计数原理章节练习题
计数原理测试题(含答案)
圆梦教育中心 高中数学选修2-3计数原理第Ⅰ卷(选择题,共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m AD .2120+m A2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 153.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .1226. 在(a-b)99的展开式中,系数最小的项为( )A.T 49B.T 50C.T 51D.T 52 7. 数11100-1的末尾连续为零的个数是( )A.0B.3C.5D.78. 若425225+=x x C C ,则x 的值为 ( )A .4B .7C .4或7D .不存在9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .34CB .3718C CC .3718C C -6D . 1248-C10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于( ) A .101B .51 C .103 D .52第Ⅱ卷(非选择题,共100分)二、填空题(本大题共4小题,每小题6分,共24分)11.设含有8个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,S的值为___________.则T12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为.13.在(x-1)11的展开式中,x的偶次幂的所有项的系数的和为.14.六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是.三、解答题(共计76分)15.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线?(2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条?(4)分别以其中两点为起点和终点,最多可作出几个向量?16.(11分)在二次项12)(n mbx ax (a >0,b >0,m,n ≠0)中有2m+n =0,如果它的展开式中系数最大的项恰是常数项,求它是第几项? 17.(12分)由1,2,3,4,5,6,7的七个数字,试问: (1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个? (4)(1)中任意两偶然都不相邻的七位数有几个?18.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。
(完整版)高中数学《计数原理》练习题
《计数原理》练习一、选择题1.书架上层放有6本不同的数学书,下层放有5本不同的语文书,从中任取数学书和语文书各一本,则不同的取法种数有( )A 11B 30C 56D 652.在平面直角坐标系中,若{}{}1,2,3,3,4,5,6x y ∈∈,则以(),x y 为坐标的点的个数为( )A 7B 12C 64D 813.若()12nx +的展开式中,3x 的系数是x 系数的7倍,则n 的值为( )A 5B 6C 7D 84.广州市某电信分局管辖范围的电话号码由8位数字组成,其中前3位是一样的,后5位数字都是0~9这10个数字中的一个,那么该电信分局管辖范围内不同的电话号码个数最多有( )A 50B 30240C 59049D 1000006.按血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,其子女的血型一定不是O 型,如果某人的血型为O 型,则该人的父母血型的所有可能情况种数有( )A 6B 7C 9D 107.计算0121734520C C C C ++++L 的结果为( )A 421CB 321C C 320CD 420C 8.一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球得2分,取出一个白球得1分,问从口袋中取出5个球,使总分不少于7分的取法种数有( )A 15B 16C 144D 186二、填空题9.开车从甲地出发到丙地有两种选择,一种是从甲地出发经乙地到丙地,另一种是从甲地出发经丁地到丙地。
其中从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。
则从甲地到丙地不同的走法共有 种。
10.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 种。
14.()()5211x x +-的展开式中3x 的系数为三、解答题:15(12分) 假设在100件产品中有3件次品,从中任意抽取5件,求下列抽取方法各有多少种?(I )没有次品;(II )恰有两件是次品;(III )至少有两件是次品;(IV )至多有两件是次品;16(12分) 7个人按如下各种方式排队照相,有多少种排法?(I )甲必须站在正中间;(II )甲乙必须站在两端;(III )甲乙不能站在两端;(IV )甲乙两人要站在一起;17(10分)已知()727012712x a a x a x a x -=++++L ,(I )求127a a a +++L 的值;(II )求6420a a a a +++的值;(III )求127a a a +++L 的值; 参考答案一、选择题答案:BBDDCCAD二、填空题答案:14 34 20 12 6 -15三、解答题15题:(I )没有次品的抽法是从97件正品中抽取5件,共有59764446024C =种(II )恰有两件次品的抽法是从97件正品中抽取3件,并从3件次品中抽取2件,共有32973442320C C =种;(III )至少有两件是次品,可以分为两类:一类是2件次品,另一类是3件次品,所以共有3223973973446976C C C C +=种,或用排除法求解有554110097973446976C C C C --=种16题:(I )甲站在正中间,其他6人可以任意站,共有66720A =(II )甲乙站在两端有22A 种;其他5人站里面有55A ,所以共有2525A 240A ⋅=种(III )在甲乙以外的其他5人中取出2人来站两端有25A 种,剩下的5人站里面有55A ,共有2555A 2400A ⋅=种 (IV )将甲乙当成一个整体和其他5人共当成6个来排有66A 种,另外甲乙可以掉换位置有22A 种,所以共有6262A 1440A ⋅=种 17题、解:(I )令1x =,则()()77012712121x a a a a -=-=-=++++L 再令0x =,则01a =,所以127a a a +++L =2-, (II )令1x =,()()77012712121x a a a a -=-=-=++++L (1)令1-=x ,()()7654321077732121a a a a a a a a x -+-+-+-==+=- (2) (1)+(2)得)(21364207a a a a +++=-所以 ()2186132176420=-=+++a a a a (III )由二项式定理得: 12345670,0,0,0,0,0,0a a a a a a a <><><><, 所以 127a a a +++L =1234567a a a a a a a -+-+-+- 令1x =-,()()7770123456712123x a a a a a a a a -=+==-+-+-+- 而01a = ,所以127a a a +++L =1234567a a a a a a a -+-+-+-=7312186-=。
数学选修2-3第一章计数原理习题集(附答案解析)
第 1 页 共15 页 选修2-3 第一章章节习题集1.1 分类加法计数原理与分步乘法计数原理 一、课时过关·能力提升1.某校举办了一次教师演讲比赛,参赛的语文老师有20人,数学老师有8人,英语老师有4人,从中评选出一个冠军,则可能的结果种数为( ) A.12B.28C.32D.640解析:由分类加法计数原理得,冠军可能的结果种数为4+8+20=32. 答案:C2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( ) A .60B .48C .36D .24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B . 答案:B3.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为( )A.8B.15C.35D.53 解析:每封电子邮件都有3种不同的发送方法,共有35种不同的发送方法. 答案:C4.已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A ,B 的值,则可表示出的不同直线的条数为( ) A.19B.20C.21D.22解析:当A 或B 中有一个为零时,则可表示出2条不同的直线;当AB ≠0时,A 有5种选法,B 有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线. 答案:D5.五名护士上班前将外衣放在护士站,下班后回护士站取外衣,由于灯光暗淡,只有两人拿到了自己的外衣,另外三人拿到别人外衣的情况有( ) A.60种B.40种C.20种D.10种解析:设五名护士分别为A,B,C,D,E.其中两人拿到自己的外衣,可能是AB,AC,AD,AE,BC,BD,BE,CD,CE,DE 共10 种情况,假设A,B 两人拿到自己的外衣,则C,D,E 三人不能拿到自己的外衣,则只有C 取D,D 取E,E 取C,或C 取E,D 取C,E 取D 两种情况.故根据分步乘法计数原理,应有10×10×2=202=20种情况. 答案:C6.将4位老师分配到3个学校去任教,共有分配方案( ) A .81种B .12种C .7种D .256种解析:每位老师都有3种分配方案,分四步完成,故共有3×3×3×3=81种. 答案:A7.从6名志愿者中选4人分别从事翻译、人分别从事翻译、导游、导游、导游、导购、导购、导购、保洁四项不同的工作保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( ) A .280种 B .240种 C .180种D .96种解析:由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有5×4×3种,因此共有4×5×4×3=240种,故选B 答案:B8.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3 542大的四位数的个数是( ) A .360B .240C .120D .60解析:因为3 542是能排出的四位数中千位为3的最大的数,所以比3 542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3 542大的四位数. 答案:C9.圆周上有2n 个等分点(n 大于2),任取3点可得一个三角形,恰为直角三角形的个数为 .解析:先在圆周上找一点,因为有2n 个等分点,所以应有n 条直径,不经过该点的直径应有(n-1)条,这(n-1)条直径都可以与该点形成直角三角形,一个点可以形成(n-1)个直角三角形,而这样的点有2n 个,所以一共有2n (n-1)个符合题意的直角三角形. 答案:2n (n-1)10.如图所示,小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A 向结点B 传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为 .解析:由题图可知,从A 到B 有4种不同的传递路线,各路线上单位时间内通过的最大信息量自上而下分别为3,4,6,6,由分类加法计数原理得,单位时间内传递的最大信息量为3+4+6+6=19. 答案:1911.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被传给甲,则共有种不同的传递方法.解析:分两类:第一类,若甲先传给乙,则有:甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,第二类,甲先传给丙,也有3种不同的传法.共有6种不同的传递方法. 答案:612.如图,一只蚂蚁沿着长方体的棱,从顶点A 爬到相对顶点C 1,求其中经过3条棱的路线共有多少条?解:从总体上看有三类方法:分别经过AB,AD,AA1从局部上看每一类又需分两步完成,故第一类:经过AB,有m1=1×2=2条;第二类:经过AD,有m2=1×2=2条;第三类:经过AA1,有m3=1×2=2条.根据分类加法计数原理,从顶点A到顶点C1经过3条棱的路线共有N=2+2+2=6条.13.用n种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.当n=6时,该板报有多少种书写方案?解:第一步选英语角用的彩色粉笔,有6种不同的选法;第二步选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法.共有6×5×4×5=600种不同的书写方案.14.用0,1,0,1,……,9这十个数字,可以组成多少个满足下列条件的数?(1)三位整数;(2)无重复数字的三位整数;(3)小于500的无重复数字的三位整数;(4)小于100的无重复数字的自然数.解:由于0不能放到首位,可以单独考虑.(1)百位上有9种选择,十位和个位各有10种选法由分步乘法计数原理知,适合题意的三位数的个数是9×10×10=900.(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是9×9×8=648.(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是4×9×8=288.(4)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,适合题意的两位数的个数是9×9=81.由分类加法计数原理知,适合题意的自然数的个数是10+81=91.1.2 排列与组合1.2.1 排列一、课时过关·能力提升1.从集合{3,5,7,9,11}中任取两个元素,①相加可得多少个不同的和?②相除可得多少个不同的商?③作为椭圆=1中的a,b,可以得到多少个焦点在x轴上的椭圆方程?④作为双曲线=1中的a,b,可以得到多少个焦点在x轴上的双曲线方程?上面四个问题属于排列问题的是( )A.①②③④B.②④C.②③D.①④解析:∵加法满足交换律,∴①不是排列问题;∵除法不满足交换律,如,∴②是排列问题;若方程=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小一定;在双曲线=1中不管a>b还是a<b,方程均表示焦点在x轴上的双曲线,且是不同的双曲线.故③不是排列问题,④是排列问题.答案:B2.某年级一天有6节课,需要安排6门课程,则该年级一天的课程表的排法有( )A.66种B.36种C.种D.12种解析:本题相当于对6个元素进行全排列,故有种排法.答案:C3.设m∈N*,则乘积m(m+1)(m+2)2)……(m+20)可表示为 ( )A. B. C. D.解析:由排列数公式,=(m+20)(m+19)(m+18)…(m+1)m.答案:D4.某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,则不同的坐法有( )A.12种B.16种C.24种D.32种解析:将三个人插入五个空位中间的四个空当中,有=24种坐法.答案:C5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A.8B.24C.48D.120解析:个位数字有种排法,十位、百位、千位有种排法,从而共=48个不同的四位偶数答案:C6.要排一个有5个独唱节目和3个舞蹈节目的节目单,如果舞蹈节目不排在开头,并且任意两个舞蹈节目不排在一起,则不同的排法种数是( )A. B. C. D.解析:第一步先排5个独唱节目共种;第二步排舞蹈,不相邻则用插空法,且保证不放到开头,从剩下5个空中选3个插空共有种,故一共有种.答案:C7.5名男生与2名女生排成一排照相,若男生甲必须站在中间,2名女生必须相邻,则符合条件的排法共有( )A.48种B.192种C.240种D.288种解析:(用排除法)将2名女生看作1人,与4名男生一起排队,有种排法,而女生可互换位置,所以共有种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有种,这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为=192.答案:B8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有 ( )A.120个B.80个C.40个D.20个解析:由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有个;第二类,十位数字取6,有个;第三类,十位数字取5,有个;第四类,十位数字取4,有个.所以一共有=40个.答案:C9.张先生和王先生两对夫妇各带1名小孩一起到动物园游玩,购票后排队依次入园为安全起见,首尾一定要排两位爸爸,另外,两名小孩一定要排在一起,则这6人的入园排法共有 .解析:分三步完成:第1步,将两位爸爸排在两端,有种排法;第2步,将两名小孩看作一人与两位妈妈任意排在中间的三个位置,有种排法;第3步,两个小孩之间还有种排法.因此,这6人的入园排法共有=24种.答案:24种10.某校在高二年级开设选修课,其中数学选修班开了4个,选课结束后,有四名选修英语的同学甲、乙、丙、丁要求改修数学,为照顾各班平衡,数学选修班每班只接收1名改修数学的同学.那么甲不在(1)班,乙不在(2)班的分配方法有 .解析:先分甲,第一类,当甲在(2)班时,分配乙、丙、丁有种方法.第二类,当甲不在(2)班时,则甲有种分法,再分乙有种分法,分配丙、丁有种分法.因此,总共有=14种分法.答案:14种11.用1,2,3,4,5,6,7排成无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数一定在奇数位上;(3)1和2之间恰好夹有一个奇数,没有偶数.解:(1)用插空法,共有=1 440个.(2)先把偶数排在奇数位上有种排法,再排奇数有种排法共有=576个.(3)1和2排列有种方法,在1和2之间放一个奇数有种方法,把1,2和相应奇数看成整体再和其余4个数进行排列有种排法,故共有=720个.12.一条铁路线上原有n个车站,为适应客运需要,新增加了m个车站(m>1),客运车票增加了62种,则原有多少个车站?现在有多少个车站?解:∵原有n个车站,∴原有客运车票种.又现有(n+m)个车站,∴现有客运车票种.由题设知:=62,∴(n+m)(n+m-1)-n(n-1)=62,∴2mn+m2-m=62,∴n=(m-1)>0,∴(m-1),∴62>m(m-1),即m2-m-62<0.又∵m>1,∴1<m<,∴1<m≤8.当m=2时,n=15.当m=3,4,5,6,7,8时,n均不为整数.∴n=15,m=2.∴原有车站15个,现有车站17个.1.2.2 组合一、课时过关·能力提升1.某高校外语系有8名志愿者,其中有5名男生,3名女生,现从中选3人参加某项测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( )A.45种B.56种C.90种D.120种解析:用排除法,不同的选法种数为=45.答案:A2.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法的种数为 ( )A.210B.126C.70D.35解析:从7种中取出3种有=35种取法,比如选出a,b,c种,再都改变位置有b,c,a和c,a,b两种,故不同的改变方法有2×35=70种.答案:C3.有15盏灯,要求关掉6盏,且相邻的灯不能全关掉,两端的灯不能关掉,则不同的关灯方法有( )A.28种B.84种C.180种D.360种解析:将9盏灯排成一排,关掉的6盏灯插入9盏亮灯的中间8个空隙中的6个空隙中,有=28种方法.