3.1.3 二倍角的正弦、余弦、正切公式

合集下载

3.1.3 二倍角的正弦、余弦和正切公式素材

3.1.3   二倍角的正弦、余弦和正切公式素材

课堂篇02
合作探究
给角求值问题
【例1】 求下列各式的值: π 5π (1)cos12cos12; π π π π (2)(cos -sin )(cos +sin ); 12 12 12 12 1 2π (3)2-cos 8; (4)sin10° sin30° s2sin2x 求 的值. 1+tanx 【分析】 代入求解. π 化简所求式,使其出现角( 4 -x),整体
【解】
sin2x-2sin2x 2sinxcosx-sinxcosx = 1+tanx cosx+sinx
sin2xcosx-sinx = cosx+sinx 1-tanx =sin2x 1+tanx π =sin2xtan(4-x) π π =cos(2-2x)tan(4-x)
π 1 (2)由(1)得 f(x)=sin(2x-6)+2. 2π 因为 0≤x≤ , 3
③ 7π π π 所以-6≤2x-6≤ 6 ,
1 π 所以-2≤sin(2x-6)≤1. π 1 3 所以 0≤sin(2x-6)+2≤2, 即
2π 3 f(x)在区间0, 3 上的取值范围为0,2.
3.1.3
二倍角的正弦、余弦、正切公式
学习目标
1.会推导并记住二倍角公式. 2.能够运用二倍角公式及其变形解决有关化简、求值 和证明问题.
重点难点
重点:二倍角公式的推导; 难点:二倍角公式的变形应用.
预习篇01
新知导学
二倍角的正弦、余弦、正切公式的推导
在公式sin(α+β),cos(α+β),tan(α+β)中,令
2
1 2π (3)原式= (1-2cos ) 2 8
1 π 2 =-2cos4=- 4 . 1 (4)原式=2cos20° cos40° cos80° = 2sin20° cos20° cos40° cos80° 4sin20°

高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

3.1.3 二倍角的正弦、余弦、正切公式疱工巧解牛知识•巧学 一、倍角公式1.公式的推导:倍角公式是和角公式的特例,只要在和角公式中令α=β,就可得出相应的倍角公式.sin(α+β)=sinαcosβ+cosαsinβ−−→−=βα令sin2α=2sinαcosα;cos(α+β)=cosαcosβ-sinαsinβ−−→−=βα令cos2α=cos 2α-sin 2α.由于sin 2α+cos 2α=1,显然,把sin 2α=1-cos 2α代入cos2α=cos 2α -sin 2α,得cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1. 同理,消去cos 2α,得cos2α=1-2sin 2α. tan(α+β)=αααβαβαβα2tan 1tan 22tan tan tan 1tan tan -=−−→−•-+=令. 综上,我们把公式叫做二倍角公式.2.二倍角公式中角α的范围由任意角的三角函数的定义可知S 2α、C 2α中的角α是任意的,但公式T 2α即tan2α=αα2tan 1tan 2-中的角是有条件限制的. 要使tan2α有意义,需满足1-tan 2α≠0且tanα有意义.当tanα有意义时,α≠2π+kπ(k∈Z );当1-tan 2α≠0,即tanα≠±1时,α≠±4π+kπ(k∈Z ).综上,可知要使T 2α有意义,需α≠±4π+kπ且α≠2π+kπ(k∈Z ).特别地,当α=2π+kπ(k∈Z )时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+kπ)=tan(π+2kπ)=tanπ=0. 学法一得 二倍角的切函数是用单角的切函数表示出来的,它的角α除了使解析式有意义外,还应使函数自身也有意义. 3.倍角公式中的倍角是相对的二倍角公式不仅仅可用于将2α作为α的2倍的情况,对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,4α是2α的二倍角,3α是23α的二倍角,2α是4α的二倍角,3α是6α的二倍角等. 在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例6cos6sin23sinααα=,6cos 26sin 6cos 3cos222αααα=-=-1=1-2sin26α;sin3α·cos3α=21 (2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;ααα3sin 4123cos 23sin 21=;︒-︒35tan 135tan 22=tan70°等. 4.倍角公式的几种变形形式(sinα±cosα)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 学法一得 我们常把1+co sα=2cos 22α,1-cosα=2sin 22α称为升幂换半角公式,利用该公式消去常数项,便于提取公因式化简三角函数式;把cos 2α=22cos 1α+,sin 2α=22cos 1α-称为降幂换倍角公式,利用该公式能使之降次,便于合并同类项化简三角函数式.倍角公式给出了α的三角函数与2α的三角函数之间的关系.对于该公式不仅要会正用,还应会逆用和变用.5.倍角公式与和角公式的内在联系只有理清公式的来龙去脉及公式的变形形式,才能及时捕捉到有价值的信息,完成问题的解答. 典题•热题知识点一 直接应用倍角公式求值 例1 求下列各式的值:(1)2sin15°sin105°;(2)︒-15sin 731432;(3)︒-︒5.22tan 15.22tan 2;(4)12cos24cos 24sin πππ. 解:(1)原式=2sin15°·sin(90°+15°)=2sin15°cos15°=sin30°=21.(2)原式=143(1-2sin 215°)=143cos30°=283323143=⨯. (3)原式=.2112145tan 215.22tan 15.22tan 2212=⨯=︒=︒-︒•. (4)原式=8121416sin 4112cos 12sin 21=⨯==πππ.方法归纳 倍角公式中的角是相对的,对它应该有广义上的理解,即112cos 2sin22++=n n nααα(n∈N *),12sin 2cos 2cos212+-=+n n nααα(n∈N *),1212tan 12tan 22tan++-=n n nααα (n∈N *).知识点二 利用倍角公式给值求值例2 已知x∈(2π-,0),cosx=54,则tan2x 等于( ) A.247 B.247- C.724 D.724- 思路分析:运用三角函数值在各个象限的符号及倍角公式求解. 解法一:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x . 由倍角公式sin2x=2sinxcosx=2524-,cos2x=2cos 2x-1=2×(54)2-1=257. 得tan2x=7242cos 2sin -=x x .解法二:∵x∈(2π-,0),cosx=54,∴sinx=53)54(1cos 122-=--=--x .∴tanx=43cos sin -=x x . ∴tan2x=724)43(1)43(2tan 1tan 222-=---⨯=-xx . 答案:D方法归纳 ①解好选择题的关键在于能否针对题目的特点,选择合理而适当的解法,最忌对任何题目都按部就班地演算求解,小题大做,应力求做到“小题小做”“小题巧做”. ②像这种从题目的条件出发,通过正确地运算推理,得出结论,再与选择肢对照确定选项的方法叫做定量计算法;像这样通过对题干和选择肢的关系进行观察、分析,再运用所学知识,通过逻辑推理作出正确选择的方法叫做定性分析法. 例3 已知sin(4π+α)sin(4π-α)=161,α∈(2π,π),求sin4α的值.思路分析:要求sin4α的值,根据倍角公式可知只需求出sin2α、cos2α的值或sinα、cosα的值即可.由于(4π+α)+(4π-α)=2π,可运用二倍角公式求出cos2α的值. 解:由题设条件得sin(4π+α)sin(4π-α)=sin(4π+α)cos[2π-(4π-α)] =sin(4π+α)cos(4π+α)=21sin(2π+2α)=21cos2α=61,∴cos2α=31.∵α∈(2π,π),∴2α∈(π,2π).又∵cos2α=31>0,∴2α∈(23π,2π).∴sin2α=322)31(12cos 122-=--=--α. ∴sin4α=2sin2α·cos2α=2×92431)322(-=⨯-. 例4 已知cos(4π+x)=53,47127ππ<<x ,求x x x tan 1sin 22sin 2-+的值.思路分析:由于结论中同时含有切、弦函数,所以可先对结论切化弦,化简后不难发现,只需求出sin2x 和tan(4π+x)的值即可,注意到2(4π+x)=2π+2x ,这样通过诱导公式就容易找到sin2x 同cos(4π+x)的关系了. 解:∵47127ππ<<x ,∴πππ2465<+<x .又∵cos(4π+x)=53>0,∴23π<4π+x <2π.∴sin(4π+x)=54)53(1)4(cos 122-=--=+--x π,345354)4cos()4sin()4tan(-=-=++=+x x x πππ.∵sin2x=-cos2(4π+x)=1-2cos 2(4π+x)=25725181=-, ∴原式=x x x x x x x x x x x xx x x sin cos )sin (cos 2sin sin cos cos sin 2cos 2sin cos sin 1sin 22sin 22-+=-•+•=-+7528)34(257)4tan(2sin tan 1tan 12sin -=-⨯=+•=-+•=x x x x x π.例5 在△ABC 中,已知AB=AC=2BC(如图3-1-10),求角A 的正弦值.图3-1-10思路分析:由于所给三角形是等腰三角形,所以可通过底角的三角函数值或顶角一半的三角函数值来求解.解:作AD⊥BC 于点D ,设∠BAD=θ,那么A=2θ.∵BD=21BC=41AB ,∴sinθ=41=AB BD . ∵0<2θ<π,∴0<θ<2π.于是cosθ=415)41(1sin 122=-=-θ. 故sinA=sin2θ=2sinθcosθ=815415412=⨯⨯. 巧解提示:作AD⊥BC 于点D ,∵BD=21BC=41AB,又∵AB=AC, ∴∠B=∠C.∴cosB=cosC=41=AB BD . ∵0<B <2π,∴sinB=415.又∵A+B+C=π,∴A=π-(B+C)=π-2B. ∴sinA=sin(π-2B)=sin2B=2sinBcosB=815414152=⨯⨯. 方法归纳 在△ABC 中,由于A+B+C=π,所以A=π-(B+C),222CB A +-=π.由诱导公式可知:sinA=sin(B+C);cosA=-cos(B+C);tanA=-tan(B+C);2cot2tan ;2sin 2cos ;2cos 2sinC B A C B A C B A +=+=+=. 任意变换A 、B 、C 的位置,以上关系式仍然成立. 例6 已知sin 22α+sin2αcosα-cos2α=1,α∈(0,2π),求sinα、tanα的值. 思路分析:已知是二倍角,所求的结论是单角;已知复杂,结论简单,因此可从化简已知入手,推出求证的结论.解:把倍角公式sin2α=2sinαcosα,cos2α=2cos 2α-1代入已知得 4sin 2αcos 2α+2sinαcos 2α-2cos 2α=0, 即2cos 2α(2sin 2α+sinα-1)=0, 即2cos 2α(2sinα-1)(sinα+1)=0.∵α∈(0,2π),∴sinα+1≠0,cos 2α≠0. ∴2sinα-1=0,即sinα=21.又∵α∈(0,2π),∴α=6π.∴tanα=33.知识点三 利用倍角公式化简三角函数式例7 利用三角公式化简sin50°(1+3tan10°).思路分析:本题给我们的感觉是无从下手,很难看出有什么公式可直接利用.从角的角度去分析,10°、50°除了它们的和60°是特殊角外,别无特点;从函数名称的角度去分析,由于该式子有弦,有切,我们可从化切为弦入手去尝试解决,转化成弦函数.通分后出现asinθ+bcosθ的形式,由于3是一特殊角的三角函数值,可把它拼凑成两角和(差)的正、余弦展开式的形式逆用公式求值.若把50°转化成(60°-10°)从同一角入手,也可以求值. 解:原式=sin(60°-10°)(1+3tan10°)=(23cos10°-21sin10°)(1+3tan10°) =23cos10°+23cos10°tan10°-21sin10°-23sin10°tan10° =23cos10°+sin10°-23sin10°·tan10°=23(cos10°-︒︒10cos 10sin 2)+sin10° =︒︒︒+︒•=︒+︒︒•10cos 10cos 10sin 33220cos 2310sin 10cos 20cos 23 ︒︒+︒••=︒︒+︒•=10cos 20sin 2120cos 233322310cos 20sin 3320cos 23180sin 80sin 10cos 80sin 10cos 20sin 60cos 20cos 60sin =︒︒=︒︒=︒︒︒+︒︒=.巧解提示:原式=︒︒+︒•︒=︒︒+︒10cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin ︒︒︒+︒︒︒=10cos 10sin 30cos 10cos 30sin 50sin 2110cos 10cos 10cos 80sin 10cos 40sin 40cos 2=︒︒=︒︒=︒︒︒=.方法归纳 对于三角整式,基本思路是降次、消项和逆用公式;对三角分式,基本思路是分子与分母约分或逆用公式;对二次根式,要设法使被开方数升次,通过开方进行化简.另外,还可用切割化弦、变量代换、角度归一等方法.对于形如1±sinα、1±cosα的形式,我们可采取升幂换半角的形式,消去常数项1,通过提取公因式化简有理式或通过开方化简无理式. 例8 求cos20°cos40°cos60°cos80°的值. 解:由于cos60°=21,所以原式=21cos20°cos40°cos80° ︒︒︒︒︒•=20sin 80cos 40cos 20cos 20sin 21 ︒︒︒•=︒︒︒︒•=20sin 80cos 80sin 8120sin 80cos 40cos 40sin 41 16120sin 160sin 161=︒︒•=. 方法归纳 对于可化为cosαcos2αcos4α…cos2n-1α(n∈N 且n>1)的三角函数式,由于它们的角是以2为公比的等比数列,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简.巧解提示:此外,本题也可构造一对偶式求解. 设M=cos20°·cos40°·cos60°·cos80°, N=sin20°·sin40°·sin60°·sin80°, 则MN=161sin40°·sin80°·sin120°·sin160° =161sin20°·sin40°·sin60°·sin80° =161N ,∴M=161,即cos20°·cos40°·cos60°·cos80°=161. 知识点四 利用倍角公式证明三角恒等式例9 求证:θθθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+. 证明:原式等价于1+sin4θ-cos4θ=αθ2tan 1tan 2-(1+sin4θ+cos4θ), 即1+sin4θ-cos4θ=tan2θ(1+sin4θ+cos4θ). ① 而①式右边=tan 2θ(1+cos4θ+sin4θ)=θθ2cos 2sin(2cos 22θ+2sin2θcos2θ)=2sin2θcos2θ+2sin 22θ =sin4θ+1-cos4θ=左边.所以①式成立,原式得证. 例10 求证:︒=︒-︒10sin 3240cos 140sin 322. 思路分析:由于分母是三角函数值平方的形式,通分后转化成3cos 240°-sin 240°,按平方差公式展开得(3cos40°+sin40°)(3cos40°-sin40°),恰好是两个辅助角公式的形式,可运用三角函数的和差公式求值;此外,也可对它的分母降幂换倍角进行化简. 证明:左边=︒•︒︒-︒︒+︒=︒︒︒-︒40cos 40sin )40sin 40cos 3)(40sin 40cos 3(40cos 40sin 40sin 40cos 32222222)40cos 40sin 2()40sin 2140cos 23(2)40sin 2140cos 23(24︒︒︒-︒⨯︒+︒⨯=︒︒︒-︒︒︒︒+︒︒=80sin )40sin 60cos 40cos 60)(sin 40sin 60cos 40cos 60(sin 162︒︒-︒︒+︒=80sin )4060sin()4060sin(162 ︒=︒︒︒⨯=︒︒=︒︒︒=10sin 3210cos 10cos 10sin 21680sin 20sin 1680sin 20sin 100sin 162=右边, 所以原式成立.方法归纳 对于三角函数式的化简、求值和证明,可从角的角度、运算的角度或函数名称的角度去考虑,其中通过通分,提取公因式、约分、合并同类项等运算的手法去化简是非常必要的.例11 已知3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:cos(α+2β)=0.思路分析:从求证的结论看,cos(α+2β)的展开式中含有cosα、cos2β、sinα、sin2β这样的函数值.由已知条件结合倍角公式的特点,恰好能转化出cos2β、sin2β这样的函数值.证明:由3sin 2α+2sin 2β=1,得1-2sin 2β=3sin 2α,∴cos2β=3sin 2α. 又∵sin2β=23sin2α, ∴cos(α+2β)=cosαcos2β-sinαsin2β=cosα·3sin 2α-sinα·23sin2α=23sinαsin 2α-23sinαsin2α=0.方法归纳 首先观察条件与结论的差异,从解决某一差异入手.确定从结论开始,通过变换将已知条件代入得出结论;或通过变换已知条件得出结论;或同时将条件与结论变形,直到找到它们间的联系.如果上述方法都难奏效的话,可采用分析法;如果已知条件含有参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法,等等. 问题•探究 材料信息探究问题 倍角和半角公式:sinα=2tan12tan22αα+,cosα=2tan12tan 122αα+-,tanα=2tan12tan 22αα-,这组公式称为“万能公式”,那么“万能公式”是怎样来的?它真的是“万能”的吗?探究过程:万能公式是一组用tan2α来表示sinα、cosα和tanα的关系式. 这组公式可以利用二倍角公式推导,其中正切tanα=2tan 12tan22αα-,可以由倍角公式直接获得;正弦、余弦只要在倍角公式中添加分母,再分子、分母同除以cos 22α可得: 2tan 12tan22cos 2sin 2cos 2sin 22cos 2sin 2sin 222ααααααααα+=+==, 2tan 12tan 12cos 2sin 2sin 2cos 2sin 2cos cos 22222222ααααααααα+-=+-=-=. 这组“万能公式”为一类三角函数的求值提供了一座方便可行的桥梁,如要计算cosα或sin(α+β)的值,可以先设法求得tan2α或2tan βα+的值.由于公式中涉及角的正切,所以使用时要注意限制条件,即要保证式子有意义.探究结论:所谓的“万能”,是说不论角α的哪一种三角函数,都可以表示成tan 2α的有理式,这样就可以把问题转化为以tan 2α为变量的“一元有理函数”,即如果令tan 2α=t ,则sinα、cosα和tanα均可表达为关于t 的分式函数,这就实现了三角问题向代数问题的转化,为三角问题用代数方法求解提供了一条途径.如tan15°+cot15°=tan15°+=︒+︒=︒15tan 115tan 15tan 12430sin 2115tan 15tan 222=︒=+︒︒,就较方便的解决了问题.再如求函数2sin cos +=x x y 的值域.令t x =2tan ,则t∈R ,利用万能公式有sinx=212t t +,cosx=2211t t +-,所以=+++-=21211222tt t t y 222221t t t ++-,由此可以建立关于t 的一次或二次函数(2y+1)t 2+2yt+2y-1=0,进一步分类讨论可得函数的值域.。

