八年级数学上册核心素养专题等腰三角形中的分类讨论思想习题课件新版新人教版

合集下载

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

归纳总结
性质1:等腰三角形的两个底角相等(等边对等角). A
如图,在△ABC中,
∵AB=AC(已知),
∴∠B=∠C(等边对等角).
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高
线互相重合(三线合一).
顶角平分线 即:等腰三角形 底边上的高线
底边上的中线
具备其 中一条
另外两 条成立
探究新知
C1 C5
这样分类 就不会漏
啦!
C3
C6
A
8个
C7
B
C4
C8
C2
分别以A、B、C为顶角 顶点来分类讨论!
课堂小结
等边对等角
注意是指同一个三角形中


注意是指顶角的平分线,底边上的高和中

三线合一
线才有这一性质.而腰上的高和中线与底

角的平分线不具有这一性质



(1)求等腰三角形角的度数时,如果没有
(×)
(4)等腰三角形的顶角平分线一定垂直底边.
(√)
(5)等腰三角形的角平分线、中线和高互相重合.
( ×)
(6)等腰三角形底边上的中线一定平分顶角.
(√)
探究新知
素ቤተ መጻሕፍቲ ባይዱ考点 1 等腰三角形性质的应用
例1 如图,在△ABC中 ,AB=AC,点D在AC上,且
BD=BC=AD,求△ABC各角的度数.
分析:(1)找出图中所有相等的角; ∠A=∠ABD,∠C=∠BDC=∠ABC; (2)指出图中有几个等腰三角形?
数学语言:如图, 在△ABC中,
∵AB=AC, ∠1=∠2(已知),
A
∴BD=CD, AD⊥BC.(等腰三角形三线合一)

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习试卷简介:分类讨论在中招试题中十分常见,这类题目不仅考查了学生对数学基础知识和方法的掌握,也考查了学生思维的深刻度。

而解决这类问题时,因考虑不全导致的失分现象十分严重,针对这个问题,本套题目以等腰三角形为依托,详细介绍了何时分类、如何分类的思想与方法,希望能对大家有所启发。

学习建议:分类不全面、不知如何分类是同学们在解决分类讨论型问题时的常见问题,如何才能做到最终结果的不重不漏,同学们需要重点注意一下几点:1、熟悉不同图形间的差异,并根据图形做出分类的初始判断;2、准确把握题目告知的信息,从问题中找到分类的依据;3、了解常见问题的分类准则;4、永远比其他人多想一步。

