线代1-10行列式习题课
《线性代数》课程习题
《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab ba a (6)ββααcos sin cos sin (7)3log log 1a bb a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c ba (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111--3. 用定义计算行列式:(1)41067050330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 10011001101---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)121140351212734201----- (3)524222425-----a a a (4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbf de cd bdae acab ---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---(5)xa a ax a aa x(6)ab ba b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零: (1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)0113352063410201-- (3)222111c b a c b a (4)3351110243152113------, (5)n n n n n b a a a a a b a a a a D ++=+ 212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a ab ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
《线性代数》同济大学版 课后习题答案详解
|2A1|(2)3|A1|8|A|18216
17设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*
证明由 得A*|A|A1所以当A可逆时有
|A*||A|n|A1||A|n10
从而A*也可逆
因为A*|A|A1所以
(A*)1|A|1A
又 所以
(A*)1|A|1A|A|1|A|(A1)*(A1)*
5设 问
(1)ABBA吗?
解ABBA
因为 所以ABBA
(2)(AB)2A22ABB2吗?
解(AB)2A22ABB2
因为
但
所以(AB)2A22ABB2
(3)(AB)(AB)A2B2吗?
解(AB)(AB)A2B2
因为
而
故(AB)(AB)A2B2
6举反列说明下列命题是错误的
(1)若A20则A0
解取 则A20但A0
解 令
则
故
29设n阶矩阵A及s阶矩阵B都可逆求
(1)
解设 则
由此得
所以
(2)
解设 则
由此得
所以
30求下列矩阵的逆阵
(1)
解设 则
于是
(2)
解设 则
第三章 矩阵的初等变换与线性方程组
1把下列矩阵化为行最简形矩阵
(1)
解 (下一步r2(2)r1r3(3)r1)
~ (下一步r2(1)r3(2))
~ (下一步r3r2)
(3)
解 (下一步r12r4r22r4r33r4)
~ (下一步r23r1r32r1)
~ (下一步r216r4r316r2)
~
~
矩阵的秩为3 是一个最高阶非零子式
10设A、B都是mn矩阵证明A~B的充分必要条件是R(A)R(B)
线性代数章节练习题
b b2 ac
c
a
c2 a2
ab abc
b b2 abc
c c2 abc
abc
111
(a b c) a2 b2 c2 (a b c) a b c
111
a2 b2 c2
(a b c)(b a)(c a)(c b)
246 427 327 1000 427 327 1000 100 327 (2) 1014 543 443 2000 543 443 2000 100 443
D 2 0
2 7
2 0
2 0
5 3 2 2
求第四行各元素的余子式之和的值。
8 计算 n 阶行列式
x y 00 0 0 x y0 0 Dn 0 0 0x y y 0 00 x