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3  二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式整体设计一、教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.二、教学目标1.知识与技能:通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.情感态度与价值观:通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.三、重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.四、课时安排1课时五、教学设想(一)导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sinα=53,α∈(2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式.(二)推进新课、新知探究、提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写)②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ).⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.(S 2α);cos(α+β)=cosαcosβ-sinαsi 2α-sin 2α(C 2α); tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ+4π和α≠kπ+2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ+2π,k ∈Z 时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tanα(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k ∈Z ).若cos2α=2cosα,则2cos 2α-2cosα-1=0,即cosα=231-(cosα=231+舍去). 若tan2α=2tanα,则aa 2tan 1tan 2-=2tanα,∴tanα=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)(三)应用示例思路1例1 已知sin2α=135,4π<α<2π,求sin4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π. 又∵sin2α=135, ∴cos2α=a 2sin 12--=1312)135(12-=--. 于是sin 4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120-; cos4α=cos[2×(2α)]=1-2sin 22α=1-2×(135)2=129119; tan4α=a a 4cos 4sin =(-169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值解:原式=2615cos 15sin 215sin )15cos 15(sin 222=++=+点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.(2007年高考海南卷,9) 若22)4sin(2cos -=-πa a,则cosα+sinα的值为 A.27- B.21- C.21 D.27 答案:C3.(2007年高考重庆卷,6) 下列各式中,值为23的是( ) A.2sin15°-cos15° B.cos 215°-sin 215° C.2sin 215°-1 D.sin 215°+cos2答案:B例2 证明θθθθ2cos 2sin 12cos 2sin 1++-+=tanθ. 活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=)1cos 21(cos sin 2)cos 211(cos sin 2)2cos 1(2sin )2cos 1(2sin 22-++-++=+-+θθθθθθθθθθ =θθθθθθ22cos cos sin cos 1cos sin +-+ =θθθθθθ22cos cos sin sin cos sin ++ )cos (sin cos )sin (cos sin θθθθθθ++=tanθ=右. 所以,原式成立.方法二:左=θθθθθθθθθθθθθθ22222222222cos 22sin sin 22sin sin cos 2sin cos sin cos sin sin cos sin ++=-+++-+++=)cos (sin cos 2)cos (sin sin 2θθθθθθ++=tanθ=右. 方法三:左=)sin (cos )cos sin 2cos (sin )sin (cos )cos sin 2cos (sin 2cos )2sin 1(2cos )2sin 1(22222222θθθθθθθθθθθθθθθθ-+∙++--∙++=++-+ =)sin )(cos sin (cos )cos (sin )sin )(cos sin (cos )cos (sin 22θθθθθθθθθθθθ-+++-+-+ =)sin cos cos )(sin cos (sin )cos sin cos )(sin cos (sin θθθθθθθθθθθθ-+++-+++ =θθθθθθcos 2)cos (sin sin 2)cos (sin ∙+∙+=tanθ=右. 点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1 求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20° =20sin 2280cos 40cos 20cos 20sin 233∙∙ =.16120sin 1620sin 20sin 16160sin == 点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律.例2 在△ABC 中,cosA=54,tanB=2,求tan(2A+2B)的值. 活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A+B+C=π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A+2B 与A,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A+2B)的值改为求tan2C 的值.解:方法一:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA=A A cos sin =53×45=43, tan2A=724)43(1432tan 1tan 222=-⨯=-A A 又tanB=2,所以tan2B=.342122tan 1tan 222-=-⨯=-B B 于是tan(2A+2B)=.17744)34(7241347242tan 2tan 12tan 2tan =-⨯--=-+B A B A 方法二:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA==A A cos sin 53×45=43.又tanB=2, 所以tan(A+B)=2112431243tan tan 1tan tan -=⨯-+=-+B A B A 于是tan(2A+2B)=tan[2(A+B)] =.11744)211(1)211(2)(tan 1)tan(222=---⨯=+-+B A B A 点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练 化简:.4sin 4cos 14sin 4cos 1aa a a +-++ 解:原式=aa a a a a 2cos 2sin 22sin 22cos 2sin 22cos 222++ =)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2a a a a a a ++=cot2α.(四)知能训练(2007年高考四川卷,17) 已知cosα=71,cos(α-β)=1413,且0<β<α<2π, (1)求tan2α的值;(2)求β.解:(1)由cosα=71,0<α<2π,得sinα=a 2cos 1-=.734)71(12=- ∴tanα=a a cos sin =17734⨯=43.于是tan2α=.4738tan 1342tan 1tan 222-=-⨯--aa a (2)由0<α<β<2π,得0<α-β<2π. 又∵cos(α-β)=1413,∴sin(α-β)=.1433)1413(1)(cos 122=-=--βa 由β=α-(α-β),得cosβ=cos [α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=71×1413+1433734⨯=21. ∴β=3π. 点评:本题主要考查三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.(五)课题小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.。

