电磁场与电磁波第2章习题

合集下载

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。

解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。

金立军 中国电力出版社 电磁场与电磁波答案

金立军 中国电力出版社 电磁场与电磁波答案

Ex 和 Ey 。由
电荷分布以 y 轴为对称,左右两部分产生的 Ex 分量 相互 抵消。因此,仅需考虑电场强度 的 Ey 分量,即
y dl

O E a x
ldl dE dEy sin 2 4 0a
考虑到 dl ad , l 0 sin ,代入上式求的合 成电场强度为
② 由上面已求出的球内电荷分布,可以得到球内总电荷量 Q 为
Q dV
V
a
6 0r 3 a
4
0
24 0 r 6 4 r dr 4 0 a 2 4 60 a
2
a
故得球外表面等效电荷面密度为
s
③球壳电位 。
2Q 8 0a 2 2 0 4 a 2 4 a 2
1 1 a1 r0 2
③由 E1max E2max 得

1 r0 2 a
2-11 两同轴圆柱之间, 0 0 部分填充介质电常数为 的介质,如图 2-11 所示,求单 位长度电容。 解:根据边界条件,在两种介质的分界面处,有
E1t E2t E
设同轴线单位长度带电 l ,可以用高斯定理解得
外表面上束缚电荷面密度为
q 4 a
2
(1
0) q 4 a 2
s e n P e r P ( 0)
q 4 b
2
(1
0) q 4 b 2
2-9 半径为 a 的薄导体球壳在其内表面涂覆了一薄层绝缘膜。球内充满总电荷量为 Q 的电 荷,球壳上又充了电荷量 Q 。已知内部的电场为 E e r (r / a) ,设球内介质为真空。试求:
a E ' dr a

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波 课后答案(冯恩信 著)

电磁场与电磁波 课后答案(冯恩信 著)

第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。

解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场与电磁波》习题参考答案..

《电磁场与电磁波》习题参考答案..

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波课后答案谢处方

电磁场与电磁波课后答案谢处方

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波课后习题及答案二章习题解答

电磁场与电磁波课后习题及答案二章习题解答

二章习题解答2.1 一个平行板真空二极管内的电荷体密度为4320049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2) 43230024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由212mv qU = 得61.3710v ==⨯ m s 故 0.318J v == 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波(第4版)_习题第2章

电磁场与电磁波(第4版)_习题第2章

2.3 电荷q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的z 轴旋转时,试计算导体球面上的面电流密度。

解 导体球上的面电荷密度为24S qa ρπ=球面上任一点的位置矢量为r a =r e ,当导体球以角速度ω绕通过球心的z 轴旋转时,该点的线速度为sin z r a a φωωθ=⨯=⨯=v r e e e ω则得导体球面上的面电流密度为sin 4S S q aφωρθπ==J v e2.6 平行板真空二极管两极板间的电荷体密度为42330049U d x ρε--=-,阴极板位于x =0处,阳极板位于x =d处,极间电压为0U ;如果040V,1cm U d ==,横截面210cm s =,求:(1)x =0至x =d 区域内的总电荷量;(2)x =d /2至x =d 区域的总电荷量。

解 (1) 142310004d ()d 9dV q V U d x S x ρε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2) 243232004d ()d 9d V d q V U d x S x ρε--==-=⎰⎰11004(10.9710C 3U S d ε---=-⨯2.7 在真空中,点电荷10.3q c μ=-位于点A (25,-30,15)cm ;点电荷20.5q c μ=位于点B(-10,8,12)cm 。