一、单选题(共12道,每道10分)1.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm答案:C解题思路:此题属于腰或底边不确定时注意分类讨论,两条边长轮流做三角形的腰长:(1)6cm做腰长时(如图):周长为6+6+3=15(cm)(2)3cm做腰长时:周长为3+3+6=12(cm)验证,第一种情况:最短边+较短边>最长边(3+6>6),可以构成三角形. 第二种情况:由于3+3=6,不符合最短边+较短边>最长边,构不成三角形. 综上:C选项正确试题难度:一颗星知识点:三角形三边关系2.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°答案:D解题思路:解题思路:此题属于角不确定时注意50°可能是顶角,可能是底角:(1)50°为顶角时(如图),这个等腰三角形的顶角为50°(2)50°为底角时(如图),可知等腰三角形的两个底角相等,均为50°,由三角形内角和为180°,可求得顶角度数为:80°.综上,D选项正确试题难度:一颗星知识点:等腰三角形的性质3.等腰三角形的两角之差为30°,求该三角形顶角的度数为()A.80°B.40°C.40°或80°D.50°或80°答案:C解题思路:此题属于角不确定时,设顶角为x度,底角为y度,注意分类讨论:(1)顶角-底角=30°此时,满足方程组:解得:(2)底角-顶角=30°,此时满足方程组解得:综上:顶角度数为40°或80°,所以,C 选项正确试题难度:二颗星知识点:等腰三角形的性质4. 如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于()A.80°B.70°C.60°D.50°答案:C解题思路:此题直接给出了图形,所以不用再分类讨论了.由三角形内角和为180°得∠A+∠ABC+∠C=180°,已知∠A=20°得,∠ABC+∠A=160°,又因为三角形ABC为等腰三角形,即∠ABC=∠C,所以∠ABC=80°,因为DE为线段AB的垂直平分线,所以∠A=∠ABE=20°,从而∠CBE=∠ABC-∠ABE=60°.所以:C选项正确试题难度:二颗星知识点:等腰三角形的性质5. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°答案:D解题思路:此题属于高的位置关系不确定时, 要考虑两种情况(1)(如图)已知△ABC中AB=AC,BD为AC线的高,即∠ABD=30°则∠A=90°-30°=60°(2)(如图)已知△ABC 中AB=AC,BD垂直于AC交CA的延长线于点D,其中∠ABD=30°,则∠ABD=60°,从而∠BAC=180°-60°=120°综上,顶角度数为60°或120°,D选项正确试题难度:二颗星知识点:等腰三角形的性质6. 在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.15答案:C解题思路:先根据题意做出图形,如图:设AD长为x,BC长为y则CD的长为x,AB为2x,则中线BD分三角形周长两部分为x+2x=3x,x+y从而应有两种情况,即:或解得或最后要检验:最短边+较短边>第三边,此题经过检验,均符合题意,所以底边长为7或11,答案为C试题难度:二颗星知识点:等腰三角形的性质7. 在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A.70°B.50°C.70°或20°D.20°答案:C解题思路:根据题意作图:题干中说的是AB的中垂线与AC所在直线相交所得的锐角为50°,所以分两种情况:(1)如图与AC线段相交所得锐角为50°,即∠1=50°,则此时∠A=40°,∠B=∠C=(180°-40°)/2=70°(2)如图与AC线段所在直线相交所得锐角为50°,即∠1=50°,则此时∠BAE=40°,所以,∠B=∠C=(180°-140°)/2= 20°综上,C选项正确.试题难度:三颗星知识点:等腰三角形的性质8.等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A.B.6D.6或答案:D解题思路:设腰长为x,底边长为y,因不知腰长与底边长的大小关系,注意分类讨论:(1)x>y时,此时有以下方程组成立:,解得:(2)x<y时,此时有以下方程组成立:,解得:验证:最短边+较短边>最长边,由4+4>6知第一种情况成立,即:腰长为6. 由+>知第二种情况也成立,即:腰长为. 综上:答案为D试题难度:三颗星知识点:等腰三角形的性质9.已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A.2个B.4个C.6个D.8个答案:C解题思路:此题属于腰或底边不确定时,分两种情况:(1)线段AB为腰时,此时如图:有等腰直角三角形ABC,等腰直角三角形ABD,等腰直角三角形ABG,等腰直角三角形ABF (2)线段AB为底边时,此时如图:有等腰三角形ABI,有等腰三角形ABK 综上共有6个,从而答案为C试题难度:三颗星知识点:等腰三角形的性质10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()A.15B.15或7C.7D.11答案:C解题思路:此题属于腰或底边不确定时,分两种情况讨论(1)7为底时,腰=(29-7)/2=11 (2)7为腰时,底=29-7-7=15,此时7+7=14小于15不满足构成三角形的条件,舍去正确答案:C试题难度:二颗星知识点:等腰三角形的性质11. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()A.30°B.80°C.30°或80°D.90°答案:C解题思路:此题属于角不确定时(1)顶角与底角之比为1:4,由三角形内角和定理可得底角+底角+顶角=180°求得底角=80°(2)底角与顶角之比为1:4,同样可求得底角=30°正确答案:C试题难度:二颗星知识点:等腰三角形的性质12.等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()A.50°B.40°或20°或70°C.70°或20°D.40°或70°答案:B解题思路:此题属于高的位置关系不确定时,如图图一不符合实际,舍去正确答案:B试题难度:三颗星知识点:等腰三角形的性质。