【数学】3.1.3 二倍角的正弦、余弦、正切公式1

【数学】3.1.3  二倍角的正弦、余弦、正切公式1
场景记忆法小妙招
超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一 些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正 常在我们常识中不可能发生的事情,会让我们印象更深。
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
例9 (1) 若cos 1,则sin
3
2
若 (3 ,2),则sin
2
2
3 3
,
cos
2
3 3
,
cos
2
6 3 6 3
. .
(2) 化简 1 cos 4等于 2
(A )
(A)cos(2 - ) (B) cos2 (C) sin(2 - ) (D) sin2
【学习力-学习方法】

【高中数学】必修4 专题3.1.3 二倍角的正弦、余弦、正切公式(解析版)

【高中数学】必修4 专题3.1.3 二倍角的正弦、余弦、正切公式(解析版)

第三章三角恒等变换3.1.3 二倍角的正弦、余弦、正切公式一、选择题1.已知sinα–cosα=43,则sin2α=A.–79B.–29C.29D.79【答案】A【解析】将sinα–cosα=43的两边进行平方,得sin2α–2sinαcosα+cos2α=169,即sin2α=–79.2.(cos15°–cos75°)(sin75°+sin15°)=A.12B2C.32D.1【答案】C【解析】因为sin75°=sin(90°–15°)=cos15°,cos75°=cos(90°–15°)=sin15°,所以(cos15°–cos75°)(sin75°+sin15°)=(cos15°–sin15°)(cos15°+sin15°)=cos215°–sin215°=cos30°3C.3.cos2π182的值为A.1 B.1 2C.22D.24【答案】D【解析】2π1cos 82-=π1cos1422+-=1πcos 24⋅D .4.已知2θ是第四象限角,且cos 2θsin θ的值为A .BC .D【答案】D 【解析】∵2θ是第四象限角,且cos 2θsin 2θ=因此,sin θ=2sin2θcos 2θ=2×(×(), ∵x ≤–1,∴sin θ.故选D . 5.已知cos (π4θ+)•cos (π4θ-)θ∈(3π4,π),则sin θ+cos θ的值是 A.2 B .–2C.2D.2【答案】C 【解析】ππcos cos 44θθ⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭=ππsin cos 44θθ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=1πsin 222θ⎛⎫- ⎪⎝⎭=1cos22θ=,∴cos22θ=.∵3ππ4θ⎛⎫∈ ⎪⎝⎭,,∴3π22π2θ⎛⎫∈⎪⎝⎭,,∴1sin22θ=-. ∴211(sin cos )1sin2122θθθ+=+=-=,∵3ππ4θ⎛⎫∈ ⎪⎝⎭,,∴sin θ+cos θ<0.∴sin cos 2θθ+=-.故选C .6.已知θA .sin 4θB .cos4θ C .–sin 4θD .cos 4θ-【答案】A【解析】根据θ为第三象限角,得到θ∈(2k π+π,2k π+3π2), 则2θ∈(k π+π2,k π+3π4),4θ∈(π2k +π4,π2k +3π8),所以cos 2θ<0,sin 4θ>0, 则原式4θ|=sin 4θ.故选A . 7.已知α∈(π2,π),sin α=5tan2α等于A .–43 B .–47 C .–34D .–35【答案】A 【解析】∵α∈(π2,π),sin αcos α==,∴tan α=–12,∴tan2α=22tan 1tan αα-=212211()2⎛⎫⨯- ⎪⎝⎭--=–43.故选A .8.函数y =8sin x cos x cos2x 的周期为T ,最大值为A ,则 A .T =π,A =4 B .π42T A ==,C .T =π,A =2D .π22T A ==,【答案】D【解析】由于函数y =8sin x cos x cos2x =4sin2x •cos2x =2sin4x 的周期为T ,∴T =2π4=π2,且函数的最大值为A =2,故选D .9.函数f (x )=2cos x +cos2x (x ∈R )的最小值是A .–3B .–32 C .–1 D .12【答案】B【解析】∵函数f (x )=2cos x +cos2x =2cos x +2cos 2x –1=221cos 2x ⎛⎫+ ⎪⎝⎭–32,故当cos x =–12时,函数f (x )有最小值等于–32,故选B . 10.2tan151tan 165︒-︒的值是A BC .6D 【答案】C【解析】∵15°+165°=180°,∴2tan151tan 165︒-︒=2tan151tan 15︒-︒=12⋅tan30°.故选C . 11.已知tan a =3,则cos (2α+π2)= A .–35 B .35 C .–35D .35【答案】C【解析】由tan a =3,得cos (2α+π2)=–sin2α=–222sin cos sin cos αααα+=22tan 1tan αα-+=63195-=-+.故选C .12.已知cos (π–α)α∈(0,π),则sin2α=A .–1B .2-C .2D .1【答案】A【解析】由cos(π–α)=2,得–cos2α=,则cos2α=-,∴α∈(0,π),∴sinα2 =,则sin2α=2sinαcosα=2⎛⎝⎭=–1.故选A.13.已知sin(π12+α)sin(π3–2α)=A.4B.34CD.–34【答案】B【解析】sin(π12+α),则sin(π3–2α)=cos(2α+π6)=1–2sin2(π12+α)=1–2×2=34.故选B.14.若5πsinπ132αα⎛⎫=∈ ⎪⎝⎭,,,则tan2α的值为A.120119B.120119-C.119120D.119120-【答案】B【解析】∵5πsinπ132αα⎛⎫=∈ ⎪⎝⎭,,,∴cosα=–1213,∴tanα=sincosαα=–512,则tan2α=22tan1tanαα-=2521251()12⎛⎫⨯- ⎪⎝⎭--=–120119,故选B.15.已知α为第四象限角,sinα+cosα=3,则cos2α=A .B .C D 【答案】D【解析】∵α为第四象限角,sin α+cos α1+2sin αcos α=13,即2sin αcos α=–23,∴sin α–cos α==∴cos2α=cos 2α–sin 2α=–(sin α+cos α)×(sin α–cos α)=–3×(–3)=3,故选D . 二、填空题16.若sin (π8α-)=3,则cos (π24α-)=_____________. 【答案】59【解析】cos (π24α-)=cos[2(π8α-)]=1–22πsin 8α⎛⎫- ⎪⎝⎭=1–2×259=.故答案为:59. 17.若ππ3sin 225αα-<<=,,则πsin 26α⎛⎫+= ⎪⎝⎭_____________.【解析】∵ππ3sin 225αα-<<=,,∴cos α=45, ∴sin2α=2sin αcos α=2×45×324525=,cos2α=1–2sin 2α=1–2×972525=,∴πsin 26α⎛⎫+⎪⎝⎭=sin2αcos π6+cos2αsin π24625=725×12=.18.设cos2θsin 4θ+cos 4θ的值是_____________.【答案】7 8【解析】由于cos2θ=2,则cos4θ+sin4θ=(sin2θ+cos2θ)2–2sin2θcos2θ=1–12sin22θ=1–12(1–cos22θ)=1–12(1–34)=78,故答案为:78.19.函数y=1–2cos2x的最小正周期是_____________.【答案】π【解析】∵y=1–2cos2x=1–(1+cos2x)=–cos2x.∴T=2π2=π.故答案为:π.20.若cosα–sinα=14,则sin2α=_____________.【答案】15 16【解析】∵cosα–sinα=14,∴(cosα–sinα)2=116,可得1–sin2α=116,∴sin2α=1516.故答案为:1516.21.函数y=sinαcosα–cos2α的最小正周期为_____________.【答案】π【解析】∵y=sinαcosα–cos2α=111sin2cos2222αα--=π12242α⎛⎫--⎪⎝⎭,∴三角函数的最小正周期是T=2π2=π,故答案为:π.三、解答题22.在△ABC中,cos(π4+A)=513,求cos2A的值.【解析】在△ABC中,cos(π4+A)=513,∴sin(A+π4)=1213.∴cos2A=sin(π2+2A)=2sin(A+π4)cos(A+π4)=2×513×1213=120169.23.求值:cos 2π7+cos4π7+cos6π7.【解析】原式=π2π4π6πsin cos cos cos7777πsin7⎛⎫++⎪⎝⎭=π2ππ4ππ6πsin cos sin cos sin cos 777777πsin7++=13ππ15π3π17π5πsin sin sin sin sin sin 277277277πsin 7⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=–12. 24.已知a 为第二象限角,cos a =–45,求sin2a . 【解析】∵a 为第二象限角,cos a =–45,∴sin a=35,则sin2a =2sin a cos a =2×35×(–45)=–2425.25.求函数y =2cos 2x 的单调增区间.【解析】函数y =2cos 2x =cos2x +1, 令2k π–π≤2x ≤2k π,解得k π–π2≤x ≤k π,k ∈Z , 故函数的增区间为[k π–π2,k π],k ∈Z . 26.已知111cos sin αα-=,求sin2α的值. 【解析】∵111cos sin αα-==sin cos cos sin αααα-, ∴sin α–cos α=sin αcos α,两边平方可得1–2sin αcos α=(sin αcos α)2. 即1–sin2α=21sin 24α,2sin 24sin 240αα+-=,解得sin2α–2,或sin2α=––2(舍去).。

3.1.3二倍角的正弦余弦正切公式上课课堂

3.1.3二倍角的正弦余弦正切公式上课课堂
(1)求 f(x)的最小正周期;
(2)求对称轴,对称中心 (3)求该函数的单调区间
课程章节
17
[解] (1)f(x)= 22cos2x+π4+sin2 x = 22cos 2x cos π4-sin 2x sin π4+1-c2os 2x =12-12sin 2x, 故 f(x)的最小正周期为 π.
课程章节
18
asin x+bcos x= a2+b2sin(x+φ)的应用
[例 3] (2013·西域模拟)已知函数 f(x)= 3sin2x+sin xcos x,x∈π2,π.
(1)求f(x)的零点; (2)求f(x)的最大值和最小值.
课程章节
19
[自主解答] (1)令 f(x)=0,得 sin x·( 3sin x+cos x)=0, 所以 sin x=0 或 tan x=- 33. 由 sin x=0,x∈π2,π,得 x=π; 由 tan x=- 33,x∈π2,π,得 x=56π. 综上,函数 f(x)的零点为56π或 π.
7
3
2、已知 sin
cos
1 3
,0
,
求sin 2和cos 2
课程章节
9
升、降幂公式
1、升幂公式: 1 sin 2 sin2 cos2 2sin cos
=(sin cos)2
1 cos 2 2cos2 升幂缩角
1 cos 2 2sin2
2、降幂公式:
cos2 1 cos 2
课程章节
15
例6.已知函数.
f (x) 1 2sin2(x π) 2sin(x π)cos(x π)
8
8
8
求:(I)函数的最小正周期;
(II)函数的单调增区间.

