高中数学 第2章 平面解析几何初步 5 两条直线的平行教学案苏教版必修2
苏教版高中数学必修2直线、平面平行的判定及其性质教案
第一课时 2.2.1 直线与平面平行的判定 教学要求:通过学习掌握直线与平面平行的判定定理;掌握转化的思想“线线平行线面平行”. 教学重点:掌握直线与平面平行的判定定理. 教学难点:理解直线与平面平行的判定定理. 教学过程:一、复习准备:1、直线与平面有哪几种位置关系?(用事先准备好的模型进行演示)(1)直线与平面平行;(2)直线与平面相交;(3)直线在平面内。
2、判断两条直线平行有几种方法?(结合图形)(1)三角形中位线定理;(2)平行四边形的两边;(3)平行公理;(4)成比例线段。
3、思考:(1)现在我们来联系生活中的一些实际情况,通过这些实际让学生思考都有那些是线面平行的呢? (由学生来分组讨论)(2)以上生活实际我们直观感觉到一些线面平行,那么从生活中的现象回归到数学理论知识,怎样才能得到线面平行呢? 二、讲授新课:1. 教学线面平行的判定定理:① 探究:有平面α和平面外一条直线a,什么条件可以得到a//α?分析:要满足平面内有一条直线和平面外的直线平行。
判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.符号语言: ////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭思 想: 线线平行⇒线面平行② 练习:Ⅰ、判断对错直线a 与平面α不平行,即a 与平面α相交. ( ) 直线a ∥b ,直线b 平面α,则直线a ∥平面α. ( ) 直线a ∥平面α,直线b 平面α,则直线a ∥b . ( )Ⅱ 在长方体ABCD- A ’B ’C ’D ’中,判断直线与平面的位置关系(解略) 2. 教学例题:① 出示例1求证::空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.→改写:已知:空间四边形ABCD 中,E,F 分别是AB,AD 的中点,求证:EF//平面BCD. → 分析思路 → 学生试板演 ② 出示例2在正方体ABCD- A ’B ’C ’D ’中,E 为DD ’中点,试判断BD ’与面AEC 的位置关系,并说明理由.→ 分析思路 →师生共同完成 → 小结方法 → 变式训练:还可证哪些线面平行③ 练习:在空间四边形ABCD 中,E ,F ,G ,分别是AB ,BC ,CD 的中点,探索可以证得哪些线面平行.3. 小结: 线面平行判定定理;转化思想三、巩固练习:1. 探索:如图,已知P为△ABC外一点,点M、N分别为△PAB、△PBC的重心.求证:MN∥平面ABC2.作业:教材P68-3题。
高中数学 平面解析几何初步教案2 苏教版必修2
例2已知两点A(-1,2)B(m,3)
(1)求直线AB的斜率
(2)求直线AB的方程
(3)已知实数 ,求直线AB的倾斜角的取值范围
题型三:直线方程五种形式的灵活应用(求直线方程)
例3直线L经过点(3,-1),且与两条坐标轴围成一个等腰直角三角形,求直线L的方程。
例4一条直线L过点P(2,1)分别交x轴,y轴的正半轴于A,B两点,O为原点
(6) ,直线(m-1)x+(2m-1)y=m-5必经过定点,其坐标为__________
三.例题精析:
题型一:由直线的位置关系确定方程中参数的值
例1:设直线(m2-2m-3)x+(2m2+m-1)y-2m+6=0(m≠-1)
根据下列条件分别确定m的值,并作图
(1)直线L在x轴上的截距是-3
(2)直线L的斜率是1
(1)当PA PB=4时,求直线L的方程
(2)当PA PB取最小值时,求直线L的方程
(3)当△A0B的面积最小时,求直线L的方程
四、课堂练习
(1)如果AC<0,且BC<0,那么直线Ax+By+C=0不通过第______象限
(2)过点P(-1,3),且倾斜角比直线 的倾斜.课前预习
(1)已知一直线经过点P(1.2).且斜率与直线y=-2x+3的斜率相等
则该直线的点斜式方程为__________
(2)已知两点A(3,2),B(8,12),则直线AB的方程为___________
_________________________________________________________.
教师、学生活动
一.知识点问题
【精品教案】高中数学必修2第二章《直线与平面、平面与平面平行的性质》教案
§2.2.3 —2.2.4直线与平面、平面与平面平行的性质一、教学目标:1、知识与技能(1)掌握直线与平面平行的性质定理及其应用;(2)掌握两个平面平行的性质定理及其应用。
2、过程与方法学生通过观察与类比,借助实物模型理解性质及应用。
3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。
二、教学重点、难点重点:两个性质定理。
难点:(1)性质定理的证明;(2)性质定理的正确运用。
三、学法与教学用具1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。
2、教学用具:投影仪、投影片、长方体模型四、教学思想(一)创设情景、引入新课1、思考题:教材第60页,思考(1)(2)学生思考、交流,得出(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;(2)直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条交线。
在教师的启发下,师生共同完成该结论的证明过程。
于是,得到直线与平面平行的性质定理。
定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。
2、例3 培养学生思维,动手能力,激发学习兴趣。
例4 性质定理的直接应用,它渗透着化归思想,教师应多做引导。
3、思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?学生借助长方体模型思考、交流得出结论:异面或平行。
再问:平面AC内哪些直线与B'D'平行?怎么找?在教师的启发下,师生共同完成该结论及证明过程,于是得到两个平面平行的性质定理。
定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:α∥βα∩γ= a a∥bβ∩γ= b教师指出:可以由平面与平面平行得出直线与直线平行4、例5以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。
苏教版数学高二-苏教版必修2名师导学 第二章 平面解析几何初步
第2章平面解析几何初步第1课时直线的斜率(1)教学过程一、问题情境1.情境:多媒体投影现实世界中的一些美妙曲线,这些曲线都和方程息息相关,在数学中,我们可以通过研究这些曲线的方程来认识这些曲线.2.问题:在平面直角坐标系中,用一对有序实数(x,y)可确定点的位置,那么用什么来确定直线的位置呢?两点可以确定一条直线.还有什么样的条件可以确定一条直线?二、数学建构(一)生成概念1.探究活动学生进行思考、联想、讨论.学生回答并演示(①过两点;②过一点及确定的方向)观察:直线的方向与直线在坐标系倾斜度的关系.问题1我们熟悉的坡度是怎样确定的?利用木板进行演示,让学生有一个感性认识,体验坡度是由什么来确定的.问题2如果给你直线上两点,你能用它们的坐标来刻画其倾斜度吗?由学生讨论引出课题:直线的斜率.2.数学概念直线斜率的定义:已知两点P(x1,y1),Q(x2,y2),如果x1≠x2,那么直线PQ的斜率为:k=(x1≠x2).(二)理解概念1.因为k==(x1≠x2),所以斜率公式与P,Q两点的顺序无关.2.如果x1=x2,直线PQ与x轴垂直,公式中分母为0,那么直线PQ的斜率不存在.所以,在坐标系中,不是所有的直线都有斜率.3.对于与x轴不垂直的直线PQ,斜率可看作:k===.*问题3对于不垂直于x轴的直线的斜率与直线上所选两点的位置是否有关?为什么?设直线l不与x轴垂直.在直线l上有P(x1,y1),Q(x2,y2),其斜率为k=,在直线l上再取两点M(x3,y3),N(x4,y4),根据定义,直线l斜率应为k'=,≠0,因为与共线,所以=λ,即(x4-x3,y4-y3)=λ(x2-x1,y2-y1),x4-x3=λ(x2-x1),y4-y3=λ(y2-y1),k'===k.这表明,对于一条与x轴不垂直的定直线而言,它的斜率是一个定值.(三)巩固概念问题4一次函数y=-2x+1的图象是一条直线,它的斜率是多少?解答在直线上取两点(0, 1)与,根据斜率公式知,其斜率为-2.三、数学运用【例1】(教材P78例1)如图1,直线l1,l2,l3都经过点P(3, 2),又l1,l2,l3分别经过点Q1(-2, -1),Q2(4,-2),Q3(-3, 2),试计算直线l1,l2,l3的斜率.(图1)解根据斜率的定义,直线l1的斜率为k1==,直线l2的斜率为k2==-4,直线l3的斜率为k3==0.变式1若点Q1的坐标变为(m,-1),(1)求直线l1的斜率.(2)若此时l1的斜率为2,求m的值.解(1)当m=3时,l1的斜率不存在;当m≠3时,直线l1的斜率为k1==.(2)若直线l1的斜率为2=,则m=.变式2在例1的坐标系中画出经过点(3, 2),斜率不存在的直线l4,并比较这些直线相对于x轴的倾斜程度与斜率的关系.解从图中可以看出当直线的斜率为正时,直线从左下方向右上方倾斜(l1);当直线的斜率为负时,直线从左上方向右下方倾斜(l2);当直线的斜率为0时,直线与x轴平行或重合(与y轴垂直)(l3);当直线的斜率不存在时,直线与x轴垂直(l4).【例2】(教材P78例2)经过点(3, 2)画直线,使直线的斜率分别为:(1);(2)-.让学生板演,在出现困难时作适当的提示:画直线需要两点,如何找另一点呢.解(1)根据斜率=,斜率为表示直线上的任一点沿x轴方向向右平移4个单位,再沿y轴方向向上平移3个单位后仍在此直线上,将点(3, 2)沿x轴方向向右平移4个单位,再沿y轴方向向上平移3个单位后得点(7, 5),因此经过点(7, 5)和点(3, 2)画直线,即为所求直线,如图2所示.(图2)(图3)(2)∵-=,∴将点(3, 2)沿x轴方向向右平移5个单位,再沿y轴方向向下平移4个单位后得点(8,-2),因此经过点(8,-2)和点(3, 2)画直线,即为所求直线,如图3所示.画一条直线,关键先找出两点,此题结合画图,让学生如何找点.【例3】已知三点A(a, 2),B(3, 7),C(-2,-9a)在一条直线上,求实数a的值.解因为3≠-2,所以直线BC的斜率存在,据题意可知直线AB与直线BC的斜率相等,即=,解得a=2或.利用斜率构造等式,先要分析斜率是否存在,防止犯以偏概全的错误,对斜率不能确定是否存在,要进行分类讨论.