答案:A4.某科技小组有6名学生,现从中选出3人去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2B.3C.4D.5解析:设男生有x人,则女生有(6-x)人.依题意得=16,即x(x-1)(x-2)+16×6=6×5×4.解得x=4,故女生有2人.答案:A5.中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案种数为( )A. B.C. D.解析:首先每个学校配送一台,这个没有顺序和情况之分,剩下40台;将剩下的40台像排队一样排列好,则这40台校车之间有39个空,对这39个空进行插空,比如说用9面小旗隔开,就可以隔成10部分.所以是在39个空中选9个空进行插空.故不同的方案种数为.答案:D6.已知一组曲线y=ax3+bx+1,其中a为2,4,6,8中的任意一个,b为1,3,5,7中的任意一个.现从这些曲线中任取两条,它们在x=1处的切线相互平行的组数为 ( )A.9B.10C.12D.14解析:y'=ax2+b,曲线在x=1处切线的斜率k=a+b.切线相互平行,则需它们的斜率相等,因此按照在x=1处切线的斜率的可能取值可分为五类完成.第一类:a+b=5,则a=2,b=3;a=4,b=1.故可构成2条曲线,有组.第二类:a+b=7,则a=2,b=5;a=4,b=3;a=6,b=1.可构成三条曲线,有组.第三类:a+b=9,则a=2,b=7;a=4,b=5;a=6,b=3;a=8,b=1.可构成四条曲线,有组.第四类:a+b=11,则a=4,b=7;a=6,b=5;a=8,b=3.可构成3条曲线,有组.第五类:a+b=13,则a=6,b=7;a=8,b=5.可构成2条曲线,有组.故共有=14组相互平行的切线.答案:D7.5个不同的球放入4个不同的盒子中,每个盒子中至少有一个球,若甲球必须放入A盒,则不同的放法种数是 ( )A.120B.72C.60D.36解析:将甲球放入A盒后分两类,一类是除甲球外,A盒还放其他球,共=24种放法,另一类是A盒中只有甲球,则其他4个球放入另外三个盒中,有=36种放法.故总的放法有24+36=60种.答案:C8.从7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 .(用数字作答)解析:第一步安排周六有种方法,第二步安排周日有种方法,故不同的安排方案共有=140种.答案:140种9.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 .(用数字作答)解析:分两种情况:第一类:个位、十位和百位上各有一个偶数,有=90个.第二类:个位、十位和百位上共有两个奇数一个偶数,有=234个,共有90+234=324个.答案:324个10.某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同品种的菜.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备 种不同的素菜(结果用数值表示)解析:在5种不同的荤菜中选出2种的选择方式的种数是=10.若选择方式至少为200种,设素菜为x种, 则有≥200,即≥20,化简得x(x-1)≥40,解得x≥7.所以,至少应准备7种素菜.答案:711.在如图所示的四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,不同的取法种数为 .解析:满足要求的点的取法可分为三类:第一类,在四棱锥的每个侧面上除点P外任取3点,有4种取法;第二类,在两个对角面上除点P外任取3点,有2种取法;第三类,过点P的侧棱中,每一条上的三点和与这条棱异面的两条棱的中点也共面,有4种取法.因此,满足题意的不同取法共有4+2+4=56种.答案:5612.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,求与信息0110至多有两个对应位置上的数字相同的信息个数.解:与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类,与信息0110恰有两个对应位置上的数字相同,即从4个位置中选2个位置相同,其他2个不同有=6个信息.第二类,与信息0110恰有一个对应位置上的数字相同,即从4个位置中选1个位置相同,其他3个不同有=4个信息.第三类,与信息0110没有一个对应位置上的数字相同,即4个位置中对应数字都不同,有=1个信息 由分类加法计数原理知,与信息0110至多有两个对应位置上的数字相同的信息个数为6+4+1=11.13.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.解:(1)先选内科医生有种选法,再选外科医生有种选法,故选派方法的种数为=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为=246.若从反面考虑,则选派方法的种数为=246.(3)分两类:一是选1名主任有种方法;二是选2名主任有种方法,故至少有1名主任参加的选派方法的种数为=196.若从反面考虑:至少有1名主任参加的选派方法的种数为=196.(4)若选外科主任,则其余可任选,有种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有种选法.故有选派方法的种数为=1911.3 二项式定理1.3.1 二项式定理一、课时过关·能力提升1.的展开式中倒数第3项的系数是( )A.·2B.·26C.·25D.·22解析:的展开式中倒数第3项为二项展开式中的第6项,而T6=·(2x)2··22·x-8.该项的系数为·22.答案:D2.的展开式中的常数项为-220,则a的值为 ( )A.1B.-1C.2D.-2解析:T k+1=·a k.∵T k+1为常数项,∴-k=0,∴k=3.∴·a3=-220,∴a=-1.答案:B3.对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值是( )A.3B.6C.9D.21解析:由已知x3=[2+(x-2)]3=·23+·22·(x-2)+·2·2·((x-2)2+(x-2)3.所以a2=·2=6.答案:B4.的展开式中含x3项的二项式系数为( )A.-10B.10C.-5D.5解析:T k+1=·x 5-k=(-1)k·x5-2k,令5-2k=3,则k=1故x3项的二项式系数为=5答案:D5.若(1+)5=a+b(a,b为有理数),则a+b等于 ( )A.45B.55C.70D.80解析:由二项式定理,得(1+)5=1+·()2+·()3+·()4+·()5=1+5+20+20+20+4=41+29,即a=41,b=29,故a+b=70.答案:C6.(1-)6(1+)4的展开式中x的系数是( )A.-4B.-3C.3D.4解析:方法一:(1-)6的展开式的通项为(-)m,(1+)4的展开式的通项为)n,其中m=0,1,2,…,6;n=0,1,2,3,4.令=1,得m+n=2,于是(1-)6(1+)4的展开式中x的系数等于·(-1)0··(-1)1··(-1)2·=-3.方法二:(1-)6(1+)4=[(1-)(1+)]4(1-)2=(1-x)4(1-2+x).于是(1-)6(1+)4的展开式中x的系数为·1+·(-1)1·1=-3.答案:B7.若x>0,设的展开式中的第3项为M,第4项为N,则M+N的最小值为 .解析:由T3=x,T4=,则M+N=≥2.当且仅当,即x=时,等号成立答案:8.二项式的展开式中,常数项的值为 .答案:0,1,2,……,n)的部分图象如图,则a= .9.已知(ax+1)n=a n x n+a n-1x n-1+…+a2x2+a1x+a0(x∈N*),点A i(i,a i)(i=0,1,2,解析:由展开式得T k+1=(ax)n-k=a n-k·x n-k,由题图可知a1=3,a2=4,即a=3,且a2=4,化简得na=3,且=4,解得a=.答案:10.求证:32n+3-24n+37能被64整除.证明:32n+3-24n+37=3×9n+1-24n+37=3(8+1)n+1-24n+37=3(·8n+1+·8n+…+·8+1)-24n+37=3×64(·8n-1 +·8n-2+…+)+24-24n+40=64×3(·8n-1+·8n-2+…+)+64.显然上式是64的倍数,故原式可被64整除11.(1)求(1+x)2(1-x)5的展开式中x3的系数;(2)已知展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如果有,请求出来.解:(1)(1+x)2的通项为T r+1=·x r,(1-x)5的通项为T k+1=(-1)k·x k,其中r∈{0,1,2},k∈{0,1,2,3,4,5},令k+r=3,则有k=1,r=2;k=2,r=1;k=3,r=0.故x3的系数为-=5.(2)展开式的通项为T k+1=(x)n-k·=·2k·(k=0,1,2,…,n),由题意,得20+2+22=129所以1+2n+2n(n-1)=129,则n2=64,即n=8.故T k+1=·2k·(k=0,1,2,…,8),若展开式存在常数项,则=0,解之,得k=∉Z,所以展开式中没有常数项若展开式中存在一次项,则=1,即72-11k=6,所以k=6.所以展开式中存在一次项,它是第7项,T7=26x=1 792x.1.3.2 “杨辉三角”与二项式系数的性质一、课时过关·能力提升1.如果的展开式中各项系数之和为128,则展开式中含的项是( )A. B.C. D.解析:由的展开式中各项系数之和为128可得2n =128,n=7.其通项T k+1=(3x )7-k =(-1)k ·37-k,令7-=-3,解得k=6,此时T 7=.答案:C 2.的展开式中第8项是常数项,则展开式中系数最大的项是( )A.第8项B.第9项C.第8项、第9项D.第11项、第12项 解析:展开式中的第8项为)n-7为常数,即=0,解得n=21.故展开式中系数最大的项为第11项、第12项.答案:D 3.若(x+3y )n展开式的系数和等于(7a+b )10展开式中的二项式系数之和,则n 的值为( ) A.5B.8C.10D.15解析:(7a+b )10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,4n =210,解得n=5.答案:A4.已知+2+22+…+2n =729,则的值等于( )A.64B.32C.63D.31解析:由已知(1+2)n =3n=729,解得n=6.则=32.答案:B5.(1+x )n(3-x )的展开式中各项系数的和为1 024,则n 的值为( ) A .8B .9C .10D .11解析:由题意知(1+1)n (3-1)=1 024,即2n+1=1 024,故n=9. 答案:B6.若(1-2x )2 015=a 0+a 1x+…+a 2 015x2 015(x ∈R ),则+…+的值为( ) A.2 B.0C.-1D.-2 解析:令x=0,则a 0=1,令x=,则a 0++…+=0,故+…+=-1.答案:C7.(x+1)9按x 的升幂排列二项式系数最大的项是( ) A .第4项和第5项 B .第5项 C .第5项和第6项 D .第6项解析:展开式中共有10项,由二项式系数的性质可知,展开式的中间两项的二项式系数最大,即第5项和第6项的二项式系数最大. 答案:C8.在(a-b )10的二项展开式中,系数最小的项是 .解析:在(a-b )10的二项展开式中,奇数项的系数为正,偶数项的系数为负,且偶数项系数的绝对值为对应的二项式系数,因为展开式中第6项的二项式系数最大,所以系数最小的项为T 6=a 5(-b )5=-252a 5b 5.答案:-252a 5b 59.设(x-1)21=a 0+a 1x+a 2x 2+…+a 21x 21,则a 10+a 11= . 解析:∵(x-1)21的展开式的通项为T k+1=x 21-k (-1)k ,∴a 10+a 11=(-1)11+(-1)10=-=-=0.答案:0 10.若(2x+)4=a 0+a 1x+…+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为 .解析:令x=1,得a 0+a 1+a 2+a 3+a 4=(2+)4,令x=-1,得a 0-a 1+a 2-a 3+a 4=(-2+)4,(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)·)·((a 0-a 1+a 2-a 3+a 4)=(2+)4(-2+)4=1. 答案:111.若(2x-3y )10=a 0x 10+a 1x 9y+a 2x 8y 2+…+a 10y 10,求:(1)各项系数之和;(2)奇数项系数的和与偶数项系数的和.解:(1)各项系数之和即为a 0+a 1+a 2+…+a 10,可用“赋值法”求解.令x=y=1,得a 0+a 1+a 2+…+a 10=(2-3)10=(-1)10=1.(2)奇数项系数的和为a 0+a 2+a 4+…+a 10,偶数项系数的和为a 1+a 3+a 5+…+a 9. 由(1)知a 0+a 1+a 2+…+a 10=1,①令x=1,y=-1,得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得,2(a 0+a 2+…+a 10)=1+510,则奇数项系数的和为;①-②得,2(a 1+a 3+…+a 9))=11-5510,则偶数项系数的和为12.已知(+3x 2)n 展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.解:令x=1得展开式各项系数和为(1+3)n =4n展开式二项式系数和为+…+=2n ,由题意有4n -2n=992.即(2n )2-2n -992=0,(2n -32)(2n+31)=0,解得n=5.(1)因为n=5,所以展开式共6项,其中二项式系数最大的项为第3项、第4项,它们是T 3=)3·(3x 2)2=90x 6, T 4=)2(3x 2)3=270.(2)设展开式中第k+1项的系数最大.由T k+1=)5-k ·(3x 2)k =3k,得⇒⇒≤k≤.因为k∈Z,所以k=4,所以展开式中第5项系数最大.T5=34=405.13.杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)在第2斜列中,前5个数依次为1,3,6,10,15;第3斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般的有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数字公式表示上述结论,并给予证明.解:(1)=1 140(2)+…+,证明如下:左边=+…++…+=…==右边.。
专题02 计数原理(同步练习)(人教A版选修2-3)(解析版)
专题02 计数原理(同步练习)一、计数原理例1-1.要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【解析】从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法, 第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法, 根据分步乘法计数原理,不同挂法的种数是623=⨯=M 。
例1-1.给程序模块命名,需要用3个字符,其中首字符要求用字母G A ~或Z U ~,后两个要求用数字9~1。
问最多可以给多少个程序命名?【解析】先计算首字符的选法。
由分类加法计数原理,首字符共有1367=+种选法,再计算可能的不同程序名称。
由分步乘法计数原理,最多可以有10539913=⨯⨯个不同的名称, 即最多可以给1053个程序命名。
例1-3.核糖核酸(RNA )分子是在生物细胞中发现的化学成分一个RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据。
总共有4种不同的碱基,分别用A 、C 、G 、U 表示。
在一个RNA 分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关。
假设有一类RNA 分子由100个碱基组成,那么能有多少种不同的RNA 分子?【解析】100个碱基组成的长链共有100个位置,从左到右依次在每一个位置中,从A 、C 、G 、U 中任选一个填入, 每个位置有4种填充方法,根据分步乘法计数原理,长度为100的所有可能的不同RNA 分子数目有1004个。
例1-4.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态。
因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制。
为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成。
高二数学选修2-3第一章计数原理练习题(北师大版有答案)
高二数学选修2-3第一章计数原理练习题(北师大版有答案)一、选择题1.已知x∈{2,3,7},y∈{-31,-24,4},则x•y可表示不同的值的个数是()A.2B.3C.6D.9【解析】用分步乘法计数原理,第一步选x有3种方法,第二步选y 也有3种方法,共有3×3=9种方法.【答案】D2.已知集合,且A中至少有一个奇数,则这样的集合有() A.2个B.3个C.4个D.5个【解析】当集合A中含一个元素时,A={1}或{3};当集合A中含两个元素时,A={1,2}或{1,3}或{2,3},∴共有5个集合.【答案】D3.火车上有10名乘客,要在沿途的5个车站下车,则乘客下车的所有可能情况共有()A.510种B.105种C.50种D.以上都不对【解析】完成这件事可分为10步,即10名乘客全部下车,每名乘客选择下车的不同方法均为5种,由分步乘法计数原理知,所有可能的情况为510种.【答案】A4.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种【解析】若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.【答案】C5.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,共有不同的选法()种A.756B.56C.28D.255【解析】推选两名来自不同年级的两名学生,有N=9×12+12×7+9×7=255(种).【答案】D二、填空题6.一个袋子里装有7张不同的中国移动手机卡,另一个袋子里装有8张不同的中国联通手机卡,某人想得到一张中国移动卡和一张中国联通卡,供自己今后选择使用,一共有________种不同的取法.【解析】由分步乘法计数原理知,有7×8=56种不同取法.【答案】56图1-1-17.小黑点表示网络的结点,结点之间的连线表示它们有网络相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现在从结点A向结点B传递信息,信息可分开沿不同的路线同时传递,则单位时间内从结点A向结点B可以传递的最大信息量为________.【解析】从图形可以看出,从A→B,可以分成这样几种情况,A→D→B,或A→C→B,这两类方法中各自包含的单位时间中通过的信息量分别是3,5,根据分类计数原理知共有3+5=8.【答案】88.已知集合A={1,2,3,4},B={1,2,4,5,6},若a∈A,b∈B,则方程y=bax表示的不同直线的条数是________.【解析】可知A∩B={1,2,4},∴当a=b=1,2,4时,方程表示一条直线,这时ba=1.当a≠b时,按a的值进行分类:(1)当a=1时,b=2,4,5,6,则ba=2,4,5,6,∴方程y=bax表示4条不同的直线;(2)当a=2时,b=1,4,5,6,则ba=12,2,52,3,∴方程y=bax也表示4条不同的直线,但与(1)中1条重,应除去1条,变为3条;(3)当a=3时,b=1,2,4,5,6,则ba=13,23,43,53,2,∴方程y=bax表示5条不同的直线,但也与(1)中重一条,应除去1条,变为4条;(4)当a=4时,b=1,2,5,6,则ba=14,12,54,32,∴方程y=bax表示4条不同的直线,但与(2)中重1条,应除去1条,变为3条.根据分类加法计数原理,方程y=bax共表示1+4+3+4+3=15条不同直线.【答案】15三、解答题9.设椭圆x2a2+y2b2=1,其中a,b∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x轴上,求椭圆的个数.【解】(1)由椭圆的标准方程知a≠b,要确定一个椭圆,只要把a,b一一确定下来这个椭圆就确定了.故要确定一个椭圆共分两步,第一步确定a,有5种方法,第二步确定b,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须a>b,故可以分类:a=2,3,4,5时,b的取值列表为:a2345b11,21,2,31,2,3,4故共有1+2+3+4=10个椭圆.10.从甲地到乙地,如果翻过一座山,上山有2条路,下山有3条路.如果不走山路,由山北绕道有2条路,由山南绕道有3条路.(1)如果翻山而过,有多少种不同的走法?(2)如果绕道而行,有多少种不同的走法?(3)从甲地到乙地共有多少种不同的走法?【解】(1)分两步:第一步,选一条上山路有2种方法;第二步,选一条下山路有3种方法.所以翻山而过,有2×3=6种不同的走法.(2)分两类:第一类:由山北绕道,有2种走法;第二类:由山南绕道,有3种走法.所以绕道而行,有2+3=5种不同的走法.(3)分两类:第一类:翻山而过,有6种走法;第二类:绕道而行,有5种走法.所以从甲地到乙地共有6+5=11种不同的走法.11.已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=25,求符合条件的三角形的个数.【解】根据题意,a可取的值为1、2、3、…25,根据三角形的三边关系,有25≤c当a=1时,有25≤c当a=2时,有25≤c当a=3时,有25≤c当a=4时,有25≤c…当a=25时,有25≤c则符合条件的三角形共有1+2+3+4+ (25)+=325个.。