3 1 1 9 计算行列式 D 1 5 1 。
1 1 3
3 2 2 10 计算三阶行列式 D k 1 k 。
(C) C PT AP
(D) C PAPT
13 计算
0 1 0 2007 1 2 3 0 1 0 2006 1 0 0 4 5 61 0 0 0 0 1 7 8 9 0 0 1
14 设 A 为 n 阶可逆阵,交换 A 的第 i 行与第 j 行后得到 B。 (1)证明 B 可逆;(2)求 AB-1
(C)当 n m 时,必有 AB 0
(D)当 n m 时,必有 AB 0 18 证明 R( A B) R( A) R(B)
4 1 41 则
R(BA 2A)
19 A 为 m p 矩阵,B 为 p n 矩阵,若 AB=0 证明: R( A) R(B) P
20 设 A 为 n 阶矩阵,且 A2=A,若 R( A) . 证明 R( A E) n r ,其中 E 为 n 阶单位阵
线性代数习题课例题
0 194
第17页/共73页
(2) 造零降阶法 用行列式性质使其行列式中的零元素增多, 然后按零元素较多的那一行或那一列来展开, 使其降阶,再反复利用这种方法,直至降到三 阶或二阶行列式,最后直接计算,这种方法称 为造零降阶法。
第18页/共73页
例1.3.6 计算三阶行列式
3 2 1 D 2 2 2
xa a a a a a a a 0 x aa a x aa
0 a x a a a x a 0 a ax a a ax
把上式中后一个 n 阶行列式的第一行乘以 -1分别加至第二行、第三行、……、第 n 行, 于是得
第27页/共73页
a a aa a x aa a a xa a a ax
第15页/共73页
1 46 327
1001 114 443 (1, 2) 1 342 521
2 1 (1)
1 46 327
3 1 (1)
100 0 68 116
0 388 194
第16页/共73页
68 116
100
按 1 展开
388 194
300 116
100
5820000
1 2 2
第38页/共73页
1 1 11 0 xa 0 0 D [x (n 1)a] 0 0 x a a
n
0 0 0 xa [x (n 1)a](x a)n1 由此例可见,计算行列式的方法很多,也 很灵活。要掌握行列式的计算方法,应加强练 习,在练习中总结经验和方法。
第39页/共73页
x a aa ax xa 0 0 D ax 0 xa 0
n
ax 0 0 xa
将上述行列式的第二列至第 n 列都加到第一列, 有
《线性代数》第一章行列式精选习题及解答
(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线性代数第一章1-习题课
1
0
0
0
b ab d b cb , D4 ( a b c d ) c d c ac bc d cd bd ad
按第1行展开,得
ab d b
cb bc. ad
D4 ( a b c d ) d c a c cd bd
定理
如果上述齐次线性方程 组有非零解,则
它的系数行列式必为零 .
典
型
例
题
一、计算(证明)行列式
二、克莱姆法则
二、计算(证明)行列式
1 利用范德蒙行列式计算 利用范德蒙行列式计算行列式,应根据范德 蒙行列式的特点,将所给行列式化为范德蒙行列 式,然后根据范德蒙行列式计算出结果。
例1
计算
1
1
1
2 n 2 2 2 Dn 3 32 3n .
a a a x n 1 a a a a x n 1 a
a a a a 0 0 . 0 xn
右端的第一个行列式 将第n列的( 1)倍分别 , 加到第1,2, , n 1列, 右端的第二个行列式按 n 第 列展开, 得 x1 0 0 0 x2 0 Dn 0 0 x n 1 0 0 0
提取第一列的公因子,得
a1 a 2 a i ) 1 a 2 x a n . i 1 1 1 1 a2 a3 x
将第1列的( a 1)倍加到第2列,将第1列的 ( a2)倍加到第3列, , 将第1列的( a n )倍加到最 后一列,得
5)行列式中某一行(列) 的所有元素的公因子可 以 提到行列式符号的外面 . 6)行列式中如果有两行(列) 元素成比例, 则此行列 式为零. 7 )若行列式的某一列(行) 的元素都是两数之和则 , 此行列式等于两个行列 式之和. 8)把行列式的某一列(行) 的各元素乘以同一数然 , 后加到另一列(行) 对应的元素上去 行列式的值不变 , .