问题5两个点可以确定一条直线,一个点及直线的斜率也可以确定一条直线,斜率既能反映直线的倾斜程度,也能反映直线的方向,方向还可以用什么来描述?让学生分组讨论.通过讨论认为:选用直线的上方与x轴正方向所形成的角α能最自然、最简单的刻画直线的方向,从而引出倾斜角的概念.四、数学概念1.直线的倾斜角的定义:在平面直角坐标系中,对于与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.并规定:与x轴平行或重合的直线的倾斜角为0°.巩固概念指出下列图中直线的倾斜角:(1)(2)(3)(4)(图4)问题6直线的倾斜角能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?倾斜角的取值范围如何?引导学生观察,当直线从x轴位置旋转180°后又回到x轴位置的过程中,直线的倾斜角如何变化,从而得出结论.2.直线的倾斜角的范围是: 0°≤α<180°.五、课堂练习1.分别求经过下列两点的直线的斜率.(1)(3, 2),(5, 4).(2)(-1, 2),(3, 0).(3)(-2,-2),(3,-2).(4)(-2, 6),(2,-2).2.根据下列条件,分别画出经过点P,且斜率为k的直线.(1)P(1, 2),k=;(2)P(2, 4),k=-2;(3)P(-1, 3),斜率不存在;(4)P(-2, 0),k=0.3.分别判断下列三点是否在同一条直线上.(1)(1, 0),(3, 3),(4, 5).(2)(0, 2),(3,-1),(-1, 3).解答1.(1) 1;(2)-;(3) 0;(4)-.2.略.3.(1)不在同一条直线上;(2)在同一条直线上.六、课堂小结1.在本节课中,你学到了哪些新的概念?2.怎样求出已知两点的直线的斜率?3.斜率与倾斜角在刻画直线倾斜程度方面有什么区别?(直线的倾斜角侧重于几何直观形象,而直线的斜率侧重于用数来刻画直线的方向)第2课时直线的斜率(2)教学过程一、问题情境1.经过点原点(1, 0)与B(2,)两点的直线斜率为,倾斜角为60°.2.已知两点P(x1,y1),Q(x1,y1),如果x1≠x2,那么直线PQ的斜率与倾斜角有什么关系?二、数学建构(一)生成概念1.分直线的倾斜角为锐角(见图①)和直线的倾斜角为钝角(见图②)启发学生利用斜率的定义发现:k=tanα(注:tan(180°-α)=-tanα).①②(图1)2.用几何画板演示,引导学生观察,当直线绕一定点旋转时,斜率与倾斜角的变化关系.(二)理解概念(1)①当α≠90°时,k=tanα;②当α=90°时,k不存在;③当α=0°时,k=0;④当α为锐角时,k>0;⑤当α为钝角时,k<0.(2)当倾斜角α=90°时,斜率k不存在,这就是说任何直线都有倾斜角,但不是任何直线都有斜率,与x 轴垂直的直线就没有斜率.(图2)(三)巩固概念判断下列命题的真假:(1)若两条直线的倾斜角相等,则它们的斜率也一定相等;(2)若两条直线的斜率相等,则它们的倾斜角也一定相等;(3)若两条直线的倾斜角不等,则它们中倾斜角大的,其斜率不一定大;(4)若两条直线的斜率不等,则它们中斜率大的,其倾斜角不一定大.答(1)假;(2)真;(3)真;(4)真.三、数学运用【例1】(1)直线l1,l2,l3如图2所示,则l1,l2,l3的斜率k1,k2,k3的大小关系为,倾斜角α1,α2,α3的大小关系为.(2)填写下表直线平行于x轴从左向右上升垂直于x轴从左向右下降倾斜角α的大小斜率k的范围斜率k的增减性可以利用几何画板动态地显示斜率与倾斜角的关系.解答(1)k1>k2>k3,α3>α1>α2.(2)填写下表直线平行于x轴从左向右上升垂直于x轴从左向右下降倾斜角α的大小0°0°<α<90°90°90°<α<180°斜率k的范围0k>0不存在k<0斜率k的增减性k随α的增大而增大k随α的增大而增大这道题阐明倾斜角与斜率在变化过程中的关系,讲解中注意用从特殊到一般的方法.如果学过必修4课本,可以从正切函数的单调性上去分析.【例2】已知直线过点A(2m, 3),B(2,-1),根据下列条件,求实数m的值(或范围):(1)直线的倾斜角为135°.(2)直线的倾斜角为90°.(3)直线倾斜角为锐角.(4)直线倾斜角为钝角.此题让四个学生板演.解(1)斜率为k=tan135°==-1,解得m=-1.(2)因为AB⊥x轴,所以2m=2,解得m=1.(3)据题意,k=>0,解得m>1.(4)据题意,k=<0,解得m<1.【例3】已知直线l的斜率的取值范围为,求其倾斜角的取值范围.可以利用数形结合的思想(如图3)及例1的结果,分两段直接写出,也可利用正切函数的性质解题.解①当斜率k∈0, 1题后反思5处理建议1,+∞),倾斜角的取值范围是{α|45°≤α≤150°}.此题利用数形结合方法较好,直线的旋转,引起直线的斜率、倾斜角的变化:在不同的两段上,都是随直线的逆时针旋转而增大的.四、课堂练习1.已知y轴上的点B与点A(-, 2)连线所成直线的倾斜角为60°,则点B的坐标是(0, 5).2.已知直线l1的倾斜角α1=30°,直线l2垂直于l1,则l2的斜率为-.3.直线l的倾斜角的正弦值为,求直线l的斜率.4.已知A(4, 2),B(-8, 2),C(0,-2),求直线AB,BC,CA的斜率,并判断这些直线的倾斜角是什么角?解答3.设直线l的倾斜角为α,则sinα=.当α为锐角时,cosα==,斜率为k=tanα==;当α为钝角时,cosα=-=-,斜率为k=tanα==-.综上所述,直线l的斜率为或-.4.直线AB的斜率为k AB==0,直线AB的倾斜角为0°;直线BC的斜率为k BC==-,直线BC的倾斜角是钝角;直线CA的斜率为k CA==1,直线CA的倾斜角是45°.五、课堂小结1.直线的倾斜角和斜率之间的关系是什么?2.倾斜角为特殊角时与直线斜率的对应关系.倾斜角30°45°60°90°120°135°150°斜率3.为什么不用直线的倾斜角的正弦来作直线的斜率呢?解答:1.当倾斜角α≠90°时,斜率k=tanα,此时倾斜角与斜率一一对应;当倾斜角α=90°时,斜率不存在.2.倾斜角30°45°60°90°120°135°150°斜率1不存在--1-3.倾斜角的正弦与倾斜角不能一一对应,互补的两个倾斜角的正弦相等.第3课时直线的方程(1)教学过程一、问题情境问题1确定一条直线需要几个独立条件?请举例说明.归纳得出:1.直线上的两个点;2.直线上的一个点及直线的斜率.问题2给出直线l上一点及斜率两个条件:经过点A(-1, 3),斜率为-2,(1)你能在直线l上再找一点,并写出它的坐标吗?(2)这条直线l上的任意一点P(x,y)的横坐标x和纵坐标y满足什么关系呢?二、数学建构(一)生成概念1.探究问题情境中的问题.2.直线l经过点P1(x1,y1),且斜率为k.设点P(x,y)是直线l上的任意一点,请建立x,y与k,x1,y1之间的关系.(图1)学生根据斜率公式,可以得到,当x≠x1时,k=,故y-y1=k(x-x1)①问题3过点P1(x1,y1),斜率是k的直线l上的点(包括点P1),其坐标都满足方程①吗?坐标满足方程①的点都在经过P1(x1,y1),斜率为k的直线l上吗?答过点P1(x1,y1),斜率是k的直线l上的点,其坐标都满足方程①,且坐标满足方程①的点都在经过P1(x1,y1),斜率为k的直线l上.3.直线的点斜式方程.我们把方程y-y1=k(x-x1)叫做直线的点斜式方程.问题4直线的点斜式方程能否表示坐标平面上的所有直线呢?答因为垂直于x轴的直线斜率不存在,所以直线的点斜式方程不能表示垂直于x轴的直线.不垂直于x轴的直线,都能用点斜式方程表示.问题5经过点P1(x1,y1)且垂直于x轴的直线方程是什么?经过点P1(x1,y1)且垂直于y轴的直线方程又是什么?4.两种特殊的直线方程.经过点P1(x1,y1)且垂直于x轴的直线方程是x=x1;经过点P1(x1,y1)且垂直于y轴的直线方程是(二)理解概念1.为什么方程=k不称为直线l的点斜式方程?因为直线l上的点P1(x1,y1)不满足方程=k.2.把直线方程y=kx+6k-5写成点斜式方程,并说明此直线过哪个定点?方程y=kx+6k-5可变形为y-(-5)=k,这即为点斜式方程,此直线恒过定点(-6,-5).三、数学运用【例1】一条直线经过点P1(-2, 3),斜率为2,求这条直线方程.解根据点斜式方程的形式,这条直线的方程为y-3=2(x+2)即2x-y+7=0.【例2】直线l斜率为k,与y轴的交点是P(0,b),求直线l的方程.解根据点斜式方程形式,直线l的方程为y-b=k(x-0),即y=kx+b.数学概念(1)直线l与x轴交点(a, 0),与y轴交点(0,b),称a为直线l在x轴上的截距,称b为直线l在y轴上的截距(截距可以大于......0.,.也可以等于或小于........0.).(一定要讲清楚截距的概念,“第一印象”非常重要)(2)方程y=kx+b由直线l斜率k和它在y轴上的截距b确定,叫做直线的斜截式方程.问题6你如何从直线方程的角度认识一次函数y=kx+b?一次函数中k和b的几何意义是什么?一次函数y=kx+b中,常数k是直线的斜率,常数b为直线在y轴上的截距.问题7直线的斜截式方程能否表示坐标平面上的所有直线呢?答因为垂直于x轴的直线斜率不存在,所以直线的斜截式方程不能表示垂直于x轴的直线.不垂直于x轴的直线,都能用斜截式方程表示.【例3】在同一坐标系中作出下列直线,分别说出这两组直线有什么共同特征?(1)y=2,y=x+2,y=-x+2,y=3x+2,y=-3x+2.(2)y=2x,y=2x+1,y=2x-1,y=2x+4,y=2x-4.解(1)图略,这组直线的共同特征是都过点(0, 2),斜率不同.(2)图略,这组直线的共同特征是斜率都相同,截距互不相同,它们是一组平行直线.画直线关键是找出两点,常常找直线与坐标轴的交点,此题意在说明共点直线或平行直线在方程形式上的联系(相同点).【例4】(1)求直线y=-(x-2)的倾斜角.(2)求直线y=-(x-2)绕点(2, 0)按顺时针方向旋转30°所得的直线方程.解(1)设直线的倾斜角为α,从方程可知,直线的斜率是-,所以tanα=-,又因为0°≤α<180°,所以直线y=-(x-2)的倾斜角为120°.(2)所求的直线的倾斜角为120°-30°=90°,且经过点(2, 0),所以,所求的直线方程为x=2.方程为y=k(x+a)+b的直线的斜率为k,第(2)题注意直线的旋转的方向.*【例5】已知直线l经过点P(4, 1),且与两坐标轴在第一象限围成的三角形的面积为8,求直线l的点斜式方程.引导学生分析,要求出方程,先求出斜率,如何把“面积为8”用上,能否转化为关于斜率k的方程,用点斜式方程要注意哪些呢?