(易错题)高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)
一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为13,乙获胜的概率为23各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( ) A .1781B .5681C .6481D .25813.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .114.某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于67的是( )A .至少有1个深度贫困村B .有1个或2个深度贫困村C .有2个或3个深度贫困村D .恰有2个深度贫困村5.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ). A .3,2B .2,3C .6,2D .2,66.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.27.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( ) A .0.72B .0.8C .89D .0.98.某班学生的考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( ) A .15B .310C .12D .359.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A .261B .341C .477D .68310.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b == B .3,10a b == C .5,6a b == D .6,5a b == 11.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( ) A .9mB .3mC .mD .32m +12.已知随机变量X 的分布列为则E(6X +8)=( ) A .13.2B .21.2C .20.2D .22.2二、填空题13.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,210).且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过1000小时的平均值为______台.14.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这6位乘客在第20层下电梯的人数,则(4)P X ==________.16.随机变量()2,XN μσ,()()222x f x μσ--=满足:(1)x R ∀∈,()()f x f x ''-=-; (2)()f σ'-=, 则()12P X <≤=________.附:()0.6827P X μσμσ-<≤+≈;()220.9545P X μσμσ-<≤+≈;()330.9973P X μσμσ-<≤+≈.17.若随机变量2~5,3X B ⎛⎫ ⎪⎝⎭,则()3D X =_______. 18.已知随机变量服从正态分布()22,N σ,若(0)0.16P X ≤=,则(24)P X <≤=________.19.在一个均匀小正方体的六个面中,三个面上标以数字0,两个面上标以数字1,一个面上标以数字2,将这个小正方体抛掷2次,则向上一面上的数字之积的均值是____.20.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为0.2,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1. 为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万.三、解答题21.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.22.某公司的一次招聘中,应聘者都要经过三个独立项目A ,B ,C 的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A ,B ,C 每个项目测试的概率都是12. (1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X ,求X 的概率分布和数学期望.23.某省高考改革新方案,不分文理科,高考成绩实行“33+”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S ,从学生群体S 中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;(II)从所调查的50名学生中任选2名,记X 表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X 的分布列和数学期望;(III)将频率视为概率,现从学生群体S 中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y ,求事件“2y ≥”的概率.24.某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求()P B 和()|P B A . 25.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)u u σσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)u u σσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.9510.12 9.969.9610.01 9.929.9810.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,()16162221111160.2121616i i i i s x x x x ==⎛⎫=-=-≈ ⎪⎝⎭∑∑,其中x i 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.09≈.26.某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为12,复审能通过的概率为310,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.A解析:A 【分析】甲在4局内(含4局)赢得比赛包含3种情况:①甲胜第1、2局;②乙胜第1局,甲胜2、3局;③甲胜第1局,乙胜第2局,甲胜第3、4局,由此可求得甲在4局以内(含4局)赢得比赛的概率. 【详解】由题意,甲在4局内(含4局)赢得比赛包含3种情况:①甲胜第1、2局,概率为211()3p =;②乙胜第1局,甲胜2、3局,概率为2221()33p =⨯; ③甲胜第1局,乙胜第2局,甲胜第3、4局,概率为23121()333p =⨯⨯, 所以甲在4局以内(含4局)赢得比赛的概率为22212112117()()()33333381p =+⨯+⨯⨯=. 故选:A. 【点睛】本题主要考查了概率的求法,以及相互独立事件的概率乘法公式和互斥事件的概率加法公式的应用,着重考查分类讨论思想,以及计算能力.3.C解析:C 【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=. 故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.4.B解析:B 【分析】用X 表示这3个村庄中深度贫困村数,则X 服从超几何分布,故()33437k kC C P X k C -==,分别求得概率,再验证选项. 【详解】用X 表示这3个村庄中深度贫困村数,X 服从超几何分布,故()33437k kC C P X k C -==, 所以()3043374035C C P X C ===, ()21433718135C C P X C ===,()12433712235C C P X C ===,()0343371335C C P X C ===, ()()6127P X P X =+==. 故选:B 【点睛】本题主要考查超几何分布及其应用,属于基础题.5.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.6.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得, 所以随机变量的均值为,方差为,故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.8.A解析:A 【分析】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人,则数学不及格的人里头有3人语文不及格,由此能求出已知一学生数学不及格,他语文也不及格的概率. 【详解】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人, 则数学不及格的人里头有3人语文不及格,∴已知一学生数学不及格,则他语文也不及格的概率为31155p ==,故选A . 【点睛】本题主要考查概率的求法,设这个班有100人可使得该问题更加直观明了,属于基础题.9.B解析:B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果. 详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.10.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.11.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .12.B解析:B 【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X +8)=6E(X)+8=6×2.2+8=21.2.选B.二、填空题13.375【分析】由正态分布可知每个元件正常工作超过10000小时的概率为从而求出部件正常工作超过10000小时的概率再根据二项分布求出平均值【详解】由正态分布可知每个元件正常工作超过10000小时的概解析:375 【分析】由正态分布可知,每个元件正常工作超过10000小时的概率为12,从而求出部件正常工作超过10000小时的概率,再根据二项分布求出平均值. 【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12, 则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为310003758⨯=台. 故答案为:375. 【点睛】本题考查正态分布和相互独立事件及二项分布,考查逻辑推理能力、运算求解能力.14.【分析】设事件表示该选手能正确回答第轮的问题选手被淘汰考虑对立事件代入的值可得结果;【详解】记该选手能正确回答第轮的问题为事件则该选手被淘汰的概率:故答案为:【点睛】求复杂互斥事件概率的两种方法:( 解析:101125【分析】设事件(1,2,3)i A i =表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入123(),(),()P A P A P A 的值,可得结果; 【详解】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯= 故答案为:101125【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()1()P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验,故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.1359【分析】对函数求导得导函数解析式由已知关系分别求得再由正态分布图像的对称性求得答案【详解】因为所以又则且所以故答案为:01359【点睛】本题考查由正态分布的对称性求概率问题属于中档题解析:1359 【分析】对函数()f x 求导得导函数解析式,由已知关系分别求得2,μσ,再由正态分布图像的对称性求得答案. 【详解】 因为()()222x f x μσ--=,所以()()()22221x f x x μσμσ--'=--又x R ∀∈,()()f x f x ''-=-,则()()()2202200001f μσμμσ--'=--=⇒=且()()()2222211f σσσσσσ--'-=--==⇒= 所以()()()220.13592122P P X X X P μσμσμσμσ-<≤+-<≤+-<≤=≈故答案为:0.1359 【点睛】本题考查由正态分布的对称性求概率问题,属于中档题.17.10【分析】根据题意可知随机变量满足二项分布根据公式即可求出随机变量的方差再利用公式即可求出【详解】故答案为【点睛】本题主要考查满足二项分布的随机变量方差的求解解题时利用公式将求的问题转化为求的问题解析:10 【分析】根据题意可知,随机变量2~5,3X B ⎛⎫ ⎪⎝⎭满足二项分布,根据公式()(1)D X np p =-,即可求出随机变量的方差,再利用公式2()()D aX b a D X +=即可求出()3D X 。
(易错题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)
一、选择题1.已知()~,X B n p ,且()2E X =,()43D X =,则n =( ) A .5B .6C .7D .82.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭3.已知随机变量ξ的分布列如表,则ξ的标准差为( )A .3.56B C .3.2D 4.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .255.设102x <<,随机变量ξ的分布列如下:则当x 在0,2⎛⎫ ⎪⎝⎭内增大时( ) A .()E ξ减小,()D ξ减小 B .()E ξ增大,()D ξ增大 C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大6.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元7.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常8.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.199.在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( ) A .542B .435C .1942D .82110.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为0.6和P ,且甲、乙两人各射击一次得分之和为2的概率为0.45.假设甲、乙两人射击互不影响,则P 值为( ) A .0.8B .0.75C .0.6D .0.2511.2017年5月30日是我国的传统节日端午节,这天小明的妈妈为小明煮了5个粽子,其中两个大枣馅三个豆沙馅,小明随机取出两个,事件A =“取到的两个为同一种馅”,事件B =取到的两个都是豆沙馅”,则(|)P B A =( ) A .34B .14C .110D .31012.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.数轴上有一质点,从原点开始每次等可能的向左或向右移动一个单位,则移动4次后,该质点的坐标为2的概率为________.15.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.16.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________.17.已知随机变量ξ服从正态分布()21,N σ,若(3)0.0442P ξ>=,则(13)P ξ≤≤=________.18.(理)假设某10张奖券中有一等奖1张,奖品价值100元;有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值ξ不少于其数学期望E ξ的概率为_________.19.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布()210000,10N ,且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过10000小时的平均值为______台.20.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.三、解答题21.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2题才算合格.(1)设甲、乙两人在考试中答对的题数分别为X 、Y ,写出随机变量X 、Y 的分布列; (2)分别求甲、乙两人考试合格的概率; (3)求甲、乙两人至少有一人考试合格的概率.22.某公司的一次招聘中,应聘者都要经过三个独立项目A ,B ,C 的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A ,B ,C 每个项目测试的概率都是12. (1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X ,求X 的概率分布和数学期望.23.某校准备从报名的6位教师(其中男教师3人,女教师3人)中选3人去边区支教. (1)设所选3人中女教师的人数为X ,求X 的分布列及数学期望;(2)若选派的三人依次到甲、乙、丙三个地方支教,求甲地是男教师的情况下,乙地为女教师的概率.24.2019年以来,全国发生多起较大煤矿生产安全事故,事故给人民群众的财产和生命造成重大损失.尽管国务院安委办要求对事故责任人从严查处.