3.1.3二倍角的正弦、余弦、正切公式(2)

3.1.3二倍角的正弦、余弦、正切公式(2)
π π 1 π sin + x sin − x = , x ∈ , π , 4 4 6 2
D.
7 9
求 sin 4x 的值. 的最小值,
3.求函数 并求其单调区间.
7π π f ( x ) = 5 3 cos 2 x + 3 sin 2 x − 4sin x cos x ≤ x ≤ 24 4
倍角公式的逆向变换及有关变形:
1.完全平方公式:
1 ± sin 2α = ( sin α ± cos α )2
1 − cos 2α = 2sin 2 α 2 1 + cos 2α = 2 cos α
2.升幂公式:
sin α cos α = 1 s i n 2 α
3.降幂公式:
2
sin 2 α = 1 (1 − cos 2α )
π y = 2 cos 2 x − − 1 4
(2008广东文 5.已知函数 f ( x) = (1 + cos 2 x) sin 2 x, x ∈ R, 广东文) 广东文 已知函数 则 f ( x ) 是( ) A.最小正周期为 π 的奇函数 最小正周期为 π B.最小正周期为 2 的奇函数 最小正周期为 C.最小正周期为 π 的偶函数 最小正周期为 π D.最小正周期为 2 的偶函数 最小正周期为 解析】 【解析】f ( x) = (1 + cos 2 x) sin 2 x = 2 cos 2 x sin 2 x = 1 sin 2 2 x = 1 (1 − cos 4 x ) , 4 2 选D.
2
cos α =
2
1 (1 + cos 2α ) 2
例 填空:
co s150 4 = ______; (1) tan150 + 0 sin15

3,1,3二倍角的正弦,余弦,正切公式

3,1,3二倍角的正弦,余弦,正切公式

3.1.3二倍角的正弦、余弦、正切公式[知识探究]二倍角公式S(α+β)S2αC(α+β)C2α利用sin2α+cos2α=1T(α+β)T2α题型一化简求值【例1】求下列各式的值:(1)cosπ12cos5π12;(2)2cos2π12-1;(3)22tan1501tan150-.解:(1)原式=cosπ12sinπ12=12×2cosπ12sinπ12=12sinπ6=14.(2)原式=cos(2×π12)=cosπ6.(3)原式=tan 300°=tan(360°-60°)=-tan 60°题后反思 (1)同角三角函数关系式、两角和与差的三角函数公式、二倍角公式等都可应用于三角函数式的化简.在应用时,应找到化简思路后再动手化简.(2)注意观察式子的特点及角之间的特殊关系,灵活运用二倍角公式解题,通过观察角度的关系,发现其特征(二倍角形式),创造条件正用或者逆用二倍角公式,使得问题得以解决.跟踪训练11:(2014公安一中、宜昌一中、沙市一中期末)在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l:y=2x(x≤0). (1)求tan 2α的值;(2)求22cos 2sin(π)127π)4ααα----的值.解:(1)在终边l 上取一点P(-1,-2),则tan α=21--=2, ∴tan 2α=22tan 1tan αα-=22212⨯-=-43.(2)22cos 2sin(π)127π)4ααα----=cos 2sin π)4ααα++ =cos 2sin cos sin αααα+-=12tan 1tan αα+-=51-=-5. 题型二 条件求值【例2】 (1)设α为锐角,若cos (α+π6)=45,则sin (2α+π12)的值为 .(2)已知sin (π4-x )=513,0<x<π4,则cos 2πcos()4xx +的值为 . 解析:(1)∵α为锐角, ∴α+π6∈(π6,2π3).又∵cos(α+π6)=45,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,cos(2α+π3)=2cos2(α+π6)-1=725∴α∈(0,π2),∴sin(2α+π12)=sin[(2α+π3)-π4]=sin(2α+π3)cos π4-cos(2α+π3)sin π4=2425-725.(2)∵0<x<π4,∴0<π4-x<π4.又∵sin(π4-x)=513,∴cos(π4-x)=1213.∵cos 2x=sin(π2-2x)=2sin(π4-x)cos(π4-x)=2cos[π2-(π4-x)]cos(π4-x)=2cos(π4+x)cos(π4-x),∴cos2πcos()4xx=2cos(π4-x)=2413.答案:(1)(2)2413题后反思 (1)解决给值求值问题的关键是找到已知角与未知角之间的关系并选择恰当的公式求解.(2)遇到角π4±x时可借助诱导公式进行转化求解.如①cos 2x=sin(π2-2x)=2sin(π4-x)cos(π4-x);②cos 2x=sin (π2+2x )=2sin (π4+x )cos (π4+x ); ③sin 2x=cos (π2-2x )=2cos 2(π4-x )-1; ④cos (π4-x )=sin[π2-(π4-x )]=sin (π4+x );⑤sin (π4-x )=cos[π2-(π4-x )]=cos (π4+x )等. 跟踪训练21:(2014石家庄第一中学期末)已知tan (α+π4)=12,且-π2<α<0,则22sin sin 2πcos()4ααα+-= . 解析:tan (α+π4)=tan 11tan αα+-=12解得tan α=-13, ∵-π2<α<0,∴sin α=∴22sin sin 2πcos()4ααα+-2sin sin cos ααα+.答案 题型三 给值求角【例3】 已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β. 解:∵tan α=tan[(α-β)+β] =tan()tan 1tan()tan αββαββ-+--=112711127-⎛⎫-⨯- ⎪⎝⎭=13>0,且α∈(0,π),且tan 2α=22tan 1tan αα-=2123113⨯⎛⎫- ⎪⎝⎭=34. ∵tan β=-17<0,且β∈(0,π), ∴β∈(π2,π),∴-π<α-β<0.∵tan(α-β)=12>0, ∴-π<α-β<-π2, ∴2α-β=α+(α-β)∈(-π,0). ∵tan(2α-β)=tan 2tan 1tan 2tan αβαβ-+=314731147⎛⎫-- ⎪⎝⎭⎛⎫+⨯- ⎪⎝⎭=1,∴2α-β=-3π4. 题后反思 解决给值求角问题的关键:根据角的取值范围及题目条件中函数名称选择求解一个适当的三角函数值.跟踪训练31:已知A 、B 均为钝角,且sin A=55,sin B=1010求A+B 的值. 解:∵A 、B 均为钝角且sin A=, ∴, , ∴cos(A+B)=cos Acos B-sin Asin B ×(), ① 又∵π2<A<π,π2<B<π, ∴π<A+B<2π, ② 由①②得,A+B=7π4. 【自主练习】1. 已知sin 22α+sin 2αcos α-cos 2α=1,α∈(0,π2).求sin α,tan α的值.解:由倍角公式,得sin 2α=2sin αcos α,cos2α=2cos2α-1,由原式得4sin 2αcos 2α+2sin αcos 2α-2cos2α=0,即2cos 2α(2sin 2α+sin α-1)=0⇔2cos 2α(2sin α-1)(sin α+1)=0.因为α∈(0,π2),所以sin α+1≠0,cos 2α≠0.所以2sin α-1=0,即sin α=12.所以α=π6.所以2.已知α,β为锐角,且3sin2α+2sin2β=1,3sin 2α-2sin 2β=0.求证α+2β=π2 .证明:由已知得3sin2α=cos 2β,①3sin 2α=2sin 2β.②①②,得tan α=cos2sin2ββ=πsin22πcos22ββ⎛⎫-⎪⎝⎭⎛⎫-⎪⎝⎭=tan(π2-2β)因为α,β为锐角,所以0<β<π2,则0<2β<π,则-π<-2β<0,所以-π2<π2-2β<π2,所以α=π2-2β,即α+2β=π2.3∈(0,π)).解:原式=︱sin2θ+cos2θ︱-︱sin2θ-cos2θ︱.∵θ∈(0,π),∴2θ∈(0,π2). (1)当2θ∈(0,π4]时,cos 2θ≥sin 2θ>0,此时原式=sin2θ+cos2θ-cos2θ+sin2θ=2sin2θ.(2)当2θ∈(π4,π2)时,cos 2θ<sin 2θ, 此时原式=sin2θ+cos2θ-sin2θ+cos2θ=2cos2θ.4.已知sin α-∈(0,π),则sin 2α等于( A )(A)-1 (D) 1解析:∵sin α-∴(sin α-cos α)2=2, ∴sin 2α=-1,故选A.5.若cos (π4-θ)cos (π4+θ)(0<θ<π2),则 sin 2θ的值为( B )(A)解析:cos (π4-θ)cos[π2-(π4-θ)]=,即cos (π4-θ)sin (π4-θ),即12sin (π2-2θ),∴cos 2θ=3. 又∵0<θ<π2, ∴0<2θ<π,∴sin 2θ. 故选B. 6.已知sin x=14,则cos 2x= . 解析:cos 2x=1-2sin 2x=1-2×(14)2=78. 答案:78课堂小结1.二倍角公式是两角和公式的特例.公式中的“倍角”是相对的.如“α是2的2倍,2α是α的2倍”. 2.二倍角的余弦公式有三个cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,要注意根据条件选取合适的公式.。

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式

将公式变形运用.
人教版数学·必修4
返回导航 上页 下页
01 课前 自主预习 02 课堂 合作探究 03 课后 讨论探究 04 课时 跟踪训练
人教版数学·必修4
返回导航 上页 下页
[基础认识] 知识点 二倍角的正弦、余弦、正切公式 阅读教材 P132~133,思考并完成以下问题 能利用 S(α±β),C(α±β),T(α±β)推导出 sin 2α,cos 2α,tan 2α 的公式吗?
法二:原式=( (ssiinn
θ+cos θ+cos
θ)2-(cos2θ-sin2θ) θ)2+(cos2θ-sin2θ)
=((ssiinn
θ+cos θ+cos
θ)[(sin θ)[(sin
θ+cos θ+cos
θ)-(cos θ)+(cos
θ-sin θ-sin
θ)] θ)]
=22csions θθ=tan θ.
返回导航 上页 下页
人教版数学·必修4
[解析] (1)cos1π2-sin1π2cos1π2+sin1π2
=cos21π2-sin21π2=cosπ6=
3 2.
(2)2cos 105°cos 15°=2cos(90°+15°)cos 15°
=2(-sin 15°)cos 15°=-2sin 15°cos 15°
80°
=sin
40°cos 40°cos 4sin 20°
80°=sin
80°cos 80° 8sin 20°
=116·ssiinn12600°°=116.
返回导航 上页 下页
人教版数学·必修4
返回导航 上页 下页
[课后小结] 1.对于“二倍角”应该有广义上的理解,如: 8α 是 4α 的二倍;6α 是 3α 的二倍;4α 是 2α 的二倍;3α 是32α 的二倍;α2是α4的二 倍;α3是α6的二倍;2αn是2nα+1的二倍(n∈N*).