解根据题意,直线l不垂直于x轴,其斜率存在且为负数,故可设直线l的方程为y-1=k(x-4), (k<0),在方程中令y=0得x=4-,令x=0得y=1-4k,故直线l与两坐标轴交于点与(0, 1-4k),与两坐标轴在第一象限围成的三角形的面积为S=(1-4k)=8,解得k=-,故直线l的点斜式方程为y-1=-(x-4).利用点斜式或斜截式设直线方程,首先要分析直线的斜率是否存在,如不能确定,一般要分类讨论,此题不仅分析了斜率是存在的,而且还挖掘出隐含条件:斜率小于0,为下面的求解避免了分类讨论,如果解出两解,还要注意取舍.四、课堂练习1.经过点(3,-1),斜率为3的直线的点斜式方程为y+1=3(x-3).2.经过点(2, 2),斜率为的直线的点斜式方程为y-2=(x-2).3.斜率为-3,在y轴上的截距为-4的直线的斜截式方程为y=-3x-4.4.斜率为,在x轴上的截距为6的直线的方程为y=(x-6).5.直线x=m(y+1)的图象恒过定点(0,-1).五、课堂小结1.本节课我们学了哪些知识?2.直线方程的点斜式、斜截式的形式特点和适用范围是什么?3.求一条直线的方程,要知道多少个条件?4.如何根据直线方程求出直线的斜率及y轴上的截距?第4课时直线的方程(2)教学过程一、问题情境1.情境:能否根据我们已经学过的直线的点斜式、斜截式方程求出符合下列条件的直线方程(学生活动):(1)直线经过点(1, 2),.(2)直线经过点(1, 2),(-1, 2).(3)直线经过点(0, 2),(1, 0).(4)直线经过点(x1,y1),(x2,y2),其中x1≠x2.2.问题:如果已知直线经过的两个点,或已知直线在x轴上的截距和在y轴上的截距,如何求直线方程?二、数学建构(一)生成概念1.引导学生研究上面的问题.根据直线的点斜式方程,经过两点(x1,y1),(x2,y2)(x1≠x2)直线l的方程为:y-y1=(x-x1).2.直线的两点式方程.若x1≠x2,y1≠y2,经过两点P1(x1,x2),P2(x2,y2)的直线l的方程为=,我们把方程=叫做直线的两点式方程.(二)理解概念1.方程=的左右两边各具有怎样的几何意义?它表示什么图形?答左边是动点和一个定点的连线的斜率,右边是两个定点的连线的斜率,这两者始终相等,因而方程表示除去点(x1,y1)的一条直线.2.方程=和方程=表示同一图形吗?前者表示经过两定点(x1,x2),(x2,y2)但除去点(x1,y1)的一条直线,后者表示经过两定点(x1,x2), (x2,y2)完整的一条直线.所以才把后者称为两点式方程.3.若两点P1(x1,x2),P2(x2,y2)中有x1=x2或y1=y2,此时直线P1P2方程能否用两点式方程表示?如果不能,应该如何表示?这说明了什么?答因为有分母为0,所以不能用两点式方程表示,若x1=x2,直线P1P2方程为x=x1,若y1=y2,直线P1P2方程为y=y1,这说明两点式方程不能表示与坐标轴垂直的直线.(三)巩固概念已知直线分别经过下面两点,求直线的两点式方程.①A(3, 1),B(2,-3);②A(2, 1),B(0,-3);③A(0, 5),B(4, 0).解答①直线的两点式方程为:=;②直线的两点式方程为:=;③直线的两点式方程为:=.三、数学运用【例1】(教材P84例1)已知直线l经过两点A(a, 0),B(0,b),其中ab≠0,求直线l的方程(如图1).(图1)解根据两点式方程形式,直线l的方程为=,即+=1.数学概念直线的截距式方程及适用范围:我们把方程+=1叫做直线的截距式方程.因为ab≠0,所以截距式方程不能表示过原点的直线,因为纵、横截距必须存在,所以截距式方程也不能表示与坐标轴垂直的直线.【例2】(教材P84例2)已知三角形的顶点是A(-5, 0),B(3,-3),C(0, 2)(图2),试求这个(图2)三角形三边所在直线的方程.解根据两点式方程,直线AB的方程为=,即3x+8y+15=0;直线BC的方程为=,即5x+3y-6=0;根据截距式方程,直线CA的方程为+=1,即2x-5y+10=0.用直线的两点式或截距式写直线方程只需一步到两步,但要先分析两点式或截距式的使用条件是否满足.【例3】求过点(3,-4)且在坐标轴上的截距相等的直线方程.在做此题之前,画一条通过原点的直线,问问学生:直线在x,y轴上的截距是什么?相等吗?横截距是纵截距的几倍?根据以往经验,采取先错后纠正的方法不理想,以后还会错,所以截距的概念“第一印象”非常重要.解①当截距不为0时,设所求直线的方程为+=1,将坐标(3,-4)代入这个方程得+=1解得a=-1,此时所求直线的方程为+=1;②当截距为0时,直线过原点(0, 0),根据两点式方程,此时所求直线的方程为=,即y=-x.综上,所求直线的方程为x+y+1=0或y=-x.要准确理解截距的概念,直线过原点时,它在x,y轴上截距都为0,当然相等,当直线斜率为1且不过原点时,截距互为相反数,当然不等.【例4】求过点P(2,-1),在x轴和y轴上的截距分别为a,b,且满足a=3b的直线方程.先引导学生分析,此题会有几解?解①当a=0时,b=0,此时直线方程为y=-x;②当a≠0时,b≠0,根据截距式方程,此时直线方程为+=1,把P(2,-1)代入方程得+=1,解得b=-,此时a=-1.综上,所求直线方程为x+3y+1=0或y=-x.当截距不能确定是否为0时,使用截距式方程,要注意分类讨论.四、课堂练习1.过两点(2, 2),(-1, 3)的直线的两点式方程为=.2.过两点(0, 3),(-1, 0)的直线的截距式方程为-x+=1.3.已知两点A(5, 1),B(10, 11).(1)求出直线AB的方程.(2)若点C(-2,a)在直线AB上,求实数a的值.解(1)根据两点式方程,直线AB的方程为=,即2x-y-9=0.(2)因为点C(-2,a)在直线AB上,所以2×(-2)-a-9=0,因此实数a的值为-13.4.(1)如果两条直线有相同的斜率,但在x轴上的截距不同,那么它们在y轴上的截距可能相同吗?(2)如果两条直线在y轴上的截距相同,但是斜率不同,那么它们在x轴上的截距可能相同吗?解答(1)假设它们在y轴上的截距也相同.则它们的方程都可写成y=kx+b,而这只表示一条直线,与前提矛盾,所以假设不成立.因此它们在y轴上的截距不相同.(2)它们在x轴上的截距可能相同,如:直线y=2x与直线y=x.五、课堂小结1.任何一条直线都有x轴上的截距和y轴上的截距吗?2.什么样的直线不能用两点式、截距式方程?第5课时直线的方程(3)教学过程一、问题情境问题1直线的点斜式、斜截式、截距式、两点式方程是关于x,y的什么方程?问题2关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)是否一定表示一条直线?二、数学建构(一)生成概念1.引导学生研究上面的问题.(1)直线的点斜式、斜截式、截距式、两点式方程都是关于x,y的二元一次方程.(2)关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)是否一定表示一条直线呢?这个方程是否表示直线,就看此方程能否转化为点斜式、斜截式、截距式、两点式、x=x1这五种形式之一.(1)当B≠0时,方程Ax+By+C=0可化为y=-x-,它表示斜率-,在y轴上的截距为-的直线.(2)当B=0时,方程Ax+By+C=0可化为x=-,它表示垂直于x轴的直线.综上:关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)都表示一条直线.问题3平面直角坐标系内的任意一条直线是否都可以用二元一次方程Ax+By+C=0(A,B不全为0)表示呢?平面直角坐标系内的直线可分为两类,第一类是与x轴垂直的直线,第二类是与x轴不垂直的直线.与x轴垂直的直线的方程为x=x1,可化为x+0·y-x1=0,(1与0不全为0)与x轴不垂直的直线可用斜截式方程表示,而y=kx+b可化为kx-y+b=0,(k与-1不全为0)所以平面直角坐标系内的任意一条直线都可以用二元一次方程Ax+By+C=0(A,B不全为0)表示.2.数学概念直线的一般式方程方程Ax+By+C=0(A,B不全为0)叫做直线的一般式方程.(二)理解概念1.直线方程的一般式Ax+By+C=0中,A,B满足条件不全为0;当A=0,B≠0时,方程表示垂直于y轴的直线;当B=0,A≠0时,方程表示垂直于x轴的直线.2.直线方程的一般式Ax+By+C=0(A,B不全为0)没有局限性,它能表示平面内任何一条直线.3.直线方程的一般式Ax+By+C=0中,因为A,B不全为0,总可以两边同除以A,B之一,从而转化为只有两个参量的方程:mx+y+n=0或x+my+n=0.不与y轴垂直的直线方程可设为x=py+t.4.因为方程Ax+By+C=0(A,B不全为0)表示一条直线,所以它也称为线性方程.(三)巩固概念1.把方程y-y1=k(x-x1)化为一般式为kx-y+y1-kx1=0.2.把方程+=1(ab≠0)化为一般式为bx+ay-ab=0.3.把方程=化为一般式为(y2-y1)x+(x1-x2)y+x2y1-x1y2=0.三、数学运用【例1】(教材P86例1)求直线l:3x+5y-15=0的斜率及它在x轴、y轴上的截距,并作图.可以把例1、例2放在一起让学生板演.解直线l的方程可化为y=-x+3,也可化为+=1,直线的斜率为-,它在x轴、y轴上的截距分别为5和3.(图略)根据方程求斜率,可把方程化斜截式.【例2】(教材P86例2)设直线l的方程为x+my-2m+6=0,根据下列条件分别确定m的值:(1)直线l在x轴上的截距为-3.(2)直线l的斜率为1.解(1)据题意直线l过点(-3, 0),把坐标(-3, 0)代入直线l的方程得-3-2m+6=0,解得m=.(2)据题意,直线l的斜率存在,所以m≠0,直线l的方程可化为y=-x+2-,所以-=1,解得m=-1.【例3】求斜率为,且与两坐标轴围成的三角形的面积为6的直线方程.引导学生分析,求直线方程,差什么量?如何构造此量的方程,如何设出直线方程,设直线方程需要注意什么?解法一据题意可设所求直线的方程为y=x+m,(m≠0),在方程中令y=0得x=-m,直线与两坐标轴交于A与B(0,m)两点,△AOB的面积为|m|=6.解得m=3或m=-3.因此,所求直线的方程为y=x+3或y=x-3,即3x-4y+12=0或3x-4y-12=0.解法二据题意可设所求直线的方程为+=1(ab≠0),此方程可化为y=-x+b,据题意可知解得或因此,所求直线的方程为+=1或+=1,即3x-4y+12=0或3x-4y-12=0.根据条件,恰当选择方程的形式,可简化解题,最后形式常化为一般式方程,解法二对解方程组的要求较高.*【例4】已知直线l:+=1.(1)如果直线l的斜率为2,求m的值.(2)如果直线l与两坐标轴的正半轴相交,求与坐标轴围成三角形面积最大时的直线l的方程.引导学生审题:“正半轴相交”是什么意思?“三角形面积最大时”是什么意思,为什么三角形面积会有最大值?解(1)直线l的方程可化为y=x+m,所以=2,解得m=4.