人教版八年级上册数学方法技巧专题 等腰三角形的分类讨论思想

人教版八年级上册数学方法技巧专题   等腰三角形的分类讨论思想

【初二数学方法技巧专题】等腰三角形的分类讨论思想等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在解有关等腰三角形问题时,当所给的边、角等条件不明确时,常常要进行分类讨论,否则易造成错解.那么在什么情况下应该进行分类讨论呢?下面有4种常考题型,快来和小名老师一起学习一下吧!类型1 : 针对顶角和底角进行分类例1. 若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是( ) A.70°B.40° C.70°或40°D.70°或55°分析:70°角可能是底角,也可能是顶角.当70°是底角时,则顶角的度数为180°-70°×2=40°;当70°角是顶角时,则顶角的度数就等于70°.所以这个等腰三角形的顶角为30°或75°. 故应选C.变式1、已知一个等腰三角形中有一个角为100°,则这个等腰三角形的顶角为-------- . 方法归纳:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解. 类型2: 针对腰长和底边长进行分类题型1 遇边需讨论例2 已知等腰三角形一边长等于5,另一边长等于9,则它的周长是--------- . 分析:已知条件中并没有指明5和9谁是腰长谁是底边的长,因此需要针对腰长及底边长分别是哪一个进行分类谈论.当5是等腰三角形的腰长时,这个等腰三角形的底边长就是9,则此时等腰三角形的周长等于5+5+9=19;当9是等腰三角形的腰长时,这个等腰三角形的底边长就是5,则此时等腰三角形的周长等于9+9+5=23.故这个等腰三角形的周长等于19或23.方法归纳:在已知条件中没有明确等腰三角形的腰长和底边长时,应分类讨论.分类讨论时,还要判断所给的三边能否构成三角形,避免造成错解.题型2 遇中线需讨论例3 已知等腰△ABC中,一腰AC上的中线BD将三角形的周长分成9 cm和12 cm 两部分,则这个三角形的腰长和底边长分别为---------- .分析:已知条件并没有指明哪一部分是9cm,哪一部分是12cm,因此,应有两种情形:①AB+AD=9,BC+CD=12;②AB+AD=12,BC+CD=9.若设这个等腰三角形的腰长是xcm,底边长为ycm,可得:即当腰长是6 cm时,底边长是9 cm;当腰长是8 cm时,底边长是5 cm.3、变式若等腰三角形一腰上的中线分周长为9cm和15cm两部分,则这个等腰三角形的底和腰的长分别为----------- .易错警示:这里求出来的解验证一下三角形的边满足三角形三边关系定理,如果不满足一定要舍去.类型3:针对三角形的形状进行分类题型1 遇高需讨论例4 已知等腰三角形一腰上的高与另一腰的夹角为36°,求这个等腰三角形的底角的度数.分析:本题中等腰三角形腰上的高可能在三角形内部,也可能在三角形外部,故应分原三角形为锐角三角形和钝角三角形进行分类求解.详解:分两种情况讨论:①若∠A<90°,如图1所示.∵BD⊥AC,∴∠A+∠ABD=90°.∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=1/2×(180°-54°)=63°.②若∠A>90°,如图2所示.同①可得∠DAB=90°-36°=54°,∵AB=AC,∴∠ABC=∠C=1/2∠DAB=27°.综上所述:等腰三角形底角的度数为63°或27°.题型2:遇中垂线需讨论例5 在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____.分析:本题中AB的中垂线与AC直线的交点不确定,交点可能在边AC上,也可能在其延长线上,故需进行分类讨论.详解:按照题意可画出如图1和如图2两种情况的示意图.如图1,当交点在腰AC上时,ΔABC是锐角三角形,此时可求得∠A=40°,所以如图2,当交点在腰CA的延长线上时,ΔABC为钝角三有形,此时可求得∠BAD=40°,所以故这个等腰三角形的底角为70°或20°.易错警示:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题.类型4:找点构造等腰三角形需讨论例6 如图,已知线段AB,在直线l上找一点C,使ΔABC为等腰三角形这样的C 点有------- 个.分析:存在三种情况①AB=AC;②BA=BC;③CA=CB.详解:①当AB=AC时,以点A为圆心,AB长为半径画圆与直线l的交点C3即为所求点;②当BA=BC时,以点B为圆心,AB长为半径画圆与直线l的交点C1,C2即为所求点;③当CA=CB时,做线段AB的垂直平分线与直线l的交点C4即为所要求点.所以使ΔABC为等腰三角形这样的C 点有4个方法指导:等腰三角形的存在性问题方法常用两圆一线。