但是有的煤矿企业领导人仍然不能够对安全生产引起足够重视.不久前,某煤矿发生瓦斯爆炸事故,作业区有若干矿工人员被困.若救援队从入口进入之后有1L ,2L 两条巷道通往作业区如下图所示,其中1L 巷道有1A ,2A ,3A 三个易堵塞点,且各易堵塞点被堵塞的概率都是12;2L 巷道有1B ,2B 两个易堵塞点,且1B ,2B 易堵塞点被堵塞的概率分别为14,35,不同易堵塞点被堵塞或不被堵塞互不影响.(1)求1L 巷道中的三个易堵塞点至少有两个被堵塞的概率;(2)若2L 巷道中两个易堵塞点被堵塞个数为X ,求X 的分布列及数学期望; (3)若1L 巷道中三个易堵塞点被堵塞的个数为Y ,求Y 的数学期望.25.某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为34,且甲、乙两人是否答对每个试题互不影响. (1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大; (2)若答对一题得5分,答错或不答得0分,记乙答题的得分为Y ,求Y 的分布列. 26.在一次购物抽奖活动中,假设某10张券中有一等奖券2张,每张可获价值50元的奖品;有二等奖券2张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】∵~(,)X B n p ,∴()2E X =,4()3D X =,∴2np =,且4(1)3np p -=,解得613n p =⎧⎪⎨=⎪⎩, ∴6n =,故选B .2.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.3.D解析:D 【分析】由分布列的性质求得x ,利用方差的计算公式可求得()D ξ,进而得到标准差. 【详解】由分布列的性质得:0.40.11x ++=,解得:0.5x =,()10.430.150.5 3.2E ξ∴=⨯+⨯+⨯=,()()()()2221 3.20.43 3.20.15 3.20.5 3.56D ξ∴=-⨯+-⨯+-⨯=,ξ∴=故选:D . 【点睛】本题考查根据离散型随机变量的分布列求解标准差的问题,考查了分布列的性质、数学期望和方差的求解,考查基础公式的应用.4.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.5.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.6.C解析:C 【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.7.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.8.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==,由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可. 详解:正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率可知,当0个正品4个次品时444101210C P C ==当1个正品3个次品时136441024421035C C P C === 所以正品数比次品数少的概率为1452103542+= 所以选A点睛:本题考查了超几何分布在分布列中的应用,主要区分二项分布和超几何分布的不同.根据不同的情况求出各自的概率,属于简单题.10.B解析:B 【解析】分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,由相互独立事件的概率公式可得,可得关于p 的方程,解方程即可得答案. 详解:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B , 则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则P (A )=35,P (A )=1﹣35=25,P (B )=P ,P (B )=1﹣P , 依题意得:35×(1﹣p )+25×p=920, 解可得,p=34, 故选:B .点睛:求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.11.A解析:A 【解析】由题意,2223C +C 4P A ==1010(),23C 3P AB ==1010()P AB 3P A |B ==P A 4()()()∴,故选:A .【思路点睛】求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数.二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=.故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.【分析】由题意分析可知质点4次运动中有1次向左3次向右根据独立事件的概率公式求解【详解】由题意可知质点移动4次后位于坐标为2的位置说明4次中有1次向左3次向右并且每次向左或向右的概率都是所以移动4次解析:14【分析】由题意分析可知质点4次运动中有1次向左,3次向右,根据独立事件的概率公式求解. 【详解】由题意可知质点移动4次后位于坐标为2的位置,说明4次中有1次向左,3次向右,并且每次向左或向右的概率都是12,所以移动4次后,该质点的坐标为2的概率314111224p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故答案为:14【点睛】本题考查独立事件概率的实际应用问题,属于基础题型,本题的关键是抽象出质点运动方向,以及概率类型.15.【分析】设事件表示该选手能正确回答第轮的问题选手被淘汰考虑对立事件代入的值可得结果;【详解】记该选手能正确回答第轮的问题为事件则该选手被淘汰的概率:故答案为:【点睛】求复杂互斥事件概率的两种方法:( 解析:101125【分析】设事件(1,2,3)i A i =表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入123(),(),()P A P A P A 的值,可得结果; 【详解】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯= 故答案为:101125【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()1()P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.16.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的 解析:27-【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C CP X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C CP X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.17.4558【分析】随机变量服从正态分布根据对称性可求得的值再根据概率的基本性质可求得【详解】因为所以故所以故答案为:04558【点睛】本题考查了正态分布曲线的对称性属于基础题解析:4558随机变量ξ服从正态分布()21,N σ,(3)0.0442P ξ>=,根据对称性可求得(1)P ξ<-的值,再根据概率的基本性质,可求得(13)P ξ≤≤. 【详解】因为(3)0.0442P ξ>=, 所以(1)0.0442P ξ<-=,故(13)1(3)(1)0.9116P P P ξξξ-≤≤=->-<-=. 所以(13)0.4558P ξ≤≤=. 故答案为:0.4558. 【点睛】本题考查了正态分布曲线的对称性,属于基础题.18.【分析】奖品的总价值可能值为050100150分别求出求出期望即可求解【详解】奖品的总价值可能值为050100150其分布列为 150 获得奖品的总价值不少于其数学期望的概率即获解析:23【分析】奖品的总价值ξ可能值为0,50,100,150,分别求出()0P ξ=,5(0)P ξ=,0(0)1P ξ=,5(0)1P ξ=,求出期望,即可求解.【详解】奖品的总价值ξ可能值为0,50,100,150,262101()03C P C ξ===,11632105502()C C P C ξ===,1263210+101()50C C P C ξ===,132101(150)15C P C ξ===, 其分布列为()0501001505055515E ξ=⨯+⨯+⨯+⨯=,获得奖品的总价值ξ不少于其数学期望E ξ的概率, 即获得奖品的总价值ξ不少于50的概率为23. 故答案为:23本题考查离散型随机变量的期望,求出随机变量的概率是解题的关键,属于中档题. 19.375【分析】先求得元件和并联电路正常工作的概率乘以元件正常工作的概率由此求得部件正常工作超过小时的概率利用二项分布均值计算计算公式计算出台仪器中该部件的使用寿命超过小时的平均值【详解】由正态分布可解析:375【分析】先求得元件1和2并联电路正常工作的概率,乘以元件3正常工作的概率,由此求得部件正常工作超过10000小时的概率.利用二项分布均值计算计算公式,计算出1000台仪器中该部件的使用寿命超过10000小时的平均值.【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12,则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为3 10003758⨯=台.故答案为:375【点睛】本小题主要考查相互独立事件概率计算,考查二项分布的识别和二项分布期望的计算,属于基础题.20.1【分析】由正态分布的性质可得正态分布的图像对称轴为据此得到关于a 的方程解方程可得a的值【详解】由正态分布的性质可得正态分布的图像对称轴为结合题意有:故答案为1【点睛】关于正态曲线在某个区间内取值的解析:1【分析】由正态分布的性质可得正态分布的图像对称轴为2X=,据此得到关于a的方程,解方程可得a的值.【详解】由正态分布的性质可得正态分布的图像对称轴为2X=,结合题意有:()()2232,12a aa -++=⇒=.故答案为1.【点睛】关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.三、解答题21.(1)答案见解析(2)甲、乙两人考试合格的概率分别为23,1415(3)4445【分析】(1)随机变量X 的所有可能取值为:0,1,2,3,根据概率公式求出随机变量X 的每个取值的概率即可得到随机变量X 的分布列;同理可得随机变量Y 的分布列; (2)记“甲考试合格”为事件A ,’乙考试y 合格”为事件B ,由(1)可得结果; (3)先求出甲、乙两人均不合格的概率,再根据对立事件的概率公式可求得结果. 【详解】(1)随机变量X 的所有可能取值为:0,1,2,3,3431041(0)12030C P X C ====,(1)P X ==1264310C C C 36312010==, (2)P X ==21643106011202C C C ==,36310201(3)1206C P X C ====, 所以随机变量X 的分布列为:(1)P Y ==1282310C C C 8112015==, (2)P Y ==218231056712015C C C ==,38310567(3)12015C P Y C ====,所以随机变量Y 的分布列为:由(1)知,()P A =1126+23=,7714()151515P B =+=. 所以甲、乙两人考试合格的概率分别为23,1415. (3)因为事件,A B 相互独立,所以甲、乙两人均不合格的概率为()()()P A B P A P B ⋅=⋅[1()][1()]P A P B =--214111(1)(1)31531545=-⨯-=⨯=,所以甲、乙两人至少有一人考试合格的概率为14414545-=. 【点睛】本题考查了求离散型随机变量的分布列,考查了独立事件的乘法公式,考查了对立事件的概率公式,属于基础题. 22.(1)38;(2)答案见解析.【解析】分析:(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X 的概率分布,计算数学期望. 详解:(1)甲恰好通过两个项目测试的概率为;(2)因为每人可被录用的概率为,所以,, ,;故随机变量X 的概率分布表为: X 0123P所以,X 的数学期望为.点睛:解离散型随机变量的期望应用问题的方法(1)求离散型随机变量的期望关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用期望公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的期望公式计算,则更为简单.23.(1)分布列见解析,期望为32;(2)35. 【分析】(1)X 的值依次为0,1,2,3,分别计算出概率得概率分布列,再由期望公式计算出期望; (2)设事件A 为“甲地是男教师”,事件B 为“乙地是女教师”,利用条件概率公式,即可求出概率. 【详解】(1)X 的所有可能取值为0,1,2,3,33361(0)20C P X C ===,1233369(1)20C C P X C ===,2133369(2)20C C P X C ===,33361(3)20C P X C ===,所以X 的分布列为:故()1232020202E X =⨯+⨯+⨯=; (2)设事件A 为“甲地是男教师”,事件B 为“乙地是女教师”,则1236361()2C A P A A ==,111334363()10C C C P AB A ==, 所以3()310(|)1()52P AB P B A P A ===. 【点睛】本题考查随机变量的概率分布列和数学期望,考查条件概率,解题时确定出随机变量的所有可能取值,然后计算出概率后可得概率分布列,由期望公式可计算出期望.掌握条件概率公式即可计算条件概率. 24.(1)12;(2)分布列见解析;期望为1720;(3)32. 【分析】(1)根据独立事件的概率公式计算,至少有两个被堵塞含两个被堵塞和三个被堵塞两种情形,分别计算相加可得;(2)X 的所有可能取值为0,1,2.,分别计算其概率得分布列,由期望公式得期望; (3)Y 的所有可能取值为0,1,2,3,计算出各概率,然后由期望公式计算期望. 【详解】解:(1)据题设知,所求概率213233311112222p C C ⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12=. (2)X 的所有可能取值为0,1,2.133(0)114510P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,131311(1)11454520P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,133(2)4520P X ==⨯=, 所以随机变量X 的分布列为所以()01210202020E X =⨯+⨯+⨯=. (3)Y 的所有可能取值为0,1,2,3.303111(0)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,213113(1)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,223113(2)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,333111(3)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以13313()012388882E Y =⨯+⨯+⨯+⨯=. 【点睛】本题考查相互独立事件的概率公式,考查随机变量的概率分布列数学期望,考查了学生的数据处理能力,运算求解能力,属于中档题.25.(1)甲通过自主招生初试的可能性更大.(2)见解析 【分析】(1)根据条件答对3题或4题才能通过初试,再由8个试题中甲能答对6个,知甲通过初试的概率计算属于超几何分布概率计算,而乙能答对每个试题的概率为34,知乙通过初试的概率计算属于二项分布概率计算,根据各自的概率计算公式即可求解.(2)设乙答对试题的个数为X ,得5Y X =,由X 的可能取值及乙能答对每个试题的概率为34知:~X B 34,4⎛⎫⎪⎝⎭,根据二项分布概率计算公式及Y 与X 的关系可得到Y 的分布列.【详解】解:(1)参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,在这8个试题中甲能答对6个,∴甲通过自主招生初试的概率314626144881114C C C P C C =+=, 参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,在这8个试题中乙能答对每个试题的概率为34, ∴乙通过自主招生初试的概率43324313189()444256P C ⎛⎫=+=⎪⎝⎭, 1118914256>,∴甲通过自主招生初试的可能性更大. (2)根据题意,乙答对题的个数X 的可能取值为0,1,2,3,4, 因为乙能答对每个试题的概率为34, 所以~X B 34,4⎛⎫ ⎪⎝⎭ ,()4431()0,1,2,3,444kkk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭且5Y X=,∴Y 的概率分布列为:26.(1)23;(2)X 的分布列为(1)根据题意先求出该顾客没有中奖的概率,再根据与对立事件的概率和为1,即可得到该顾客中奖的概率.(2)根据题意得X 的取值可能为0,10,20,50,60,100,根据古典概率公式分别求出其概率,进而求出X 的概率分布列. 【详解】(1)该顾客获奖的概率为26210121=1=33C P C =--. (2)根据题意得,X 的取值可能为0,10,20,50,60,100()26210103C P X C ===,()112621041015C C P X C ⋅===,()2221012045C P X C ===,()112621045015C C P X C ⋅===,()112221046045C C P X C ⋅===,()22210110045C P X C ===. X 的分布列为本题主要考查古典概型事件的概率求解. 古典概型的特点:①有限性(所有可能出现的基本事件只有有限个);②等可能性(每个基本事件出现的可能性相等). 基本事件的特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.。
高二数学计数原理练习题
高二数学计数原理练习题一. 单项选择题1. 在某城市的某高中,学生共有8个班级,每个班级的人数都是36人。
其中,有一个班级需要选举班委会,班委会共有5个职位,每个职位都需要选1名同学担任。
假设所有学生都有资格参选,那么这个班级选举班委会的方案数是多少?A. 36B. 56C. 96D. 1682. 一共有6本不同的数学书和4本不同的英语书,现需从中选择3本书送给高二学生。
要求至少送1本数学书和至少送1本英语书。
那么总共有多少种不同的选择方案?A. 76B. 84C. 88D. 923. 一家公司的工作服有3种颜色:红色、蓝色和白色。
工作服分为上衣和裤子两部分。
某员工每天需要选择一件上衣和一条裤子作为工作服,并且每天的颜色不能与前一天相同。
那么这名员工连续工作3天,有多少种不同的穿衣方案?A. 12B. 18C. 24D. 36二. 解答题1. 一个球队有12名球员,其中有4名前锋、3名中场和5名后卫。
现需从中选出5名球员组成一支首发阵容,要求首发阵容中至少包含1名前锋、1名中场和1名后卫。
那么总共有多少种不同的选择方案?请列举所有可能的组合。
2. 某城市的汽车号牌由3位字母和4位数字构成。
字母区分大小写,数字不会以0开头。
现要求从中选取5个号牌,要求这些号牌至少包含一个大写字母和一个偶数位的数字。
请计算总共有多少种满足条件的选择方案?3. 一张8×8的棋盘上放置8个象棋的车,使得每个棋子不在同一行、同一列,且两两不互相攻击。
请构造出一个满足条件的放置方案,并计算共有多少种不同的放置方案。