(2)直线l与两坐标轴的交点为(2-m, 0),(0,m),据题意直线l与两坐标轴围成三角形面积为S=m(2-m)=-(m-1)2+,因为0<m<2,所以m=1时,S取到最大值,故所求的直线l的方程为+=1,即x+y-1=0.注意挖掘条件此题可变为“已知直线l与两坐标轴的正半轴相交,在两坐标轴上的截距之和为2,求与坐标轴围成三角形面积最大时的直线l的方程.”这样解法就多了,可以设斜截式方程,利用基本不等式求解.四、课堂练习1.直线3x+4y=6的斜率为-,在y轴上截距为.2.直线4x-3y-12=0在x轴、y轴上的截距分别为3,-4.3.填写下表直线l:Ax+By+C= 0(A,B不全为0)与坐标轴的关系直线过原点直线l垂直于x轴直线l垂直于y轴直线l与两坐标轴都相交A,B,C满足的关系C=0B=0A=0AB≠04.过两点(-4, 0)和(0, 2)的直线的一般式方程为x-2y+4=0.5.过两点(3, 0)和(0,-1)的直线的一般式方程为x-3y-3=0.五、课堂小结1.到目前为止研究了直线方程的五种形式:点斜式、斜截式、两点式、截距式和一般式,要掌握五种形式的适用范围,并能在直线方程的各种形式之间熟练转化.2.学会根据条件选用恰当的形式求直线的方程,用一般式设方程,往往并不简单,因为一般式中有三个参量A,B,C.第6课时两条直线的平行与垂直(1)教学过程一、问题情境问题1平面内两条不重合直线的位置关系有几种?如何判断这种关系?问题2初中学习过平面内两条直线的位置关系,学习过两条直线的平行的判定,如同位角相等得到两条直线平行,这种方法是将一个几何问题转化为另外一个几何问题来解决它,我们能否用代数方法(代数量)来判定两条直线的平行与垂直(几何量)呢?二、数学建构(一)生成概念1.引导学生探究两直线平行的判定条件问题3直线有哪些代数量?直线的倾斜角、斜率、在x轴、y轴上的截距.问题4当l1∥l2时,它们的代数量满足什么关系?l1∥l2,首先想到平行线的判定方法:同位角相等,内错角相等,同旁内角互补,三角形中位线平行于第三边.在直线的代数量中,直线的倾斜角是同位角,所以得到:若l1∥l2,则它们的倾斜角相等,如果倾斜角不是直角,根据斜率与倾斜角的关系得到,它们的斜率相等;再来考察它们在x轴、y轴上的截距,如果倾斜角不是0°也不是直角,因为l1,l2不重合,所以,它们在x轴上的截距不等,在y轴上的截距也不等.于是l1∥l2时有如下表格:。
高中数学苏教版必修二《第2章 平面解析几何初步 2.1 直线与方程2》课件
我们已经知道,任意一条直线都可以用一个二元一次方程来表 示,那么,两条直线是否有交点与它们对应的方程所组成的方程 组是否有解有何联系?
设两条直线的方程分别是:
l1:A1 x B1 y C1 0 l2:A2 x B2 y C2 0
一 组 无数组 无 解
例1 分别判定下列直线是否相交,若相交,求出它们的交点:
x y
3 1
因此直线l1和l2相交,交点坐标为3, 1。
例2 直线 经过原点,且经过另两条直线 的交点,求直线 的方程.
例3 .某商品的市场需求量y1 (万件)、市场供应量y2 (万件)与
市场价格x(元/件)分别近似地满足下列关系:y1=-x+70, y2=2x-20
当y1 = y2时的市场价格称为市场安稳价格,此时的需求量称为
安稳需求量.
(1).求安稳价格和安稳需求量;
(2).若要使安稳需求量增加4万件,政府对每件商品应给予多少元
补贴? y
分析:如图,市场安稳价格和
市场供应量 y2 70
安稳需求量实际上就是直线 y=-x+70与y=2x-20交点的横
安稳需求量
市场需求量 y1
坐标和纵坐标,即为方程组 的解.
O 10 安稳价格 70
苏教版 高中数学
两条直线的 交点
知识目标:会求两条直线的交点.
能力目标:理解两条直线的三种位置关系(平行、相交、重合)与相 应的直线方程所组成的二元一次方程组的解(无解、有惟一解、有无 数个解)的对应关系.
情感态度与价值观:通过学习两直线得位置关系与它们所对应得 方程组的解的对应关系,渗透转化的数学思想.
(1) l1 : 2x - y 7, l2 : 3x 2 y - 7 0
(教师用书)高中数学 第二章 平面解析几何初步教案 苏教版必修2
【课堂新坐标】(教师用书)2013-2014学年高中数学第二章平面解析几何初步教案苏教版必修22.1直线与方程2.1.1 直线的斜率(教师用书独具)●三维目标1.知识与技能(1)理解直线的倾斜角和斜率概念及他们间的关系.(2)经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率公式.2.过程与方法(1)通过教学,使学生从生活中坡度自然迁移到数学中直线的斜率的过程,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想.(2)充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想.3.情感、态度与价值观(1)通过直线倾斜角的概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.●重点难点重点:直线的倾斜角、斜率的概念和公式.难点:倾斜角与斜率的关系及斜率公式的导出过程.重难点突破:从学生熟知的概念“坡角”入手,充分利用学生已有的知识,引导学生把这个刻画倾斜程度的量与斜率联系起来,并通过坡度的计算方法,引入斜率的计算公式,难点之一得以解决;然后以确定直线位置的几何要素为切入点,采用数形结合思想给出直线倾斜角的概念,并分析斜率同倾斜角的关系,从而化难为易,突破难点.(教师用书独具)●教学建议鉴于本节知识概念抽象、疑难点较多的特点,教学时,可采用观察发现、启发引导、探索实验相结合的教学方法,把概念化抽象为直观,突出概念的形成过程,另在直线斜率公式教学的导出过程中,应渗透几何问题代数化的解析几何研究思想.引导帮助学生将直线的位置问题(几何问题)转化为倾斜角问题,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生进一步体会“数形结合”的思想方法.●教学流程创设问题情境,引出问题:直线位置的倾斜程度如何刻画?⇒引导学生通过观察、思考,类比坡度给出斜率的计算方式.⇒通过引导学生回答所提问题理解倾斜角的概念及斜率与倾斜角的关系.⇒借助直线的斜率公式及倾斜角的内在联系,完成例3及其变式训练,使学生的知识进一步深化.⇒通过例2及其变式训练,使学生理解直线的倾斜角同斜率的关系.⇒通过例1及其变式训练,使学生掌握直线的斜率公式.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(见学生用书第38页)课标解读1.理解直线的倾斜角和斜率的概念及它们之间的关系.(难点)2.掌握过两点的直线斜率计算公式.(重点)3.了解直线的倾斜角的范围,能根据直线的倾斜角求出直线的斜率.(易错点)直线的斜率【问题导思】如图,楼梯或路面的倾斜程度可用坡度来刻画.1.平面直角坐标系中,过点P (1,1),Q (3,3)的直线,其倾斜程度如何刻画? 【提示】 其倾斜程度如图所示,可用3-13-1=1来刻画.2.对于平面直角坐标系中,过点P (x 1,y 1),Q (x 2,y 2)(其中x 1≠x 2)的直线的倾斜程度如何刻画?【提示】 可用y 2-y 1x 2-x 1来刻画. 已知两点P (x 1,y 1),Q (x 2,y 2),如果x 1≠x 2,那么直线PQ 的斜率为k =y 2-y 1x 2-x 1(x 1≠x 2),如果x 1=x 2,那么直线PQ 的斜率不存在.直线的倾斜角在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°.倾斜角α的范围为0°≤α<180°.直线的斜率与倾斜角的关系【问题导思】观察下图中的三条直线l 1、l 2和l 3,回答下列问题.1.直线l 1的斜率k 1与其倾斜角α1间存在怎样的等量关系? 【提示】 k 1=tan α1 2.直线l 3的斜率存在吗? 【提示】 不存在.3.直线的斜率为正时,其倾斜角范围如何?直线的斜率为负时呢?【提示】 当直线的斜率为正时,其倾斜角α的范围为(0°<α<90°);当直线的斜率为负时,其倾斜角α的范围为(90°<α<180°).1.从关系式上看:若直线l 的倾斜角为α(α≠90°),则直线l 的斜率k =tan_α. 2.从几何图形上看 直线 情形α的0°0°<α<90°90°90°<α<180°大小k 的大小k =tan_α不存在k =tan_α=-tan(180°-α)k 的范围0 k >0 不存在k <0(见学生用书第39页)求直线的斜率经过下列两点的直线的斜率是否存在?如果存在,求其斜率. (1)A (-1,0),B (0,-2); (2)A (-3,2),B (2,-3); (3)A (a ,a +b ),B (c ,b +c ); (4)A (2,-1),B (m ,-2). 【思路探究】 当x 1≠x 2时,利用y 1-y 2x 1-x 2求解直线的斜率,否则斜率不存在. 【自主解答】 (1)∵-1≠0, ∴斜率存在,且k =-2-00--1=-2.(2)∵-3≠2, ∴斜率存在,且k =2--3-3-2=2+3-2-3=-1. (3)∵a ≠c (否则A ,B 两点重合为一点), ∴斜率存在,且k =a +b -b +ca -c=1.(4)当m =2时,斜率不存在.当m ≠2时,斜率k =-2--1m -2=12-m.1.本题(4)因m与2的关系不定而分m=2和m≠2两种情况求解.2.注意事项:(1)运用公式的前提条件是“x1≠x2”,即直线不与x轴垂直,因为当直线与x轴垂直时,斜率是不存在的;(2)斜率公式与两点P1,P2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置.设A(m,-m+3),B(2,m-1),C(-1,4),直线AC的斜率等于直线BC的斜率的3倍,求实数m的值.【解】依题意知直线AC的斜率存在且m≠-1,由k AC=3k BC,得-m+3-4 m--1=3×m-1-42--1,∴m=4.倾斜角与斜率的关系已知两点A(-3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点.(1)求直线l的斜率k的取值范围;(2)求直线l的倾斜角α的取值范围.【思路探究】画图――→斜率公式斜率k的范围――→k=tan α倾斜角α的范围【自主解答】如图所示,由题意可知k PA=4-0-3-1=-1,k PB=2-03-1=1.(1)要使直线l与线段AB有公共点,则直线l的斜率k的取值范围是k≤-1或k≥1.(2)由题意可知,直线l的倾斜角介于直线PB与PA的倾斜角之间,又PB的倾斜角是45°,PA的倾斜角是135°,所以α的取值范围是45°≤α≤135°.1.