4.3 两个三角形相似的判定(第1课时)
《相似三角形的判定》PPT课件(第1课时)
④中的三角形的三边分别是:3, 17, 4 2
∵①与③中的三角形的三边的比为:1: 2
∴①与③相似.故答选:A
02
练一练
2.下列四个三角形中,与图中的三角形相似的是(
)
【详解】
解:设单位正方形的边长为1,给出的三角形三边长分别为 2,2 2, 10.
目录
02
重点
03
难点
运用两种判定方法判定两个三角形相似。
三角形相似的条件归纳、证明。
01
LEARNING OBJECTIVES
学习目标
1、初步掌握“三边成比例的两个三角形相似”和
“两边成比例且夹角相等的两个三角形相似”的判定方法。
2、能够运用三角形相似的条件解决简单的问题。
01
判定三角形全等条件知识点回顾
AB
AC
在△ABC和△A’B’C’中, A′B′ = A′C′ , ∠A = ∠A′ ,
求证:△ ABC ∽△ A′B′C′?
A’
∵△A'DE∽△A'B‘C’
A
A′D
D
B
DE
′
∴ A′B′ = B′C′ = A′C′,而AB=A’D
E
C
∴
AC
A′C′
=
′
A′C′
∴ AC=A’E 而∠A = ∠A′
可得△A'DE∽△A'B'C'.
01
探究与证明(通过三边判定两个三角形相似)
AB
BC
AC
在△ABC和△A’B’C’中, A′B′ = B′C′ = A′C′ , 求证:△ ABC ∽△ A′B′C′?
相似三角形的判定1.3 两个三角形相似的判定(1)及答案
4.3两个三角形相似的判定(1)【要点预习】相似三角形的判定三角形一边的直线和其他两边相交,所构成的三角形与原三角形 . 有 角对应相等的两个三角形相似.【课前热身】1. 如图,△ABC 中,DE ∥BC ,则下列比例式不成立的是……………………………( )A.AD AE AB AC = B.AD DE AB BC = C.AD DE DB BC = D.AD AEDB EC=答案:C2. 如图,P 是△ABC 的边AB 上一点,若∠1= ,则△APC ∽△ACB .答案:∠ACB 3. 图中x = .答案:24. 如图,AB ∥DC ,AC 交BD 于点O .已知35AO CO =,BO =6,则DO =_________. 答案:10【讲练互动】【例1】 如图, D 为△ABC 的AB 边上一点,过点D 作DE //AC 交 BC 于点E .已知BE ∶CE =2∶1,AC =6cm ,求DE 的长.【分析】先证明△BDE ∽△BAC ,再根据比例线段求出DE 的长. 【解】∵DE ∥AC ,∴ΔBDE ∽ΔBAC ,∴BE DEBC AC=. ∵21BE CE =,∴23BE BC =,∴236DE=,∴DE =4cm. 【绿色通道】利用相似三角形可得到多组比例线段,在运用时要注意结合已知条件及所求的线段来选择相应的比例线段.【变式训练】第1题第2题第3题第4题1. 如图,AB//CD,AE//FD,AE、FD分别交BC于点G、H,则图中共有相似三角形…………………………………………()A. 4对B. 5对C. 6对D. 7对【解析】由已知易得△BFH∽△BAG∽△CEG∽△CDH.【答案】C【例2】如图,已知⊙O是△ABC的外接圆,CD是AB边上的高,AE是⊙O的直径.求证:AC·BC=AE·CD.【分析】先将结论化为比例式AC AECD AB=,因此只须证△ACE∽△CDB.【证明】连结CE. ∵AE是⊙O的直径,∴∠ACE=90°. ∵CD是AB边长的高,∴∠CDB=90°.∴∠ACE=∠CDB. 又∵∠E=∠B,∴△ACE∽△CDB,∴AC AECD AB=,即AC·BC=AE·CD.【绿色通道】已知或求证中出现线段的等积形式时,通常转化为比例式,再考虑比例式所在的三角形相似.【变式训练】2. 将两块完全相同的等腰直角三角板摆放成如图的样子,假设图形中的所有点、线都在同一平面内. 请找出图中的相似(不包括全等)三角形,并证明其中的一对.【解】△ABE∽△DAE∽△DCA.∵∠DAE=∠B=45°,∠AEB=∠DEA,∴△ABE∽△DAE.【例3】如图所示,一圆桌正上方3米处有一灯泡(视为一点),圆桌高1米,圆桌面直径为1米,请你求出圆桌面在水平地面上的投影面积.(图中阴影部分)(圆桌面与地面平行)(π取3.14,答案精确到0.1平方米)【解】建立平面图如图. OA=3,AC=1,AB=1 2 .∵AB∥CD,∴△OAB∽△OCB∴OA ABOC CD=,∴CD=142233AB OCOA⨯⋅==.∴S=π·CD2=3.14×49≈1.4 (m2). 答:圆桌面在地面上的投影面积为1.4 m2.【变式训练】3. 九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3mCD=,标杆与旗杆的水平距离15mBD=,人的眼睛与OBDCABHGFEDCAABCDOE图7ECAHBG地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.【解】∵CD ∥AB ,∴△ECG ∽△EAH ,∴EG CGEH AH=. ∵EG =DF =2m ,EH=FB=17m ,CG =CD-EF =1.4m , ∴2 1.417AH=,∴AH =11.9m ,∴AB =11.9+1.6=13.5m.【同步测控】基础自测1.如图,在△ABC 中,DE ∥BC ,若13AD AB =,DE =4,则BC =…………( ) A .9 B .10 C . 11 D .122. 有一个角相等的两个等腰三角形…………………………………………………( )A. 一定相似B. 一定不相似C. 不一定相似D. 一定全等 3.如图,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有……( )A. 0对B. 1对C. 2对D. 3对4. 如图,在△ABC 中,若∠AED =∠B ,DE =6,AB =10,AE =8,则BC 的长为…( ) A.154 B. 7 C. 152 D. 2455. 如图,∠1=∠2,请补充条件:________________(写一个即可),使△ABC ∽△ADE .答案:∠D =∠B 或∠E =∠C6.如图,∠C =∠E =90°,AD =10,DE =8,AB =5,则AC = .7. 要测量河两岸相对的两点A ,B 间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处立一BEDC A第1题第3题BDCA第4题BEDCA第5题第6题第7题根标杆,然后方向不变继续朝前走10米到D处,在D处转90°,沿DE方向再走17米,到达E处,使A(目标物)C(标杆)与E在同一直线上(如图),那么可测得A,B的距离是____________米.8. 如图,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长.9.如图,DE∥BC,且DB=AE,若AB=5,AC=10,求AE的长.10. 如图,△ABC内接于⊙O,∠BAC的平分线分别交⊙O,BC于点D,E,连结BD.根据题意条件,找出图中各对相似三角形并加以证明.11.如图,AB ∥CD ,BO ∶CO =1∶4,点E ,F 分别是OC ,OD 的中点,则EF ∶AB 的值为( )A .1B .2C .3D .412. 如图,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A. 6对B. 4对C. 5对D. 3对13.如图在ABC △中,90ACB ∠=,CD AB ⊥,DE BC ⊥,那么与ABC △相似的三角形的个数有( ) A .1个B .4个C .3个D .2个14. 要判断如图ΔABC 的面积是ΔPBC 面积的几倍,只用一把仅有刻度的直尺,需要度量的次数最少是………………………………………………………………………………( ) A. 3次 B. 2次 C. 1次 D. 3次以上 15. 如图,已知Rt ABC △的两条直角边AC BC ,的长分别为3,4,以AC 为直径作圆与斜边AB 交于点D ,则AD = . 16. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 是角平分线.(1) 求证:△ABC ∽△BCD ;(2)求证:BC 是CD 与CA 的比例中项.第11题AB OE F CD第12题 第13题第14题17. 已知:如图,△ABC 中,∠C =90°,∠A =30°;△A' B'C'中,∠C'=90°, A'C'=B'C',能否分别将这两个三角形各分割成两个三角形,使△ABC 所分成的每个三角形与△A'B'C'所分成的每个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.C /B /A /CBA同步测控参考答案基础自测1.