线性代数习题册行列式-习题详解
行列式的概念一、选择题1. 下列选项中错误的是( ) (A)ba d c dc b a -= ; (B)acb d dc b a =;(C)dc b a dcd b c a =++33; (D)dc b a dc b a -----=.答案:D2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ).(A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C二、填空题1.ab b a log 11log = .解析:0111log log log 11log =-=-=ab abb a ba . 2.6cos3sin6sin3cosππππ= . 解析:02cos 6sin 3sin 6cos 3cos 6cos 3sin6sin3cos==-=πππππππππ3.函数x x xxx f 121312)(-=中,3x 的系数为 ; xx xx x x g 21112)(---=中,3x 的系数为 . 答案:-2;-2.阶行列式n D 中的n 最小值是 . 答案:1.5. 三阶行列式11342321-中第2行第1列元素的代数余子式等于 . 答案:5.6.若02182=x,则x = . 答案:2. 7.在n阶行列式ija D =中,当i<j 时,),,2,1,(0n j i a ij L ==,则D = .答案:nn a a a Λ2211.8.设a ,b 为实数,则当a = ,b = 时,010100=---ab b a .解析:0)()1(1010022=+-=--=---b a ab ba abb a故0,0==b a .三、解答题1.用行列式的定义计算.(1)1100001001011010;解:原式=100010101)1(1010000011)1(14121++-⨯+-⨯110010100-=--=(2)000000hgf e d c b a.原式=00000gf e d b hf e dc a - =00000g f bd hf df e c a +⎪⎪⎭⎫ ⎝⎛-=bdfg adfh -2. 设行列式λλλ01010101-=D , 3512321132=D ,若21D D =,求λ的值.解:由对角线法则,得()()0,11221=-+=D D λλ若21D D =,则()()0112=-+λλ于是1-=λ或1.四、证明题1.(略)行列式的性质一、选择题1.设行列式x x xD 0101011-=, 1133512322=D ,若21D D =,则x 的取值为 ( ).(A)2,-1; (B)1,-1; (C)0,2; (D)0,1.答案:B2.若3333231232221131211==a a a a a a a a a D ,则3332333123222321131213111525252a a a a a a a a a a a a D +++==( ). (A)30; (B) -30; (C)6; (D)-6. 答案:C二、填空题1.若三阶行列式D 的第一行元素分别是1,2,0,第三行元素的余子式分别是8,x ,19,则x = . 解析:1820190,4x x ⨯-+⨯==. 2.2016201420182016 = .解析:4202220162014222016201420182016===.3.行列式cb dc a bcb aD =,则312111A A A ++= . 解析:312111A A A ++0111==cb c acb .4.行列式xx x xx D 31213231232154-=的展开式中,4x 的系数为 ;3x 的系数为 .解析:xxx x x x x x xx D 312131232321531213231232154--=-=xx x x 3121312512585103215---= 含4x ,3x 的项仅有主对角线上元素之积项,故4x ,3x 的系数分别为15,-3.三、解答题1.计算下列行列式 .(1)3214214314324321;解:各行加到第一行,得原式=32142143143211111032142143143210101010==160400400121011111012301211210111110=---=------.(2)4444333322225432154321543215432111111;解:原式=(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.(3)49362516362516925169416941;原式=02222222297531694113119711975975316941==.(4)000000xyy x y x x y ;原式=xy x yx x xyy y xy 00000000-- =22222)(y x xyy x xxyy x y--=-.(5)xy z zx yyzx111; 原式=)(0)(01x z y x z x y z x y yzx------ =))()((11))((x z z y y x yz x z x y ---=---.(6)200012000000130012000101--;原式=31012010140131201014200013012001012---=--=--=2031124=---. (7)43211111111111111111x x x x ++++;解:原式=432111110010011x x x x x x x ---+=432111413121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++.2.设4322321143113151-=D ,计算44434241A A A A +++的值.其中)4,3,2,1(4=j A j 是D 的代数余子式.解:44434241A A A A +++61111321143113151=-=.3. 