(x)<0,则g(x)=x2f(x)在(-∞,0)内的单调情况一定是()A.单调递减B.单调递增C.先增后减D.先减后增解析因为函数f(x)在定义域R上为增函数,所以f′(x)≥0.又因为g′(x)=2xf(x)+x2f′(x),所以当x∈(-∞,0)时,g′(x)>0恒成立,所以g(x)=x2f(x)在(-∞,0)内单调递增.答案 B9.已知函数y=xf′(x)的图象如图所示,选项中的四个图象中能大致表示y=f(x)的图象的是()解析由题图可知,当x<-1时,xf′(x)<0,所以f′(x)>0,此时原函数为增函数,图象应是上升的;当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当0<x <1时,xf ′(x )<0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当x >1时,xf ′(x )>0,所以f ′(x )>0,此时原函数为增函数,图象应是上升的.由上述分析可知选C.答案 C10.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)上单调递增,故f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,故k ≥1,即k 的取值范围是[1,+∞).答案 [1,+∞)11. 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数.又f (-x )=(-x )3-2(-x )+e -x -1e -x =-⎝ ⎛⎭⎪⎫x 3-2x +e x -1e x =-f (x ),故f (x )为奇函数.由f (a -1)+f (2a 2)≤0得,f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12. 答案 ⎣⎢⎡⎦⎥⎤-1,12 12.已知函数f (x )=ln x -f ′(1)x +1-ln 2,试求f (x )的单调区间.解 由f (x )=ln x -f ′(1)x +1-ln 2,x ∈(0,+∞),得f ′(x )=1x -f ′(1).令x =1,则f ′(1)=1-f ′(1),∴f ′(1)=12,f ′(x )=1x -12.由f ′(x )>0,即1x -12>0,得0<x <2;由f ′(x )<0,即1x -12<0,得x >2.故f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞).创新突破13.已知函数f (x )=x 3+ax 2+x +1,a ∈R .(1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围. 解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3).当Δ>0,即a >3或a <-3时,令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33. 故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R 上单调递增.(2)由(1),知只有当a >3或a <-3时,f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数, 所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).。
《函数的单调性》教学设计
《函数的单调性》教学设计《函数的单调性》教学设计作为一名专为他人授业解惑的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。
如何把教学设计做到重点突出呢?以下是店铺精心整理的《函数的单调性》教学设计,仅供参考,大家一起来看看吧。
《函数的单调性》教学设计1【教材分析】《函数单调性》是高中数学新教材必修一第二章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力及分析问题和解决问题的能力。
【学生分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,接下来的任务是对函数应该继续研究什么,从各种函数关系中研究它们的共同属性,应该是顺理成章的。
从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。
【教学目标】1、使学生从形与数两方面理解函数单调性的概念。
2、通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力。
3、通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程。
函数的单调性导学案