如图,在△ABC 中,DE ∥BC ,若13AD AB ,DE =4,则BC =…………( ) A .9 B .10 C . 11 D .12 答案:D2. 有一个角相等的两个等腰三角形…………………………………………………( )A. 一定相似B. 一定不相似C. 不一定相似D. 一定全等 答案:C3.如图,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有……( )A. 0对B. 1对C. 2对D. 3对 答案:D4. 如图,在△ABC 中,若∠AED =∠B ,DE =6,AB =10,AE =8,则BC 的长为…( ) A.154 B. 7 C. 152 D. 245答案:C5. 如图,∠1=∠2,请补充条件:________________(写一个即可),使△ABC ∽△ADE .答案:∠D =∠B 或∠E =∠C6.如图,∠C =∠E =90°,AD =10,DE =8,AB =5,则AC =.答案:37. 要测量河两岸相对的两点A ,B 间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处立一BEDC A第1题第3题BDCA第4题BEDCA第5题第6题第7题根标杆,然后方向不变继续朝前走10米到D 处,在D 处转90°,沿DE 方向再走17米,到达E 处,使A (目标物)C (标杆)与E 在同一直线上(如图),那么可测得A ,B 的距离是____________米. 答案:858. 如图,D 为△ABC 中BC 边上的一点,∠CAD =∠B ,若AD =6, AB =8,BD =7,求DC 的长.解:∵∠CAD =∠B , ∠C =∠C , ∴△ACD ∽△BCA . ∴AD AC CD AB BC AC ==, ∴687AC CDCD AC==+, ∴()37434CD AC AC CD⎧+=⎪⎨=⎪⎩, 解得912CD AC =⎧⎨=⎩.9.如图,DE ∥BC ,且DB =AE ,若AB =5,AC =10,求AE 的长.解:设DB=AE=x . ∵DE ∥BC , ∴AD AEAB AC=. ∴5510x x -=, 解得x =103, 即AE =103. 10. 如图,△ABC 内接于⊙O ,∠BAC 的平分线分别交⊙O ,BC 于点D ,E ,连结BD .根据题意条件,找出图中各对相似三角形并加以证明.解:相似三角形有:△ACE ∽△ADB ∽△BDE . 证明如下: ∵AD 平分∠BAC , ∴∠1=∠2. 又∠CBD =∠2, ∴∠2=∠1=∠CBD . 又∠C =∠D =∠D , ∴△ACE ∽△ADB ∽△BDE .能力提升11.如图,AB ∥CD ,BO ∶CO =1∶4,点E ,F 分别是OC ,OD 的中点,则EF ∶AB 的值为( )A .1B .2C .3D .4答案:B12. 如图,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有…………………………………………………………( ) A. 6对 B. 4对 C. 5对 D. 3对解析:由题设可得以下相似三角形:△ADF ∽△GCF ∽△GBA , △ABE ∽△FDE , △ADE ∽△GBE ,△第11题ABOE F CD第12题第13题第14题ABD ∽△CDB . 答案:A13.如图在ABC △中,90ACB ∠=,CD AB ⊥,DE BC ⊥,那么与ABC △相似的三角形的个数有…………………………………………………………( ) A .1个B .4个C .3个D .2个解析:由题设可得以下相似三角形:△BDE ∽△DCE ∽△BCD ∽△CAD ∽△BAC . 答案:B14. 要判断如图ΔABC 的面积是ΔPBC 面积的几倍,只用一把仅有刻度的直尺,需要度量的次数最少是………………………………………………………………………………( ) A. 3次 B. 2次 C. 1次 D. 3次以上解析:设AP 的延长线交BC 于D . 因此, 只要将刻度尺一端与A 点重合, 置于AD 上, 直接度量一次读出AP 和AD 的长度, 易证ΔABC 的面积是ΔPBC 面积的倍数关系即为AD 与PD 的比值.答案:C15. 如图,已知Rt ABC △的两条直角边AC BC ,的长分别为3,4,以AC 为直径作圆与斜边AB 交于点D ,则AD = .解析:连结CD . ∵AC 是⊙O 的直径, ∴∠ADC =90°. 又∠ACB = 90°, ∠A =∠A , ∴△ACD ∽△ABC ,∴AD ACAC AB=, 结合已知可求得AD 的长. 答案:9516. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 是角平分线.(1) 求证:△ABC ∽△BCD ;(2)求证:BC 是CD 与CA 的比例中项. 证明:(1) ∵AB=AC , ∠A =36°,∴∠ABC =∠ACB =72°. ∵BD 是角平分线, ∴∠ABD =∠CBD =36°. ∴∠BCD=∠A . 又∠C =∠C , ∴△ABC ∽△BCD . (2) ∵△ABC ∽△BCD , ∴BC ACCD BD=. ∵∠C =∠BDC =72°, ∴BD=BC . ∴BC ACCD BC=, 即BC 是CD 与CA 的比例中项. 创新应用17. 已知:如图,△ABC 中,∠C =90°,∠A =30°;△A' B'C'中,∠C'=90°, A'C'=B'C',能否分别将这两个三角形各分割成两个三角形,使△ABC 所分成的每个三角形与△A'B'C'所分成的每个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.解:如按上图分割.C /B /A /CBA45︒45︒30︒60︒45︒45︒60︒30︒D /D C /B /A /C BA。
数学人教版九年级下册《相似三角形的判定》第一课时
27.2.1相似三角形的判定第一课时教学设计一、教材依据:《相似三角形的判定》是人教版义务教育教科书九年级数学下册第二十七章《相似》第二节《相似三角形》第一课时的内容。
二、设计思路:1.指导思想:为了更好地落实新课程的目标,培养学生的逻辑推理能力,提高学生学习几何证明的能力。
在教学中重点抓好学生的三种几何语言能力的训练。
几何教学有三种不同形式的语言即图形语言、文字语言及符号语言。
教学中不仅要让学生建立三种几何语言,还要培养学生对三种语言相互转化的能力。
因此教师在教学过程中应不失时机地训练、培养学生对这三种语言相互转化的意识和能力。
通过本课的学习,让学生经历“观察-探索-猜测-证明”的学习过程,体验科学发现的一般规律,同时提高几何的图形语言、符号语言、文字语言的表达能力及相互转换的能力。
《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容。
本课时首先利用“如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
”证明两个三角形相似,然后引导学生通过测量来探究得到平行线分线段成比例定理(三条平行线截两条直线,所得的对应线段的比相等。
),继而引导出相似三角形的判定:“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。
通过类比的方法进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
学生已经学过相似多边形的判定方法和成比例线段及全等三角形的有关知识,全等三角形的判定也掌握的非常好,对于相似的判定,大多数学生的知识基础比较好。
并且九年级的学生推理与证明的经验比较丰富,合情推理的能力也比较强。
相似三角形的判定既是本章的重点,也是整个初中几何的重点。
同时,在我们的生活中相似图形的应用也比较广泛。
由于有了相似图形、相似多边形和全等三角形的基础,学生应不难理解相似三角形的判定。
2.教学目标:知识与技能:(1)、掌握平行线分线段成比例定理;(2)、掌握平行线分线段成比例定理的推论;(3)、掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
《相似三角形的判定》完整版PPT1
1.对应线段是指被两条平行线所截得的线段,如上 图中的 A1A2 与B1B2 是对应线段,A2A3与 B2B3是对应 线段,A1A3 与 B1B3 是对应线段. 2.对应线段成比例是指同一条直线上的两条线段的比,等 于另一条直线上与它们对应的线段的比,书写时,要把对 应线段写在对应的位置上.
3.基本事实中的“所得的对应线段”是指被截直线上的线段,与 这组平行线上的线段无关.
定理:平行于三角形一边的直线和其他两边相交,所构 成的三角形与原三角形相似. 几何语言:如下图所示,∵DE//BC,∴△ADE∽△ABC.
定理中“和其他两边相交”是指和其他两边所在的直线相交.