求:(1)坐标原点处的电场强度;(2)点P(15,20,50)cm 处的电场强度。

解 (1)源点的位置矢量及其大小分别为1122253015cm,41.83cm 10812cm,17.55cmx y z x y z ''=-+==''=-++==r e e e r r e e e r而场点O 的位置矢量00=r ,故坐标原点处的电场强度为1200033001021[()()]4q q πε''=-+-''--E r r r r r r r r6223010.310(253015)104(41.8310)x y z πε---⎡-⨯=-++⨯+⎢⨯⎣e e e 62230.510(10812)10(17.5510)x y z ---⎤⨯--⨯⎥⨯⎦e e e 92.3777.6294.37KV/m x y z =--e e e(2)场点P 的位置矢量为152050cm P x y z =++r e e e故12105035251238P x y z P x y z '-=-++'-=++r r e e e r r e e e则6230110.310(105035)104p x y z P πε--⎡-⨯=-++⨯+⎢'-⎢⎣E e e e r r 62320.510(251238)10x y z P --⎤⨯++⨯⎥'-⎥⎦e e e r r 11.940.54912.4KV/m x y z =-+e e e2.9 无限长线电荷通过点(6,8,0)且平行于z 轴,线电荷密度为l ρ;试求点P (x ,y ,z )处的电场强度E 。

电磁场与电磁波理论基础 第二章 课后答案

电磁场与电磁波理论基础 第二章 课后答案

u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2

2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0

∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有

Dρ ρ ldϕ = 20 ρ e
0 0 0

电磁场与电磁波_章二习题答案

电磁场与电磁波_章二习题答案

静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。

5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。

若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。

求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。

解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。

()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。

电磁场与电磁波第三版 郭辉萍 第二章习题解答

电磁场与电磁波第三版 郭辉萍 第二章习题解答

D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。

矢量A 的单位矢量A a ; 错误!未找到引用源。

矢量A 和B 的夹角AB θ; 错误!未找到引用源。

A ·B 和A ⨯B错误!未找到引用源。

A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。

A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。

A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。

cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。

A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。

A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。

A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。

谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】

2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平


▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37

电磁场与电磁波(电磁场理论)第二章

电磁场与电磁波(电磁场理论)第二章

例2.7.6 球形电容器的内导体半径为a ,外导体内半径为b,
设内球带电荷为q ,外球壳带电荷为-q ,求两球壳间的电场和极
q q
,
2
1
即为切向分量。根据边界条件可知
但 。由高斯定理,有
q q
2
1
处:
处:
相互抵消。 在圆环的中心点上,即z = 0 磁感应强 度最大
当场点P 远离圆环,即z >> a 时
3. 利用安培环路定理计算磁感应强度
在磁场分布具有一定对称性的情况下,可以利用安培环路 定理计算磁感应强度。 例2.3.2 求电流面密度为 感应强度。 解:分析场的分布,取安培环路如图,则 的无限大电流薄板产生的磁
以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H 和 D 代入式

例2.7.1 z < 0的区域的媒质参数为 区域的媒质参数为 强度为 媒质2中的电场强度为 (1)试确定常数A的值;(2)求磁场强度 (3)验证 和 满足边界条件。 和
, z>0 。若媒质1中的电场

解:(1)这是两种电介质的分界面,在分界面z = 0 处,有
例 2.6.2 在无源
电场强度矢量
的电介质
中,若已知
,式中的E0为振幅、ω为
角频率、k 为相位常数。试确定 k 与ω 之间所满足的关系,并求
出与
相应的其他场矢量。
解: 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利
用麦克斯韦方程组可以确定 k 与ω 之间所满足的关系,以及与
相应的其他场矢量。
对时间 t 积分,得
的球形电介质内的极化强
,式中的 k 为常数。(1)计算极化电荷体密度 解:(1)电介质球内的极化电荷体密度为

2 电磁场与电磁波第二章习题答案

2 电磁场与电磁波第二章习题答案

第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。

解:以带电球体的球心为球心,以r 为半径,作一高斯面,由高斯定理S D dS ∙⎰ =Q ,及D E ε= 得,错误!未找到引用源。

r ≤a 时, 由S D dS ∙⎰ =224433Qr a ππ⨯,得34Qr D a π= 304Qr E a πε= 错误!未找到引用源。

r>a 时,由S D dS ∙⎰ =Q ,得34Qr D r π= 304Qr E rπε= 2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。