本题在求解过程中应用了数形结合思想,求解的关键是分析边界点的斜率同其他点斜率间的关系.2.数形结合是解决数学问题的常用思想方法.当直线绕定点由与x 轴平行(或重合)的位置按逆时针方向旋转到与y 轴平行(或重合)的位置时,斜率由零逐渐增大到+∞,按顺时针方向旋转到与y 轴平行(或重合)的位置时,斜率由零逐渐减小到-∞.这种方法既可定性分析倾斜角与斜率的关系,又可以定量求解斜率和倾斜角的取值范围.已知直线AB 的斜率为-3,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率.【解】 ∵k AB =-3,∴直线AB 的倾斜角是120°, ∴直线l 的倾斜角是60°,∴k l =tan 60°= 3.斜率公式的综合应用已知某直线l 的倾斜角α=45°,又P 1(2,y 1),P 2(x 2,5),P 3(3,1)是此直线上的三点,求x 2,y 1的值.【思路探究】 直线l 的倾斜角α――→k =tan α直线l 的斜率――→三点共线kp 1p 2=kp 2p 3――→解方程得x 2,y 1的值【自主解答】 由α=45°,故直线l 的斜率k =tan 45°=1, 又P 1,P 2,P 3都在此直线上,故kP 1P 2=kP 2P 3=k l , 即5-y 1x 2-2=1-53-x 2=1,解得x 2=7,y 1=0.三点共线问题的求解策略 (1)从三点中任取两点,求其斜率.(2)若斜率存在且相等,则由两直线有公共点得到三点共线;若斜率都不存在,由两直线有公共点,也可得到三点共线.(2013·怀化检测)若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于________.【解析】 ∵A 、B 、C 三点共线, ∴k AB =k AC . ∴b -1-2-3=11-18-3, 即b =-9.【答案】 -9(见学生用书第40页)因忽略斜率不存在的情况而致误求经过A (m,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围. 【错解】 由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0, 所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0, 所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】 在上述解题过程中遗漏了m =1的情况,当m =1时,斜率不存在. 【防范措施】 斜率公式k =y 2-y 1x 2-x 1的适用前提条件为x 1≠x 2,因此在含字母的点的坐标中,需计算直线的斜率时,要保证斜率公式有意义.【正解】 当m =1时,直线的斜率不存在,此时直线的倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0, 所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0, 所以直线的倾斜角α的取值范围是90°<α<180°.1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度. 2.直线的斜率是直线倾斜角的正切值,但两者并不是一一对应关系,学会用数形结合的思想分析和理解直线的斜率同其倾斜角的关系.3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =y 2-y 1x 2-x 1应注意的问题: (1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.(见学生用书第40页)1.直线l 的倾斜角α=120°,则其斜率为________.【解析】 直线的斜率为tan 120°=-tan 60°=- 3. 【答案】 - 32.与x 轴垂直的直线,其倾斜角α=________. 【解析】 与x 轴垂直的直线,其倾斜角α为90°. 【答案】 90°3.(2013·广州检测)若直线过点(1,2),(4,2+3),则此直线的倾斜角是________. 【解析】 过点(1,2),(4,2+3)的斜率k =2+3-24-1=33,由tan α=33可得α=30°.【答案】 30°4.求证:A (1,5)、B (0,2)、C (2,8)三点共线.【解】 利用斜率公式计算出AB 和AC 两条直线的斜率.k AB =5-21-0=3,k AC =8-52-1=3. ∵k AB =k AC ,又过同一点A ,∴A 、B 、C 三点共线.(见学生用书第101页)一、填空题1.(2013·中山检测)已知A (1,1),B (2,4),则直线AB 的斜率为________. 【解析】 由题意可知,k AB =4-12-1=3.【答案】 32.(2013·无锡检测)过点P (2,3)和Q (-1,6)的直线PQ 的倾斜角为________. 【解析】 ∵k PQ =6-3-1-2=-1,设直线PQ 的倾斜角为α,由tan α=-1,可知α=135°.【答案】 135°3.(2013·泰兴检测)已知两点A (1,-1),B (3,3),点C (5,a )在直线AB 上,则a =________.【解析】 由题意可知k AB =k AC ,即3--13-1=a --15-1,解得a =7.【答案】 74.下列说法中正确的是__________. ①倾斜角为0°的直线只有一条; ②一条直线的倾斜角是-30°;③平面直角坐标系内,每一条直线都有惟一的倾斜角;④直线倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. 【解析】 ①与x 轴平行或重合的直线的倾斜角都为0°,这样的直线有无数条,①错误;②直线的倾斜角的取值范围是0°≤α<180°,②错误;③平面直角坐标系内,每一条直线都有惟一的倾斜角,③正确;④一条直线的倾斜角确定时,直线位置不能确定,直线倾斜角α集合{α|0°≤α<180°}与直线集合不能建立一一对应的关系,④错误.【答案】 ③图2-1-15.如图2-1-1,已知直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系是________.【解析】 由图可知,直线l 3比直线l 2的倾斜度大,故k 3>k 2>0,又k 1<0,所以k 3>k 2>k 1. 【答案】 k 3>k 2>k 16.过点P (-2,m )和Q (m,4)的直线斜率不存在,则m 的值等于________. 【解析】 由题意可知,点P 和Q 的横坐标相同,即m =-2. 【答案】 -27.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么直线l 的斜率是________.【解析】 设P (a ,b )为l 上任一点,经过平移后,点P 到达点Q (a -3,b +1),此时直线PQ 与l 重合.故l 的斜率k =k PQ =b +1-b a -3-a =-13.【答案】 -138.已知A (3,4),在坐标轴上有一点B ,使直线AB 的斜率为2,则B 点坐标为________. 【解析】 设B (x ,y ),则2=y -4x -3,若x =0,则y =-2;若y =0,则x =1.故B 为(0,-2)或(1,0).【答案】(0,-2)或(1,0)二、解答题图2-1-29.如图2-1-2所示,直线l1的倾斜角α1=30°,直线l1⊥l2,求l1、l2的斜率.【解】l1的斜率:k1=tan α1=tan 30°=3 3.∵l2的倾斜角α2=90°+30°=120°,∴l2的斜率k2=tan 120°=tan(180°-60°)=-tan 60°=- 3.10.求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角.(1)(-3,5),(0,2);(2)(4,4),(4,5);(3)(10,2),(-10,2).【解】(1)k=2-50--3=-1<0,∴倾斜角是钝角.(2)倾斜角是90°,斜率不存在.(3)k=2-2-10-10=0,∴倾斜角是0°.11.若直线l的斜率为函数f(a)=a2+4a+3(a∈R)的最小值,求直线l的倾斜角α.【解】f(a)=a2+4a+3=(a+2)2-1,∴f(a)的最小值为-1,∴k l=-1=tan α.又0°≤α<180°,∴α=135°.(教师用书独具)过点M (0,-3)的直线l 与以点A (3,0),B (-4,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.【思路点拨】 画图斜率公式,倾斜角α的取值范围k =tan α,斜率k 的取值范围【规范解答】 如图所示,(1)直线l 过点A (3,0)时,即为直线MA ,倾斜角α1为最小值,∵tan α1=0--33-0=1,∴α1=45°.(2)直线l 过点B (-4,1)时,即为直线MB ,倾斜角α2为最大值, ∵tan α2=1--3-4-0=-1,∴α2=135°.所以直线l 倾斜角α的取值范围是45°≤α≤135°. 当α=90°时,直线l 的斜率不存在;当45°≤α<90°时,直线l 的斜率k =tan α≥1; 当90°<α≤135°时,直线l 的斜率k =tan α≤-1. 所以直线l 的斜率k 的取值范围是 (-∞,-1]∪[1,+∞).1.直线l 过点M ,斜率变化时,可以理解为直线l 绕定点M 旋转,使直线l 与线段AB 的公共点P 从端点A 运动到端点B ,直线l 的倾斜角就由最小值α1变到最大值α2.这是数形结合的思想方法.2.当直线绕定点旋转时,若倾斜角为锐角,逆时针旋转,倾斜角越来越大,斜率越来越大,顺时针旋转,倾斜角越来越小,斜率越来越小;若倾斜角为钝角,也具有同样的规律.但倾斜角是锐角或钝角不确定时,逆时针旋转,倾斜角越来越大,但斜率并不一定随倾斜角的增大而增大.已知直线l 过P (-2,-1),且与以A (-4,2)、B (1,3)为端点的线段相交,求直线l 的斜率的取值范围.【解】 根据题中的条件可画出图形,如图所示: 又可得直线PA 的斜率k PA =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°,故斜率的取值范围为[43,+∞);当直线l 由与y 轴平行的位置变化到PA 位置时,它的倾斜角由90°增大到PA 的倾斜角.故斜率的变化范围是(-∞,-32],综上可知,直线l 的斜率的取值范围是(-∞,-32]∪[43,+∞).2.1.2 直线的方程第1课时点斜式(教师用书独具)●三维目标1.知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围.