三角形相似的两种常见类型:
A
D
E
B
C
B
“A ”型
D
E
A
C
“X ” 型
巩固新知
如图,AB//EF//DC,AD//BC,EF 与 AC 交于点 G,则图
平行线 DE,交 AC 于点 E.
A
D
E
B
C
△ADE 与△ABC 的三个角分别相等吗?
如图,在△ABC 中,D 为 AB 上任意一点,过点 D 作 BC 的
平行线 DE,交 AC 于点 E.
A
D
E
B
C
分别度量△ADE 与△ABC 的边长,它们的边长 是否对应成比例?
△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,结论还成立吗?
F
∠A=∠D,∠B=∠E,∠C=∠F,
C
AB AC BC k,
DE DF EF
A
BD
E
即三个角分别相等,三条边成比例,我们就说△ABC 与
△DEF 相似,记作△ABC∽△DEF,△ABC 和△DEF 的相似比为 k, △DEF 与△ABC 的相似比为 1 .
《4.4探索三角形相似的条件》第1课时教案
在今天的教学中,我引导学生们探索了三角形相似的条件。整体来看,学生们对于新知识的接受程度不错,但我也注意到了一些需要改进的地方。
课堂上,我通过提问的方式导入新课,让学生们回顾日常生活中的相似三角形,这个环节的效果比我预期的要好。我发现学生们能够积极地参与到课堂讨论中,这为后续的学习奠定了良好的基础。然而,在理论介绍部分,我意识到需要更加简洁明了地讲解相似三角形的定义和性质,可能的话,结合一些动态的图像或实物模型,这样能让学生们更直观地理解对应角和对应边的关系。
三、教学难点与重点
1.教学重点
本节课的核心内容是掌握三角形相似的条件及其应用。以下是教学重点的详细说明:
a.理解并掌握相似三角形的定义及基本性质,如对应角相等、对应边成比例。
b.掌握判定三角形相似的方法,包括两角对应相等、两边对应成比例且夹角相等、三边对应成比例。
c.学会运用三角形相似的性质和判定方法解决实际问题,例如求三角形中未知线段的长度或证明线段之间的比例关系。
b.在实际应用中,学生可能会难以识别哪些角和边是对应的,特别是在复杂的图形中。
c.学生在运用相似三角形的判定方法解决问题时,可能会忽视证明过程中的逻辑严密性。
举例:在解决一个包含多个相似三角形的复杂问题时,学生可能难以识别哪些是关键的对应角和对应边。教师可以通过以下方法帮助学生突破难点:
-使用直观的教具或动态软件,展示相似三角形的形成过程,让学生清晰地看到对应角和对应边的变化。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用相似三角形的模型来观察和测量对应角和对应边。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形相似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
4.3(1)相似三角形的判定
1.相似三角形的定义是什么?
A A',B B',C C'
A
A/
AB AC BC
A'B' A'C ' B'C ' B
C
ΔABC∽ΔA/B/C/
B/
C/
2.相似三角形与全等三角形有什
么内在的联系呢?
全等三角形是相似比为1的特 殊的相似三角形。
3.三角形的中位线截得的三角形
与原三角形是否相似?相似比是
A A 直线与另一边AC 或者BC相交,使截
得的小三角形与D●Leabharlann △ABC相似,这样的B
C 直线有几条?
2.如图,ABC内接于圆O,
的平B分A线C分别交圆O ,BC
于点D,E,连结BD、 CD B
A
E
C
(1)求证:ABE ~ CDE
D
(2)根据题中条件,找 出图中
各对相似三角形 。ECD ~ CAD
ABE ~ CDE BED ~ ABD
原三角形相似.
试一试
如图,已知EF∥CD∥AB,请说出
图中的相似三角形
C A
O
E
F
D B
试问:相似三角形的判定条件 是否可以弱化?
比如:有两个角对应相等的两个 三角形相似? A
A/
B
C B/
C/
三角形相似的判定定理1:
有两个角对应相等的两个三
角形相似。
A
A′
数学语言: B
∵ A A B B
∴ ΔABC∽ △ABC
见书P109作业题的2,3,4
例1.为了测量大峡谷的宽度AB,地质勘 探人员采用了如下方法:从A处沿与AB垂 直的直线方向走40m到达C处,插一根 标杆,然后沿同方向继续走15m到达D 处,再右转90度走到E处,使B,C,E 三点恰好在一条直线上,量得DE=20m.请 你帮他们算出峡谷的宽度.
北师大版七年级数学下册课件:4.3第1课时利用“边边边”判定三角形全等
30°
50°
6cm 4cm
6cm 4cm
有两个条件相 等不能保证三
角形相等
议一议 如果给出三个条件画三角形,你能说出有哪几种可能的情况吗?
给出三个条件 ①三个角:
300 300
60o
60o
1.三个角 2.三条边 3.两边一角 4.两角一边
②三条边:
先任意画出一个△ABC,再画出一个△A′B′C′ ,
范围
有两个条件相等不能保证三角形相等
(3)连接线段A'B',A'C'.
AB =AC (已知) AD =AD (公共边)
A,C两点之间
摆齐
只给一个条件(一组对应边相等或一组对应角相等).
BD =CD (已证) AB=AB(
),
三边对应相等的两个三角形全等.
依据
AD =AD (公共边) ∴ BD =DC.
三角形全等 的判定
三角形的稳定性: 三角形三边长度确定了,这个三 角形的形状和大小就完全确定了.
本节我们就来讨论这个问题.
获取新知 知识点一:“边边边”判定三角形全等 1. 只给一个条件(一组对应边相等或一组对应角相等).
①只给一条边:
②只给一个角:
60°
60°
60°
只有一个条 件相等不能 保证三角形
相等
2. 给出两个条件: ①一边一内角:
③两边:
30°
30°
30°
②两内角:
30° 50°
三边对应相等的两个三角形全等.
使A B = AB ,B C =BC, A C =AC.把画好的△A B C 如两果个给 三出角三形个全条等件的′ 画判三定′ 角方形法,1:你能说出有′哪几′种可能的情况吗? ′
新北师大版数学九年级上册课件:探索三角形相似的条件(第1课时)
7.[2018· 株洲]如图349所示,Rt△ABM和Rt△ADN的斜边分别为正方形 ABCD的边AB和AD,其中AM=AN.
图349
(1)求证:Rt△ABM≌Rt△ADN; 1 (2)线段MN与线段AD相交于点T,若AT= AD,求tan ∠ABM的值. 4 (1)证明:∵AM=AN,AB=AD,
3.如图345,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于 点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:
△CDF∽△ABP等
△ABP∽△AED或△BEF∽△CDF或△BEF∽△AED或△CDF∽△
.
图345
【解析】 ∵BP∥DE,∴∠ABP=∠AED,又∠A=∠A,∴△ABP∽△ AED;同理△BEF∽△CDF;△BEF∽△AED.利用相似三角形的传递性,还可 以得到△CDF∽△AED,△CDF∽△ABP等.
6.如图348,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C, AB=6,AD=4,求线段CD的长.
图348
解:在△ABD和△ACB中, ∠ABD=∠C,∠A=∠A, ∴△ABD∽△ACB, AB AD ∴AC=AB. ∵AB=6,AD=4, AB2 36 ∴AC= AD = =9, 4 则CD=AC-AD=9-4=5.
第四章 图形的相似
总第34课时——4 探索三角形相似的条件 (第1课时)
知识管 理 归类探 究 随堂练 习 分层作 业
1.相似三角形的概念
知识管 理
相似三角形:三角分别 相等 ,三边 成比例 的两个三角形叫做相似三角形. 表示方法:△ABC 与△DEF 相似,记作△ABC∽△DEF. 注 意:(1)全等三角形是特殊的相似三角形,它的特殊性体现在相似比为 1. (2)相似三角形的定义,既可以作为相似三角形的判定,又可以作为相似三角形 的性质,其性质为:两个三角形相似,对应角相等、对应边成比例.