八年级等腰三角形的分类讨论专题

八年级等腰三角形的分类讨论专题

专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。

2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。

3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。

8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。

2024年人教版八年级上册数学期末复习微专题5方法技巧 等腰三角形的分类讨论

2024年人教版八年级上册数学期末复习微专题5方法技巧 等腰三角形的分类讨论

微专题5 方法技巧 等腰三角形的分类讨论类型一 顶角或底角的不确定性在等腰三角形中只要给出角的度数,要分是顶角还是底角进行讨论.【针对训练】1.如果等腰三角形的一个角的度数为80°,那么其余的两个角的度数是 50°,50°或20°,80° .2. 如图,在△ABC 中,AB =AC ,∠B =70°,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连接AP ,则∠BAP 的度数是 15°或75° .类型二 腰和底边的不确定性在等腰三角形中只要给出边长,要分是腰还是底边进行讨论.【针对训练】3.已知实数x ,y 满足|x -4|+(y -8)2=0,则以x ,y 的值为两边长的等腰三角形的周长是(B) A .20或16 B .20C .16D .以上答案均不对4.已知a ,b 是等腰三角形的两边长,且a ,b 满足√2a -3b +5+(2a +3b -13)2=0,求此等腰三角形的周长.【解析】根据题意得:{2a -3b +5=02a +3b -13=0,解得{a =2b =3, 若2是腰长,三角形的三边长为2,2,3,因为2+2>3,能组成三角形,周长=2+2+3=7;若2是底边,三角形的三边长为2,3,3,因为2+3>3,能组成三角形,周长=2+3+3=8,所以该等腰三角形的周长为7或8.类型三 高的位置的不确定性三角形的高的位置随着三角形的形状的改变而改变,因此遇到与三角形的高有关的题型时要讨论是锐角三角形的高、直角三角形的高还是钝角三角形的高.【针对训练】5.已知BD 是等腰△ABC 腰上的高,且∠ABD =40°,求△ABC 的顶角度数.(画出符合题意的图形,直接写出答案即可)【解析】分情况讨论:当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°-40°=50°,或是180°-(90°-40°)×2=80°;当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+40°=130°.故这个等腰三角形顶角的度数为50°或80°或130°.类型四中线分割的不确定性中线分成的两部分周长之差为定值,需分两种情况来讨论.【针对训练】6.如图,已知等腰△ABC一腰上的中线BD把这个三角形的周长分成12和21两部分,求这个等腰三角形的底边BC的长.【解析】AB=AC,BD为腰AC上的中线,设AD=DC=x,BC=y,根据题意得{x+2x=12,y+x=21,或{x+2x=21,y+x=12,解得{x=4,y=17,或{x=7,y=5,当x=4,y=17时,等腰三角形的三边长分别为8,8,17, 显然不符合三角形的三边关系,舍去;当x=7,y=5时,等腰三角形的三边长分别为14,14,5.答:这个等腰三角形的底边BC的长是5.。

八年级数学从等腰三角形看分类讨论专题练习

八年级数学从等腰三角形看分类讨论专题练习

八年级数学从等腰三角形看分类讨论专题练习1.(本小题10分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12 cC. 15cmD. 12cm或15cm2.(本小题10分)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A. 50°B. 80°C. 65°或50°D. 50°或80°3.(本小题10分)等腰三角形的两角之差为30°,求该三角形顶角的度数为()∙ A. 80°B. 40°C. 40°或80°D. 50°或80°4.(本小题10分)如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于( )∙ A. 80°B. 70°C. 60°D. 50°5.(本小题10分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) ∙ A. 60°B. 120°C. 60°或150°D. 60°或120°6.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A. 7B. 11C. 7或11D. 157.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A. 70°B. 50C. 70°或20°D. 20°8. 等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A. B. 6 C. 8 D. 6或9. 已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A. 2个B. 4C. 6个D. 8个10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()∙ A. 15 B. 15或7 C. 7 D. 1111. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()∙ A. 30° B. 80° C. 30°或80° D. 90°12. 等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()∙ A. 50° B. 40°或20°或70° C. 70°或20° D. 40°或70°。

八年级数学等腰三角形课件.

八年级数学等腰三角形课件.

∴∠B=∠C(等边对等角)
第十四页,共24页。
证法欣赏
方法一:作顶角∠BAC的平分线AD。
A ∵AD平分∠BAC
方法二:作底边BC的高AD。
∵AD⊥BC
A
∴∠1=∠2 在△ABD与△ACD中
1
∴ ∠ADB =∠ADC=90°
2
在△ABD与△ACD中
AB=AC(已知)
∠ADB =∠ADC=90°
∠1=∠2(已证) B
分?并指出重合的部分是什么?
(3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。
第四页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?
A
B
C
第五页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?
∴∠ABC=∠C=∠BDC=2 x
∴∠A+∠ABC+∠C= x 2x 2x 1800
x 360
在△ABC中∠A=36度 ∠ABC=∠C=72度
第十八页,共24页。
基础训练
(1)已知等腰三形的一个顶角为36° ,则它的两个底角
分别为
72° 、72° .
(2)已知等腰三角形的一个角为40°,则其它两个角
A
B
C
第六页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没
有重合的部分?并指出重合的部分是什么?
A
B
C
第七页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?