三. 填空题1. 某餐厅每天提供4道主菜和5种甜点供客人选择。
客人需要选择其中一道主菜和一种甜点。
如果今天有70名客人到访该餐厅,他们的选择方案总数是______。
2. 一支舞蹈队共有8名男舞者和7名女舞者。
现要求从中选择5名舞者组成一支舞蹈小组,要求小组中至少包含2名男舞者和2名女舞者。
请计算总共有多少种满足条件的选择方案?3. 某个国家的车牌号码由2位数字、2位大写字母和4位数字构成,字母区分大小写。
计数原理专项练习(含详解)
计数原理专项练习一、单选题(本大题共20小题,共100.0分)1. 从8名女生和4名男生中,抽取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的抽取方法数为()A. 224B. 112C. 56D. 282. A ,B ,C ,D 四位妈妈相约各带一名小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一位大人和一名小孩,其中孩子们表示都不坐自己妈妈的车,则A 的小孩坐C 妈妈或D 妈妈的车的概率是()A.13B.12C.59D.233. 袋中有5个黑球和3个白球,从中任取2个球,则其中至少有1个黑球的概率是()A.B.C.D.4. 已知的最小值为,则二项式展开式中项的系数为A.B.C.D.5.2.5PM 是指大气中直径小于或等于0.0000025米的颗粒物,数0.0000025用科学计数法表示为() A. 72510-⨯ B. 62.510-⨯ C. 50.2510-⨯ D. 72.510-⨯6. 若集合1A ,2A 满足12A A A =,则称12(,)A A 为集合A 的一个分拆,并规定:当且仅当12A A =时,12(,)A A 与21(,)A A 为集合A 的同一种分拆,则集合12{,}A a a =的不同分拆种数是()A. 8B. 9C. 16D. 187. 已知1021001210(1)(1)(1)(1)x a a x a x a x +=+-+-++-,则9a 等于()A. 10B. 10-C. 20D. 20-8. 如图,在杨辉三角形中,斜线的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,记此数列的前项之和为,则的值为()A. 361B. 295C. 153D. 669. 设2012(1)n x a a x a x -=+++…nn a x +,若12||||...||127n a a a +++=,则展开式中二项式系数最大的项为A. 第4项B. 第5项C. 第4项或第5项D. 第7项10. 二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则()n =A. 4B. 5C. 6D. 711. 二项式的展开式中二项式系数最大的项为()A. 第 3 项B. 第 6 项C. 第 6 、 7 项D. 第 5 、 7 项12. 甲、乙、丙3位教师安排在周一至周五中的3天值班,要求每人值班1天且每天至多安排1人,则恰好甲安排在另外2位教师前面值班的概率是A.B.C.D.13. 212nx x ⎛⎫- ⎪⎝⎭的展开式中只有第4项的二项式系数最大,展开式中的所有项的系数和是()A. 0B. 256C. 64D.16414. 9.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A. 66种B. 65种C. 63种D. 60种15. 102012(2)x a a x a x -=+++ (10)10.a x +则123a a a +++…10()a +=A. 1B. 1-C. 1023D. 1023-16. 腾冲第八中学数学组有实习老师共5名,现将他们分配到高二年级的90、91、92三个班实习,每班至少1名,最多2名,则不同的分配方案有()A. 30种B. 90种C. 180种D. 270种17. 从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是()A. 590B. 570C. 360D. 21018. 若*n N ∈,且521235n n n C A ---=,则n 的值为()A. 8B. 9C. 10D. 1119. 我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有()A. 28个B. 21个C. 35个D. 56个20. 将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有()种.A. 252B. 112C. 20D. 56二、单空题(本大题共10小题,共50.0分) 21. 如图,它满足:(1)第n 行首尾两数均为n ;(2)表中的递推关系类似杨辉三角,则第n 行()2n 第2个数是________22. 设甲、乙两人每次射击命中目标的概率分别为34和45,且各次射击相互独立,若按甲、乙、甲、乙的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是__________.23. 二项式51(2)x x+的展开式中3x 的系数为______.24. 已知4男3女排队,每名男生至多与一名女生相邻,共有______ 种不同的排法.(结果用数值表示)25. 被4除,所得的余数为________.26. 若22242n C A =,则!3!3!n n =-________.27. 2015年世博会在意大利米兰举行,其中某大学要从6名男生和2名女生中选出3人作为奥运会的志愿者,若男生甲与女生乙至少有一个入选,则不同的选法共有__________________________种(结果用数字表示).28. 3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为____________29. __________.30. 已知3828128(1)(2)(1)(1)...(1)x x a a x a x a x ++-=+-+-++-,则6a 的值为_____.答案和解析1.【答案】B试题分析:根据分层抽样,从8个人中抽取男生1人,女生2人;所以取2个女生1个男生的方法:.2.【答案】D解: 记A ,B ,C ,D 四位妈妈的小孩分别为a ,b ,c ,d , 由于孩子都不坐自己妈妈的车, 假设A 与b 一辆车,则有3种情况,同理A 与c 一辆车及A 和d 一辆车,都有3种情况, 所以不同的坐车方式有3339++=种,而A 的小孩a 坐C 妈妈或D 妈妈的车的情况有336+=种情况, 所以所求概率为62.93P == 3.【答案】B解:至少有1个黑球,包括1个黑球、2个黑球,其方法数为 11205353C C C C +袋中有5个黑球和3个白球,从中任取2个球,∴共有方法数为 28C∴至少有1个黑球的概率是1120535328C C C C C +.4.【答案】A解:因为函数的最小值为,即.展开式的通项公式为,由,得,所以,即项的系数为15.5.【答案】B6.【答案】B解:12A A A =,对1A 分以下几种情况讨论:①若1A =∅,必有212{,}A a a =,共1种拆分;②11{}A a =,则22{}A a =或12{,}a a ,共2种拆分;同理12{}A a =时,有2种拆分; ③若112{,}A a a =,则2A =∅、1{}a 、2{}a ,12{,}a a ,共4种拆分;∴共有12249+++=种不同的拆分.7.【答案】D 8.【答案】A解:从杨辉三角形的生成过程,可以得到你的这个数列的通项公式.n 为偶数时,,n 为奇数时,02221c C ==,12333C C ==,246C =,325510C C ==,….然后求前21项和,偶数项和为75, 奇数项和为最后.9.【答案】C解:令0x =,可得01a =,令1x =-,可得0122n n a a a a ++++=,所以1221127n n a a a +++=-=,解得7n =,所以展开式中二项式系数最大的项为第4项,第5项.10.【答案】C因为(1)nx +的展开式中2x 的系数为2n C ,即215n C =,亦即230n n -=,解得6(5n n ==-舍).11.【答案】C解:,在二项式的展开式中二项式系数最大的项为第 6 、 7 项,12.【答案】A解:依题意,甲、乙、丙3人的相对顺序共有人种,其中甲位于乙、丙前面的共有种,因此所求的概率为,13.【答案】D解:根据21()2nx x-的展开式中只有第4项的二项式系数最大, 得展开式中项数是2417⨯-=,716n ∴=-=;令1x =,得展开式中的所有项的系数和是611(1).264-=14.【答案】A解:由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况, 当取得4个偶数时,有1=种结果,当取得4个奇数时,有5=种结果, 当取得2奇2偶时有61060=⨯=∴共有156066++=种结果,15.【答案】D解:令1x =代入二项式102012(2)x a a x a x -=+++…1010a x +,得1001(21)a a -=++…101a +=,令0x =得1002a =,10122a a ∴+++…101a +=,12a a ∴++…101023a +=-,16.【答案】B解:把5名实习老师分成三组,一组1人,另两组都是2人,有1225422215C C C A =种方法,再将3组分到3个班,共有331590A ⋅=种不同的分配方案,17.【答案】A解:直接法:3名语文、1名数学和1名英语,有31134520C C C =种, 1名语文、3名数学和1名英语1名,有13134560C C C =种, 1名语文、1名数学和1名英语3名,有113345120C C C =种, 2名语文、2名数学和1名英语1名,有22134590C C C =种,1名语文、2名数学和2名英语1名,有122345180C C C =种, 2名语文、1名数学和2名英语1名,有212345120C C C =种,共计206012090180120590+++++=种18.【答案】B解:*n N ∈,且521235n n n C A ---=,()()05122(1)(2)(3)(4)35234321n n n n n n n n n ⎧⎪--⎪∴-⎨⎪----⎪⋅=--⨯⨯⨯⎩, 即()()5(1)(2)(3)(4)35234321n n n n n n n ⎧⎪----⎨⋅=⨯--⎪⨯⨯⨯⎩,因此5(1)(4)40n n n ⎧⎨--=⎩,即255360n n n ⎧⎨--=⎩,解得9n =, 所以n 的值为9.19.【答案】B解:因为1146++=,1236++=,2226++=,0156++=,0246++=,0336++=,0066++=, 所以可以分为7类,当三个位数字为1,1,4时,三位数有3个,当三个位数字为1,2,3时,三位数有336A =个,当三个位数字为2,2,2时,三位数有1个, 当三个位数字为0,1,5时,三位数有4个, 当三个位数字为0,2,4时,三位数有4个, 当三个位数字为0,3,3时,三位数有2个, 当三个位数字为0,0,6时,三位数有1个,根据分类计数原理得三位数共有361442121.++++++=20.【答案】B解:分两步去做:第一步,先把学生分成两组,有两种分组方法,第一种是:一组2人,另一组5人,有2721C =种分法;第二一种是:一组3人,另一组4人,有3735C =种分法;第二步,把两组学生分到甲、乙两间宿舍,第一种有222A =种分配方法,第二种也有222A =种分配方法;最后,把两步方法数相乘,共有22327272212352112C A C A +=⨯+⨯=种方法.21.【答案】222n n -+解:设第(2)n n 行的第2个数构成数列{}n a ,则有322a a -=,433a a -=,544a a -=,…,11n n a a n --=-,相加得()()2122123(1)(2)22n n n n a a n n +-+--=+++-=⨯-=, 则()()21222.22nn n n n a +--+=+=22.【答案】19400解:设A 表示甲命中目标,B 表示乙命中目标,则A 、B 相互独立, 停止射击时甲射击了两次包括两种情况:①第一次射击甲乙都未命中,甲第二次射击时命中,此时的概率13433()(1)(1)45480P P A B A =⋅⋅=-⨯-⨯=, ②第一次射击甲乙都未命中,甲第二次射击未命中,而乙在第二次射击时命中,此时的概率234341()(1)(1)(1)4545100P P A B A B =⋅⋅⋅=-⨯-⨯-⨯=, 故停止射击时甲射击了两次的概率12311980100400P P P =+=+=, 23.【答案】80解:二项式51(2)x x+的展开式的通项公式为5552155(2)2r r r r r r r T C x x C x ----+=⋅⋅=⋅⋅, 令523r -=,1r =,故展开式中3x 的系数为 415280C ⋅=,24.【答案】2304解:第一类,把4男生捆绑在一起,插入到3名女生排列所形成的4个空的1个空中,故有431434576A A A =种,第二类,把4男生平均分为2组,分别插入到3名女生排列所形成的4个空的2个空中,故有232434864A A A =种,第三类,把4男生分为(3,1)两组,把把1名男生插入到3名女生排列所形成的4个空的头或尾,把在一起的3个男生插入到剩下的3个空中的1个,故有1133124333864A A A A A =种,根据分类计数原理得,5768648642304++=25.【答案】0解:显然能被4整除,余数为0.26.【答案】35解:222(1)42n C A n n =-=,解得7n =,或6(n =-舍去),337!353!(3)!n n C C n ∴===-, 27.【答案】36解:从6名男生和2名女生中选出3名志愿者,,男生甲与女生乙至少有一个入选,则不同的选法共有, 28.【答案】0.6解:从3名男生中任取2人“捆”在一起记作A ,(A 共有22326C A =种不同排法),剩下一名男生记作B ,将A ,B 插入到3名女生全排列后所成的4个空中的2个空中,故有22233243432C A A A =种,则3位男生中有且只有2位男生相邻的概率为664324320.6.720P A === 29.【答案】40-解:,30.【答案】28解:3(1)x +展开后不会出现6x , 又88(2)[(1)1]x x -=--, 所以6a 表示6(1)x -的系数, 所以6268(1)28.a C =-=。
计数原理题目及详细答案
第一章 计数原理[基础训练A 组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( )A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.6.在82x ⎛- ⎝的展开式中的常数项是( ) A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是( )A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x 的展开式中,6x 的系数是 .5.在220(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。
数学选修2-3第一章计数原理习题集(附答案解析)
选修2-3 第一章章节习题集1.1分类加法计数原理与分步乘法计数原理一、课时过关·能力提升1.某校举办了一次教师演讲比赛,参赛的语文老师有20人,数学老师有8人,英语老师有4人,从中评选出一个冠军,则可能的结果种数为()A.12B.28C.32D.640解析:由分类加法计数原理得,冠军可能的结果种数为4+8+20=32.答案:C2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.答案:B3.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为()A.8B.15C.35D.53解析:每封电子邮件都有3种不同的发送方法,共有35种不同的发送方法.答案:C4.已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示出的不同直线的条数为()A.19B.20C.21D.22解析:当A或B中有一个为零时,则可表示出2条不同的直线;当AB≠0时,A有5种选法,B有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线.答案:D5.五名护士上班前将外衣放在护士站,下班后回护士站取外衣,由于灯光暗淡,只有两人拿到了自己的外衣,另外三人拿到别人外衣的情况有()A.60种B.40种C.20种D.10种解析:设五名护士分别为A,B,C,D,E.其中两人拿到自己的外衣,可能是AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10 种情况,假设A,B两人拿到自己的外衣,则C,D,E三人不能拿到自己的外衣,则只有C取D,D取E,E取C,或C取E,D取C,E取D两种情况.故根据分步乘法计数原理,应有10×2=20种情况.答案:C6.将4位老师分配到3个学校去任教,共有分配方案()A.81种B.12种C.7种D.256种解析:每位老师都有3种分配方案,分四步完成,故共有3×3×3×3=81种.答案:A7.从6名志愿者中选4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有()A.280种B.240种C.180种D.96种解析:由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有5×4×3种,因此共有4×5×4×3=240种,故选B.答案:B8.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3 542大的四位数的个数是()A.360B.240C.120D.60解析:因为3 542是能排出的四位数中千位为3的最大的数,所以比3 542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3 542大的四位数.答案:C9.圆周上有2n个等分点(n大于2),任取3点可得一个三角形,恰为直角三角形的个数为.解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不经过该点的直径应有(n-1)条,这(n-1)条直径都可以与该点形成直角三角形,一个点可以形成(n-1)个直角三角形,而这样的点有2n个,所以一共有2n(n-1)个符合题意的直角三角形.答案:2n(n-1)10.如图所示,小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为.解析:由题图可知,从A到B有4种不同的传递路线,各路线上单位时间内通过的最大信息量自上而下分别为3,4,6,6,由分类加法计数原理得,单位时间内传递的最大信息量为3+4+6+6=19.答案:1911.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被传给甲,则共有种不同的传递方法.解析:分两类:第一类,若甲先传给乙,则有:甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,第二类,甲先传给丙,也有3种不同的传法.共有6种不同的传递方法.答案:612.如图,一只蚂蚁沿着长方体的棱,从顶点A爬到相对顶点C1,求其中经过3条棱的路线共有多少条?解:从总体上看有三类方法:分别经过AB,AD,AA1.从局部上看每一类又需分两步完成,故第一类:经过AB,有m1=1×2=2条;第二类:经过AD,有m2=1×2=2条;第三类:经过AA1,有m3=1×2=2条.根据分类加法计数原理,从顶点A到顶点C1经过3条棱的路线共有N=2+2+2=6条.13.用n种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.当n=6时,该板报有多少种书写方案?解:第一步选英语角用的彩色粉笔,有6种不同的选法;第二步选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法.共有6×5×4×5=600种不同的书写方案.14.