九年级数学《相似三角形的判定(1)》教案
《27.2相似三角形(1)》教学设计教学流程安排活动2 问题诱导探究新知1、 (教材P40页探究1)如图27.2-1,任意画两条直线l1 , l2,再画三条与l1 , l2相交的平行线l3 , l4,l5.分别量度l3 , l4,l5.在l1上截得的两条线段AB, BC和在l2上截得的两条线段DE, EF的长度, AB︰BC 与DE︰EF相等吗?任意平移l5 , 再量度AB, BC, DE, EF的长度, AB︰BC 与DE︰EF相等吗? 教师出示探究,提出问题.学生操作画图,度量AB, BC, DE, EF的长度并计算比值,小组讨论,共同交流,回答结果.提出问题:AB︰AC=DE︰(),BC︰AC=()︰DF,师生共同交流.强调“对应线段的比是否相等”教师引导归纳,并板书:平行线分线段成比例定理三条平行线截两条直线,所得的对应线段的比相等。
学生在教师的指导下通过实践操作,探索和他人合作交流各自的所得结论等活动,积累数学活动经验。
学生通过亲自动手度量,操作,计算的活动经历,感受探索的过程。
2、实践操作 再探新知思考:1、如果图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图27.2-2(1),所得的对应线段的比会相等吗?依据是什么?2、如果图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?3、 思考:如图,在△ABC 中,DE∥BC,DE 分别交AB 、AC 于点D 、E ,△ADE 与△ABC 有什么关系?你能否加以证明。
4、你现在能用什么方法可以说明两个三角形相似?5、如果平行于三角形一边的直线和其他两边的延长线相交,所教师引导学生继续探究把图1中的直线l 1 , l 2变到相交,交点A 刚好落到l 3或l 4上,所得的对应线段的比会相等吗?学生观察思考,小组讨论回答,同伴交流,归纳总结。
4.4相似三角形的定义及判定(第1课时)同步练习(含答案)
4探索三角形相似的条件第1课时利用两角的关系判定三角形相似关键问答①相似三角形的性质有哪些?1.①如图4-4-1,已知△ABC∽△DEF,则x等于()图4-4-1A.40°B.60°C.80°D.80°或60°2.如图4-4-2,D,E,F,G四点在△ABC的边上,其中DG与EF相交于点H.若∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=40°,则下列哪一组三角形相似()图4-4-2A.△BGD,△CEF B.△ABC,△CEFC.△ABC,△BGD D.△FGH,△ABC3.如图4-4-3,已知△ABC与△ADE相似,且∠B=∠ADE,则下列比例式正确的是()图4-4-3A.AD∶AC=DE∶BC B.AE∶BE=AD∶DCC.AE∶AB=AD∶AC D.AE∶AC=AD∶AB命题点1利用两角分别相等判定两三角形相似[热度:93%]4.②如图4-4-4,P为线段AB上一点,AD分别交BC,PC于点E,G,BC交PD于点F,∠CPD=∠A=∠B,则图中相似三角形有()图4-4-4A.1对B.2对C.3对D.4对方法点拨②根据相似三角形的定义可知:若△ABC∽△A′B′C′,△A′B′C′∽△A″B″C″,则△ABC∽△A″B″C″,即三角形相似具有传递性.5.③·株洲如图4-4-5所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.图4-4-5解题突破③由正方形和等腰直角三角形我们可以得到哪些线段相等,哪些角相等?命题点2根据两三角形相似进行计算[热度:90%]6.④[·毕节]如图4-4-6,在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC =2 2,AB=3,则BD=________.图4-4-6方法点拨④在写相似表达式时要像写全等表达式那样,对应顶点的字母写在对应的位置上,这样也有利于正确写出边的比例式,保证结果正确.7.⑤将三角形纸片ABC按如图4-4-7所示的方式折叠,使点C落在AB边上的点D 处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,则CF的长是________.图4-4-7易错警示⑤注意根据对应顶点分类讨论.8.⑥·六盘水如图4-4-8,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.图4-4-8解题突破⑥作平行线构造“A”字形图的相似三角形.命题点3有关相似三角形的存在性问题[热度:80%]9.⑦如图4-4-9,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过点P作PF⊥AE于点F.(1)求证:△PF A∽△ABE.图4-4-9(2)当点P在射线AD上运动时,设P A=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由.易错警示⑦注意x的值可能不止一个.10.⑧如图4-4-10①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC于点E.(1)求证:△ABF∽△COE;(2)当O 为AC 边的中点,AC AB =2时,如图②,求OFOE 的值;(3)当O 为AC 边的中点,AC AB =n 时,请直接写出OFOE的值.图4-4-10方法点拨⑧求线段的比时常借助相似三角形的性质,当比例式中的线段不能构成相似形时,可考虑利用等量代换的方法求解.详解详析【关键问答】①相似三角形的性质:对应角相等、对应边成比例.1.C[解析] ∵△ABC∽△DEF,∴∠B=∠E.∵∠B=80°,∴∠E=x=80°.故选C.2.B[解析] ∵∠ABC=∠EFC=70°,∴EF∥AB,∴△ABC∽△EFC,故B正确;在△BDG中,∠B=70°,∠DGB=40°,则∠GDB=70°;在△ABC中,∠B=70°,∠ACB=60°,则∠A=50°,∴△ABC,△CEF与△BGD不相似,故A,C错误;∵EF∥AB,∴△FGH∽△BGD;∵△BGD与△ABC不相似,∴△FGH与△ABC不相似,故D错误.故选B.3.D[解析] 由∠B=∠ADE可知△ABC∽△ADE,∴AE∶AC=AD∶AB.故选D.4.C[解析] 在△PCF和△BCP中,∵∠CPF=∠B,∠C为公共角,∴△PCF∽△BCP;在△APD和△PGD中,∵∠GPD=∠A,∠D为公共角,∴△APD∽△PGD;∵△APD∽△PGD,∴∠APD=∠PGD,∴∠BPF=∠AGP.又∵∠A=∠B,∴△AGP∽△BPF.共有3对相似三角形.故选C.5.证明:(1)由正方形ABCD及等腰直角三角形DEF,可知∠ADC=∠EDF=90°,AD =CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF.在△DAE和△DCF中,DE=DF,∠ADE=∠CDF,AD=CD,∴△DAE≌△DCF.(2)延长BA交ED于点M,如图所示.∵△DAE≌△DCF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF.∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF.∵∠EAM=∠BAG,∴∠BAG=∠BCF.又∵∠AGB=∠CGF,∴△ABG∽△CFG.6.83[解析] ∵∠BCD=∠A,∠ABC=∠CBD,∴△ABC∽△CBD,∴BCBD=ABBC,即2 2BD=32 2,∴3BD=8,∴BD=83.7.127或2[解析] 因为△ABC沿EF折叠后点C和点D重合,所以FD=CF.设CF=x,则BF=4-x,若以点B,D,F为顶点的三角形与△ABC相似,分两种情况:①若∠BFD=∠C,则FDBF=ACBC,即x4-x=34,解得x=127;①若∠BFD=∠A,则FDBF=ACAB,即x4-x=1,解得x=2.综上所述,CF的长为127或2.8.169[解析] 如图,过点O作OM∥AD交AB于点M.∵四边形ABCD是平行四边形,∴OB=OD,∴MO是△ABD的中位线,∴AM=BM=12AB=52,MO=12BC=4.∵AF∥OM,∴△AEF∽△MEO,∴AEME=AFMO,即22+52=AF4,∴AF=169.9.[解析] (1)在△PF A与△ABE中,易得∠P AF=∠AEB及∠PF A=∠ABE=90°,故可得△PF A∽△ABE;(2)分两种情况列出关系式.解:(1)证明:∵四边形ABCD 是正方形, ∴AD ∥BC ,∴∠P AF =∠AEB . 又∵∠PF A =∠ABE =90°, ∴△PF A ∽△ABE .(2)若△EFP ∽△ABE ,,如图① 则∠PEF =∠EAB ,∴PE ∥AB , ∴四边形ABEP 为矩形, ∴P A =BE =2,即x =2;若△PFE ∽△ABE ,如图②, 则∠PEF =∠AEB .∵∠P AF =∠AEB ,∴∠PEF =∠P AF , ∴PE =P A .∵PF ⊥AE ,∴F 为AE 的中点. ∵AE =AB 2+BE 2=2 5, ∴EF =12AE = 5.∵PE AE =EF EB ,即PE 2 5=52, ∴PE =P A =5,即x =5. ∴满足条件的x 的值为2或5.10.[解析] (1)要求证△ABF ∽△COE ,只要证明∠BAF =∠C ,∠ABF =∠COE 即可. (2)作OH ⊥AC ,交BC 于点H ,易证△OF A 和△OEH 相似,根据相似三角形的对应边的比相等,即可得出所求的值.(3)同(2)可得,OFOE=n .解:(1)证明:∵AD ⊥BC ,∴∠DAC +∠C =90°. ∵∠BAC =90°,∴∠BAD +∠DAC =90°, ∴∠BAD =∠C .∵OE ⊥OB ,∴∠BOA +∠COE =90°. 又∵∠BOA +∠ABF =90°, ∴∠ABF =∠COE . ∴△ABF ∽△COE .(2)如图,过点O 作AC 的垂线交BC 于点H ,则OH ∥AB .由(1)得∠ABF =∠COE ,∠BAF =∠C , ∴∠AFB =∠OEC , ∴∠AFO =∠HEO .又∵∠BAF =∠C ,∠BAF +∠F AO =∠C +∠EHO =90°, ∴∠F AO =∠EHO ,∴△OF A ∽△OEH ,∴OF OE =OAOH .又∵O 为AC 的中点,OH ∥AB , ∴OH 为△ABC 的中位线, ∴OH =12AB ,OA =OC =12AC .而AC AB =2,∴OA OH =2,∴OF OE=2. (3)OF OE=n .。
第1课时 相似三角形的判定定理1
第23章 图形的相似
6.如图,点D在AB上,当 ∠B=∠ACD(或∠ADC=∠ACB) 时,△ACD∽△ABC.