设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。

空间各处的电场强度;错误!未找到引用源。

两导体间的电压;错误!未找到引用源。

要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。

以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理S D dS ∙⎰ =q及D E ε= 得,当0<r<a 时,由S D dS ∙⎰ =q=0,得D =0,E =0当a ≤r ≤b 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯D =1S r e r ρ ,10S r aE e rρε= 当b<r 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a b e r ρρ+ ,E =120s s r a b e rρρε+ Equation.DSMT4 11ab 00ln b b s s a a a a a E dr dr r b ρρεε∅===⎰⎰ Equation.DSMT4 ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+ =0,得1S ρ=2s b a ρ- 2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a= ,计算: = 2 \* GB2 ⑵球的外表面的电荷分布;布;= 4 \* GB2 ⑷球心的电位。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb

电磁场与电磁波课后习题答案(杨儒贵)(第二版) 第二章

电磁场与电磁波课后习题答案(杨儒贵)(第二版) 第二章

电磁场与电磁波课后习题答案(杨儒贵)(第二版)第二章 静电场2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。

那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。

2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。

解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。

利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。

那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。

2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y x r e e e e ++-=312。

3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( H ) ( J J d ) 0
将上式对任意体积 V 积分,并利用散度定理,即得

v
( J J d )dV ( J J d )dS 0
s
, 得证。
证明: (1)在无源的自由空间中仅随时间变化的场,如 E ex E0 sin t ,不可能满足
9
C= 0
\ t = 1ms , z = 9 km 处的电场的强度为 E = 9.9创 - 3 cos(3 109 创 10- 3 - 10 创 10 3 ) ex 10 1 9
= 7.40 10 ex (V/m)=
- 3
= 7.40ex (mV/m)
习题2.10
【题 2.10】
说明 J t 的含义,并写出在直流电
1 er e ez r r z
A 1 r rAr z rAz r
1 1 A Az rAr r r r z
球坐标系下的矢量运算
u1 r , u2 , u3 h1 1, h2 r , h3 r sin e1 = er ,e2 = e ,e3 = e 1 1 er e e r r r sin
习题2.7
【题 2.7】 有一种典型的金属导体,电导率 5 10 s/m ,介电常 数 为 , 若 导 体 中 的 传 导 电 流 密 度 为 J e 1 0 sin [1 1 7 .1 (3 .2 2 t z )](A /m ) ,求位移电流密度 。 J 解: 由传导电流的电流密度J c 与电场强度 E 关系 J c E 知
H e y 2 cos(15 x ) sin [6 10 9 t z ] E 利用麦克斯韦方程求相应的电场 及常数 解:将H 表示为复数形式: H ( x , z ) e y i 2 cos(15 x ) e i z
(A/m) 。
1 A 2 r sin 2 r r sin Ar r sin A rA 1 2 1 1 A 2 r Ar sin A r r r sin r sin
7
0
6
2
x
d
E
Jc
D E Jd 0 而 t t


J c ex E sin[117.1 (3.22t Z )] 50
J e 8.854 10 12 1 117.1 3.22 cos[117.1 (3.22t Z )] d x 50 e x 6.68 10 11 x cos[117.1 (3.22t Z )] A / m 2
球坐标系下的矢量运算
1 A 2 r sin r sin A rA er Ar 1 Ar 1 r r sin A e r r rA e z r sin A sin A er Ar 1 1 Ar 1 rA e rA ez r sin r r r
路中它的形式。
J= 解:由电流连续性原理 t 的积分形式为

q J d S = t
在直流电路中电荷不随时间发生变化,故电流连续性
方程变为 J = 0 或 J d S = 0 。
补充:可见直流电路是闭合的。
习题2.11
【题 2.11】 已知在无源的自由空间中,磁场为
(位移电流密度 (2)若 t 0, z 1.1 m 时 E 0, 求 t=1ms 时,
题 2.8】
B 33 10-12cos(3 109t 10z)ey 已知自由空间的磁感应强度为
习题2.8
z=9km 处的电场强度 E 。
解: (1)因为在自由空间中,全电流密度 J =0。所以由麦克斯韦 第四方程 J ¶E ¶E 2 J d = e0 c 汛 B= + e0 ¶ t 及位移电流密度 ¶t ¶E 2 得到 J d = e0 ¶ t = e0c 汛 B
1 z H ey E 0 sin t 两边对 t 积分,若不考虑静态场,则有 0c c
H z E H e x e x 0E 0 cos t 0 因此 z t c