人教版 八年级数学讲义 等腰三角形“三线合一”的性质 (含解析)

人教版 八年级数学讲义  等腰三角形“三线合一”的性质 (含解析)

第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。

我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。

因此,我们有必要把这部分内容学得更扎实。

知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。

2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 等腰三角形中的分类讨论(解析版)

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 等腰三角形中的分类讨论(解析版)

等腰三角形中的分类讨论1.已知等腰三角形的两边长分别为a b且a b b﹣4|=0 则此等腰三角形的周长为()A.7B.10C.11D.10或11【答案】D【解析】【分析】先根据非负数的性质列式求出a、b的值再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得a-3=0 b-4=0解得a=3 b=4①4是腰长时三角形的三边分别为4、4、3∵4+4>3∴能组成三角形4+4+3=11②4是底边时三角形的三边分别为3、3、4能组成三角形周长=3+3+4=10所以三角形的周长为11或10.故选:D.【点睛】本题考查了等腰三角形的性质绝对值非负数偶次方非负数的性质根据几个非负数的和等于0 则每一个算式都等于0求出a、b的值是解题的关键难点在于要分情况讨论并且利用三角形的三边关系进行判断.2.已知a b是等腰三角形的两边长且a b()2+-=则此等腰三角23130a b形的周长为().A.8B.6或8C.7D.7或8【答案】D【解析】【分析】先根据非负数的性质列式求出a、b的值再分a的值是腰长与底边两种情况讨论求解.()223130a b+-=∴23+5023130a ba b-⎧⎨+-⎩==解得23ab⎧⎨⎩==①2是腰长时三角形的三边分别为2、2、3 能组成三角形周长=2+2+3=7;②2是底边时三角形的三边分别为2、3、3 能组成三角形周长=2+3+3=8所以该等腰三角形的周长为7或8.故选:D.【点睛】本题考查了等腰三角形的性质绝对值与算术平方根的非负性根据几个非负数的和等于0 则每一个算式都等于0求出a、b的值是解题的关键难点在于要分情况讨论并且利用三角形的三边关系进行判断.3.等腰三角形的一个角是70︒则它顶角的度数是()A.70︒B.70︒或40︒C.70︒或55︒D.40︒【答案】B【解析】【分析】因为题中没有指明该角是顶角还是底角所以要分两种情况进行分析.【详解】解:①若70°是底角则顶角为:180°-70°×2=40°;②若70°为顶角则顶角的度数是70°;综上所述顶角的度数为40°或70°.故选:B.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数做题时要注意分情况进行讨论这是十分重要的也是解答问题的关键.4.等腰三角形的一个内角是70°,则它顶角的度数是()A.70︒B.70︒或40︒C.70︒或50︒D.40︒【答案】B【分析】首先要进行分析题意“等腰三角形的一个内角”没明确是顶角还是底角所以要分两种情况进行讨论.【详解】解:本题可分两种情况:︒-⨯︒=︒;①当70︒角为底角时顶角为18027040②70︒角为等腰三角形的顶角;因此这个等腰三角形的顶角为40︒或70︒.故选:B.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数做题时要注意分情况进行讨论这是十分重要的也是解答问题的关键.5.等腰三角形的一个角比另一个角的2倍少20度则等腰三角形顶角的度数是()A.140B.20或80C.44或80D.140或44或80【答案】D【解析】【分析】设另一个角是x 表示出一个角是2x-20° 然后分①x是顶角2x-20°是底角②x是底角2x-20°是顶角③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x 表示出一个角是2x-20°①x是顶角2x-20°是底角时x+2(2x-20°)=180°解得x=44°∴顶角是44°;②x是底角2x-20°是顶角时2x+(2x-20°)=180°解得x=50°∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时x=2x-20°解得x=20°∴顶角是180°-20°×2=140°;综上所述这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质三角形的内角和定理难点在于分情况讨论特别是这两个角都是底角的情况容易漏掉而导致出错.6.若等腰三角形的一个角是80° 则它的底角是()A.50°B.80°C.40°或80°D.50°或80°【答案】D【解析】【分析】分情况讨论:当这个角为底角或顶角两种情况讨论求解即可;【详解】当80°为底角时则底角为80°当80°为顶角时则底角为:18080=502︒-︒︒故选:D.【点睛】本题考查了等腰三角形的性质本题有两种情况注意不要漏掉;7.若等腰三角形的一个角是80° 则此等腰三角形的顶角为()A.80°B.20°C.80°或20°D.40°【答案】C【解析】【分析】可分两种情况:当80︒角为顶角时;当80︒角为底角时结合等腰三角形的性质利用三角形的内角和定理分别求解即可.【详解】解:当80︒角为顶角时则等腰三角形的顶角为80︒;当80︒角为底角时等腰三角形的顶角为180808020︒-︒-︒=︒即此等腰三角形的顶角为80︒或20︒.故选:C.【点睛】本题主要考查三角形的内角和定理等腰三角形的性质分类讨论是解题的关键.8.在ABC中AB AC=AB的垂直平分线与AC所在直线相交所得的锐角为50︒则B的度数为()A.20︒B.70︒C.70︒或20︒D.