解析:∠A是公共角,当∠B=∠ACD或∠ADC=∠ACB时,△ACD∽△ABC.
第23章 图形的相似
7.如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的 影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米, 则甲、乙同学相Biblioteka 1 米.第23章 图形的相似
2.相似三角形的判定 第1课时 相似三角形的判定定理1
两角分别相等的两个三角形相似的判定 1.下列几组三角形中一定相似的是( B ) (A)两个等腰三角形 (B)两个等边三角形 (C)两个钝角三角形 (D)两个直角三角形 解析:因为等边三角形的每个角都是60°,所以两个等边三角形相似,故 选B.
(2)解:在 Rt△CBA 中,AB=6,BC=8,∴AC=10.∴OC=5.∵△COM∽△CBA,
∴ OC = OM ,即 5 = OM ,解得 OM= 15 .
BC AB 8 6
4
第23章 图形的相似
解析:由题意∠BCA=∠EDA=90°,∠A=∠A, 所以△ABC∽△AED, 得 BC = AC ,
ED AD 即 1.8 = 6 ,
1.5 AD 解得 AD=5(米), 所以 CD=AC-AD=6-5=1(米).
第23章 图形的相似
8.(2014遵义) “今有邑,东西七里,南北九里,各开中门,出东门一十五里 有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如 图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别 是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH= 1.05 里. 解析:EG⊥AB,FH⊥AD,HG 经过 A 点, ∴FA∥EG,EA∥FH, ∴∠HFA=∠AEG=90°,∠FHA=∠EAG, ∴△GEA∽△AFH,∴ EG = EA .
4.3 第1课时 利用“边边边”判定三角形全等
4.3 探索三角形全等的条件第1课时 利用“边边边”判定三角形全等1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等;(重点)2.经历探索“边边边”判定三角形全等的过程,体会利用操作、归纳获得数学结论的过程;(重点)3.在复杂的图形中进行三角形全等条件的分析和探索.(难点)一、情境导入一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片做哪些测量,就可以割取符合规格的三角形玻璃?与同伴交流.二、合作探究探究点一:全等三角形判定定理“SSS ”【类型一】 利用“SSS ”判定两个三角形全等如图,AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .试说明:△ABC ≌△DEF .解析:已知△ABC 与△DEF 两边相等,通过BE =CF 可得BC =EF ,即可根据“SSS ”判定△ABC ≌△DEF .解:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (SSS).方法总结:先根据已知条件或求证的结论确定哪两个三角形全等,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【类型二】 “SSS ”与全等三角形的性质综合进行证明如图所示,△ABC 是一个风筝架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.试说明:AD ⊥BC .解析:要使AD ⊥BC ,根据垂直的定义,需使∠1=∠2,而∠1=∠2可由△ABD ≌△ACD 求得.解:∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD ⊥BC (垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.【类型三】 利用“SSS ”解决探究性问题如图,AD =CB ,E 、F 是AC 上两动点,且有DE =BF .(1)若E 、F 运动至图①所示的位置,且有AF =CE .试说明:△ADE ≌△CBF .(2)若E 、F 运动至图②所示的位置,仍有AF =CE ,那么△ADE ≌△CBF 还成立吗?为什么?(3)若E 、F 不重合,AD 和CB 平行吗?说明理由.解析:(1)由AF =CE ,可推出AE =CF .再利用“SSS ”来证明三角形全等;(2)同样利用“SSS ”来说明三角形全等;(3)由三角形全等,故对应角相等,可推出AD ∥CB .解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF (SSS);(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF .在△ADE 和△CBF 中, ∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF (SSS);(3)平行.理由如下:∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决本题要明确无论E 、F 如何运动,总有两个三角形全等.探究点二:三角形的稳定性要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定……那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练。
《相似三角形的判定(第1课时)》教案 人教数学九年级下册
27.2 相似三角形27.2.1相似三角形的判定(第1课时)一、教学目标【知识与技能】1.理解相似三角形的概念,并会用以证明和计算;2.体会用相似符号“∽”表示的相似三角形之间的边,角对应关系;3.掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算.【过程与方法】经历平行线分线段成比例的基本事实及其推论的发现过程,增强学生发现问题,解决问题的能力.【情感态度与价值观】学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣.二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】平行线分线段成比例基本事实及判定两个三角形相似的定理.【教学难点】判定三角形相似的定理的证明.五、课前准备教师:课件、刻度尺、三角板.学生:刻度尺、三角板.六、教学过程(一)导入新课(出示课件2)教师问:1.相似多边形的特征是什么?2.怎样判定两个多边形相似?3.什么叫相似比?4.相似多边形中,最简单的就是相似三角形.如果∠A =∠A 1,∠B =∠B 1,∠C =∠C 1,,那么△ABC 与△A 1B 1C 1相似吗?我们还有其他方法判定两个三角形相似吗?学生集体口答,教师订正.(二)探索新知知识点1 平行线分线段成比例定理请分别度量l 3,l 4,l 5.在l 1上截得的两条线段AB,BC 和在l 2上截得的两条线段DE,EF 的长度,AB :BC 与DE :EF 相等吗?任意平移l 5,再量度AB,BC,DE,EF 的长度,它们的比值还相等吗?除此之外,还有其他对应线段成比例吗?(出示课件4、5)111111C B BC C A AC B A AB ==学生动手操作后可发现:DFEF AC BC DF DE AC AB DE EF AB BC EF DE BC AB l l l 543====,,,时,∥∥当 教师归纳:(出示课件6)一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a ∥b ∥c ,则12122323A A B B A A B B =,23231212A AB B A A B B =, 12121313A A B B A A B B =,23231313A A B B A A B B =…教师问:1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?