(2)能正确利用直线的点斜式、斜截式公式求直线方程.(3)体会直线的斜截式方程与一次函数的关系.2.过程与方法(1)在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程.(2)学生通过对比理解“截距”与“距离”的区别.3.情感、态度与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题.●重点难点重点:直线的点斜式方程和斜截式方程.难点:直线的点斜式方程和斜截式方程的应用.重难点突破:以“直角坐标系内确定一条直线的几何要素”为切入点,先由学生自主导出“过某一定点的直线方程”,再通过组内分析、交流,找出所求方程的差异,明其原因,最终达成共识,得出直线的点斜式的形式及适用前提,最后通过题组训练,采用师生互动、讲练结合的方式,在帮助学生突出重点化解难点的同时,引出斜截式方程,并通过多媒体演示“截距”与“距离”的异同,化解难点.(教师用书独具)●教学建议解析几何的实质是“用代数的知识来研究几何问题”,而直线方程恰恰体现了这种思想.由于直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位.故本节课易采用“启发式”的教学方法,从学生原有的知识和能力出发,寻找过某一定点的直线方程的求解方法,鉴于学生在“数”和“形”之间转换的难度,教师可引导学生通过合作、交流等方式,对难点予以突破;可通过多媒体直观演示,让学生明确点斜式方程和斜截式方程的适用条件.对于斜截式方程,明确以下三点:(1)他是点斜式方程的特殊形式;(2)讲清“截距”的概念;(3)了解其与一次函数的关系,其他问题不必扩充太多.由于点斜式方程是学习其他方程的前提,故教师可适当的补充教学案例,让学生在训练中进一步感知解析法的思想.●教学流程创设问题情境,引出问题:过某一定点的直线方程,如何求解?⇒通过引导学生回忆直线的斜率公式,找出求“过某一定点的直线方程”的方法.⇒通过引导学生回答所提问题理解直线的点斜式方程及斜截式方程的适用条件.⇒通过例1及其变式训练,使学生掌握直线的点斜式方程的求法.⇒通过例2及其变式训练,使学生掌握直线的斜截式方程的求法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(见学生用书第41页)课标解读 1.掌握直线的点斜式与斜截式方程.(重点、难点)2.能利用点斜式求直线的方程.(重点)3.了解直线的斜截式与一次函数之间的区别和联系.(易混点)直线的点斜式方程【问题导思】1.若直线l过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于点P0的任意一点,那么x,y应满足什么关系?【提示】y-y0=k(x-x0).2.经过点P0(x0,y0)且斜率不存在的直线l如何表示?【提示】x=x0.1.过点P1(x1,y1)且斜率为k的直线方程y-y1=k(x-x1)叫做直线的点斜式方程.2.过点P1(x1,y1)且与x轴垂直的方程为x=x1.直线的斜截式方程【问题导思】经过点(0,b)且斜率为k的直线l的方程如何表示?【提示】y=kx+b.斜截式方程:y=kx+b,它表示经过点P(0,b),且斜率为k的直线方程.其中b为直线与y轴交点的纵坐标,称其为直线在y轴上的截距.(见学生用书第41页)直线的点斜式方程根据下列条件,求直线的方程.(1)经过点B(2,3),倾斜角是45°;(2)经过点C(-1,-1),与x轴平行;(3)经过点D(1,1),与x轴垂直.【思路探究】(1)(2)先求斜率,再利用点斜式求解;(3)利用垂直于x轴的直线方程形式求解.【自主解答】(1)∵直线的倾斜角为45°,∴此直线的斜率k=tan 45°=1,∴直线的点斜式方程为y-3=x-2,即x-y+1=0.(2)∵直线与x轴平行,∴倾斜角为0°,斜率k=0,∴直线方程为y+1=0×(x+1),即y=-1.(3)∵直线与x轴垂直,斜率不存在,故不能用点斜式表示这条直线的方程,由于直线所有点的横坐标都是1,故这条直线方程为x=1.1.求直线的点斜式方程的前提条件是:①已知一点P(x0,y0)和斜率k;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.2.求直线的点斜式方程的步骤是:先确定点,再确定斜率,从而代入公式求解.直线经过点P(2,-3),且倾斜角α=45°,求直线的点斜式方程,并画出直线l.【解】直线经过点P(2,-3),且斜率k=tan 45°=1,代入点斜式方程可得x-y -5=0.画图时,根据两点确定一条直线,只需再找出直线l上的另一点即可.如点Q(5,0)在该直线上,则过P,Q两点的直线即为所求.如图所示.直线的斜截式方程根据条件写出下列直线的斜截式方程.(1)斜率是3,在y轴上的截距是-3;(2)倾斜角是60°,在y轴上的截距是5;(3)倾斜角是30°,在y轴上的截距是0.【思路探究】求直线的斜率k→求直线在y轴上的截距→得方程y=kx+b.【自主解答】 (1)根据题意得直线的斜截式方程是y =3x -3. (2)∵k =tan 60°=3,∴直线的斜截式方程是y =3x +5. (3)∵k =tan 30°=33, ∴直线的斜截式方程是y =33x .1.使用斜截式方程的前提是直线的斜率必须存在,在利用斜截式求解直线方程时,应对直线的斜率是否存在进行讨论.2.直线的斜截式方程y =kx +b 中只有两个参数,因此要确定某直线,只需两个独立的条件.3.利用直线的斜截式求方程务必灵活,如果已知斜率k ,只需引入参数b ;同理如果已知截距b ,只需引入参数k .已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,求直线l 的方程.【解】 由题意可知,直线l 的斜率必存在,设l 的方程为y =kx -3,则l 与两坐标轴的交点分别为(3k,0)和(0,-3).由它与两坐标轴围成的三角形的面积为6可知 2×|3k |×3=6,解得k =±34.故直线l 的方程为y =±34x -3.(见学生用书第42页)因忽略点斜式方程的适用条件致误已知直线l 的倾斜角为α,且经过点(1,-2),求直线l 的方程.【错解】 由直线l 的倾斜角为α,得该直线的斜率k =tan α,由点斜式得,直线l 的方程为y +2=tan α(x -1).【错因分析】 上述解法的错误在于忽略了倾斜角α=90°时,tan α不存在的情形. 【防范措施】 在使用点斜式求直线方程时,应分“斜率存在”与“斜率不存在”两种情况分别考虑,以免丢解.故本题在求解时,应分α=90°和α≠90°两类分别求直线l 的方程.【正解】 当α≠90°时,直线l 的斜率为tan α,由点斜式得,直线l 的方程为y +2=tan α(x -1).当α=90°时,直线的斜率不存在,故过点(1,-2)的直线方程为x =1. 综上,可得直线l 的方程为y +2=tan α(x -1)或x =1.1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y -y 1x -x 1=k ,此式是不含点P 1(x 1,y 1)的直线方程,必须化为y -y 1=k (x -x 1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x =x 1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b )点、斜率为k 的直线y -b =k (x -0),即y =kx +b ,其特征是方程等号的一端只是一个y ,其系数是1;等号的另一端是x 的一次式,而不一定是x 的一次函数.(见学生用书第42页)1.过点P(1,1)平行于x轴的直线方程为________,垂直于x轴的直线方程为________.【解析】过点P(1,1)平行于x轴的直线方程为y=1,垂直于x轴的直线方程为x=1.【答案】y=1 x=12.过点(0,1),且斜率为-1的直线方程为________.【解析】由斜截式方程得,所求直线方程为y=-x+1.【答案】y=-x+13.直线方程为y+2=2x-2,则直线的斜率为________,在y轴上的截距为________.【解析】直线的方程可以化为y=2x-4,故斜率为2,在y轴上的截距为-4.【答案】 2 -44.求满足下列条件的直线方程.(1)经过点A(2,5),斜率为4;(2)过点B(-2,2),倾斜角为30°;(3)倾斜角为直线y=-3x+1的倾斜角的一半,且在y轴上的截距为-10.【解】(1)y-5=4(x-2),即4x-y-3=0.(2)由斜率k=tan 30°=33,得直线方程为y-2=33(x+2),即33x-y+63+2=0.(3)由直线y=-3x+1的斜率为-3可知此直线的倾斜角为120°,由题意知所求直线的倾斜角为60°,所求直线的斜率k= 3.直线在y轴上的截距为-10,由直线的斜截式方程得y=3x-10,即3x-y-10=0.(见学生用书第103页)一、填空题1.(2013·湖南师大附中检测)已知直线的倾斜角为45°,在y轴上的截距为2,则此直线方程为________.【解析】 由题意可知,该直线的倾斜角为45°,故其斜率k =tan 45°=1.所以由斜截式得,所求方程为y =x +2.【答案】 y =x +22.(2013·广州检测)过点P (-2,0),且斜率为3的直线的方程是________. 【解析】 设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0. ∴b =6,故y =3x +6. 【答案】 y =3x +63.(2013·郑州检测)直线x +y +1=0的倾斜角与其在y 轴上的截距分别是________. 【解析】 直线x +y +1=0变成斜截式得y =-x -1,故该直线的斜率为-1,在y 轴上的截距为-1.若直线的倾斜角为α,则tan α=-1,即α=135°.【答案】 135°,-1图2-1-34.如图2-1-3,直线y =ax -1a的图象如图所示,则a =________.【解析】 由图知,直线在y 轴上的截距为1,∴-1a=1,∴a =-1.【答案】 -15.斜率与直线y =32x 的斜率相等,且过点(-4,3)的直线的点斜式方程是________.【解析】 ∵直线y =32x 的斜率为32,∴过点(-4,3)且斜率为32的直线方程为y -3=32(x +4).【答案】 y -3=32(x +4)6.直线y =kx +b 经过二、三、四象限,则斜率k 和在y 轴上的截距b 满足的条件为________.【解析】 直线y =kx +b 经过二、三、四象限,如图所示,故直线的斜率k <0,在y 轴上的截距b <0.【答案】 k <0,b <07.下列关于方程y =k (x -2)的说法正确的是________.