无法确定【答案】C【解析】【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况画出相应图形求出∠BAC的度数进而根据三角形内角和定理求出即可.【详解】解:如图1 当∠A为锐角时∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°∴∠A=40°又∵AB AC=∴∠B=1802A︒-∠=180402︒-︒=70°;如图2 当∠A为钝角时∵AB的垂直平分线与AC所在的直线相交所得到锐角为50° ∴∠NAB=40°∴∠BAC=140°又∵AB AC =∴∠B =∠C =1801402︒-︒=20°. 故选:C .【点睛】本题考查了等腰三角形性质 三角形内角和定理 线段垂直平分线的应用 关键是运用分类讨论思想画出图形 求出∠BAC 的度数.9.若等腰三角形一腰上的高和另一腰的夹角为50° 则该三角形底角的度数为( ) A .20°B .20°或70°C .70°D .无法确定 【答案】B【解析】【分析】分两种情况讨论:①若90A ∠<︒;②若90A ∠>︒;先求出顶角BAC ∠ 即可求出底角的度数.【详解】解:分两种情况讨论:①若90A ∠<︒ 如图1所示:BD AC ⊥90A ABD ∴∠+∠=︒50ABD ∠=︒905040A ∴∠=︒-︒=︒AB AC =1(18040)702ABC C ∴∠=∠=︒-︒=︒; ②若90A ∠>︒ 如图2所示:同①可得:905040DAB ∠=︒-︒=︒18040140BAC ∴∠=︒-︒=︒AB AC =1(180140)202ABC C ∴∠=∠=︒-︒=︒; 综上所述:等腰三角形底角的度数为70︒或20︒故选:B .【点睛】本题考查了等腰三角形的性质以及余角和邻补角的定义 解题的关键是注意分类讨论方法的运用 避免漏解.10.等腰三角形的一个内角是50度 它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40【答案】C【解析】【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时 底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时 此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质 等腰三角形中两个底角相等.同时考查了分类讨论的思想. 11.等腰三角形一腰上的高与另一腰的夹角为60° 则其顶角度数为( ).A .60°或120°B .30°或150°C .30°D .60° 【答案】B【解析】根据等腰三角形、直角三角形两锐角互余的性质分析 即可得到答案.【详解】分两种情况讨论;如下图 过点B 作BD AC ⊥交AC 于点D∴90ADB ∠=︒根据题意得:60ABD ∠=︒∴9030A ABD ∠=︒-∠=︒如下图 过点B 作BD AC ⊥交CA 延长线于点D∴90ADB ∠=︒根据题意得:60ABD ∠=︒∴9030DAB ABD ∠=︒-∠=︒∴180150BAC DAB ∠=︒-∠=︒故选:B .【点睛】本题考查了等腰三角形、直角三角形的知识;解题的关键是熟练掌握等腰三角形、直角三角形两锐角互余的性质 从而完成求解.12.在△ABC 中 AB AC 的垂直平分线相交于点O 如果∠BOC=100° 则∠A 等于( ) A .50°或120°B .60°或130°C .60°或120°D .50°或130°【答案】D【分析】画出符合条件的两种情况根据线段垂直平分线性质得出AO=BO、AO=OC推出∠BAO=∠ABO∠CAO=∠ACO根据三角形内角和定理和四边形内角和定理求出即可.【详解】解:分为两种情况:如图1 当∠BAC为锐角时连接AO∵在ABC中AB AC的垂直平分线相交于点O∴AO=BO CO=AO∴∠BAO=∠ABO∠CAO=∠ACO∵∠BOC=100°∴∠OBC+∠OCB=180°-100°=80°∵∠BOC=100° ∠BAC=∠BAO+∠CAO∠BAO+∠CAO+∠ACO+∠OCB+∠OBC+∠ABO =180°∴2∠BAC=180°-80°=100°∴∠BAC=50°;如图2 当∠BAC为钝角时同理2∠BAC=360°-∠BOC=360°-100°=260°∴∠BAC=130°;即∠BAC=50°或130°故选:D.【点睛】本题考查了线段垂直平分线性质等腰三角形性质多边形的内角和定理的应用注意:线段垂直平分线上的点到线段两个端点的距离相等.13.如果等腰三角形一腰上的高与另一腰的夹角45° 那么这个等腰三角形的底角为()A.67°50′B.22°C.67.5°D.22.5°或67.5°【解析】【分析】先知三角形有两种情况(1)(2)求出每种情况的顶角的度数再利用等边对等角的性质(两底角相等)和三角形的内角和定理即可求出底角的度数.【详解】有两种情况;(1)如图当△ABC是锐角三角形时BD⊥AC于D则∠ADB=90°已知∠ABD=45°∴∠A=90°-45°=45°∵AB=AC×(180°-45°)=67.5°;∴∠ABC=∠C=12(2)如图当△EFG是钝角三角形时FH⊥EG于H则∠FHE=90°已知∠HFE=45°∴∠HEF=90°-45°=45°∴∠FEG=180°-45°=135°∵EF=EG×(180°-135°)=22.5°∴∠EFG=∠G=12综合(1)(2)得:等腰三角形的底角是67.5°或22.5°故选D.本题考查了等腰三角形的性质 三角形的高 三角形内角和定理等 解题的关键是能否利用三角形的内角和定理和等腰三角形的性质 知三角形的一个角能否求其它两角.14.在等腰△ABC 中 AB =AC 一腰上的中线BD 将这个三角形的周长分为15和12两部分 则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或10【答案】B【解析】【分析】题中给出了周长关系 要求底边长 首先应先想到等腰三角形的两腰相等 寻找问题中的等量关系 列方程求解 然后结合三角形三边关系验证答案.【详解】解:设这个等腰三角形的腰长为a 底边长为b .∵D 为AC 的中点∴AD =DC =12AC =12a . 