(出示课件7) 小组合作交流,再进行全班性的问答.出示课件8,学生独立思考后口答,教师订正.知识点2 平行线分线段成比例定理的推论出示课件9~11:如图,直线l3∥l4∥l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,把直线l1向左或向右任意平移,这些线段依然成比例.如果把图1中l1,l2两条直线相交,交点A刚好落到l3上,如图2(1),所得的对应线段的比会相等吗?依据是什么?如果把图1中l1,l2两条直线相交,交点A刚好落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?学生分组讨论后,选代表口答,教师加以订正后归纳.(出示课件12)平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.出示课件13,学生独立解答,一生板演,教师订正.考点 利用平行线分线段成比例定理及推论求线段长度出示课件14,例 如图,在△ABC 中,DE ∥BC ,AC=4,AB=3,EC=1.求AD 和BD.学生思考后,师生共同解答如下:解:∵AC=4,EC=1,∴AE=3.∵ DE ∥BC , ∴. AD AE AB AC∴AD=2.25,∴BD=0.75.出示课件15,学生独立解答,教师订正.知识点3 相似三角形的判定定理如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(出示课件16~17)教师问:1.△ADE与△ABC的三个角分别相等吗?2.分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?3.你认为△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生分组讨论,动手操作后达成共识:通过度量,我们发现△ADE ∽△ABC,且只要DE∥BC,这个结论恒成立.教师问:1.我们通过度量三角形的边长,知道△ADE∽△ABC,但要用相似的定义去证明它,我们需要证明什么?(出示课件18)2.由前面的结论,我们可以得到什么?还需证明什么?学生讨论后,带着疑问解决证明△ADE∽△ABC问题.(出示课件19)已知:如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D、E.求证:△ADE∽△ABC.师生共同分析:直观告诉我们:△ADE ∽△ABC ,根据三角形相似的概念,要想证明两个三角形相似,必须证明三个角对应相等,三条边对应边对应成比例.由平行线分线段成比例定理,可知:AC AE AB AD =,还需证明ABAD AC AE BC DE ==BC DE 或所以要将DE 平移到BC 上,使得BF=DE(如图),再证明:ACAE BC DE =即可. 证明:在△ADE 与△ABC 中,∠A=∠A.∵DE//BC,∴∠ADE=∠B,∠AED=∠C ,过E 作EF//AB 交BC 于F,则,∵四边形DBFE 是平行四边形,∴DE=BF ,∴,∴, ∴△ADE ∽△ABC.归纳:定理:平行于三角形一边的直线和其他两边相交,所构成 的三角形与原三角形相似.(出示课件20)符号语言:∵DE//BC,∴△ADE ∽△ABC .,AC AE AB AD =BC BF AC AE =BC DE AC AE =BC DE AC AE AB AD ==教师问:过点D作与AC平行的直线与BC相交,可否证明△ADE ∽△ABC?如果在三角形中出现一边的平行线,那么你应该联想到什么?(出示课件21)学生分组讨论后,教师归纳:过点D作与AC平行的直线与BC相交,仍可证明△ADE∽△ABC,这与教材第31页证法雷同.题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式.出示课件22,学生独立思考后口答,教师订正.(三)课堂练习(出示课件23-29)引导学生练习课件23-29题目,巩固本课知识点,约用时20分钟。
相似三角形的判定第一课时教案,
1.相似多边形的主要特征是什么?
2.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且 .我们就说△ABC与△A′B′C′,记作,它们的相似比为,△ 与△ABC的相似比为.
反之如果△ABC∽△A′B′C′,则有,且.
3.如图,(1)在∆ABC中,点D是边AB的中点,DE∥BC,DE交AC于点E,
课题27.2.1相似三角形的判定
(第一课时)
鹤城中学 初三年级组(潘立新)
【教学目标】
1.知识技能:(1)会用符号“∽”表示相似三角形,如△ABC ∽△ ;
(2)知道当△ABC与△ 的相似比为k时,△ 与△ABC的相似比为1/k.
(3)理解掌握平行线分线段成比例定理和三角形相似的预备定理
2.解决问题:运用“三角形相似的预备定理”解决简单的问题.
4.用几何语言描述上述三个定理
〖设计说明〗1.通过预习作业检查和师生共同探讨,培养学生自学能力,以防差生出现
2.使学生加深对平行线分线段成比例定理和三角形相似的预备定理的理解
2、 展示探究
例1如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;
(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
〖设计说明〗通过对相似三角形定义的回顾和特殊情况三角形的中位线出发观察讨论两三角形对应线段的比的关系,两三角形形状关系,从而引伸出平行线分线段成比例定理和三角形相似的预备定理
【教学设计】
1.预习交流
1.检查学生的预习作业,师生共同探讨预习作业的第2,3题
2.如图27.2-1),任意画两条直线l1,l2,再画三条与l1,l2相交的平行线l3,l4,l5.
华师大版九年级数学上册ppt课件-第1课时 相似三角形的判定(1)
∵ DE∥BC ,
∴ ∠ADE = ∠B .
在△ADE 与△A1B1C1 中,
∵ ∠A =∠A1,∠ADE =∠B =∠B1 ,AD =
A1B1 , ∴ △ADE ≌△A1B1C1.
全等变换
∴ △ABC ∽ △A1B1C1.
思考
如果两个三角形仅有一对角是对应相等的, 那么它t△A′B′C′ 中, ∠C 与∠C′ 都是直角,∠A =∠A′.求证:△ABC ∽△A′B′C′ .
复习导入
如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例.
是否存在判定两个三角 形相似的简便方法?
回顾
推进新课
在判定两个三角形全等时,我们得到了SSS, SAS,ASA,AAS的简便方法.
那么,对于相似三角形的判定,是否也存在 类似的分类与判定方法呢?
直角三角尺
从直观来看,一个三角形的三个角分别 与另一个三角形的三个角对应相等时,它们 就“应该”相似了.确实是这样吗?
解 ∵ ∠C =∠C′ = 90°, ∠A =∠A′ ,
∴ △ABC ∽△A′B′C′ (两角分 别相等的两个三角形相似).
两个直角三角形,若有一对锐 角对应相等,则它们一定相似.
例3 如图,在△ABC 中,DE∥BC,
EF∥AB,求证:△ADE ∽ △EFC.
A
证明 ∵ DE∥BC ,
∴ ∠ADE = ∠B,∠AED = ∠C, D
2.相似三角形的判定
第1课时 相似三角形的判定(1)
华东师大版九年级上册
• 学习目标:
会说判定两个三角形相似的方法:两角分别相
等的两个三角形相似.会用这种方法判断两个三 角形是否相似.