3.1.3二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式
二倍角的正二、余二、
正正
cos( α + β ) = cos α cos β − sin α sin β ⇒ cos(α + α ) = cos α cos α − sin α sin α 2 2 ⇒cos 2α = cos α − sin α sin( α + β )= sin α cos β + cos α sin β ⇒ sin( α + α ) = sin α cos α + cos α sin α
,4 < α < 2 的值. 求 sin 4α, 4α, tan 4α 的值. cos 例1 已知
4 ABC中 例2 在△ABC中, cos A = , tan B = 2. 5
5 sin 2α = 13
π
π
求 tan(2A+2B) 的值 的值.
变式:把例2中求tan(2A+2B)的值改为求tan2C 的值.
总 结 归 纳
sin2α = 2sinα cosα 2 2 cos 2α = cos α − sin α
= 2 cos α − 1
2 2
= 1 − 2 sin α 2tanα tan 2α = 1− 1 − tan2 α
1、二倍角公式是和角公式的特例,体现将一般化归为特 殊的基本数学思想方法。 2、二倍角公式与和角、差角公式一样,反映的都是如何 用单角的三角函数值表示复角(和、差、倍)的三角函 数值,结合前面学习到的同角三角函数关系式和诱导公 式可以解决三角函数中有关的求值、化简和证明问题。
= 2 cos2 α − 1 = 1 − 2 sin2 α 2tanα kπ π α ≠ kπ + π (k ∈Z) , α ≠ + ,且 tan 2α = 2 2 2 4 1 − tan α

3.1.3_二倍角的正弦、余弦、正切公式

3.1.3_二倍角的正弦、余弦、正切公式

基础梳理
一、二倍角的正弦、余弦、正切公式 在公式 sin(α+β)=sin αcos β+cos αsin β 中,令 β=α, 得到 sin 2α=________,这就是二倍角的正弦公式; 在公式 cos(α+β)=cos αcos β-sin αsin β 中,令 β=α, 得到 cos 2α=________,这就是二倍角的余弦公式, 其变形形式有:cos 2α=________=________;
利用二倍角公式化简与证明
2 2 已知tan2β =tan2α+
cos 2α-2cos 2β=1.
1 : cos 2α-2c 已知 tan β=tan α+ 2 求证 .求证: cos α
分析:本题考查利用二倍角公式证明.首先要降 幂,然后才可以寻找到二倍角的形式,进而寻找到它 们的关系.
1 解析:∵1+tan β=1+tan α+ 2 , cos α 1 2 ∴ 2 = 2 ,∴cos2α=2cos2β, cos β cos α 1+cos 2α ∴ =1+cos 2β, 2 ∴1+cos 2α=2+2cos 2β, 即得 cos 2α-2cos 2β=1.
3.1 两角和与差的正弦、余弦和正切公式
3.1.3 二倍角的正弦、余弦、正切公式
3.1.3 二倍角的正弦、余弦、正切公式
课 标 点 击
预 习 导 学
典 例 精 析
课 堂 导 练
课 堂 小 结
1.理解并掌握二倍角的正弦、余弦、正切公 式及其推导过程.
2.灵活运用二倍角公式及其不同变形,能正 用、逆用公式,进一步树立化归思想方法.
二、二倍角公式中应注意的问题 (1)对“二倍角”公式应该有广泛的理解. α α α 如 8α 是 4α 的二倍角,α 是 的二倍角, 是 的 2 3 6 α α α α 二倍角等等.又如 α=2× , =2× ,„, n 2 2 4 2 α =2× n+1等等. 2 π (2)当 α=kπ+ ,(k∈Z)时,tan α 的值不存在, 2 这时求 tan 2α 的值可用诱导公式求得. π π (3)一般情况下,sin 2α≠2sin α,例如 sin ≠2sin . 3 6

第三章 3.1.3 二倍角的正弦、余弦、正切公式

第三章 3.1.3  二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式学习目标 1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式. 2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一 二倍角公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π2+k π,2α≠π2+k π,k ∈Z . 知识点二 二倍角公式的变形 1.公式的逆用2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α.2.二倍角公式的重要变形——升幂公式和降幂公式 升幂公式1+cos 2α=2cos 2α,1-cos 2α=2sin 2α, 1+cos α=2cos 2α2,1-cos α=2sin 2α2 .降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.1.sin α=2sin α2cos α2.( √ )2.cos 4α=cos 22α-sin 22α.( √ ) 3.对任意角α,tan 2α=2tan α1-tan 2α.( × )提示 公式中所含各角应使三角函数有意义.如当α=π4及α=π2时,上式均无意义.4.cos 2α=1-cos 2α2.( × )题型一 给角求值例1 (1)计算:cos 2π12-sin 2π12;考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 解 原式=cos π6=32.(2)计算:1-tan 275°tan 75°;考点 应用二倍角公式化简求值 题点 利用正切的二倍角公式化简求值解 1-tan 275°tan 75°=2·1-tan 275°2tan 75°=2·1tan 150°=-2 3.(3)计算:cos 20°cos 40°cos 80°. 考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值解 原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80°=123sin 20°·sin 160°=sin 20°23sin 20°=18.反思感悟 对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1 (1)cos π7cos 3π7cos 5π7的值为( )A.14 B .-14 C.18 D .-18考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案 D解析 cos π7cos 3π7cos 5π7=cos π7·⎝⎛⎭⎫-cos 4π7·⎝⎛⎭⎫-cos 2π7 =2sin π7cos π7cos 2π7cos4π72sinπ7=sin 2π7cos 2π7cos 4π72sin π7=sin 4π7cos 4π74sinπ7=sin8π78sinπ7=-18.(2)12-cos 2π8= ; 考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 答案 -24解析 原式=12⎝⎛⎭⎫1-2cos 2π8=-12cos π4=-24. 题型二 条件求值例2 (1)若sin α-cos α=13,则sin 2α= .考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 89解析 (sin α-cos α)2=sin 2α+cos 2α-2sin αcos α =1-sin 2α=⎝⎛⎭⎫132, 即sin 2α=1-⎝⎛⎭⎫132=89.(2)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.1625 考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 A解析 cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α.把tan α=34代入,得cos 2α+2sin 2α=1+4×341+⎝⎛⎭⎫342=42516=6425.引申探究在本例(1)中,若改为sin α+cos α=13,求sin 2α.解 由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.反思感悟 (1)条件求值问题常有两种解题途径①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论. (2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2 (1)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的正弦值 答案 A解析 因为sin(π-α)=13,所以sin α=13,又因为π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.(2)已知α为第三象限角,cos α=-35,则tan 2α= .考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角正切值 答案 -247解析 因为α为第三象限角,cos α=-35,所以sin α=-1-cos 2α=-45,tan α=43,tan 2α=2tan α1-tan 2α=2×431-⎝⎛⎭⎫432=-247.利用二倍角公式化简证明典例 (1)化简:1+sin 2θ-cos 2θ1+sin 2θ+cos 2θ.考点 应用二倍角公式化简求值题点 利用二倍角公式化简证明三角函数式 解 方法一 原式=(1-cos 2θ)+sin 2θ(1+cos 2θ)+sin 2θ=2sin 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=2sin θ(sin θ+cos θ)2cos θ(cos θ+sin θ) =tan θ.方法二 原式=(sin θ+cos θ)2-(cos 2θ-sin 2θ)(sin θ+cos θ)2+(cos 2θ-sin 2θ)=(sin θ+cos θ)[(sin θ+cos θ)-(cos θ-sin θ)](sin θ+cos θ)[(sin θ+cos θ)+(cos θ-sin θ)]=2sin θ2cos θ=tan θ. (2)求证:4sin αcos α1+cos 2α·cos 2αcos 2α-sin 2α=tan 2α.考点 三角恒等式的证明 题点 三角恒等式的证明证明 左边=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α=右边.[素养评析] (1)三角函数式化简、证明的常用技巧 ①特殊角的三角函数与特殊值的互化.②对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分. ③对于二次根式,注意二倍角公式的逆用. ④利用角与角之间的隐含关系,如互余、互补等.⑤利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.(2)通过本例掌握推理的基本形式和规则,学会有逻辑地思考问题,形成重论据、有条理、合乎逻辑的思维品质,提升逻辑推理的数学核心素养.1.(2017·山东)已知cos x =34,则cos 2x 等于( )A .-14 B.14 C .-18 D.18考点 二倍角的正弦、余弦、正切公式 题点 利用公式求二倍角的余弦值 答案 D解析 cos 2x =2cos 2x -1=2×⎝⎛⎭⎫342-1=18. 故选D.2.1-tan 215°2tan 15°等于( ) A. 3 B.33C .1D .-1 考点 二倍角的正弦、余弦、正切公式 题点 利用公式求二倍角正切值 答案 A 解析 原式=12tan 15°1-tan 215°=1tan 30°= 3.3.sin 4π12-cos 4π12等于( )A .-12B .-32 C.12 D.32考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值解析 原式=⎝⎛⎭⎫sin 2π12+cos 2π12·⎝⎛⎭⎫sin 2π12-cos 2π12 =-⎝⎛⎭⎫cos 2π12-sin 2π12=-cos π6=-32. 4.cos 275°+cos 215°+cos 75°cos 15°等于( ) A.62 B.32 C.54 D .1+34考点 利用二倍角公式化简求值 题点 利用正弦二倍角公式化简求值 答案 C解析 原式=sin 215°+cos 215°+sin 15°cos 15° =1+12sin 30°=1+14=54.5.求证:cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B . 考点 利用二倍角公式化简求值 题点 利用余弦二倍角公式化简证明证明 左边=1+cos (2A +2B )2-1-cos (2A -2B )2=cos (2A +2B )+cos (2A -2B )2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边,所以等式成立.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n 是α2n +1的二倍(n ∈N *).2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.常用形式: (1)1+cos 2α=2cos 2α.(2)cos 2α=1+cos 2α2.(3)1-cos 2α=2sin 2α.(4)sin 2α=1-cos 2α2.1.若sin α=13,则cos 2α等于( )A.89B.79 C .-79D .-89考点 二倍角的正弦、余弦、正切公式 题点 利用公式求二倍角的余弦值 答案 B解析 ∵sin α=13,∴cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫132=79. 2.已知sin α-cos α=43,则sin 2α等于( )A .-79B .-29 C.29 D.79考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案 A解析 ∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79.故选A.3.(2018·辽宁师范大学附属中学高三期末)化简:cos 25°-sin 25°sin 40°cos 40°等于( )A .1B .2 C.12 D .-1考点 利用二倍角公式化简求值 题点 综合利用二倍角公式化简求值 答案 B解析 cos 25°-sin 25°sin 40°cos 40°=cos 10°12sin 80°=cos 10°12cos 10°=2.故选B.4.(2018·天津和平区高三期末)已知tan ⎝⎛⎭⎫α+π4=2,则cos 2α等于( )A .-35 B.35 C .-45 D.45考点 二倍角的正弦、余弦、正切公式 题点 利用公式求二倍角余弦值 答案 D解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=2,解得tan α=13, 则cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=1-191+19=45.故选D.5.1+cos 100°-1-cos 100°等于( ) A .-2cos 5° B .2cos 5° C .-2sin 5°D .2sin 5°考点 利用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 答案 C解析 原式=2cos 250°-2sin 250°=2(cos 50°-sin 50°)=2⎝⎛⎭⎫22cos 50°-22sin 50°=2sin(45°-50°)=-2sin 5°.6.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( ) A .4 B .5 C .6 D.112考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 B解析 f (x )=1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,所以当sin x =1时,f (x )的最大值为5. 7.(2018·北京东城区高三期末)若cos α+sin α=23,则2sin ⎝⎛⎭⎫2α-π4+11+tan α的值为( )A.59 B .0 C .-518 D .-59 考点 应用二倍角公式化简求值 题点 利用二倍角公式化简三角函数式 答案 D解析 ∵cos α+sin α=23,∴1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin ⎝⎛⎭⎫2α-π4+11+tan α=2×22(sin 2α-cos 2α)+11+tan α=2sin αcos α+2sin 2α1+sin αcos α=2sin αcos α=-59.二、填空题8.sin 6°sin 42°sin 66°sin 78°= . 考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案116解析 原式=sin 6°cos 48°cos 24°cos 12° =sin 6°cos 6°cos 12°cos 24°cos 48°cos 6°=sin 96°16cos 6°=cos 6°16cos 6°=116.9.(2018·广东茂名高三第一次综合测试)已知α∈(0,π),且sin α+cos α=12,则cos 2α的值为 .考点 利用二倍角公式化简求值 题点 综合利用二倍角公式化简求值 答案 -74解析 ∵sin α+cos α=12,∴1+2sin αcos α=14,∴sin αcos α=-38.又∵α∈(0,π),∴sin α>0,∴cos α<0,∴(sin α-cos α)2=1-2sin αcos α=74,∴sin α-cos α=72,cos 2α=cos 2α-sin 2α =(cos α-sin α)(cos α+sin α)=-74. 10.已知sin ⎝⎛⎭⎫π4+α·sin ⎝⎛⎭⎫π4-α=16,α∈⎝⎛⎭⎫π2,π,则sin 4α的值为 . 考点 利用二倍角公式化简求值题点 综合利用二倍角公式化简求值答案 -429解析 因为sin ⎝⎛⎭⎫π4+α·sin ⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=16, 所以sin ⎝⎛⎭⎫π2+2α=13,即cos 2α=13, 又α∈⎝⎛⎭⎫π2,π,则2α∈(π,2π),所以sin 2α=-1-cos 22α=-1-⎝⎛⎭⎫132=-223, 故sin 4α=2sin 2α·cos 2α=2×⎝⎛⎭⎫-223×13=-429. 11.已知θ为锐角,cos(θ+15°)=35,则cos(2θ-15°)= . 考点 利用二倍角公式化简求值题点 综合利用二倍角公式化简求值答案 17250解析 ∵θ为锐角,cos(θ+15°)=35,∴sin(θ+15°)=45. ∴sin(2θ+30°)=2sin(θ+15°)cos(θ+15°)=2425. cos(2θ+30°)=2cos 2(θ+15°)-1=2×925-1=-725. ∴cos(2θ-15°)=cos(2θ+30°-45°)=cos(2θ+30°)cos 45°+sin(2θ+30°)sin 45° =-725×22+2425×22=17250. 三、解答题12.已知3sin β=sin(2α+β),且α≠π2+k π,α+β≠π2+k π(k ∈Z ),求证:tan(α+β)=2tan α. 考点 利用二倍角公式化简求值题点 利用二倍角公式化简三角函数式证明 因为sin β=sin [(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α;sin(2α+β)=sin [(α+β)+α]=sin(α+β)cos α+cos(α+β)·sin α,所以3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,即sin(α+β)cos α=2cos(α+β)sin α.又α≠π2+k π,α+β≠π2+k π(k ∈Z ), 所以cos α≠0,cos(α+β)≠0.于是等式两边同除以cos(α+β)·cos α,得tan(α+β)=2tan α.13.化简:(1+sin α+cos α)⎝⎛⎭⎫sin α2-cos α22+2cos α(180°<α<360°). 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值解 原式=⎝⎛⎭⎫2cos 2α2+2sin α2cos α2⎝⎛⎭⎫sin α2-cos α24cos 2α2=2cos α2⎝⎛⎭⎫cos α2+sin α2⎝⎛⎭⎫sin α2-cos α22⎪⎪⎪⎪cos α2 =cos α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪cos α2=-cos α2cos α⎪⎪⎪⎪cos α2. 因为180°<α<360°,所以90°<α2<180°, 所以cos α2<0,所以原式=cos α.14.已知θ∈(0,π),且sin ⎝⎛⎭⎫θ-π4=210,则tan 2θ= . 考点 二倍角的正弦、余弦、正切公式题点 利用二倍角公式求二倍角的正切值答案 -247 解析 由sin ⎝⎛⎭⎫θ-π4=210, 得22(sin θ-cos θ)=210, 即sin θ-cos θ=15.解方程组⎩⎪⎨⎪⎧sin θ-cos θ=15,sin 2θ+cos 2θ=1, 得⎩⎨⎧ sin θ=45,cos θ=35或⎩⎨⎧ sin θ=-35,cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎨⎧ sin θ=-35,cos θ=-45不合题意,舍去,所以tan θ=43, 所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝⎛⎭⎫432=-247. 15.已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin α,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0. (1)求sin α+cos α的值;(2)求sin 2αsin α-cos α的值. 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值解 (1)因为m 与n 为共线向量,所以⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)因为1+sin 2α=(sin α+cos α)2=29,所以sin 2α=-79, 因为(sin α+cos α)2+(sin α-cos α)2=2,所以(sin α-cos α)2=2-29=169. 又因为α∈⎣⎡⎦⎤-π2,0, 所以sin α-cos α<0,sin α-cos α=-43. 因此,sin 2αsin α-cos α=712.。