用0,1,…,9这十个数字,可以组成多少个满足下列条件的数?(1)三位整数;(2)无重复数字的三位整数;(3)小于500的无重复数字的三位整数;(4)小于100的无重复数字的自然数.解:由于0不能放到首位,可以单独考虑.(1)百位上有9种选择,十位和个位各有10种选法.由分步乘法计数原理知,适合题意的三位数的个数是9×10×10=900.(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是9×9×8=648.(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是4×9×8=288.(4)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,适合题意的两位数的个数是9×9=81.由分类加法计数原理知,适合题意的自然数的个数是10+81=91.1.2排列与组合1.2.1排列一、课时过关·能力提升1.从集合{3,5,7,9,11}中任取两个元素,①相加可得多少个不同的和?②相除可得多少个不同的商?③作为椭圆=1中的a,b,可以得到多少个焦点在x轴上的椭圆方程?④作为双曲线=1中的a,b,可以得到多少个焦点在x轴上的双曲线方程?上面四个问题属于排列问题的是()A.①②③④B.②④C.②③D.①④解析:∵加法满足交换律,∴①不是排列问题;∵除法不满足交换律,如,∴②是排列问题;若方程=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小一定;在双曲线=1中不管a>b还是a<b,方程均表示焦点在x轴上的双曲线,且是不同的双曲线.故③不是排列问题,④是排列问题.答案:B2.某年级一天有6节课,需要安排6门课程,则该年级一天的课程表的排法有()A.66种B.36种C.种D.12种解析:本题相当于对6个元素进行全排列,故有种排法.答案:C3.设m∈N*,则乘积m(m+1)(m+2)…(m+20)可表示为()A. B. C. D.解析:由排列数公式,=(m+20)(m+19)(m+18)…(m+1)m.答案:D4.某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,则不同的坐法有()A.12种B.16种C.24种D.32种解析:将三个人插入五个空位中间的四个空当中,有=24种坐法.答案:C5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8B.24C.48D.120解析:个位数字有种排法,十位、百位、千位有种排法,从而共=48个不同的四位偶数.答案:C6.要排一个有5个独唱节目和3个舞蹈节目的节目单,如果舞蹈节目不排在开头,并且任意两个舞蹈节目不排在一起,则不同的排法种数是()A.B.C.D.解析:第一步先排5个独唱节目共种;第二步排舞蹈,不相邻则用插空法,且保证不放到开头,从剩下5个空中选3个插空共有种,故一共有种.答案:C7.5名男生与2名女生排成一排照相,若男生甲必须站在中间,2名女生必须相邻,则符合条件的排法共有()A.48种B.192种C.240种D.288种解析:(用排除法)将2名女生看作1人,与4名男生一起排队,有种排法,而女生可互换位置,所以共有种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有种,这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为=192.答案:B8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有()A.120个B.80个C.40个D.20个解析:由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有个;第二类,十位数字取6,有个;第三类,十位数字取5,有个;第四类,十位数字取4,有个.所以一共有=40个.答案:C9.张先生和王先生两对夫妇各带1名小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两名小孩一定要排在一起,则这6人的入园排法共有.解析:分三步完成:第1步,将两位爸爸排在两端,有种排法;第2步,将两名小孩看作一人与两位妈妈任意排在中间的三个位置,有种排法;第3步,两个小孩之间还有种排法.因此,这6人的入园排法共有=24种.答案:24种10.某校在高二年级开设选修课,其中数学选修班开了4个,选课结束后,有四名选修英语的同学甲、乙、丙、丁要求改修数学,为照顾各班平衡,数学选修班每班只接收1名改修数学的同学.那么甲不在(1)班,乙不在(2)班的分配方法有.解析:先分甲,第一类,当甲在(2)班时,分配乙、丙、丁有种方法.第二类,当甲不在(2)班时,则甲有种分法,再分乙有种分法,分配丙、丁有种分法.因此,总共有=14种分法.答案:14种11.用1,2,3,4,5,6,7排成无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数一定在奇数位上;(3)1和2之间恰好夹有一个奇数,没有偶数.解:(1)用插空法,共有=1 440个.(2)先把偶数排在奇数位上有种排法,再排奇数有种排法.共有=576个.(3)1和2排列有种方法,在1和2之间放一个奇数有种方法,把1,2和相应奇数看成整体再和其余4个数进行排列有种排法,故共有=720个.12.一条铁路线上原有n个车站,为适应客运需要,新增加了m个车站(m>1),客运车票增加了62种,则原有多少个车站?现在有多少个车站?解:∵原有n个车站,∴原有客运车票种.又现有(n+m)个车站,∴现有客运车票种.由题设知:=62,∴(n+m)(n+m-1)-n(n-1)=62,∴2mn+m2-m=62,∴n=(m-1)>0,∴(m-1),∴62>m(m-1),即m2-m-62<0.又∵m>1,∴1<m<,∴1<m≤8.当m=2时,n=15.当m=3,4,5,6,7,8时,n均不为整数.∴n=15,m=2.∴原有车站15个,现有车站17个.1.2.2组合一、课时过关·能力提升1.某高校外语系有8名志愿者,其中有5名男生,3名女生,现从中选3人参加某项测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种解析:用排除法,不同的选法种数为=45.答案:A2.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法的种数为()A.210B.126C.70D.35解析:从7种中取出3种有=35种取法,比如选出a,b,c种,再都改变位置有b,c,a和c,a,b两种,故不同的改变方法有2×35=70种.答案:C3.有15盏灯,要求关掉6盏,且相邻的灯不能全关掉,两端的灯不能关掉,则不同的关灯方法有()A.28种B.84种C.180种D.360种解析:将9盏灯排成一排,关掉的6盏灯插入9盏亮灯的中间8个空隙中的6个空隙中,有=28种方法.答案:A4.某科技小组有6名学生,现从中选出3人去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为()A.2B.3C.4D.5解析:设男生有x人,则女生有(6-x)人.依题意得=16,即x(x-1)(x-2)+16×6=6×5×4.解得x=4,故女生有2人.答案:A5.中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案种数为()A. B.C. D.解析:首先每个学校配送一台,这个没有顺序和情况之分,剩下40台;将剩下的40台像排队一样排列好,则这40台校车之间有39个空,对这39个空进行插空,比如说用9面小旗隔开,就可以隔成10部分.所以是在39个空中选9个空进行插空.故不同的方案种数为.答案:D6.已知一组曲线y=ax3+bx+1,其中a为2,4,6,8中的任意一个,b为1,3,5,7中的任意一个.现从这些曲线中任取两条,它们在x=1处的切线相互平行的组数为()A.9B.10C.12D.14解析:y'=ax2+b,曲线在x=1处切线的斜率k=a+b.切线相互平行,则需它们的斜率相等,因此按照在x=1处切线的斜率的可能取值可分为五类完成.第一类:a+b=5,则a=2,b=3;a=4,b=1.故可构成2条曲线,有组.第二类:a+b=7,则a=2,b=5;a=4,b=3;a=6,b=1.可构成三条曲线,有组.第三类:a+b=9,则a=2,b=7;a=4,b=5;a=6,b=3;a=8,b=1.可构成四条曲线,有组.第四类:a+b=11,则a=4,b=7;a=6,b=5;a=8,b=3.可构成3条曲线,有组.第五类:a+b=13,则a=6,b=7;a=8,b=5.可构成2条曲线,有组.故共有=14组相互平行的切线.答案:D7.5个不同的球放入4个不同的盒子中,每个盒子中至少有一个球,若甲球必须放入A盒,则不同的放法种数是()A.120B.72C.60D.36解析:将甲球放入A盒后分两类,一类是除甲球外,A盒还放其他球,共=24种放法,另一类是A盒中只有甲球,则其他4个球放入另外三个盒中,有=36种放法.故总的放法有24+36=60种.答案:C8.从7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有.(用数字作答)解析:第一步安排周六有种方法,第二步安排周日有种方法,故不同的安排方案共有=140种.答案:140种9.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有.(用数字作答)解析:分两种情况:第一类:个位、十位和百位上各有一个偶数,有=90个.第二类:个位、十位和百位上共有两个奇数一个偶数,有=234个,共有90+234=324个.答案:324个10.某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同品种的菜.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备种不同的素菜.(结果用数值表示)解析:在5种不同的荤菜中选出2种的选择方式的种数是=10.若选择方式至少为200种,设素菜为x种, 则有≥200,即≥20,化简得x(x-1)≥40,解得x≥7.所以,至少应准备7种素菜.答案:711.在如图所示的四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,不同的取法种数为.解析:满足要求的点的取法可分为三类:第一类,在四棱锥的每个侧面上除点P外任取3点,有4种取法;第二类,在两个对角面上除点P外任取3点,有2种取法;第三类,过点P的侧棱中,每一条上的三点和与这条棱异面的两条棱的中点也共面,有4种取法.因此,满足题意的不同取法共有4+2+4=56种.答案:5612.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,求与信息0110至多有两个对应位置上的数字相同的信息个数.解:与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类,与信息0110恰有两个对应位置上的数字相同,即从4个位置中选2个位置相同,其他2个不同有=6个信息.第二类,与信息0110恰有一个对应位置上的数字相同,即从4个位置中选1个位置相同,其他3个不同有=4个信息.第三类,与信息0110没有一个对应位置上的数字相同,即4个位置中对应数字都不同,有=1个信息.由分类加法计数原理知,与信息0110至多有两个对应位置上的数字相同的信息个数为6+4+1=11.13.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.解:(1)先选内科医生有种选法,再选外科医生有种选法,故选派方法的种数为=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为=246.若从反面考虑,则选派方法的种数为=246.(3)分两类:一是选1名主任有种方法;二是选2名主任有种方法,故至少有1名主任参加的选派方法的种数为=196.若从反面考虑:至少有1名主任参加的选派方法的种数为=196.(4)若选外科主任,则其余可任选,有种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有种选法.故有选派方法的种数为=191.1.3二项式定理1.3.1二项式定理一、课时过关·能力提升1.的展开式中倒数第3项的系数是()A.·2B.·26C.·25D.·22解析:的展开式中倒数第3项为二项展开式中的第6项,而T6=·(2x)2··22·x-8.该项的系数为·22.答案:D2.的展开式中的常数项为-220,则a的值为()A.1B.-1C.2D.-2解析:T k+1=·a k.∵T k+1为常数项,∴-k=0,∴k=3.∴·a3=-220,∴a=-1.答案:B3.对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值是()A.3B.6C.9D.21解析:由已知x3=[2+(x-2)]3=·23+·22·(x-2)+·2·(x-2)2+(x-2)3.所以a2=·2=6.答案:B4.的展开式中含x3项的二项式系数为()A.-10B.10C.-5D.5解析:T k+1=·x5-k=(-1)k·x5-2k,令5-2k=3,则k=1.故x3项的二项式系数为=5.答案:D5.若(1+)5=a+b(a,b为有理数),则a+b等于()A.45B.55C.70D.80解析:由二项式定理,得(1+)5=1+·()2+·()3+·()4+·()5=1+5+20+20+20+4=41+29,即a=41,b=29,故a+b=70.答案:C6.(1-)6(1+)4的展开式中x的系数是()A.-4B.-3C.3D.4解析:方法一:(1-)6的展开式的通项为(-)m,(1+)4的展开式的通项为)n,其中m=0,1,2,…,6;n=0,1,2,3,4.令=1,得m+n=2,于是(1-)6(1+)4的展开式中x的系数等于·(-1)0··(-1)1··(-1)2·=-3.方法二:(1-)6(1+)4=[(1-)(1+)]4(1-)2=(1-x)4(1-2+x).于是(1-)6(1+)4的展开式中x的系数为·1+·(-1)1·1=-3.答案:B7.若x>0,设的展开式中的第3项为M,第4项为N,则M+N的最小值为.解析:由T3=x,T4=,则M+N=≥2.当且仅当,即x=时,等号成立.答案:8.二项式的展开式中,常数项的值为.答案:9.已知(ax+1)n=a n x n+a n-1x n-1+…+a2x2+a1x+a0(x∈N*),点A i(i,a i)(i=0,1,2,…,n)的部分图象如图,则a=.解析:由展开式得T k+1=(ax)n-k=a n-k·x n-k,由题图可知a1=3,a2=4,即a=3,且a2=4,化简得na=3,且=4,解得a=.答案:10.求证:32n+3-24n+37能被64整除.证明:32n+3-24n+37=3×9n+1-24n+37=3(8+1)n+1-24n+37=3(·8n+1+·8n+…+·8+1)-24n+37=3×64(·8n-1+·8n-2+…+)+24-24n+40=64×3(·8n-1+·8n-2+…+)+64.显然上式是64的倍数,故原式可被64整除.11.(1)求(1+x)2(1-x)5的展开式中x3的系数;(2)已知展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如果有,请求出来.解:(1)(1+x)2的通项为T r+1=·x r,(1-x)5的通项为T k+1=(-1)k·x k,其中r∈{0,1,2},k∈{0,1,2,3,4,5},令k+r=3,则有k=1,r=2;k=2,r=1;k=3,r=0.故x3的系数为-=5.(2)展开式的通项为T k+1=(x)n-k·=·2k·(k=0,1,2,…,n),由题意,得20+2+22=129.所以1+2n+2n(n-1)=129,则n2=64,即n=8.故T k+1=·2k·(k=0,1,2,…,8),若展开式存在常数项,则=0,解之,得k=∉Z,所以展开式中没有常数项.若展开式中存在一次项,则=1,即72-11k=6,所以k=6.所以展开式中存在一次项,它是第7项,T7=26x=1 792x.1.3.2“杨辉三角”与二项式系数的性质一、课时过关·能力提升1.如果的展开式中各项系数之和为128,则展开式中含的项是()A. B.C. D.解析:由的展开式中各项系数之和为128可得2n=128,n=7.其通项T k+1=(3x)7-k=(-1)k·37-k,令7-=-3,解得k=6,此时T7=.答案:C2.的展开式中第8项是常数项,则展开式中系数最大的项是()A.第8项B.第9项C.第8项、第9项D.第11项、第12项解析:展开式中的第8项为)n-7为常数,即=0,解得n=21.故展开式中系数最大的项为第11项、第12项.答案:D3.若(x+3y)n展开式的系数和等于(7a+b)10展开式中的二项式系数之和,则n的值为()A.5B.8C.10D.15解析:(7a+b)10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,4n=210,解得n=5.答案:A4.已知+2+22+…+2n=729,则的值等于()A.64B.32C.63D.31解析:由已知(1+2)n=3n=729,解得n=6.则=32.答案:B5.(1+x)n(3-x)的展开式中各项系数的和为1 024,则n的值为()A.8B.9C.10D.11解析:由题意知(1+1)n(3-1)=1 024,即2n+1=1 024,故n=9.答案:B6.若(1-2x)2 015=a0+a1x+…+a2 015x2 015(x∈R),则+…+的值为()A.2B.0C.-1D.-2解析:令x=0,则a0=1,令x=,则a0++…+=0,故+…+=-1.答案:C7.(x+1)9按x的升幂排列二项式系数最大的项是()A.第4项和第5项B.第5项C.第5项和第6项D.第6项解析:展开式中共有10项,由二项式系数的性质可知,展开式的中间两项的二项式系数最大,即第5项和第6项的二项式系数最大.答案:C8.在(a-b)10的二项展开式中,系数最小的项是.解析:在(a-b)10的二项展开式中,奇数项的系数为正,偶数项的系数为负,且偶数项系数的绝对值为对应的二项式系数,因为展开式中第6项的二项式系数最大,所以系数最小的项为T6=a5(-b)5=-252a5b5.答案:-252a5b59.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=.解析:∵(x-1)21的展开式的通项为T k+1=x21-k(-1)k,∴a10+a11=(-1)11+(-1)10=-=-=0.答案:010.若(2x+)4=a0+a1x+…+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为.解析:令x=1,得a0+a1+a2+a3+a4=(2+)4,令x=-1,得a0-a1+a2-a3+a4=(-2+)4,(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)·(a0-a1+a2-a3+a4)=(2+)4(-2+)4=1.答案:111.若(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,求:(1)各项系数之和;(2)奇数项系数的和与偶数项系数的和.解:(1)各项系数之和即为a0+a1+a2+…+a10,可用“赋值法”求解.令x=y=1,得a0+a1+a2+…+a10=(2-3)10=(-1)10=1.(2)奇数项系数的和为a0+a2+a4+…+a10,偶数项系数的和为a1+a3+a5+…+a9.由(1)知a0+a1+a2+…+a10=1, ①令x=1,y=-1,得a0-a1+a2-a3+…+a10=510, ②①+②得,2(a0+a2+…+a10)=1+510,则奇数项系数的和为;①-②得,2(a1+a3+…+a9)=1-510,则偶数项系数的和为.12.已知(+3x2)n展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.解:令x=1得展开式各项系数和为(1+3)n=4n.展开式二项式系数和为+…+=2n,由题意有4n-2n=992.即(2n)2-2n-992=0,(2n-32)(2n+31)=0,解得n=5.(1)因为n=5,所以展开式共6项,其中二项式系数最大的项为第3项、第4项,它们是T3=)3·(3x2)2=90x6,T4=)2(3x2)3=270.(2)设展开式中第k+1项的系数最大.由T k+1=)5-k·(3x2)k=3k,得⇒⇒≤k≤.因为k∈Z,所以k=4,所以展开式中第5项系数最大.T5=34=405.13.杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)在第2斜列中,前5个数依次为1,3,6,10,15;第3斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般的有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数字公式表示上述结论,并给予证明.解:(1)=1 140.(2)+…+,证明如下:左边=+…++…+=…==右边.。