• 学习重点:
4.3 两个三角形相似的判定
填空题1.(2005•北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为_________.2.(2001•重庆)已知:如图,在△ABC中,AB=15m,AC=12m,AD是∠BAC 的外角平分线,DE∥AB交AC的延长线于点E,那么CE=_________m.3.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=_________,=_________.4.(1997•山西)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_________.5.(2008•上海)如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F ,如果,那么=_________.6.如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB 的中点,△DEF的面积为3.5,则△ABC的面积为_________.7.(2009•承德一模)在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为_________.8.如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于_________cm2.9.如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与梯形BCFE的面积比_________.10.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=_________.11.(2009•长宁区一模)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=_________.12.如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是_________.13.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=_________.14.如图,已知点D是AB边的中点,AF∥BC,CG:GA=3:1,BC=8,则AF=_________.解答题15.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB 面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.16.(2005•重庆)在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?167.(2003•南宁)如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.168.(2009•兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.169.(2008•孝感)锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)(1)△ABC中边BC上高AD=_________;(2)当x=_________时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?17.(2008•青岛)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.18.(2008•梅州)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.19.(2007•温州)在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;(3)当x为何值时,△EDQ为直角三角形?20.(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:(1)线段AE与CG是否相等请说明理由:(2)若设AE=x,DH=y,当x取何值时,y最大?(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?21.(2001•上海)已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)22.(1998•上海)已知一个二次函数的图象经过A(﹣1,0)、B(0,3)、C(4,﹣5)三点.(1)求这个二次函数的解析式及其图象的顶点D的坐标;(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O 为坐标原点.在△AOB、△BOE、△ABE和△BDE着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.23.如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=.点M从点B开始,以每秒2个单位长的速度向点C运动;点N 从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.(1)用含t的代数式表示QP的长;(2)设△CMQ的面积为S,求出S与t的函数关系式;(3)求出t为何值时,△CMQ为等腰三角形?24.(2009•下城区模拟)如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y.(1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由;(2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;(3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少?25.(2009•青岛)如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,PE∥AB;(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△PEQ =S△BCD?若存在,求出此时t的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.26.(2008•盐城)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为_________,数量关系为_________.②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.27.(2008•恩施州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E (点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2;(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.第4章《相似三角形》常考题集(09):4.3 两个三角形相似的判定参考答案与试题解析填空题151.(2005•北京)在△ABC 中,∠B=25°,AD 是BC 边上的高,并且AD 2=BD •DC ,则∠BCA 的度数为 65°或115° .152.(2001•重庆)已知:如图,在△ABC 中,AB=15m ,AC=12m ,AD 是∠BAC 的外角平分线,DE ∥AB 交AC 的延长线于点E ,那么CE= 48 m .153.如图,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1=,=.;由于,所以=,∴AB AC==.∴∴=所以应填和154.(1997•山西)如图,在梯形ABCD 中,AD ∥BC ,AC ,BD 交于点O ,S △AOD :S △COB =1:9,则S △DOC :S △BOC = 1:3 .,可求=∴=155.(2008•上海)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果,那么=.156.如图,在△ABD 中,∠ADB=90°,C 是BD 上一点,若E 、F 分别是AC 、AB 的中点,△DEF 的面积为3.5,则△ABC 的面积为 14 .EF=AB=AF AC=AE 157.(2009•承德一模)在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,点G 、H 在DC 边上,且GH=DC .若AB=10,BC=12,则图中阴影部分的面积为 35 .DC NQ==×158.如图,在▱ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,则S △AOB 等于 48 cm 2.,求出相似比为,故面积比,即可求DE=相似比为=故面积比为,159.如图,在△ABC 中,EF ∥BC ,AE=2BE ,则△AEF 与梯形BCFE 的面积比 4:5 .160.如图,在△ABC 中,∠C=90°,AC=8,CB=6,在斜边AB 上取一点M ,使MB=CB ,过M 作MN ⊥AB 交AC 于N ,则MN= 3 .∴=161.(2009•长宁区一模)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD= 2 .162.如图,在△ABC 中,M 、N 是AB 、BC 的中点,AN 、CM 交于点O ,那么△MON 与△AOC 面积的比是 1:4 .MN=163.如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ:S Ⅱ:S Ⅲ= 1:3:5 .164.如图,已知点D 是AB 边的中点,AF ∥BC ,CG :GA=3:1,BC=8,则AF= 4 .∴==BE=EC EC解答题 165.(2008•黄冈)已知:如图,在直角梯形COAB 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A ,B ,C 三点的坐标分别为A (8,0),B (8,10),C (0,4),点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的;(3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设△OPD 的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)试探究:当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?并求出此时动点P 的坐标.)可先计算出梯形面积的,也就求出了四边形k=x+4•t=;t×﹣t∴166.(2005•重庆)在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?)代入得,﹣∴t=时,有:,∵t=t=或时,∴的面积为:QM=×167.(2003•南宁)如图所示,已知A ,B 两点的坐标分别为(28,0)和(0,28).动点P 从A 点开始在线段AO 上以每秒3个单位的速度向原点O 运动,动直线EF 从x 轴开始每秒1个单位的速度向上平行移动(即EF ∥x 轴),并且分别与y 轴,线段AB 交于E ,F 点,连接FP ,设动点P 与动直线EF 同时出发,运动时间为t 秒.(1)当t=1秒时,求梯形OPFE 的面积,当t 为何值时,梯形OPFE 的面积最大,最大面积是多少?(2)当梯形OPFE 的面积等于三角形APF 的面积时,求线段PF 的长; (3)设t 的值分别取t 1,t 2时(t 1≠t 2),所对应的三角形分别为△AF 1P 1和△AF 2P 2.试判断这两个三角形是否相似,请证明你的判断.y=FP=8)由168.(2009•兰州)如图①,正方形ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A ⇒B ⇒C ⇒D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标; (3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A ⇒B ⇒C ⇒D 匀速运动时,OP 与PQ 能否相等?若能,写出所有符合条件的t 的值;若不能,请说明理由.t=时;当AB=∴,∴.AM=PM=t t ×t t t ,=,)((=t=,t=时,t=t=或t=169.(2008•孝感)锐角△ABC 中,BC=6,S △ABC =12,两动点M ,N 分别在边AB ,AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0) (1)△ABC 中边BC 上高AD= 4 ;(2)当x= 2.4 时,PQ 恰好落在边BC 上(如图1); (3)当PQ 在△ABC 外部时(如图2),求y 关于x 的函数关系式(注明x 的取值范围),并求出x 为何值时y 最大,最大值是多少?∴=(或∴,即∴(﹣x (170.