可见, 电场E 和磁场H 可以满足麦克斯韦方程组中的两个旋度方程。 很容易 证明他们也满足两个散度方程。
柱坐标系下的矢量运算
u1 r , u2 , u3 z h1 1, h2 r , h3 1 e1 = er ,e2 = e ,e3 = e z
1 A A A A z rA er r z e r z r z A 1 rA r e z A r r 1 Az A Ar Az er z r e z r A 1 rA r e z r r

H 1 1 E (ex 0 sin t ) 0 t 0 0
H 随时间变化,而后一式则得出磁场 前一式表明磁场
H 不随时间变化,两者是矛盾
的。所以电场 E ex E0 sin t
不满足麦克斯韦方程组。
习题2.6
z E e x E 0 s in t- ) ( (2)若 c H 1 1 E z E ey ey E 0 cos t 因为 t 0 0 z 0c c
(1)
由时谐形式的麦克斯韦第二方程可得
1 1 E ( x, z ) H i 0 i 0 H y H y ez ex z x
i
1
0
ex 2 cos(15 x ) ez i30 sin(15 x ) e i z
梯度散度与旋度
直角坐标系下的矢量运算
ex ey ez x y z
Ax Ay Az A x y z
Az Ay Ay Ax Ax Az A ex e y x y ez z x z y
- 5 9
1 (2) E = e0
1 J 蝌 d dt = e0
- 3
- 26.26创 10 sin(3 10 t - 10 z )ex dt
- 5 9
t
所以
E = 9.9创 - 3 cos(3 109 t - 10 z )ex 10
= 9.9创 10 cos(3 10 t - 10 z )ex + C = 0 、 z = 1.1m 时, E = 0 ,可以得到
E 2 ( z , t ) e x 0.04 cos [10 8 t kz ] (V/m) (V/m), 3
u r E ( z, t ) e 0.03sin(10 t kz) e 0.03cos(10 t kz ) 解: 因为 (1)
1 uuu r x 8 uuu r x 8
z z ( (t ) ,即 E e xE 0 sin t ) ,则可以满足麦克 麦克斯韦方程组; (2)若将 t 换成 c c
习题2.6
c 斯韦方程组,式中
1
0 0 。
证明: (1)在无源的自由空间, J 0 ,若 E ex E0 sin t D E H 0 ex 0 cos t 则有 t t
1 B 抖 B 10- 9 F/m e0c 2 (- ex + ez ) , 其中 e0 = = 36p 抖 z x
习题2.8
1 - 9 8 2 - 12 9 10 (3创 ) 33创 10 10 10 创sin (3 10 t - 10 z ) ex = - 36p 创
10 sin (3 10 t - 10 z ) ex (A/m2 ) = - 26.26 创
x
E e (0.03e i /2 0.04e i /3 )e ikz
习题2.14
(2)由时谐形式 Maxwell 第二方程可得
习题2.11
e y Ex Ez 1 H ( x, z ) E z x i0 i0 ey i 2 2 (15 ) 2 ) cos(15 x)e i z 2
400 2 225 2 41.56( rad / m)
(V / m)
习题2.14
【 题 2.14 】 已知正弦电磁场的电场瞬时值为 , 式 中
E 1 ( z , t ) e x 0 .0 3 sin [1 0 8 t kz ]
E(z,t) E1 ( z , t ) E 2 ( z , t )
1 r sin
习题2.3
试证明,偶极矩为 pe 的电偶极子在外静电场 E
量(电势能)为 W pe E 。
中的能
习题2.5
【题 2.5】 证明:通过任意闭合面的传导电流与位移
D H J J Jd t
电流之和等于零。 证明:由麦克斯韦方程 两边取散度得
试求: (1)电场的复矢量; (2)磁场的复矢量和瞬时值。
u v r u r E 的复数形式为: E 1 ex0.03e i (kz /2) 所以 u r u r r E 的复数形式: E 2 e x 0.04 e i ( kz /3)
相关文档
最新文档