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式【知识导航】1.会推导二倍角的正弦、余弦、正切公式.2.灵活应用二倍角的正弦、余弦、正切公式解决有关的求值、化简、证明等问题.【知识梳理】【做一做1】已知sin α=3,cos α=4,则sin 2α等于 ()A.7B.12C.12D.24解析:sin2α=2sinαcosα=2425.答案:D【做一做2】已知cos α=13,则cos 2α等于()A.13B.23C.−79D.79解析:cos2α=2cos2α-1=2−1=−7.答案:C【做一做3】已知tan α=3,则tan 2α等于()A.6B.−34C.−38D.98解析:tan2α=2tanα1-tanα=2×31-32=−3.答案:B二倍角公式的变形公式剖析:(1)公式的逆用:2sinαcosα=sin2α;sinαcosα=1sin2α; cosα=sin2α;cos2α-sin2α=cos2α;2tanα1-tan2α=tan2α.(2)公式的有关变形:1±sin2α=sin2α+cos2α±2sinαcosα=(sinα±cosα)2;1+cos2α=2cos2α;1-cos2α=2sin2α.(3)升幂和降幂公式:升幂公式:1+sinα=sinα2+cosα22;1-sinα=sinα2-cosα22;1+cosα=2cos2α2;1−cosα=2sin2α2.降幂公式:cos2α=1+cos2α2;sin2α=1-cos2α2.【典例分析】题型一利用二倍角公式求值【例1】求下列各式的值:(1)co sπcos2π;(2)12−cos2π8;(3)ta nπ−1tanπ12.分析:第(1)题可根据2π5是π5的2倍构造二倍角的公式求值;第(2)(3)题需将所求的式子变形,逆用二倍角公式化简求值.解:(1)原式=2sinπ5cosπ5cos2π52sinπ5=sin2π5cos2π52sinπ5=sin4π54sinπ=sinπ54sinπ=14.(2)原式=1-2cos2π8=−2cos2π8-1=−12cosπ4=−24.(3)原式=tan2π12-1tanπ12=−2×1-tan2π122tanπ12=-2×1tanπ6=33=-2 3.【变式训练1】求下列各式的值:(1)si nπ12cos π12; (2)1-2sin 2750°; (3)1sin10°− 3cos10°. 解:(1)原式=2sin π12cos π122=sin π62=14.(2)原式=cos(2×750°)=cos1500° =cos(4×360°+60°)=cos60°=1.(3)原式=cos10°- 3sin10°=2 12cos10°- 32sin10°=4(sin30°cos10°-cos30°sin10°)=4sin20°=4.题型二知值求值【例2】已知si n π4-x =513,0<x <π4,求cos2xcos π4+x的值. 分析:注意角的关系 π4+x + π4-x =π2,注意诱导公式的应用cos2x=si n π2+2x ,利用倍角公式解题.解:原式=sin π2+2x cos π4+x=2sin π4+x cos π4+xcos π4+x=2si n π+x .∵si n π-x =cos π+x =5,且0<x <π,∴π+x ∈ π,π,sin π+x = 1-cos 2 π+x =12,∴原式=2×12=24.反思已知某角的三角函数值求值,要认真观察已知角与所求的和或差是特殊角或二倍角等,用诱导公式变形后,利用有关公式求值.【变式训练2】(1)已知si n α-π6 =35,且α是锐角,则sin 2α-π3 =__________,cos 2α-π3 =__________,tan 2α-π=__________;(2)若si n π+θ =30<θ<π,则cos 2θ=__________. 解析:(1)由题意知co s α-π6 =45,∴si n 2α-π3 =2sin α-π6 cos α-π6 =2425,cos 2α-π3 =725,tan 2α-π3 =247. (2)∵si n π4+θ =35,0<θ<π4,∴co s π4+θ =45.∴cos2θ=si n π+2θ =sin2 π+θ=2si n π+θ cos π+θ =2×3×4=24. 答案:(1)24724(2)24题型三化简与证明【例3】化简:(1 3tan10cos70° 1+cos40°(2)2cos 2α-12tan π4-α sin π4+α. 分析:先把切化弦,再结合三角函数公式求解。

3.1.3二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式知识梳理1.二倍角的正弦、余弦、正切公式 【问题导思】在公式C (α+β),S (α+β),T (α+β)中,若α=β公式还成立吗?二倍角的正弦、余弦、正切公式2.正弦、余弦的二倍角公式的变形 (1)余弦的二倍角公式的变形(2)正弦的二倍角公式的变形sin αcos α= , (sin α±cos α)2= .知识点一 利用二倍角公式给角求值 例1 求下列各式的值:(1)cos π5cos 2π5;(2)2tan 150°1-tan 2150°变式 求下列各式的值.(1)cos 72°cos 36°; (2)1sin 50°+3cos 50°.知识点二 利用二倍角公式给值求值 例2 已知sin(π4-x )=513,0<x <π4,求cos 2cos 4xx π⎛⎫+ ⎪⎝⎭的值.变式 在例题条件不变的情况下,求sin 2cos 4xx π⎛⎫+ ⎪⎝⎭的值.知识点三 二倍角公式的综合应用 例3(1)化简:1+cos 2θ-sin 2θ1-cos 2θ-sin 2θ;(2)化简:1+sin 10°-1-sin 10°变式 化简下列各式.(1)π4<α<π2,则1-sin 2α=________. (2)α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________.巩固练习1.12sin 15°cos 15°的值等于( ) A.14 B.18 C.116 D.12 2.下列各式中,值为32的是( ) A .2sin 15°-cos 15° B .cos 215°-sin 215° C .2sin 215°-1D .cos 215°+sin 215°3.已知tan α=12,则tan 2α=__________.4.若tan(α+π4)=3+22,求1-cos 2αsin 2α的值.知能检测一、选择题1.2sin 2α1+cos 2α·cos 2αcos 2α=( ) A .tan 2α B .tan α C .1 D.122.函数f (x )=sin x cos x 的最小值是( )A .-1B .-12 C.12 D .13.设sin(π4+θ)=13,则sin 2θ=( )A .-79B .-19 C.19 D.794.设sin α=35(π2<α<π),tan(π-β)=12,则tan(α-2β)=( )A .-247B .-724 C.247 D.7245.2-2cos 8+21-sin 8的化简结果是( )A .2cos 4-4sin 4B .2sin 4C .2sin 4-4cos 4D .-2sin 4二、填空题6.已知sin(π4-x )=35,则sin 2x 的值等于________.7.在△ABC 中,已知cos 2C =-14,则sin C 的值为________.8.函数f (x )=sin(2x -π4)-22·sin 2x 的最小正周期是________.三、解答题9.求函数f (x )=cos(x +23π)+2cos 2x2,x ∈R 的值域;10.已知tan α=3,α∈(π4,π2),求sin 2α,cos 2α,tan 2α的值.11.已知sin(π4+α)sin(π4-α)=16,且α∈(π2,π),求sin 4α的值.答案例1 (1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sinπ54sinπ5=14.(2) 原式=tan 300°=tan(360°-60°)=-tan 60°=- 3.变式 (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.(2)原式=cos 50°+3sin 50°sin 50°cos 50°=2 12cos 50°+32sin 50° 12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.例2∵0<x <π4,∴π4-x ∈(0,π4).又∵sin(π4-x )=513,∴cos(π4-x )=1213.又cos 2x =sin(π2-2x )=2sin(π4-x )cos(π4-x )=2×513×1213=120169,cos(π4+x )=sin[π2-(π4+x )]=sin(π4-x )=513,∴原式=120169513=2413.变式 ∵x ∈(0,π4),∴π4-x ∈(0,π4).又∵sin(π4-x )=513,∴cos(π4-x )=1213.又sin 2x =cos(π2-2x )=cos 2(π4-x )=2cos 2(π4-x )-1=119169.∴原式=1191691213=119156.例3(1) 1+cos 2θ-sin 2θ1-cos 2θ-sin 2θ=2cos 2θ-2sin θcos θ2sin 2θ-2sin θcos θ==-1tan θ,∴原式=-1tan θ. (2)1+sin 10°-1-sin 10°=1+2sin 5°cos 5°-1-2sin 5°cos 5° =(cos 5°+sin 5°)-(cos 5°-sin 5°)=2sin 5°.∴原式=2sin 5°.变式 (1)∵α∈(π4,π2),∴sin α>cos α,∴1-sin 2α=1-2sin αcos α=sin 2α-2sin αcos α+cos 2α= sin α-cos α 2=sin α-cos α. (2)∵α为第三象限角,∴cos α<0,sin α<0, ∴1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.巩固练习1.B 2.B 3.434.由tan(α+π4)=1+tan α1-tan α=3+22,∴tan α=22,∴1-cos 2αsin 2α=2sin 2α2sin αcos α=tan α=22.知能检测一、选择题ABADA二、填空题6.725 7.104 8.π三、解答题9.f (x )=cos x cos 23π-sin x sin 23π+cos x +1=-12cos x -32sin x +cos x +1=12cos x -32sin x +1=sin(x +5π6)+1,因此f (x )的值域为[0,2]. 10.∵α∈(π4,π2),tan α=3,∴sin α=31010,cos α=1010.∴sin 2α=2sin αcos α=2×31010×1010=35,cos 2α=2cos 2α-1=2×110-1=-45,∴tan 2α=sin 2αcos 2α=-34.11.因为(π4+α)+(π4-α)=π2.所以sin(π4-α)=cos(π4+α)因为sin(π4+α)sin(π4-α)=16,所以2sin(π4+α)·cos(π4+α)=13,即sin(π2+2α)=13.所以cos 2α=13.又因为α∈(π2,π),所以2α∈(π,2π),所以sin 2α=-1-cos 2 2α=-223.所以sin 4α=2sin 2αcos 2α=-429.。