根据题意得31521122a a b ⎧=⎪⎪⎨⎪+=⎪⎩或31221152a a b ⎧=⎪⎪⎨⎪+=⎪⎩ 解得107a b =⎧⎨=⎩或811a b =⎧⎨=⎩ 又∵三边长为10 10 7和8 8 11均可以构成三角形.∴这个等腰三角形的底边长为7或11.【点睛】本题考查等腰三角形的性质及相关计算.学生在解决本题时 有的同学会审题错误 以为15 12中包含着中线BD 的长 从而无法解决问题 有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况.注意:求出的结果要看看是否符合三角形的三边关系定理.15.等腰三角形ABC 中 ,AB AC AB =边上的垂直平分线与AC 边所在的直线相交所得的锐角为40︒ 则A ∠的度数为( )A .140B .50C .40或150 D .50或130【答案】D【解析】当△ABC为锐角三角形时在Rt△ADE中可求得∠A,再由三角形内角和定理可求得∠A;当△ABC为钝角三角形时求得△BAC的外角利用外角的性质求得∠A.【详解】解:当△ABC为锐角三角形时如图,设AB的垂直平分线交线段AC于点D,交AB于点E,∵∠ADE=40°, DE⊥AB,∴∠A=90°-40°=50°当△ABC为钝角三角形时如图设AB的垂直平分线交AB于点E,交AC于点D,∵∠ADE=40° DE⊥AB,∴∠DAB=50°,∴∠BAC=180°-∠DAB=130°故选:D【点睛】本题考查等腰三角形的性质及三角形内角和定理分两种情况分别求得等腰三角形的顶角是解题的关键.16.在平面直角坐标系中A(2 3)O为原点若点B为坐标轴上一点且△AOB为等腰三角形则这样的B点有()A.6个B.7个C.8个D.9个【答案】C【解析】【分析】分别以O、A为圆心以OA长为半径作圆与坐标轴交点即为所求点B再作线段OA的垂直平分线与坐标轴的交点也是所求的点B作出图形利用数形结合求解即可.【详解】解:如图满足条件的点B有8个故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定对于底和腰不等的等腰三角形若条件中没有明确哪边是底哪边是腰时应在符合三角形三边关系的前提下分类讨论.17.已知等腰ABC中AD BC⊥于点D且12AD BC=则ABC底角的度数为()A.30°或45°B.30°或45°或75°C.15°或45°或75°D.45°或75°【答案】C【解析】【分析】分三种情况讨论①当AB=AC时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;②当AB=BC∠B为锐角时先求出∠ABD的度数再根据AB=BC求出底角的度数;③当AB=BC∠CBA为钝角时根据AD12=BC AB=BC得出∠DBA=30° 从而得出底角的度数.【详解】①如图1 当AB=AC时.∵AD⊥BC∴BD=CD.∵AD12=BC∴AD=BD=CD ∴底角为45°;②如图2 当AB=BC∠B为锐角时.∵AD12=BC∴AD12=AB∴∠ABD=30°∴∠BAC=∠BCA=75°∴底角为75°.③如图3 当AB=BC∠CBA为钝角时.∵AD12=BC AB=BC∴AD12=AB∴∠DBA=30°∴∠BAC=∠BCA=15°∴△ABC底角的度数为45°或75°或15°.故选:C.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质关键是根据题意画出图形注意不要漏解.18.在△ABC中AB=AC若过△ABC的一个顶点的直线可将△ABC分成两个等腰三角形则∠BAC的度数为()A.90°或108°或36°或1807︒B.90°或108°或36°C.90°或54°或36°或5407︒D.90°或54°或36°【答案】A【解析】【分析】分别以点A、点B、点C为顶点做直线将△ABC分成两个等腰三角形由于AB=AC故以点B和以点C 为顶点作的等腰三角形结果是一样的 所以讨论点A 、点B 为顶点的情况 根据等腰三角形的性质找出角的关系 由三角形外角以及三角形内角和定理即可求解.【详解】如图1 当过点A 的直线交BC 于点D 将△ABC 分成两个等腰三角形使AD BD CD == 设B x ∠=AB AC =C B x ∴∠=∠=AD BD CD ==BAD B x ∴∠=∠= CAD C x ∠=∠=2BAC x ∴∠=在ABC 中 180B BAC C ∠+∠+∠=︒2180x x x ∴++=︒解得:45x =︒90BAC ∴∠=︒;如图2 当过点A 的直线交BC 于点D 将△ABC 分成两个等腰三角形使AD BD = AC CD = 设B x ∠=AB AC =C B x ∴∠=∠=AD BD =BAD B x ∴∠=∠=2ADB B BAD x ∴∠=∠+∠=AC CD =2DAC ADB x ∴∠=∠=23BAC x x x ∴∠=+=在ABC 中 180B BAC C ∠+∠+∠=︒3180x x x ∴++=︒解得:36x =︒108BAC ∴∠=︒;如图3 当过点B 的直线交AC 于点D 将△ABC 分成两个等腰三角形使AD BD BC ==设BAC x ∠=AD BD =ABD BAC x ∴∠=∠=2BDC ABD BAD x ∴∠=∠+∠=BD BC =2C BDC x ∴∠=∠=AB AC =2ABC C x ∴∠=∠=在ABC 中 180ABC BAC C ∠+∠+∠=︒22180x x x ∴++=︒解得:36x =︒36BAC ∴∠=︒;如图4 当过点B 的直线交AC 于点D 将△ABC 分成两个等腰三角形 使AD BD = BC CD = 设BAC x ∠=AD BD =ABD BAC x ∴∠=∠=2BDC ABD BAD x ∴∠=∠+∠=BC CD =2CBD BDC x ∴∠=∠=23ABC x x x ∴∠=+=AB AC =3C ABC x ∴∠=∠=在ABC 中 180ABC BAC C ∠+∠+∠=︒33180x x x ∴++=︒ 解得:180()7x =︒ 180()7BAC ∴∠=︒ 综上 BAC ∠可为90°或108°或36°或1807︒. 故选:A .【点睛】本题考查等腰三角形的判定、三角形内角和定理 画出符合条件的图形 根据等腰三角形的判定以及三角形内角和定理找出角的关系是解题的关键.。