已知1142113110111253------=D ,求41312111M M M M +++.解:41312111M M M M +++=41312111)1(1)1(1M M M M --⋅+--⋅=1141113110111251-------=0.4.计算下列n 阶行列式.(1)211121112ΛMM M ΛΛ; 解:原式=211121111ΛM M MΛΛ+++n n n =211121111)1(ΛMMM ΛΛ+n =1100010111)1(+=+n n ΛMM M ΛΛ. (2)xy yyy x y yy y x yy y y x ΛM M M M ΛΛΛ ; 解:原式=[]x y y y y x y yy y x yy n x ΛM M M M ΛΛΛ1111)1(-+ =[]yx y x y x y n x ----+ΛM M M MΛΛΛ0000001111)1(=[]1)()1(---+n y x y n x .(3)),,2,1,0(010011111021n i x x x x i nΛΛM M M M ΛΛΛ=≠.解:原式=nni ix x x x ΛM M M M ΛΛΛ0000000011101211∑=- =)1(121∑=-ni in x x x x Λ.四、证明题1.设a ,b ,c 是互异的实数,证明0111333=c b a c b a的充分必要条件是a+b+c=0.证明:33333333001111a c ab aa c ab acbac b a----==3333a c a b a c a b ----=222211))((a ac c a ab b a c a b ++++--=))()((22ab ac b c a c a b -+--- =))()()((c b a b c a c a b ++---=0,由于a ,b ,c 是互异的实数,故要上式成立,当且仅当a+b+c=0.2.证明4+2324323631063a b c d a a b a b c a b c da a ab a bc a b cd a a b a b c a b c d +++++=++++++++++++证明:左边43322102320363a b c d r r a a b a b cr r a a b a b c r r a a b a b c-+++-+++-+++433210002003a b c d r r a a b a b ca ab r r a a b-++++-+4430002000a b c d a a b a b cr r a a a b a+++-=+=右边克莱姆法则一、选择题1.方程组⎪⎩⎪⎨⎧=++=++=++1,1,1321321321x x x x x x x x x λλλ, 有唯一解,则( ).(A)1-≠λ且2-≠λ; (B) 1≠λ且2-≠λ;(C) 1≠λ且2≠λ; (D) 1-≠λ且2≠λ.解析:由克莱姆法则,当0)1)(2(1111112≠-+=λλλλλ,即1≠λ且2-≠λ,选B.2.当≠a ( )时,方程组⎪⎩⎪⎨⎧=+-=++=+02,02,0z y ax z ax x z ax 只有零解.(A) -1 ;(B) 0 ;(C) -2 ;(D) 2. 解析:由克莱姆法则,当0)2(212012100121210≠-=--=-a aaa aa即2≠a ,选D.三、解答题1.用克莱姆法则下列解方程组.(1)⎪⎩⎪⎨⎧=+-=+-=-+;32,322,22z y x z y x z y x解: 03112221121≠=---=D , 由克莱姆法则知,此方程组有唯一解,31132231221=---=D ,61322311212=-=D ,93323312213==D ,因此方程组的解为11==D D x ,22==D Dy ,33==DD z .(2)..23342,223,3232,124321432143214321⎪⎪⎩⎪⎪⎨⎧=-++=+++=+-+=-++x x x x x x x x x x x x x x x x解:043342123121321121≠=---=D由克莱姆法则知,此方程组有唯一解,833421232213311211=---=D , 233221221213211112-=---=D ,232421231233211213=--=D ,223422231313211214=-=D .因此方程组的解为211==D D x ,2122-==D D x ,2133==D D x ,2144==D D x . 2.判断线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0285,042,022321321321x x x x x x x x x 是否有非零解解:因为系数行列式285122421285421122----=---=D=0305009604212218960421≠-=--=----, 所以,方程组只有零解.3.已知齐次线性方程组⎪⎩⎪⎨⎧=+-=++=-+02,0,0321321321x x x x x kx x kx x 有非零解,求k 的值.解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即32101101111211112k k kk kk --+--=--=)21)(1()1(32k k k +++- =0)4)(1(=-+k k 解得,k =-1或k =4.4.当μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解解:由齐次线性方程组有非零解的条件可知,0111213142=------μμμ,解得3,2,0=μ.第一章综合练习一、判断题1. n 阶行列式n D 中的n 最小为2.( ╳ )2. 在n 阶行列式ij a D =中元素),2,1,(L =j i a ij 均为整数,则D 必为整数.