3.1.3二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式

1-2sin α ; ___________
2
2tan α 1-tan2α (3)T2α:tan 2α= ___________.
填一填·知识要点、记下疑难点
3.1.3
本 讲 栏 目 开 关
2.倍角公式常用变形 sin 2α sin 2α sin α ; cos α , (1) = _______ = ______ 2sin α 2cos α 1± sin 2α ; (2)(sin α± cos α)2= _____________ 1-cos 2α 1+cos 2α 2 2 (3)sin2α= ___________ , cos2α= ____________ ; 2α 2α 2sin 2 2cos 2 (4)1- cos α= __________,1+ cos α= ________.
2sin αcos α; cos 2α=cos(α+α)=cos αcos α-sin α sin α=cos2α-sin2α; 2tan α tan 2α=tan(α+α)= . 1-tan2α
研一研·问题探究、课堂更高效
3.1.3
本 讲 栏 目 开 关
问题2 根据同角三角函数的基本关系式 sin2α+cos2α=1, 你能否只用 sin α或cos α表示cos 2α?
3.1.3
本 讲 栏 目 开 关
π π 5 π ∵sin -x= cos +x= ,且0<x< , 4 4 4 13 π π π ∴ +x∈ , , 4 4 2 π 12 2π ∴sin +x= 1-cos +x= , 4 4 13
本 讲 栏 目 开 关
研一研·问题探究、课堂更高效
3.1.3
本 讲 栏 目 开 关

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3  二倍角的正弦、余弦、正切公式

sin 4 2sin 2 cos 2 5 12 120 2 ( ) ; 13 13 169
cos 4 1 2sin 2 2 5 2 119 1 2 ( ) ; 13 169
tan 4 sin 4 120 169 120 ( ) . cos 4 169 119 119

2 4 , 5
8 D. 25
8 : 5得, cos
7 cos 2 cos 1 . 2 25

2.已知 cos
4 ,8 12, 求 sin , cos , tan 的值. 8 5 4 4 4 3 4 3 解:由 , cos , 得sin = , 8 2 8 5 8 5 3 4 24 sin =2sin cos =2 )( ) ( = , 4 8 8 5 5 25
2.公式的逆用 例3.求下列各式的值:
(1)sin15 cos15 ;(2) cos


2

8
sin
2

8
;
tan 22.5° (3) ;(4)2 cos 2 22.5° 1. 1 tan 2 22.5°
1 1 1 解:(1)sin15°cos15°= 2sin15°cos15°= sin 30° ; 2 2 4 2 (2) cos 2 sin 2 = cos(2 ) cos ; 8 8 8 4 2 1 2 tan 22.5° tan 22.5° 1 1 2 (3) tan 45° ; 1 tan 2 22.5° 1 tan 2 22.5° 2 2
tan B 2, 2 tan B 2 2 4 tan 2B . 2 2 1 tan B 1 2 3 tan 2A tan 2B tan(2A 2B) 1 tan 2A tan 2B 24 4 44 7 3 . 24 4 还可以把 2A 2B 1 ( ) 117 7 3