13.3++等腰三角形专题++课件+2024-2025学年人教版八年级数学上册+

13.3++等腰三角形专题++课件+2024-2025学年人教版八年级数学上册+

钢条(相邻钢条首尾相接),使 AB=BC=CD=DE=EF……一直焊下去,在该钢架
内部(不包括AB)最多能焊接几根钢条?
(2)当∠A=20°时,同样操作,最多可以焊多少条?
(3)若已知内部最多可焊接6根,则∠A的范围是多少?
钢条数 1
2
3
4
5
6
7
8
9
底角 度数
20° 40° 60° 80° 100°
4x+6x+6x=180° x=11.25° ∠B=67.5°
4x° 5x°3x°3x4°x2°x°
2x° x°
6x°
x° 5x°
例 题 精 析 【因底、腰产生的分类讨论】
例2. 如图,△ABC是等边三角形,△ABC所在平面上有一点P,使 △PAB,△PBC,△PAC都是等腰三角形,问:具有这样性质的点P 有几个?在图中画出来.
D
C
A
B
课后练习
3.如图,边长为4的正方形ABCD中,请画出以D为一个顶点,另外两个顶点在 正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形 (只要画出示意图,并在等腰三角形长为3的边上标注数字).
(3)若已知内部最多可焊接6根,则∠A的范围是多少?
钢条数 1
2
3
4
5
6
7
8
9
底角 度数
x° 2x ° 3x ° 4x ° 5x ° 6x ° 7x °
A x°
C x° 1根
B
M
E
等腰三角形底
角小于90°
D
FN
习 题 演 练 【等腰三角形性质的应用】
练习1.如图,小丽从一张等腰三角形ABC(AB=AC)中恰好剪下五个 如图所示的小等腰三角形,其中BC=BD,EC=EF=FG=DG=DA,求∠B 的度数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档