(填序号)①表示通过点(-2,0)的所有直线 ②表示通过点(2,0)的所有直线 ③表示通过点(2,0)且不垂直于x 轴的直线 ④通过(2,0)且除去x 轴的直线.【解析】 直线x =2也过(2,0),但不能用y =k (x -2)表示. 【答案】 ③8.将直线l :y =-3(x -2)绕点(2,0)按顺时针方向旋转30°得到直线l ′,则直线l ′的方程为________.【解析】 因为直线的倾斜角为120°,并且(2,0)是该直线与x 轴的交点,绕着该点顺时针旋转30°后,所得直线的倾斜角为120°-30°=90°,此时所得直线恰好与x 轴垂直,方程为x =2.【答案】 x -2=0 二、解答题9.求倾斜角为直线y =-3x +1的倾斜角的一半,且分别满足下列条件的直线的方程: (1)经过点(-4,1); (2)在y 轴上的截距为-10.【解】 由直线y =-3x +1的斜率为-3可知此直线的倾斜角为120°,由题意知所求直线的倾斜角为60°,所求直线的斜率k = 3.(1)直线过点(-4,1),由直线的点斜式方程得y -1=3(x +4),即为3x -y +1+43=0.(2)直线在y 轴上的截距为-10,由直线的斜截式方程得y =3x -10,即为3x -y -10=0.10.(2013·临沂检测)已知直线l 经过点(0,-2),其倾斜角是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成三角形的面积.【解】 (1)因为直线l 的倾斜角的大小为60°,故其斜率为tan 60°=3,又直线l 经过点(0,-2),所以其方程为3x -y -2=0.(2)由直线l 的方程知它在x 轴、y 轴上的截距分别是23,-2,所以直线l 与两坐标轴围成三角形的面积S =12·23·2=233.11.已知△ABC 在第一象限中,A (1,1)、B (5,1),∠A =60°,∠B =45°,求:(1)AB边所在直线的方程;(2)AC边、BC边所在直线的方程.【解】(1)∵A(1,1),B(5,1),∴直线AB的方程是y=1.(2)由图可知,k AC=tan 60°=3,∴直线AC的方程是y-1=3(x-1),即3x-y-3+1=0.∵k BC=tan(180°-45°)=-1,∴直线BC的方程是y-1=-(x-5),即x+y-6=0.(教师用书独具)已知直线l经过点P(-1,-2),在y轴上的截距的取值范围为[2,6],求此直线斜率的取值范围.【思路点拨】解答本题可先写出点斜式方程,再化为斜截式方程,求出直线在y轴上的截距,最后解不等式求斜率的取值范围.也可设出直线l的斜截式方程,再将点P坐标代入找到斜率与在y轴上截距的关系,从而求出斜率的范围.【规范解答】法一设直线l的斜率为k,由于这条直线过点P(-1,-2),所以,它的点斜式方程是y-(-2)=k[x-(-1)],可化为斜截式方程是y=kx+k-2,。
高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2
2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。
高中数学必修2教案苏教版
高中数学必修2教案苏教版
教学重点:直线与平面的位置关系、直线与平面的夹角关系。
教学难点:直线与平面的方程。
教学准备:教材、教学课件、黑板、教具等。
教学步骤:
一、导入:通过引入一个实际生活中的问题来引起学生的兴趣,如:一个飞机在空中飞行时,飞机的飞行轨迹与地面的关系是怎样的呢?
二、讲解直线与平面的位置关系:首先,向学生介绍直线与平面的基本概念,然后讲解直线与平面的相互位置关系,即直线与平面可能相离、相切或相交。
三、讲解直线与平面的夹角关系:介绍直线与平面之间的夹角,包括直线与平面的垂直、平行和倾斜的夹角关系,并讲解相关理论知识。
四、解题演练:通过几个实例让学生进行实际问题求解,巩固所学知识,培养学生的解题能力。
五、作业布置:布置相关练习题,巩固学生所学内容,并激发他们对数学的兴趣。
六、小结:对本节课学习的重点知识进行总结,并提醒学生注意相关知识点。
教学反思:在教学过程中要注重引导学生思考和实际运用知识,培养学生的数学思维能力和解决问题的能力。
同时,要根据学生的实际情况灵活调整教学方法,提高教学效果。
高中数学 第2章 平面解析几何初步 第一节 直线的方程3 两条直线的平行与垂直学案 苏教版必修2
两条直线的平行与垂直二、重难点提示重点:根据直线的斜率判定两条直线平行和垂直。
难点:两条直线垂直判定条件的探究与证明。
考点一:两条直线平行1. 斜截式方程中两直线平行的判定:设直线l 1:y =k 1x +b 1;直线l 2:y =k 2x +b 2,则l 1∥l 2⇔k 1=k 2且b 1≠b 2。
l 1、l 2重合⇔k 1=k 2且b 1=b 2。
l 1与l 2相交⇔k 1≠k 2。
【重要提示】若两条直线的斜率有不存在的情况时①当一条直线斜率存在,而另一条不存在时,两条直线相交。
②当两条直线斜率都不存在时,两条直线的方程可化为12,x x x x ==,则12x x =时,两条直线重合;12x x ≠时,两条直线平行。
2. 一般式方程中两直线平行的判定:设直线l 1:1110A x B y C ++=;直线l 2:2220A x B y C ++= ① 当1A 、1B 、1C 、2A 、2B 、2C 都不为零时:当1122A B A B ≠时,l 1与l 2相交; 当111222A B CA B C =≠时,l 1∥l 2;当111222A B CA B C ==时,l 1与l 2重合。
②当1A 、1B 、1C 、2A 、2B 、2C 有为零的数时,我们要根据具体的情况来讨论。
考点二:两条直线的垂直1. 斜截式方程中两直线垂直的判定:设直线l1:y=k1x+b1;直线l2:y=k2x+b2,则l1⊥l2⇔k1·k2=-1。
2. 一般式方程中两直线垂直的判定:设直线l1:1110A xB y C++=;直线l2:2220A xB y C++=,则l1⊥l2⇔12120A AB B+=。
例题1(两条直线平行关系的判定)判断下列各小题中的直线l1与l2是否平行。
(1)l1经过点A(-1,-2),B(2,1),l2经过点M(3,4),N(-1,-1);(2)l1的斜率为1,l2经过点A(1,1),B(2,2);(3)l1经过点A(0,1),B(1,0),l2经过点M(-1,3),N(2,0);(4)l1经过点A(-3,2),B(-3,10),l2经过点M(5,-2),N(5,5)。
高中数学苏教版必修2课时5空间两条直线平行word学案
课时5 空间两条直线平行【课标展示】1.了解空间两条直线的位置关系 2.掌握平行公理及其应用3.掌握等角定理,并能解决相关问题. 【先学应知】1.空间两直线的位置关系位置关系 共面情况 公共点个数 相交直线 平行直线 异面直线2.公理4: 符号表示:3.经过直线外一点,有 条直线和这条直线平行4.等角定理:5. 设AA 1是正方体的一条棱,这个正方体中与AA 1平行的棱共有 条6.若OA//O 1A 1 , OB//O 1B 1 , 则∠AOB 与∠A 1O 1B 1关系 【合作探究】例1:.如图, 在长方体ABCD-A 1B 1C 1D 1中, 已知E 、F 分别是AB 、BC 的中点, 求证: EF//A 1C 1【要点突破】证两直线平行的方法:(1)利用初中所学的知识;(2)利用平行公理. 例2:如图. 已知E 、E 1分别为正方体ABCD-A 1B 1C 1D 1的棱AD 、A 1D 1的中点, 求证: ∠C 1E 1B 1=∠CEB .分析:设法证明E 1C 1//EC,E 1B 1//EBA 1C A例3. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
等角定理的证明已知: ∠BAC 和∠B 1A 1C 1的边AB//A 1B 1 , AC//A 1C 1 , 并且方向相同. 求证: ∠BAC=∠B 1A 1C 1【要点突破】平几中的定义,定理等,对于非平面图形,需要经过证明才能应用。
【实战检验】1.已知:棱长为a 的正方体ABCD-A 1B 1C 1D 1中,M,N 分别为CD,AD 的中点,求证:四边形MNAC 是梯形.M2.如图,已知AA ′,BB ′,CC ′,不共面,且AA ′//BB ′,AA ′=BB ′, BB ′//CC ′, BB ′=CC ′. 求证:△ABC ≌△A ′B ′C ′A ′AB ′B C ′C3.求证:过直线外一点有且只有一条直线和这条直线平行. 已知:点P 直线a求证:过点P 和直线a 平行的直线b 有且仅有一条.A 1【课时作业5】1.如果一个角的两边与另一个角的两边分别平行,但方向都相反,这两个角关系是 . 2.下列命题中正确命题的序号是 .(1)在空间两组对边分别平行的四边形是平行四边形; (2)在空间两组对边分别相等的四边形是平行四边形; (3) 在空间一组对边平行且相等的四边形是平行四边形; (4)在空间四边相等的四边形是菱形.3.若角α与β的两边分别对应平行,当45α=o时,则β= .4.空间三条直线互相平行,每两条直线确定一个平面,则这三条直线可确定的平面个数为 个。
高中数学 第二章 平面解析几何初步 2.1 直线与方程教学案(无答案)苏教版必修2(2021年整理)
江苏省铜山县2016-2017学年高中数学第二章平面解析几何初步2.1 直线与方程教学案(无答案)苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县2016-2017学年高中数学第二章平面解析几何初步2.1 直线与方程教学案(无答案)苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县2016-2017学年高中数学第二章平面解析几何初步2.1 直线与方程教学案(无答案)苏教版必修2的全部内容。
直线与方程学目标:掌握直线方程的基础知识;能相关知识解决简单的问题.学重难点:直线方程的应用学过程个性备课部分集体备课部分(学生活动部分)学评价:直线倾斜角为__________已知A(1,1),B(2,2),则直线AB的斜率为过点A(2,﹣1)且斜率为2的直线的一般式方程为在平面直角坐标系xOy中,直线2x+ay﹣1=0和直线(2a﹣1)x+1=0互相垂直,则实数a的值是_______动探究例1. 已知直线过点,根据下列条件分别求直线的方程:(1)直线的倾斜角为;(2)与直线x—2y+1=0垂直;(3)在轴、轴上的截距之和等于堂检测知直线l1:(m+3)x+(m﹣1)y﹣5=0与l2:(m﹣1)x+(3m+9)y﹣1=互相垂直,则实数m 值为.平面直角坐标系xOy中,若直线l:x﹣2y+m﹣1=0在y轴上的截距为,则实数m 值为.后作业堂反思。
2019-2020年高中数学两条直线平行教学案苏教版必修2