3.1.3二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[基础·初探]教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式2.3.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin α±cos α)2.1.判断(正确的打“√”,错误的打“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )【解析】 (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.【答案】 (1)× (2)√ (3)×2.已知cos α=13,则cos 2α等于________.【解析】 由cos α=13,得cos 2α=2cos 2α-1=2×⎝⎛⎭⎫132-1=-79. 【答案】 -79[小组合作型]利用二倍角公式化简三角函数式化简求值. (1)cos 4 α2-sin 4 α2;(2)sinπ24·cos π24·cos π12; (3)1-2sin 2 750°; (4)tan 150°+1-3tan 2 150°2tan 150°.【精彩点拨】 灵活运用倍角公式转化为特殊角或产生相消项,然后求得. 【自主解答】 (1)cos 4 α2-sin 4 α2=⎝⎛⎭⎫cos 2 α2-sin 2 α2⎝⎛⎭⎫cos 2 α2+sin 2 α2 =cos α.(2)原式=12⎝⎛⎭⎫2sin π24cos π24·cos π12 =12sin π12·cos π12=14⎝⎛⎭⎫2sin π12·cos π12 =14sin π6=18.∴原式=18.(3)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.∴原式=12.(4)原式=2tan 2150°+1-3tan 2 150°2tan 150°=1-tan 2 150°2tan 150°=1tan (2×150°)=1tan 300°=1tan (360°-60°)=-1tan 60°=-33.∴原式=-33.二倍角公式的灵活运用:(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2 α-sin 2 α=cos 2α,2tan α1-tan 2 α=tan 2α.(2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2 α+cos 2 α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2 α,cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2.[再练一题]1.求下列各式的值: (1)sinπ12cos π12; (2)2tan 150°1-tan 2150°; (3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°.【解】 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=tan(2×150°)=tan 300°=tan(360°-60°) =-tan 60°=- 3.(3)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°=4sin 20°sin 20°=4.(4)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.利用二倍角公式解决求值问题(1)已知sin α=3cos α,那么tan 2α的值为( ) A.2 B.-2 C.34D.-34(2)已知sin ⎝⎛⎭⎫π6+α=13,则cos ⎝⎛⎭⎫2π3-2α的值等于( ) A.79 B.13 C.-79D.-13(3)已知cos α=-34,sin β=23,α是第三象限角,β∈⎝⎛⎭⎫π2,π. ①求sin 2α的值;②求cos(2α+β)的值. 【精彩点拨】 (1)可先求tan α,再求tan 2α; (2)可利用23π-2α=2⎝⎛⎭⎫π3-α及π3-α=π2-⎝⎛⎭⎫π6+α求值; (3)可先求sin 2α,cos 2α,cos β,再利用两角和的余弦公式求cos(2α+β). 【自主解答】 (1)因为sin α=3cos α, 所以tan α=3,所以tan 2α=2tan α1-tan 2 α=2×31-32=-34. (2)因为cos ⎝⎛⎭⎫π3-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α =sin ⎝⎛⎭⎫π6+α=13,所以cos ⎝⎛⎭⎫2π3-2α=2cos 2⎝⎛⎭⎫π3-α-1 =2×⎝⎛⎭⎫132-1=-79. 【答案】 (1)D (2)C(3)①因为α是第三象限角,cos α=-34,所以sin α=-1-cos 2 α=-74, 所以sin 2α=2sin αcos α=2×⎝⎛⎭⎫-74×⎝⎛⎭⎫-34=378.②因为β∈⎝⎛⎭⎫π2,π,sin β=23, 所以cos β=-1-sin 2 β=-53, cos 2α=2cos 2 α-1=2×916-1=18,所以cos(2α+β)=cos 2αcos β-sin 2αsin β=18×⎝⎛⎭⎫-53-378×23=-5+6724.直接应用二倍角公式求值的三种类型 (1)sin α(或cos α)――→同角三角函数的关系cos α(或sin α)――→二倍角公式sin 2α(或cos 2α).(2)sin α(或cos α)――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2 α-1). (3)sin α(或cos α)――→同角三角函数的关系⎩⎨⎧cos α(或sin α),tan α――→二倍角公式tan 2α.[再练一题]2.(1)已知α∈⎝⎛⎭⎫π2,π,sin α=55,则sin 2α=______,cos 2α=________,tan 2α=________. (2)已知sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=16,且α∈⎝⎛⎭⎫π2,π,求tan 4α的值. 【导学号:70512043】【解析】 (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-255,所以sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45,cos 2α=1-2sin 2 α=1-2×⎝⎛⎭⎫552=35,tan 2α=sin 2αcos 2α=-43. 【答案】 -45 35 -43(2)因为sin ⎝⎛⎭⎫π4-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =cos ⎝⎛⎭⎫π4+α,则已知条件可化为sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=16, 即12sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4+α=16, 所以sin ⎝⎛⎭⎫π2+2α=13, 所以cos 2α=13.因为α∈⎝⎛⎭⎫π2,π,所以2α∈(π,2π), 从而sin 2α=-1-cos 22α=-223,所以tan 2α=sin 2αcos 2α=-22,故tan 4α=2tan 2α1-tan 22α=-421-(-22)2=427.利用二倍角公式证明求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.【精彩点拨】 (1)可考虑从左向右证的思路:先把左边降幂扩角,再用余弦的和、差角公式转化为右边形式.(2)证法一:从左向右:切化弦降幂扩角化为右边形式;证法二:从右向左:利用余弦二倍角公式升幂后向左边形式转化. 【自主解答】(1)左边=1+cos (2A +2B )2-1-cos (2A -2B )2=cos (2A +2B )+cos (2A -2B )2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边,∴等式成立.(2)法一:左边=cos 2θ⎝⎛⎭⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ =cos 2θ⎝⎛⎭⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.证明问题的原则及一般步骤:(1)观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.(2)证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的.[再练一题]3.证明:1+sin 2α2cos 2 α+sin 2α=12tan α+12. 【导学号:00680072】【证明】 左边=sin 2 α+cos 2 α+2sin αcos α2cos 2 α+2sin αcos α=(sin α+cos α)22cos α(sin α+cos α)=sin α+cos α2cos α=12tan α+12=右边.所以1+sin 2α2cos 2 α+sin 2α=12tan α+12成立. [探究共研型]倍角公式的灵活运用探究1 请利用倍角公式化简:2+2+2cos α(2π<α<3π). 【提示】 ∵2π<α<3π, ∴π<α2<3π2,π2<α4<3π4,∴2+2+2cos α=2+4cos 2α2=2-2cos α2=4sin 2α4=2sin α4.探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期?【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3×(2sin x cos x )=cos 2x-3sin 2x =2sin ⎝⎛⎭⎫π6-2x ,知其最小正周期为π.求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎡⎦⎤π4,7π24的最小值,并求其单调减区间.【精彩点拨】 化简f (x )的解析式→f (x )=A sin (ωx +φ)+B →ωx +φ的范围→求最小值,单调减区间【自主解答】 f (x )=53·1+cos 2x 2+3·1-cos 2x 2-2sin 2x=33+23cos 2x -2sin 2x =33+4⎝⎛⎭⎫32cos 2x -12sin 2x=33+4⎝⎛⎭⎫sin π3cos 2x -cos π3sin 2x =33+4sin ⎝⎛⎭⎫π3-2x =33-4sin ⎝⎛⎭⎫2x -π3. ∵π4≤x ≤7π24,∴π6≤2x -π3≤π4, ∴sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤12,22, ∴当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.∵y =sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤π4,7π24上单调递增, ∴f (x )在⎣⎡⎦⎤π4,7π24上单调递减.本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =A sin (ωx +φ)的形式,再利用函数图象解决问题.[再练一题]4.求函数y =sin 4x +23sin x cos x -cos 4 x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.【解】 y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x =-cos 2x +3sin 2x =2⎝⎛⎭⎫32sin 2x -12cos 2x =2sin ⎝⎛⎭⎫2x -π6, 所以T =2π2=π,y min =-2.由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,得k π+π3≤x ≤k π+5π6,k ∈Z ,又x ∈[0,π],所以令k =0,得函数的单调递减区间为⎣⎡⎦⎤π3,5π6.1.sin 22°30′·cos 22°30′的值为( ) A.22 B.24C.-22D.12【解析】 原式=12sin 45°=24.【答案】 B2.已知sin x =14,则cos 2x 的值为( )A.78B.18C.12D.22【解析】 因为sin x =14,所以cos 2x =1-2sin 2 x =1-2×⎝⎛⎭⎫142=78. 【答案】 A3.⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12的值为( ) 【导学号:00680073】 A.-32B.-12C.12D.32【解析】 原式=cos 2π12-sin 2π12=cos π6=32.【答案】 D4.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.【解析】 sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56. 【答案】 -565.求下列各式的值: (1)cos π5cos 2π5;(2)12-cos 2π8. 【解】 (1)原式=2sin π5cos π5cos2π52sinπ5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π54sinπ5=14. (2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.学业分层测评(二十三) (建议用时:45分钟)[学业达标]一、选择题1.若sin α=3cos α,则sin 2αcos 2α=( )A .2B .3C .4D .6【解析】sin 2αcos 2α=2sin αcos αcos 2α=2sin αcos α=6cos αcos α=6.【答案】 D2.已知sin α=23,则cos(π-2α)=( )A .-53B .-19C .19D .53【解析】 因为sin α=23,所以cos(π-2α)=-cos 2α=-(1-2sin 2 α)=-1+2×⎝⎛⎭⎫232=-19. 【答案】 B3.若sin α+cos αsin α-cos α=12,则tan 2α=( )A .-34B .34C .-43D .43【解析】 因为sin α+cos αsin α-cos α=12,整理得tan α=-3,所以tan 2α=2tan α1-tan 2 α=2×(-3)1-(-3)2=34.【答案】 B4.若sin x ·tan x <0,则1+cos 2x 等于( ) A .2cos x B .-2cos x C .2sin xD .-2sin x【解析】 因为sin x ·tan x <0,所以x 为第二、三象限角,所以cos x <0, 所以1+cos 2x =2cos 2 x =2|cos x | =-2cos x . 【答案】 B 5.已知cos 2x2cos ⎝⎛⎭⎫x +π4=15,则sin 2x =( ) A .-2425B .-45C .2425D .255【解析】 ∵cos 2x2cos ⎝⎛⎭⎫x +π4=15, ∴cos 2x -sin 2x cos x -sin x =15, ∴cos x +sin x =15,∴1+sin 2x =125,∴sin 2x =-2425.【答案】 A 二、填空题6.已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值等于___________________________.【导学号:00680074】【解析】 法一:∵sin ⎝⎛⎭⎫π4-x =35, ∴cos ⎝⎛⎭⎫π2-2x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫352=725, ∴sin 2x =cos ⎝⎛⎭⎫π2-2x =725. 法二:由sin ⎝⎛⎭⎫π4-x =35,得22(sin x -cos x )=-35,∴sin x -cos x =-325,两边平方得 1-sin 2x =1825,∴sin 2x =725.【答案】7257.已知sin 2α=14,α∈⎝⎛⎭⎫π4,π2,则cos α-sin α=________. 【解析】 因为α∈⎝⎛⎭⎫π4,π2,所以sin α>cos α,即cos α-sin α<0,又sin 2α=14,则有 cos α-sin α=-(cos α-sin α)2 =-1-sin 2α=-1-14=-32. 【答案】 -32三、解答题8.化简:tan 70°cos 10°(3tan 20°-1). 【解】 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1=sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1. 9.已知cos x =1010,且x ∈⎝⎛⎭⎫-π2,0,求22cos ⎝⎛⎭⎫2x +π4+sin 2x 的值. 【解】 ∵cos x =1010,x ∈⎝⎛⎭⎫-π2,0, ∴sin x =-1-cos 2x =-31010,∴sin 2x =2sin x cos x =-35,∴22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos 2x cos π4-sin 2x sin π4+1-cos 2x 2=12-12sin 2x =12-12×⎝⎛⎭⎫-35=45. [能力提升]1.已知α,β均为锐角,且3sin α=2sin β,3cos α+2cos β=3,则α+2β的值为( ) A .π3B .π2C .2π3D .π【解析】 由题意得⎩⎨⎧sin α=23sin β, ①cos α=1-23cos β, ②①2+②2得cos β=13,cos α=79,由α,β均为锐角知,sin β=223,sin α=429, ∴tan β=22,tan α=427,∴tan 2β=-427,∴tan(α+2β)=0.又α+2β∈⎝⎛⎭⎫0,32π, ∴α+2β=π.故选D . 【答案】 D2.已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域; (2)若f (α)=3210,求sin 2α的值.【解】 (1)因为f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝⎛⎭⎫x +π4, 所以函数f (x )的最小正周期为2π,值域为⎣⎡⎦⎤-22,22. (2)由(1)知,f (α)=22cos ⎝⎛⎭⎫α+π4=3210, 所以cos ⎝⎛⎭⎫α+π4=35, 所以sin 2α=-cos ⎝⎛⎭⎫π2+2α=-cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π4 =1-2cos 2⎝⎛⎭⎫α+π4=1-1825=725.。

课件8:3.1.3 二倍角的正弦、余弦、正切公式

课件8:3.1.3 二倍角的正弦、余弦、正切公式

θ 2>0.
∴原式=sin
θ2+cos
θ2-cos
θ2-sin
2θ=2sin
θ 2.
归纳点评 (1)三角函数中常用的解题技巧——“变次”.
本题用到了二倍角正弦和余弦的两个重要的变形:
1±sin α=(sin
α 2±cos
α2)2,
1+cos α=2cos2α2,1-cos α=2sin2α2.
(2)含有根号的式子化简,脱掉根号时要注意符号问题.
-cos π6=- 23.故选 C.
3.设 sin 2α=-sin α,α∈2π,π,则 tan 2α 的值是_____. 【解析】∵sin 2α=2sin αcos α=-sin α,α∈2π,π, ∴cos α=-12,sin α= 23.∴tan α=- 3,则 tan 2α= 12-tatannα2α= 3. 【答案】 3
17-15sin 2β≤4 2. 又当 β=-π4时,等号成立,所以|b+c|的最大值为 4 2.
(3)证明:由 tan αtan β=16,得4scionsβα=4scionsαβ, 所以 a∥b.
归纳点评 对向量的垂直,平等,模概念要清楚,记 忆防止混乱而出错.对三角函数的基本关系式应熟悉 掌握.
4.已知 sin π4+xsin π4-x=61,x∈π2,π,求 sin 4x, cos 4x,tan 4x 的值. 解:sin π4-x=sin[π2-π4+x]=cos π4+x, ∴2sin π4+xcos π4+x=13, 即 sin 2π4+x=31,sin π2+2x=13,
∴cos 2x=13.又 x∈π2,π,∴2x∈(π,2π),
2α,sin2α=1-c2os
2α .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【导】 2分钟
上节课我们学习了两角差的余弦公式 cos(α- β)= cos αcos β+ sin αsin β
运用公式我们可以求出 cos15°, cos75° 本节课我们将引入新的公式, 运用公式将可以求出 sin15°, sin75°
3.1.2
二倍角的正弦、余弦、正切公式
【思】 14分钟
2
ቤተ መጻሕፍቲ ባይዱ
1 B.- 9 5 D. 3
4 1 解析:cos(π-2α)=-cos 2α=2sin α-1=2× -1=- . 9 9
11 sin 2x+ 2cos 2x - 5 2.已知 tan x=- 3,则 = ________. 2 2cos x- 3sin 2x- 1
sin 2x+ 2cos 2x 解析: 2 2cos x- 3sin 2x- 1 sin 2x+ 2cos 2x = cos 2x- 3sin 2x tan 2x+ 2 = . 1- 3tan 2x 因为 tan x=- 3,
【检】 4分钟
2 1.已知 sin α=- ,则 cos(π-2α)= ( 3 5 A.- 3 1 C. 9 1 B.- 9 )
5 D. 3 sin 2x+2cos 2x 2.已知 tan x=-3,则 =________. 2 2cos x-3sin 2x-1
2 1.已知 sin α=- ,则 cos(π- 2α)=( B ) 3 5 A.- 3 1 C. 9
1、如何由两角和差的正余弦公式、正切公式推导得到二倍角公式? 2、自学例 5、例 6,理解倍角公式中的 “倍角 ”是相对的,对于两个角的 比值等于 2 的情况都成立,求三角函数值时注意角所在的象限! π 5 (1)已知 α∈ ( ,π),sin α= ,求 sin 2α , cos 2α, tan 2α 的值 2 5 π 5 (2)已知 α∈ ( ,π),sin α+ cos α= ”,求 sin 2α, cos 2α, tan 2α 的值 2 5 3、公式的逆用 cos 10° + 3sin 10° (1)计算: 1- cos 80° (2)求值: sin 6° cos12° cos24° cos48° π π 1 π (3)已知 sin( + α)sin( - α)= ,且 α∈ ( , π),求 tan 4α 的值 4 4 6 2
2tan x 所以 tan 2x= 1- tan2 x 2×- 3 3 = 2= , 1-- 3 4 3 11 +2 4 4 11 则原式= = =- . 3 5 5 1- 3× - 4 4
相关文档
最新文档