高中数学选修2-3第一章《计数原理》测试(含答案解析)
一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481253.已知离散型随机变量X 的分布列为则D (X )的最大值是( ) A .29B .59C .89D .2094.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .45.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ). A .3,2B .2,3C .6,2D .2,66.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .257.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .388.已知随机变量X 服从正态分布2(3,)N σ,且(5)0.8P X <=,则(13)P X <<=( ) A .0.8B .0.2C .0.1D .0.39.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .1510.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==11.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为0.6和P ,且甲、乙两人各射击一次得分之和为2的概率为0.45.假设甲、乙两人射击互不影响,则P 值为( ) A .0.8B .0.75C .0.6D .0.2512.已知随机变量X 的分布列为则E(6X +8)=( ) A .13.2B .21.2C .20.2D .22.2二、填空题13.如图所示,已知一个系统由甲、乙、丙、丁4个部件组成,当甲、乙都正常工作,或丙、丁都正常工作时,系统就能正常工作.若每个部件的可靠性均为()01r r <<,而且甲、乙、丙、丁互不影响,则系统的可靠度为___________.14.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 15.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,比赛停止时一共已打ξ局, 则ξ的期望值()E ξ=______. 17.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.18.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).19.某人共有五发子弹,他射击一次命中目标的概率是12,击中目标后射击停止,射击次数X 为随机变量,则EX=_________.20.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.三、解答题21.为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如下.[0,5)[5,10)[10,15)[15,20)[20,25)[25,30)性别男6 9 10 10 9 4女5 12 13 86 8学段初中x 8 11 11 10 7高中(Ⅱ)从参加公益劳动时间[25,30)的学生中抽取3人进行面谈,记X 为抽到高中的人数,求X 的分布列;(Ⅲ)当5x =时,高中生和初中生相比,哪学段学生平均参加公益劳动时间较长.(直接写出结果)22.某知名电脑品牌为了解客户对其旗下的三种型号电脑的满意情况,随机抽取了一些客户进行回访,调查结果如表:满意度是指,回访客户中,满意人数与总人数的比值.用满意度来估计每种型号电脑客户对该型号电脑满意的概率,且假设客户是否满意相互独立.(1)从型号Ⅰ和型号Ⅱ电脑的所有客户中各随机抽取1人,记其中满意的人数为X ,求X 的分布列和期望;(2)用“11ξ=”,“21ξ=”,“31ξ=”分别表示Ⅰ,Ⅱ,Ⅲ型号电脑让客户满意,“10ξ=”,“20ξ=”,“30ξ=”分别表示Ⅰ,Ⅱ,Ⅲ型号电脑让客户不满意,比较三个方差()1D ξ、()2D ξ、()3D ξ的大小关系.23.某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金8600元,在延保的两年内可免费维修3次,超过3次后的每次收取维修费a 元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次后的每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了100台这种机器超过质保期后延保两年内维修的次数,得如表:以这100台机器维修次数的频率代替1台机器维修次数发生的概率.记X 表示这2台机器超过质保期后延保的两年内共需维修的次数且P (X =0)=0.01. (1)求实数m ,n 的值; (2)求X 的分布列;(3)以所需延保金及维修费用之和的期望值为决策依据,该医院选择哪种延保方案更合算?24.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)u u σσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)u u σσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,其中x i 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.09≈.25.超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60元.已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值()E X . 26.甲、乙两名运动员进行射击训练,已知他们击中的环数都稳定在7、8、9、10环,且每次射击成绩互不影响.根据以往的统计数据,甲、乙射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题:(1)甲、乙各射击一次,求甲、乙同时击中10环的概率; (2)求甲射击一次,击中9环以上(含9环)的概率;(3)甲射击3次,X 表示这3次射击中击中9环以上(含9环)的次数,求X 的分布列及数学期望()E X .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯, ∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.A解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.3.C解析:C 【分析】根据分布列中概率和为1可得a 的范围和b 的值,再求出,EX DX 的表达式,转化成求二次函数在闭区间的最值问题. 【详解】12133b a a b +-+=⇒=,又110033a a -≥⇒≤≤, 1242()3333EX b a a a b a =+⨯-+⨯=++=+,2221(1)(2)()(3)3DX EX b EX a EX a =-⋅+-⋅-+-⋅2221215()()()()3333a b a a a a =--⋅+-⋅-+-⋅22212215()()()()33333a a a a a =--⋅+-⋅-+-⋅27239a a =-++,对称轴为7163a =>,∴max 1728()9999DX =-++=, 故选:C. 【点睛】本题考查标准差的最值求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为函数的最值问题.4.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q +221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.5.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A本题考查了二项分布,意在考查学生对于二项分布的理解.6.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.7.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果, 所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.8.D解析:D由已知条件可知数据对应的正态曲线的对称轴为X=3,根据正态曲线的对称性可得结果. 【详解】随机变量X 服从正态分布2(3,)N σ, 则曲线的对称轴为X=3,由(5)0.8P X <=可得P(X≤1)=P(X≥5)=0.2, 则(13)P X <<=12(15)P X <<=12(1-0.2-0.2)=0.3 故选D 【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所求区间用已知区间表示,并根据对称性求解,考查数形结合的应用,属于基础题.9.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.10.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==,∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.11.B解析:B 【解析】分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,由相互独立事件的概率公式可得,可得关于p 的方程,解方程即可得答案. 详解:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B , 则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则P (A )=35,P (A )=1﹣35=25,P (B )=P ,P (B )=1﹣P , 依题意得:35×(1﹣p )+25×p=920, 解可得,p=34, 故选:B .点睛:求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.12.B解析:B 【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X +8)=6E(X)+8=6×2.2+8=21.2.选B.二、填空题13.【分析】记甲乙都正常工作为事件记丙丁都正常工作为事件计算出利用对立事件的概率公式可求得系统的可靠度为【详解】记甲乙都正常工作为事件记丙丁都正常工作为事件则当且仅当事件或事件发生时系统正常工作当且仅当 解析:242r r -【分析】记甲、乙都正常工作为事件A ,记丙、丁都正常工作为事件B ,计算出()P A 、()P B ,利用对立事件的概率公式可求得系统的可靠度为()()1P A P B -. 【详解】记甲、乙都正常工作为事件A ,记丙、丁都正常工作为事件B ,则()()2P A P B r ==,当且仅当事件A 或事件B 发生时,系统正常工作, 当且仅当事件A 和事件B 都不发生时,系统不工作. 因此,系统的可靠度为()()()22241112P P A P B r r r =-=--=-.故答案为:242r r -. 【点睛】关键点点睛:本题考查事件概率的计算,解本题的关键就是确定事件“系统正常运行”的对立事件为“两条线路都不工作”,进而可利用概率的乘法公式以及对立事件的概率公式来进行求解.14.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=. 故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.15.【解析】所以【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值(3)根据分布列和期望方差公式求解注意: 解析:1712【解析】()11103412P X ==⨯=,()211351343412P X ==⨯+⨯=,()23623412P X ==⨯=,所以()1526171212E X ⨯+⨯==. 【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意:解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.16.【分析】首先确定所有可能的取值;根据每个取值所对应的情况计算出其所对应的概率从而根据数学期望计算公式求得结果【详解】由题意可知所有可能的取值为:则;;本题正确结果:【点睛】本题考查离散型随机变量的数 解析:26681【分析】首先确定ξ所有可能的取值;根据每个取值所对应的情况计算出其所对应的概率,从而根据数学期望计算公式求得结果. 【详解】由题意可知ξ所有可能的取值为:2,4,6则()222152339P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭;()3311221212204333381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; ()520166198181P ξ==--=()520162662469818181E ξ∴=⨯+⨯+⨯=本题正确结果:26681【点睛】本题考查离散型随机变量的数学期望的求解,关键是能够准确求解出随机变量每个取值所对应的概率,从而结合公式直接求得结果,属于常考题型.17.【解析】试题分析:因为随机变量服从正态分布所以因为所以考点:正态分布解析:0.1587【解析】试题分析:因为随机变量X 服从正态分布()2,1N ,所以()()31P X >=P X <,因为()()()11331P X <+P ≤X ≤+P X >=,所以()()1310.68260.15872P X >=-=. 考点:正态分布.18.9744【分析】由题意知本题符合独立重复试验条件分情况讨论:若共有3人被治愈若共有4人被治愈分别代入独立重复试验公式得到结果最后求和【详解】解:由题意知本题分情况讨论:若共有3人被治愈则;若共有4人解析:9744 【分析】由题意知,本题符合独立重复试验条件,分情况讨论:若共有3人被治愈,若共有4人被治愈,分别代入独立重复试验公式得到结果.最后求和.【详解】解:由题意知本题分情况讨论:若共有3人被治愈,则3314(0.9)(10.9)0.2916P C =⨯-=;若共有4人被治愈,则42(0.9)0.6561P ==,∴至少有3人被治愈概率120.9477P P P =+=.故答案为:0.9477. 【点睛】判断是否为独立重复试验的关键是每次试验事件A 的概率不变,并且每次试验的结果同其他各次试验的结果无关,重复是指试验为一系列的试验,并非一次试验,而是多次,但要注意重复事件发生的概率相互之间没有影响.19.【分析】由题意利用独立事件同时发生的概率公式求出每个随机变量对应的概率可得分布列根据期望公式可计算期望【详解】列表X 1 2 3 4 5 P 所以【点睛】求解离散型随机变量的数学期望的 解析:3116【分析】由题意1,2,3,4,5X =,利用独立事件同时发生的概率公式求出每个随机变量对应的概率,可得分布列,根据期望公式可计算期望. 【详解】()()21111,2224P x P x ⎛⎫===== ⎪⎝⎭,()()3411113,428216P x P x ⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭,()41151216P x ⎛⎫==⨯= ⎪⎝⎭,列表所以12345248161616EX =⨯+⨯+⨯+⨯+⨯= 【点睛】求解离散型随机变量的数学期望的一般步骤:①“判断取值”,即判断随机变量的所有可能取值以及取每个值所表示的意义;②“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率加法公式、独立事件的概率公式以及对立事件的概率公式等),求出随机变量取每个值时的概率;③“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;④“求期望”,一般利用离散型随机变量的数学期望的定义求期望.20.1【分析】由正态分布的性质可得正态分布的图像对称轴为据此得到关于a 的方程解方程可得a 的值【详解】由正态分布的性质可得正态分布的图像对称轴为结合题意有:故答案为1【点睛】关于正态曲线在某个区间内取值的解析:1 【分析】由正态分布的性质可得正态分布的图像对称轴为2X =,据此得到关于a 的方程,解方程可得a 的值. 【详解】由正态分布的性质可得正态分布的图像对称轴为2X =, 结合题意有:()()2232,12a a a -++=⇒=.故答案为1. 【点睛】关于正态曲线在某个区间内取值的概率求法①熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. ②充分利用正态曲线的对称性和曲线与x 轴之间面积为1.三、解答题21.(Ⅰ)512;(Ⅱ)见解析;(Ⅲ)初中生. 【分析】(Ⅰ)由表中数据,结合古典概型概率公式即可得解;(Ⅱ)由超几何分布概率公式可求得(0)P X =,(1)P X =,(2)P X =,(3)P X =,进而可得分布列;(Ⅲ)由表中数据,分析各时间段内初高中生的人数即可得解. 【详解】(Ⅰ)抽取的100名学生中,男生有6910109448+++++=名, 其中公益劳动时间在[)10,20的有101020+=名, 故所求概率2054812P ==; (Ⅱ)参加公益劳动时间[)25,30的学生有12人,其中初中生7人,高中生5人, X 的所有可能取值为0,1,2,3,373127(0)44C P X C ∴===,215731221(1)44C X C P C ===,32521717(2)22C C P X C ===,312531(3)22P C C X ===,所以X 的分布列为:【点睛】关键点点睛:解决本题的关键是有效提取表格中的数据,熟练掌握超几何分布的适用条件及概率公式.22.(1)分布列见解析,910;(2)()()()123D D D ξξξ>=. 【分析】(1)由题意得X 的可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和数学期望.(2)由题意1ξ,2ξ,3ξ都服从两点分布,由此能求出()()()123D D D ξξξ>=. 【详解】解:(1)由题意得X 的可能取值为0,1,2,设事件A 为“从型号Ⅰ电脑所有客户中随机抽取的人满意”,事件B 为“从型号Ⅱ电脑所有客户中随机抽取的人满意”,且A ,B 为独立事件, 根据题意,()12P A =,()25P B =,()()()()1230112510P X P AB P A P B ⎛⎫⎛⎫====-⨯-= ⎪ ⎪⎝⎭⎝⎭,()()()()1212111125252P X P AB AB P AB P AB ⎛⎫⎛⎫==+=+=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()1212255P X P AB P A P B ====⨯=,∴X 的分布列为:()012102510E X =⨯+⨯+⨯=. (2)由题意1ξ,2ξ,3ξ都服从两点分布, 则()11111224D ξ⎛⎫=⨯-= ⎪⎝⎭,()222615525D ξ⎛⎫=⨯-= ⎪⎝⎭,()333615525D ξ⎛⎫=⨯-= ⎪⎝⎭,∴()()()123D D D ξξξ>=. 