2019-2020年高中数学两条直线平行教学案苏教版必修2总 课 题 两直线的平行与垂直 总课时 第21课时 分 课 题 两条直线平行分课时第 1 课时教学目标掌握用斜率判断两条直线平行的方法,感受用代数方法研究几何图形性质的思想,运用分类讨论、数形结合等数学思想培养学生思维的严谨性、辩证性.重点难点 两直线平行的判断.故.3.练习:例题剖析已知两直线052074221=+-=+-y x l y x l :,: ,求证://.求证:顺次连结)4,4()3,2()27,5()3,2(---D C B A ,,,所得的四边形是梯形.例3 求过点,且与直线平行的直线的方程.求与直线平行,且在两坐标轴上的截距之和为的直线的方程.例1 例2 AB C D -4 2 5 3-3例4巩固练习1.如果直线与直线平行, 则____________________.2.过点且与直线平行的直线方程是_________________. 3.两直线和的位置关系 是___________________.4.已知直线与经过点与的直线平行,若直线在轴上的截距 为,则直线的方程是_____________________________.5.已知)27,31()5,5()1,1()2,4(----D C B A ,,,,求证:四边形是梯形.课堂小结//或//斜率不存在且横截距不相等,即如果,那么一定有//,反之不一定成立.班级:高二( )班 姓名:____________一 基础题1.下列所给直线中,与直线平行的是( ) A . B . C . D . 2.经过点,且平行于过两点和的直线的方程 是____________.3.将直线沿轴负方向平移个单位,则所得的直线方程 为____________. 4.若直线与直线平行,则_________________. 二 提高题5.已知直线与与直线:平行,且在两坐标轴上的截距之和为, 求直线的方程.6.当为何值时,直线和直线平行.三 能力题 7.(1)已知直线:,且直线//,求证:直线的方程总可以写成)(011C C C By Ax ≠=++;(2)直线和的方程分别是和,其中,不全为,也不全为,试探求:当//时,直线方程中的系数应满足什么关系?2019-2020年高中数学两条直线的交点坐标教案新课标人教版必修2(A)一、教学目标(一)知识教学点知道两条直线的相交、平行和重合三种位置关系,对应于相应的二元一次方程组有唯一解、无解和无穷多组解,会应用这种对应关系通过方程判断两直线的位置关系,以及由已知两直线的位置关系求它们方程的系数所应满足的条件.(二)能力训练点通过研究两直线的位置关系与它们对应方程组的解,培养学生的数形结合能力;通过对方程组解的讨论培养学生的分类思想;求出x后直接分析出y的表达式,培养学生的抽象思维能力与类比思维能力.(三)学科渗透点通过学习两直线的位置关系与它们所对应的方程组的解的对应关系,培养学生的转化思想.二、教材分析1.重点:两条直线的位置关系与它们所对应的方程组的解的个数的对应关系,本节是从交点个数为特征对两直线位置关系的进一步讨论.2.难点:对方程组系数中含有未知数的两直线的位置关系的讨论.3.疑点:当方程组中有一个未知数的系数为零时两直线位置关系的简要说明.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)两直线交点与方程组解的关系设两直线的方程是l1: A1x+B1y+c1=0, l2: A2x+B2y+C2=0.如果两条直线相交,由于交点同时在两条直线上,交点的坐标一定是这两个方程的公共解;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是直线l1和l2的交点.因此,两条直线是否相交,就要看这两条直线的方程所组成的方程组(二)对方程组的解的讨论若A1、A2、B1、B2中有一个或两个为零,则两直线中至少有一条与坐标轴平行,很容易得到两直线的位置关系.下面设A1、A2、B1、B2全不为零.解这个方程组:(1)×B2得 A1B2x+B1B2y+B2C1=0, (3)(2)×B1得 A2B1x+B1B2y+B1C2=0. (4)(3)-(4)得(A1B2-A2B1)x+B2C1-B1C2=0.下面分两种情况讨论:将上面表达式中右边的A1、A2分别用B1、B2代入即可得上面得到y可把方程组写成即将x用y换,A1、A2分别与B1、B2对换后上面的方程组还原成原方程组.综上所述,方程组有唯一解:这时l1与l2相交,上面x和y的值就是交点的坐标.(2)当A1B2-A2B1=0时:①当B1C2-B2C1≠0时,这时C1、C2不能全为零(为什么?).设C2②如果B1C2-B2C1=0,这时C1、C2或全为零或全不为零(当C1、(三)统一通过解方程组研究两直线的位置关系与通过斜率研究两直线位置关系的结论说明:在平面几何中,我们研究两直线的位置关系时,不考虑两条直线重合的情况,而在解析几何中,由于两个不同的方程可以表示同一条直线,我们把重合也作为两直线的一种位置关系来研究.(四)例题例1 求下列两条直线的交点:l1:3x+4y-2=0, l2: 2x+y+2=0.解:解方程组∴l1与l2的交点是M(-2,2).例2 已知下列各对直线的位置关系,如果相交,求出交点的坐标: (1)l: x-y=0, l: 3x+3y-10 ; (2)l: 3x-y+4=0 l: 6x-2y=0 ; (3)l: 3x+4y-5=0, l: 6x+8y-10=0 解:(1)解方程组, 得 ⎪⎪⎩⎪⎪⎨⎧==3535y x所以,l 与l 相交,交点是M (, )(2)解方程组 (1)×2-(2)得 9=0, 矛盾, 方程组无解,所以量直线无公共点,l ∥ l. (3)解方程组 (1)×2得 6x+8y-10=0因此,(1)和(2)可以化成同一个方程,即(1)和(2)表示同一条直线,l 与l 重合 (五)课堂练习:由学生完成,教师讲评 课后小结(1)两直线的位置关系与它们对应的方程的解的个数的对应关系. (2)求两条直线交点的一般方法. .五、布置作业1.教材第116页,习题3.3A 组第1题 六、板书设计1.判断下列各对直线的位置关系,如果相交,则求出交点的坐标:2. A和C取什么值时,直线Ax-2y-1=0和直线6x-4y+c=0(1)平行;(2)重合;(3)相交.解:(1)A=3,C≠-2;(2)A=3,C=-2;(3)A≠3.3.已知两条直线:l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.解:(1)m≠1且m≠-7;(2)m=-7;(3)m=-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省泰兴中学高一数学教学案(102)
必修2 两条直线的平行
班级 姓名
目标要求:
1、掌握两条直线平行的条件;
2、能根据方程判断两条直线是否平行.
重点难点:
重点:两直线平行条件
难点:一般式直线方程时,两直线平行条件的讨论
典例剖析:
例1、求证:顺次连结7(2,3),(5,),(2,3),(4,4)2A B C D ---四点所得的四边形是梯形
例2、(1)求过点A (1,-4)且与直线0532=++y x 平行的直线的方程.
(2)求与直线3410x y ++=平行,且在两坐标轴上的截距之和为
73
的直线方程.
例3、已知直线06:1=++my x l ,直线03)2(:2=++-m y x m l ,求m 的值,使得:
(1)12l l 与相交; (2)21//l l .
例4、已知直线1l 经过点(2,)A a ,(1,3)B a -,直线2l 经过点(1,2)C ,(2,2)D a -+,是否
存在a ,使21//l l ,若存在求出a ,若不存在说明理由。
例5、将直线x y 3
3=
绕原点逆时针旋转︒30,再向右平移一个单位,求所得的直线方程.
学习反思
1、与直线0=++C By Ax 平行的直线方程可设为0=++λBy Ax
2、讨论两条直线是否平行时,有两种情况:两条直线都存在斜率;两条直线都不存在斜率。
在使用待定系数法求解问题时,需排除两直线重合的情形
3、直线0:1111=++C y B x A l ,直线0:2222=++C y B x A l
两条直线平行00,0122112211221≠-≠-=-⇔C B C B C A C A B A B A 或且;
课堂练习
1、直线m y m m x m m l =-+-+)()32(:2
21与1:2=-y x l 平行,则m 的值是________. 2、设直线06:1=++my x l 和023)2(:2=++-m y x m l ,当=m _____,1l ∥2l ;当
=m ______,1l 与2l 重合.
3、求过点A (2,3)且平行于直线2x +5y -3=0的直线的方程
江苏省泰兴中学高一数学作业(102)
班级 姓名 得分
1、下列说法正确的序号有_________________. ①若两直线l 1与 l 2的斜率相等,则l 1∥ l 2; ②若l 1∥ l 2,则两直线的斜率相等
③若直线l 1与 l 2中有一条斜率不存在,另一条斜率存在,则l 1与 l 2相交
④若直线l 1与 l 2斜率都不存在,则l 1∥ l 2
2、过点(6,)P m 和点(,3)Q m 的直线与直线250x y -+=平行,则m 的值为__________.
3、两条直线0ax y b ++=和10x ay +-=互相平行的条件是__________________.
4、已知点(2,1)P -,直线:2310l x y -+=,则过P 且与l 平行的直线方程为____________.
5、直线l 平行于直线31840x y --=,且与两坐标轴围成的三角形面积为3,则直线l 的
方程是________________________.
6、已知平行四边形ABCD 的三个顶点的坐标分别为A (0,1),B (1,0),C (4,3)则
顶点D 的坐标为__________________.
7、判断下列各对直线是否平行:
(1)y = 3x +4与2y —6x +1=0;(2)y = x 与3x +3y -10=0;(3)3x +4y = 5与6x
-8y = 7
8、已知17(4,2),(1,1),(5,5),(,)32
A B C D ----,求证:四边形ABCD 是梯形
9、已知直线(3)453m x y m ++=-与2(5)8x m y ++=,求m 的值,使它们分别满足:
(1)相交; (2)平行;
10、将直线0333=+-y x 绕与x 轴的交点顺时针旋转︒60,再向上平移一个单位,求所得的直线方程.
11、设直线l 的方程是(1)20()a x y a a R +++-=∈。
(1)若l 在两坐标轴上的截距相等,求l 的方程;
(2)若l 不经过第二象限,求实数a 的取值范围。