(2008•青岛)已知:如图①,在Rt △ACB 中,∠C=90°,AC=4cm ,BC=3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由; (4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.∴=,∴,t=t=时,∴=∴=t×PH=﹣﹣S,即﹣∴=,∴,PN=,,∴t+t+2t=4.t=st=CM=t=cmPC===边长为171.(2008•梅州)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.,得:y==﹣172.(2007•温州)在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C 移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;(3)当x为何值时,△EDQ为直角三角形?∴==,xxy=CP==﹣x x+4∴==,∴=,即=173.(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:(1)线段AE与CG是否相等请说明理由:(2)若设AE=x,DH=y,当x取何值时,y最大?(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?,所以,∴∴﹣x=有最大值为...∴.又∵∴174.(2001•上海)已知梯形ABCD 中,AD ∥BC ,且AD <BC ,AD=5,AB=DC=2. (1)如图,P 为AD 上的一点,满足∠BPC=∠A ,求AP 的长; (2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE=∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q . ①当点Q 在线段DC 的延长线上时,设AP=x ,CQ=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; ②当CE=1时,写出AP 的长.(不必写解答过程)∴,即:∴,即:∴∴∵175.(1998•上海)已知一个二次函数的图象经过A (﹣1,0)、B (0,3)、C (4,﹣5)三点.(1)求这个二次函数的解析式及其图象的顶点D 的坐标;(2)这个函数的图象与x 轴有两个交点,除点A 外的另一个交点设为E ,点O 为坐标原点.在△AOB 、△BOE 、△ABE 和△BDE 着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.,AB=BD=BE=3,.==.176.如图,四边形ABCD 是等腰梯形,其中AD ∥BC ,AD=2,BC=4,AB=CD=.点M 从点B 开始,以每秒2个单位长的速度向点C 运动;点N 从点D 开始,以每秒1个单位长的速度向点A 运动,若点M ,N 同时开始运动,点M 与点C 不重合,运动时间为t (t >0).过点N 作NP 垂直于BC ,交BC 于点P ,交AC 于点Q ,连接MQ . (1)用含t 的代数式表示QP 的长; (2)设△CMQ 的面积为S ,求出S 与t 的函数关系式; (3)求出t 为何值时,△CMQ 为等腰三角形?AB=CD=∴.即∴=S=t=.∴∴,∴,即t=或t=的值为,时,177.(2009•下城区模拟)如图,△ABC 中,AC=BC ,∠A=30°,AB=.将三角板中30°角的顶点D 放在AB 边上移动,使这个30°角的两边分别与△ABC 的边AC ,BC 相交于点E ,F ,连接DE 、DF 、EF ,且使DE 始终与AB 垂直,设AD=x ,△DEF 的面积为y .(1)画出符合条件的图形,写出与△ADE 一定相似的三角形并说明理由; (2)EF 与AB 可能平行吗?若能,请求出此时AD 的长;若不能,请说明理由;(3)求出y 与x 之间的函数关系式并求出自变量的取值范围;当x 为何值时,y 有最大值,最大值为多少?,(﹣)x=2x=EF= DF=∴,∴y=××(﹣==178.(2009•青岛)如图,在梯形ABCD 中,AD ∥BC ,AD=6cm ,CD=4cm ,BC=BD=10cm ,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题: (1)当t 为何值时,PE ∥AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S △PEQ =S △BCD ?若存在,求出此时t 的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.,则应有,得到,得到EQ∴∴∴(∴∴CM=∴∴∴.∴.=PN=××CD BM==8S则有﹣+t=,.179.(2008•盐城)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为垂直,数量关系为相等.②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.,∴=,∴.x (180.(2008•恩施州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明; (2)求m 与n 的函数关系式,直接写出自变量n 的取值范围; (3)以△ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD=CE ,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2;(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立?若成立,请证明;若不成立,请说明理由.∴CA=BA=∴.BC=1﹣,﹣(=CE ﹣=2﹣﹣∵参与本试卷答题和审题的老师有:zhehe;MMCH;117173;zhjh;wdxwzk;张超。
浙教版数学九年级上册《4.3相似三角形》说课稿1
浙教版数学九年级上册《4.3 相似三角形》说课稿1一. 教材分析浙教版数学九年级上册《4.3 相似三角形》是整个九年级数学的重要内容,也是学生对几何学习的一个关键转折点。
这一节内容是在学生已经掌握了三角形的基本性质、全等三角形的基础上进行学习的。
本节课主要介绍相似三角形的定义、性质和判定,以及相似三角形在实际问题中的应用。
通过这一节课的学习,让学生能够理解和掌握相似三角形的知识,提高他们的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对三角形的基本性质和全等三角形有一定的了解。
但是,学生在学习过程中,对于一些抽象的概念和定理的理解还有一定的困难,需要教师进行详细的解释和引导。
此外,学生的学习兴趣和学习积极性也需要教师进行调动,让他们能够主动参与到课堂学习中。
三. 说教学目标1.让学生理解和掌握相似三角形的定义、性质和判定。
2.培养学生运用相似三角形解决实际问题的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 说教学重难点1.相似三角形的定义和性质。
2.相似三角形的判定方法。
3.相似三角形在实际问题中的应用。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导发现法、小组合作学习法等教学方法。
同时,利用多媒体课件和几何画板等教学手段,直观地展示相似三角形的相关概念和性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考全等三角形和相似三角形的区别,激发学生的学习兴趣。
2.讲解:详细讲解相似三角形的定义、性质和判定,通过示例和练习,让学生理解和掌握。
3.实践:让学生利用相似三角形的性质解决实际问题,培养学生的应用能力。
4.总结:对本节课的内容进行总结,强调相似三角形的重要性质和应用。
5.作业:布置相关的练习题,巩固学生对相似三角形的理解和掌握。
七. 说板书设计板书设计要简洁明了,能够清晰地展示相似三角形的主要内容和关键点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知:在△ABC 和△A'B'C'中, A = A' , B = B' 求证:ΔABC∽ △A'B'C'
B
A
A'
B' C
C'
A D E A'
证明:
B
C
B'
C'
在△ABC边AB上, 截取AD=A'B',过D作 DE∥BC交AC于E.则有△ADE∽△ABC
∵∠ADE=∠B , ∠B=∠B ' ∴∠ADE=∠B ' 又∵∠A=∠A' , AD=A'B' ∴△ADE≌△A'B'C' (ASA) ∴△A'B'C'∽△ABC.
B
A
D C E
A D
O
D E
C
F
1、已知:如图,在ΔABC中,AD、BE分别是 BC、AC上的高,AD、BE相交于点F.
(1)求证:ΔAEF∽ΔADC;
(2)图中还有与ΔAEF相似的三角形吗?请一一写出 . 答:有ΔAEF∽ΔADC∽ΔBEC∽ΔBDF. A A E F
F
E
B
D
C
D
C
2、 如图,在ΔABC中 ,点D、E分别是边AB、AC上的点, 连结DE,利用所学的知识讨论:当具备怎样的条件时,ΔADE 与 ΔABC相似?
D、4个
60°
50°
70°
50°
通过这节课的学习, 你有什么收获?
下课了 !
结束寄语
•不经历风雨,怎么见 彩虹.,没有人能随随 便便成功!
数学周报将提供 本课小结 更多更精彩的资料给大家 通过这节课的学习你学会了什么? 你有什么收获与困惑?
再 见
B、有一个角为60°的两个等腰三角形相似
C、有一个角为30°的两个等腰三角形相似 D、有一个角为100°的两个等腰三角形相似
选
择
下列结论中,正确的个数是( B )
①任意两个等腰三角形都相似
②任意两个等边三角形都相似 ③任意两个直角三角形都相似 ④任意两个等腰直角三角形都相似
A、1个
B、2个
C、3个
A D E A'
证明:
B
C
B'
C'
在△ABC边AB上, 截取AD=A'B',在AC边 上截取AE=A'C'.则有△ADE≌△A'B'C'
∴∠ADE=∠B'=∠B ∴ DE∥BC ∴ △ADE∽△ABC ∴△A'B'C'∽△ABC.
判定定理1: 如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相似.
A A
D
D E
E
B C B C
看谁答得快!
填 空: 1、直角三角形被 斜边上的 高分成的两个直角 相似
三角形相似,它们和原三角形
2、两个等腰三角形都有一个角是45°,则这两个三角
形
不一定相 似
两个等腰三角形都有一个角是95° ,则这两个三角
形 一定相 似
选
择
下列结论中,不正确的是( C ) A、有一个角为90°的两个等腰三角形相似
1、相似三角形的定义? 三角对应相等,三边对应成比例 的两个三角形叫做相似三角形.
2、三角形的中位线截得的三角形与原三 A 角形是否相似? 相似比是多少?
D B E C
如图在△ABC中,点D、E分别 在AB、AC上,且DE‖BC,则 △ADE与△ABC相似吗?
•(1)议一议:这两个三角形的 B 三个内角是否对应相等? •(2)量一量:这两个三角形的 边长,它们是否对应成比例?
B
A D E
E A
D
C
B
C
如图, 已知DE∥BC ,DF∥AC,请尽可能多地找出图中的 相似三角形,并说明理由.
A
D
E
B
F
C
如图 △ABC 和△ A‘B’C‘中,∠A=∠A’,∠ B=∠B’ . 问△ABC与△ A‘B’C‘是否相似?
A A'
B' B C
C'
如果一个三角形的两个角与另一个三角形的两 个角对应相等,那么这两个三角形相似.
例 在一次数学活动课上,为了测量河宽AB,张杰采
用了如下的方法(如图):从A处沿与AB垂直的直线 方向走40米到达C处,插一根标竿,然后沿同方向继 续走15米到达D处,再向右转90度走到E处,使B、C、 E三点恰好在一条直线上,量得DE=20米,这样就可以 求出河宽AB,请你算出结果(要求写出解题过程). 方法三 方法二 方法一 B
A
D
E
C
E A D
(3)平行移动DE的位置再试一试.
B
A
C
结论:
D E 平行于三角形一边的直线和其他两边(或两边的延 长线)相交,所构成的三角形与原三角形相似. B C
相似三角形的预备定理
平行于三角形一边的直线和其 他两边(或两边的延长线)相交, 所构成的三角形与原三角形相似.
几何语言叙述:
∵DE‖BC ∴⊿ADE∽⊿ABC
简称:
几何语言叙述: ∵∠A=∠A´,∠B=∠B´
A A'
∴⊿ABC∽⊿A´B´C´
B
C B'
C'
已知:Rt△ABC中,∠ACB=90°,CD⊥AB
C
试
图中有几对相似三角形.
A
D B
已知:如图Rt△ABC中,CD是斜边上的高. 例、 求证:△ABC∽△CBD∽△ACD.
证明:∵∠B=∠B,∠CDB=∠ACB=90°, ∴△ABC∽△CDB(两个角对应相等,两三角形相似). 同理可证:△ABC∽△ACD ∴△ABC∽△CBD∽△ACD.
此结论可以称为“母子相似定理”,今后可以直接使用
判定两个三角形相似的方法: 1、相似三角形的定义 2、预备定理:平行于三角形一边的直线和其他两边 (或两边的延长线)相交,所构成的三角形与原 三角形相似. 3、判定定理1:如果一个三角形的两个角与另一个三 角形的两个角对应相等,那么这两个三角形相似. 简单说成:两个角对应相等,两三角形相似. 4、母子相似定理:直角三角形被斜边上的高分成的 两个 直角三角形和原三角形相似.