函数的单调性导学案编撰人:李斌审定:阜阳四中高一数学组一、【学习目标】(自学引导:这节课我们主要任务就是通过对单调性的研究,然后会运用函数单调性解决题目.这节课的特点是符号较多,希望同学们课下做好预习.)1、理解函数单调性的本质内容和函数单调性的几何意义;2、掌握判断函数单调性的判断方法:定义法和图象法;3、熟练的掌握用定义法证明函数单调性及其步骤.课前引导:函数图象上任意点P(x,y)的坐标有什么意义?二、【自学内容和要求及自学过程】观察教材第27页图1.3-2,阅读教材第27-28页“思考”上面的文字,回答下列问题(自学引导:理解“上升”、“下降”的本质内涵,归纳出增函数的定义)<1>你能描述上面函数的图像特征吗?该怎样理解“上升”、“下降”的含义?<2>对于二次函数y=x2,列出表(1),完成表(1)并体会图象在y轴右侧上升;x …-3 -2 -1 0 1 2 3 4 …f(x)=x2……结论:<1>函数y=x的图象,从左向右看是___(上升、下降)的;函数y=x2的图象在y轴左侧是___的,在y轴右侧是___的;函数y=-x2的图象在y轴左侧是___的,在y轴右侧是___的;按从左向右的方向看函数的图象,意味着图象上点的横坐标逐渐增大即函数的自变量逐渐增大;图象是上升的意味着图象上点的___(横、纵)坐标逐渐变大,也就是对应的函数值随着逐渐增大.也就是说从左向右看图象上升,反映了函数值随着自变量的增大而___;“下降”亦然;<2>在区间(0,+∞)上,任取x1、x2,且x1<x2,那么就有y1__y2(<,>),也就是有f(x1) ___f(x2).这样可以体会用数学符号刻画图象上升.阅读教材第28页“思考”下面的内容,然后回答下列问题(自学引导:同学们要理解增函数的定义,符号比较多,要一一的理解)<3>数学上规定:函数y=x2在区间(0,+∞)上是增函数.请给出增函数定义.<4>增函数的定义中,把“当x1<x2时,都有f(x1)<f(x2)”改为“当x1>x2时,都有f(x1)>f(x2)”,这样行吗?增函数的定义中,“当x1<x2时,都有f(x1)<f(x2)”反映了函数值有什么变化趋势?函数图象有何特点?<5>增函数的几何意义是什么?结论:<3>一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当___时,都有___,那么就说函数f(x)在区间D上是增函数;<4>增函数的定义:由于当x1<x2时,都有f(x1)<f(x2),即都是相同的不等号“<”,也就是说前面是“<”,后面也是“<”,步调一致;“当x1>x2时,都有f(x1)>f(x2)”都是相同的不等号“>”,即前面是“>”,后面也是“>”,步调一致.因此我们可以简称为:步调一致增函数;增函数反映了函数值随自变量的增大而增大;从左向右看,图象是上升的;<5>增函数几何意义是从左向右看,图象是___(上升、下降)的;(自学引导:类比增函数的定义,切实理解减函数的含义.)思考:<1>类比增函数的定义,请你给出减函数的定义;<2>函数y=f(x)在区间D上具有单调性,说明了函数y=f(x)在区间D上的图象有什么变化趋势?结论:<1>一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当___时,都有___,那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.减函数的几何意义:从左向右看,图象是___的.函数值变化趋势:函数值随着自变量的增大而减小;<2>函数y=f(x)在区间D上,函数值的变化趋势是随自变量的增大而增大(减小),几何意义:从左向右看,图象是___(___)(上升、下降)的;阅读教材第29页第一段,然后回答下列问题<7>你能理解“严格的单调性”所包含的含义吗?试述之.三、讲授新课1.引例:观察y=x2的图象,回答下列问题(投影1)问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么?⇒随着x的增加,y值在增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孙埠高中自主探究学案
备课组:高一数学内容:1.3.1 单调性与最大(小)值(2)主编:俞彦编号:11 【学习目标】
1.理解函数的最大(小)值及其几何意义;
2.学会运用函数的单调性求函数的最值;
3.学会运用函数图象研究函数的性质。
4.【使用说明及学法指导】
1.先精读一遍教材,用红色笔进行勾画,再针对预习导学二次阅读并回答;
2.若预习完可对合作探究部
3.找出自己的疑惑和需要讨论的问题,准备上课讨论、质疑;
课前预习
一、预习导学
1.根据函数图象完成下表:
上述表格的讨论体现了函数的什么特征?
2.如何定义函数的最大值、最小值?
二、预习检测
1.函数y=-x+1在区间[1,2]上的最大值是___________
2. 函数y=2x 2
+1,x ∈N *
的最小值为 .
课内探究
探究点一.利用函数的单调性求最值 例1.3
2
y x =-在区间[3,6]上的最大值和最小值.
小结:
拓展: 函数2
(1)2,[0,1]y x x =++∈的最小值为 ,最大值为 . 如果是
x∈-呢?
[2,1]
小结:
探究点二.应用题中的最值问题
例2. 一枚炮弹发射,炮弹距地面高度h(米)与时间t(秒)的变化规律是2
=-,
1305
h t t
那么什么时刻距离地面的高度达到最大?最大是多少?
小结:
拓展:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?
小结:
【我的收获】
_________________________________________________________________________ _________________________________________________________________________ _________________________________________________________________________ _________________________________________________________________________ _________________________________________________________________________ _________________________________________________________________________。