【点评】本题考查离散型随机变量的要布列、数学期望的求法,考查三个离散型随机变量的方差的大小的比较,考查相互独立事件概率乘法公式、两点分布的性质等基础知识,考查推理论证能力与运算求解能力,属于中档题.23.(1)10m =,40=;(2)分布列见解析;(3)1500a <元时,方案一合算,1500a >时,方案二合算,1500a =时,两种方案一样.【分析】(1)由(0)P X =可得m ,再得出n 的值,(2)X 的可能值为0,1,2,3,4,5,6,分别求得概率,得概率分布列, (3)由期望公式得出期望.可得两种方案的总费用,比较后可得结论. 【详解】(1)由2(0)0.01100m P X ⎛⎫=== ⎪⎝⎭,解得10m =,∴10010104040n =---=; (2)依题意X 的可能值为0,1,2,3,4,5,6,由题意一台机器维修次数为n ,概率为1(0)10P n ==,1(1)10P n ==,2(2)5P n ==,2(3)5P n ==, 1(0)100P X ==, 111(1)2101050P X ==⨯⨯=, 12119(2)21051010100P X ==⨯⨯+⨯=, 12124(3)2210510525P X ==⨯⨯+⨯⨯=, 12226(4)21055525P X ==⨯⨯+⨯= 228(5)25525P X ==⨯⨯=,224(6)5525P x ==⨯=,X 的分布列如下:(2)由(1)方案一维修费用期望值为2325252525a a a a +⨯+⨯= 方案一总费用为134860025y a =+(元), 方案二维修费用期望值为84100020006402525⨯+⨯= 方案二总费用为21000064010640y =+=(元).3486001064025a +=,1500a =,1500a <时,12y y <,1500a >时,12y y >, ∴1500a <元时,方案一合算,1500a >时,方案二合算,1500a =时,两种方案一样. 【点睛】本题考查随机变量的概率分布列,考查了随机变量的数学期望,用样本估算总体.考查了学生的数据处理能力,运算求解能力.24.(1)()10.0408≥=P X ,0.0416=EX (2)(ⅰ)见详解;(ⅱ)需要.10.02μ=,0.09σ=【分析】(1)依题知一个零件的尺寸在()3,3μσμσ-+之内的概率,可知尺寸在()3,3μσμσ-+之外的概率为0.0026,而()~16,0.0026X B ,进而可以求出X 的数学期望.(2)(i )判断监控生产过程的方法的合理性,重点是考虑一天内抽取的16个零件中,出现尺寸在()3,3μσμσ-+之外的零件的概率是大还是小,若小即合理;(ii )计算ˆˆ,3μσ,剔除()ˆˆˆˆ3,3μσμσ-+之外的数据,算出剩下数据的平均数,即为μ的估计值,剔除()ˆˆˆˆ3,3μσμσ-+之外的数据,剩下数据的样本方差,即为σ的估计值. 【详解】(1)抽取的一个零件的尺寸在()3,3μσμσ-+之内的概率为0.9974, 从而零件的尺寸在()3,3μσμσ-+之外的概率为0.0026, 故()~16,0.0026X B .因此()()1611010.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在()3,3μσμσ-+之外的概率只有0.0026, 一天内抽取的16个零件中,出现尺寸在()3,3μσμσ-+之外的零件 概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程 可能出现了异常情况,需对当天的生产过程进行检查, 可见上述监控生产过程的方法是合理的. (ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在()ˆˆˆˆ3,3μσμσ-+之外, 因此需对当天的生产过程进行检查.剔除()ˆˆˆˆ3,3μσμσ-+之外的数据9.22, 剩下数据的平均数为()1169.979.2210.0215⨯-=, 因此μ的估计值为10.02.122216160.212169.971591.134i i x =∑=⨯+⨯≈,剔除()ˆˆˆˆ3,3μσμσ-+之外的数据9.22, 剩下数据的样本方差为()2211591.1349.221510.020.00815--⨯≈,因此σ0.09≈. 【点睛】本题考查正态分布的实际应用以及离散型随机变量的数学期望,正态分布是一种重要的分布,尤其是正态分布的3σ原则,审清题意,细心计算,属中档题. 25.(1)13;(2)分布列见解析,1533.【分析】(1)记“该产品不能销售”为事件A ,则1()1(191)(1)4P A =--⨯-,计算得到答案. (2)X 的取值为-240,-130,-20,90,200,计算概率得到分布列,计算均值得到答案. 【详解】(1)记“该产品不能销售”为事件A ,则11()1(1)(1)4193P A =--⨯-=, 所以该产品不能销售的概率为13. (2)依据题意的,X 的取值为-240,-130,-20,90,200,411(240)()381P X =-== ; 134128(130)()3381P X C =-==;22241224(20)()()3381P X C =-== ;31341232(90)()()3381P X C ===;4216(200)()381P X ===.所以X 的分布列为:1()24013020902005381818181813E X =-⨯-⨯-⨯+⨯+⨯=. 【点睛】本题考查了概率的计算,分布列,均值,意在考查学生的计算能力和应用能力. 26.(1) 0.1225;(2) 0.8(3)见解析. 【分析】(1)分别计算出甲乙各射击一次击中10环的概率,利用相互独立事件的概率公式计算即可; (2)甲射击一次,击中9环以上(含9环)即为甲射击一次,击中9环和甲射击一次,击中10环,利用互斥事件的概率公式即可得出结果;(3)由(2)可知甲射击一次,击中9环以上(含9环)的概率为0.8,可知(3,0.8)X B .利用公式计算即可得出结果. 【详解】(1) 设事件A 表示甲运动员射击一次,恰好击中10环, 设事件B 表示乙运动员射击一次,恰好击中10环, ()10.10.10.450.35P A =---=,()0.35P B =,所以甲、乙各射击一次,甲、乙同时击中10环即()0.350.350.1225P AB =⨯=.(2)设事件C 表示甲运动员射击一次,恰好击中9环以上(含9环),则()0.350.450.8P C =+=(3)由已知可得X 的可能取值为0,1,2,3,且(3,0.8)XB3(0)0.20.008P X ===,123(1)0.80.20.096P X C ==⨯=, 223(2)0.80.20.384P X C ==⨯=,3(3)0.80.512P X ===所以30.8 2.4E X =⨯= 【点睛】本题考查相互独立事件的概率,考查二项分布的分布列和数学期望,考查运用概率知识解决实际问题的能力和计算求解能力,难度一般.。
第一章计数原理基础选择30道
15. 展开式中第6项的二项式系数为()
A. B. C. D.
16.若将6本不同的书放到5个不同的盒子里,有多少种不同的放法()
A. B. C. D.
17.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中任取一本,则不同的取法共有( )
A.37种B.1848种C.3种D.6种
15.C
【分析】
写出展开式的通项 ,然后将 代入通项即可.
【详解】
由已知得通项为: ,
,故第六项的二项式系数为: .
故选: .
【点睛】
本题考查二项式展开式的通项,二项式系数的求法.属于基础题.
16.C
【分析】
将6本不同的书放到5个不同的盒子里,每本书都有5种放法,然后由乘法原理可得答案.
【详解】
将6本不同的书放到5个不同的盒子里,每本书都有5种放法,
故选:A.
【点睛】
本题主要考查分类加法原理,合理分类是求解的关键,题目比较简单.
18.B
【分析】
直接利用列举法得解.
【详解】
当乙在周一时有:乙甲丁丙,乙丙丁甲,乙丙甲丁,乙丁甲丙;
当丙在周一时有:丙甲乙丁,丙甲丁乙,丙丁甲乙,丙丁乙甲;
当丁在周一时有:丁甲乙丙,丁丙甲乙,丁丙乙甲.
所以共11种.
故选:B
A.12B.24C.81D.64
10.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等.两位数的回文数有11,22,3,……,99共9个,则在三位数的回文数中偶数的个数是()
A.40B.30C.20D.10
11.3本不同的课外读物分给3位同学,每人一本,则不同的分配方法有()
带答案数学北师大版选修2-3计数原理原理练习题第一章2 (1)
§2 排列(一)一、基础过关1. A 67-A 56A 45等于( ) A .12B .24C .30D .362. 18×17×16×…×9×8等于( ) A .A 818B .A 918C .A 1018D .A 11183. 若x =n !3!,则x 等于( ) A .A 3nB .A n -3nC .A n 3D .A 3n -34. 与A 310·A 77不等的是( )A .A 910B .81A 88C .10A 99D .A 10105. 若A 5m =2A 3m ,则m 的值为( ) A .5B .3C .6D .76. 计算:2A 59+3A 699!-A 610=________; (m -1)!A n -1m -1·(m -n )!=________. 7. 若A m n =17×16×15×…×5×4,则n =________,m =________.8. 若n ∈N *,且55<n <69,则(55-n )(56-n )…(68-n )(69-n )用排列数符号表示为________.二、能力提升9. 将5本不同的数学用书放在同一层书架上,则不同的放法有( ) A .50B .60C .120D .9010.由数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( ) A .8B .24C .48D .12011. 有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案(用数字作答).12.若2<(m +1)!A m -1m -1≤42,则m 的解集是________. 13.判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.三、探究与拓展14.两名老师和两名学生合影留念,写出老师不在左端且相邻的所有可能的站法,并回答共有多少种?答案1.D 2.D 3.B 4.B 5.A 6.1 17.17148.A1569-n9.C10.C11.6012.{2,3,4,5,6}13.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)、(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题.14.解由于老师不站左端,故左端位置上只能安排学生.设两名学生分别为A、B.两名老师分别为M、N,此问题可分两类:由此可知所有可能的站法为AMNB,ANMB,ABMN,ABNM,BMNA,BNMA,BAMN,BANM,共8种.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学章节训练题25《计数原理》
时量:60分钟 满分:80分 班级: 姓名: 计分:
个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共8小题,每小题5分,满分40分) 1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .14
2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )
A .140种 B.84种 C.70种 D.35种
3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )
A .33A
B .334A
C .523533A A A -
D .23113
23233A A A A A +
4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( )
A.20 B .16 C .10 D .6
5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.
6.在8
2
x ⎛ ⎝的展开式中的常数项是( )
A.7 B .7- C .28 D .28-
7.5
(12)(2)x x -+的展开式中3
x 的项的系数是( ) A.120 B .120- C .100 D .100-
8.22n
x ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )
A .180
B .90
C .45
D .360
二、填空题(本大题共4小题,每小题5分,满分20分)
1.n 个人参加某项资格考试,能否通过,有 种可能的结果?
2.已知集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个.
3.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方
格的标号与所填的数字均不同的填法有 种?
4.一电路图如图所示,从A 到B 共有 条不同的线路可通电.
三、解答题(本大题共1题,满分20分) 1.规定!
)1()1(m m x x x C m
x +--=
,其中x ∈R ,m 是正整数,且10
=x C ,
这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.
(1) 求3
15-C 的值;
(2) 设x >0,当x 为何值时,213
)(x
x
C C 取得最小值?
(3) 组合数的两个性质;
①m n n m n C C -=. ②m
n m n m n C C C 11+-=+.
是否都能推广到m x C (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式
并给出证明;若不能,则说明理由.
变式:规定(1)
(1),m x A x x x m =--+其中x R ∈,m 为正整数,且0
1,x A =这是排列数
(,m
n A n m 是正整数,且)m n ≤的一种推广. ⑴求315A -的值;
⑵排列数的两个性质:①11m m n n A nA --=, ②11m m m n n n A mA A -++=.(其中m ,n 是正整数)是否都能推广到(,m x A x R m ∈是正整数)
的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
⑶确定函数3x A 的单调区间.
高三数学章节训练题25《计数原理》参考答案 一、选择题
1.B 每个小球都有4种可能的放法,即44464⨯⨯=
2.C 分两类:(1)甲型1台,乙型2台:1245C C ;(2)甲型2台,乙型1台:21
45C C 1221454570C C C C +=
3.C 不考虑限制条件有55A ,若甲,乙两人都站中间有2333A A ,523533A A A -为所求 4.B 不考虑限制条件有25A ,若a 偏偏要当副组长有14A ,215416A A -=为所求 5.B 设男学生有x 人,则女学生有8x -人,则2138390,x x C C A -=
即(1)(8)30235,x x x x --
==⨯⨯=
6.A 14
8888833
18
8811()((1)()(1)()222r r r r
r r r r r r r r r x T C C x C x ------+==-=- 令6866784180,6,(1)()732
r r T C --
===-= 7.B 555332
255(12)(2)2(12)(12)...2(2)(2)...x x x x x C x xC x -+=-+-=+-+-+ 233355(416)...120...C C x x =-+=-+
8.A 只有第六项二项式系数最大,则10n =,
55102110
1022()2r r r
r r r
r T C C x x
--+==,令2310550,2,41
802r r T C -==== 二、填空题
1.2n
每个人都有通过或不通过2种可能,共计有22...2(
2)
2n
n ⨯⨯⨯=个 2. 23 112
342123
C C A -=,其中(1,1)重复了一次. 3.9 分三类:第一格填2,则第二格有1
3A ,第三、四格自动对号入座,不能自由排列;
第一格填3,则第三格有1
3A ,第一、四格自动对号入座,不能自由排列; 第一格填4,则第撕格有13A ,第二、三格自动对号入座,不能自由排列; 共计有1339A =
4.解:1212123
2222333()()1()17.C C C C C C C ++++++= 三、解答题
22.解:(1)680!
3)17)(16)(15(315-=---=
-
C . (6分)
(2)
)32(616)2)(1()(2213-+=--=x
x x x x x C C x x . (7分) ∵ x > 0 , 222≥+x
x .
当且仅当2=x 时,等号成立. ∴ 当2=x 时,213)
(x x
C C 取得最小值. (12分)
(3)性质①不能推广,例如当2=
x 时,12C 有定义,但1
22
-C 无意义; (14分)
性质②能推广,它的推广形式是m x m x m x C C C 11+-=+,x ∈R , m 是正整数. (15分)
事实上,当m =1时,有1
1
011+=+=+x x x C x C C . 当m ≥2时.)!
1()2()1(!)1()1(1----++--=+-m m x x x m m x x x C C m x
m x
⎥
⎦⎤⎢⎣
⎡++--+--=11)!
1()2()1(m
m x m m x x x !
)1)(2()1(m x m x x x ++--= m x C 1+=.(20分)
变式:解:(Ⅰ)3
15A -()()()1516174080=---=-; ……2分
(Ⅱ)性质①、②均可推广,推广的形式分别是:
①1
1m m x x A xA --=, ②()1
1,m m m
x x
x A mA A x R m N -+++=∈∈ ……4分
事实上,在①中,当1m =时,左边1x A x ==, 右边0
1x xA x -==,等式成立;
当2m ≥时,左边()()()121x x x x m =---+
()()
()()()12111x x x x m ⎡⎤=-----+⎣⎦
11m x xA --=, 因此,①1
1m m x x A xA --=成立; ……6分 在②中,当1m =时,左边10111x x x A A x A +=+=+==右边,等式成立;
当2m ≥时,
左边()()
()121x x x x m =---+()()()122m x x x x m +---+
()()
()()1221x x x x m x m m =---+-++⎡⎤⎣⎦
()()()
()11211x x x x x m =+--+-+⎡⎤⎣⎦
1m
x A +==右边,
因此 ②()11,m m m
x x x A mA A x R m N -+++=∈∈成立。
……8分
(Ⅲ)先求导数,得()/
32362x
A
x x =-+.
令2632
+-x x >0,解得x<
333-或 x>3
3
3+. 因此,当⎪⎪⎭
⎫
⎝⎛
-∞-∈333,x 时,函数为增函数,
(11)
分
当⎪⎪⎭
⎫
⎝⎛+∞+∈,333x 时,函数也为增函数。
令2632
+-x x <0,解得
333-<x<3
3
3+. 因此,当⎪⎪⎭
⎫ ⎝⎛+-∈333,333x 时,函数为减函数.
(13)
分
所以,函数3
x A
的增区间为3,
3⎛
--∞ ⎝
⎭,
33⎛⎫++∞ ⎪ ⎪⎝⎭
函数3
x A
的减区间为
⎝⎭
……14分。