( √ )3.413223144433221144413332232214110000000a a a a a a a a a a a a a a a a -=.( ╳)二、选择题1.若11131--+=x x x D ,211122-+=x x D ,则1D 与2D 的大小关系是( ).(A)21D D <; (B)21D D >;(C)21D D =;(D)随x 值变化而变化.答案:C 2.行列式{})2,1,1,,,(-∈d c b a dc b a 的所有可能值中,最大的是( ).(A) 0; (B)2; (C)4; (D)6.答案:D三、填空题1.︒︒︒︒40cos 20sin 40sin 20cos = .解析:︒︒-︒︒=︒︒︒︒40sin 20sin 40cos 20cos 40cos 20sin 40sin 20cos2160cos =︒=. 2.若y y x x y x -=-1122,则x+y = . 解析:由y y x x y x -=-1122,得xy y x 222-=+ 即0)(2=+y x ,从而x+y =0.3.已知111,0112==yx x ,则y = . 解析:由111,0112==yxx ,得x =2,x-y =1,从而y =14. 若222222222642531C c B b A a c b a ++=,则2C 化简后的结果等于 . 解析:242312=-=C .5.设xxx x xx f 111123111212)(-=,则4x 的系数为 ;3x 的系数为 .解析:当f (x )的主对角线的4个元素相乘才能得出4x ,系数为2;含3x 的项只能是44332112,,,a a a a 的乘积,系数为-1. 答案:2,-1.6.设0123411222641232211154321=D ,则(1)333231A A A ++= ; (2)3534A A + ; (3)5554535251A A A A A ++++ . 解析:0)(23534333231=++++A A A A A 0)()(23534333231=++++A A A A A于是0333231=++A A A ,03534=+A A .5554535251A A A A A ++++1111111222641232211154321=01111133333641232211154321==. 即0555*******=++++A A A A A .四、解答题1.计算下列行列式.(1)44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++;解:原式=14131214141312131413121214131211y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x ---+---+---+---+=000000000014131214131211=------+x x x x x x y y y y y y y x .(2)43211111111111111111x x x x ++++;解:原式=432111110010011x x x x x x x ---+=432111413121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++.(3)2007000002006000200500020001000ΛΛΛMM M M M ΛΛ. 解:原式=!2006)1(2007220052006⨯-⋅=!2007-2.已知123452221127312451112243150D ==, 求(1)434241A A A ++;(2)4544A A +. 解:27)(21114544434241=++⋅+⋅+⋅A A A A A0)()(24544434241=++++A A A A A得9434241-=++A A A ,184544=+A A . 3.计算下列n 阶行列式.(1)nn n n n n n D ΛM M M ΛΛΛ222333222111=; 解:(利用范德蒙行列式计算)1122133321111!--==n n n Tn n n n n D D ΛM MMΛΛΛ [])1()2()24)(23)(1()13)(12(!--------=n n n n n ΛΛΛ!2)!2()!1(!Λ--=n n n .(2)211121112ΛMM M ΛΛ; 解:原式=211121111ΛM M MΛΛ+++n n n =211121111)1(ΛMMM ΛΛ+n =1100010111)1(+=+n n ΛMM M ΛΛ.(3)mx x x x m x x x x mx D n n n n ---=ΛM M M ΛΛ212121解:将第2列,L ,第n 列分别加到第一列,并提取第一列的公因子,得m x x mx x x x m x m x x x x x m x x x D n n n n n n n --+++--+++-+++=ΛΛM M MΛΛΛΛ221221221mx x x m x x x m x x x n n n n ---+++=ΛMM M ΛΛΛ22221111)(mm m x x x n ---+++=ΛM M M ΛΛΛ0101001)(21121))((---+++=n n m m x x x Λ(4)nn n n n a a a a a a b b b b b D 1322113210000000-----=ΛM M M M M ΛΛΛ (其中n i a i ,,2,1,0Λ=≠)解: 1221100000000)1(-+----=n nn n a a a a b D ΛM M M M ΛΛ1222112210000000------+n n n n n a a a a a b b b b a ΛM M M M ΛΛΛ 121-+⋅=n n nnn D a a b a a a Λ ⎪⎪⎭⎫⎝⎛==∑=n i i in a b a a a 121ΛΛ. 三、证明题1.试证:如果n 次多项式n n x a x a a x f +++=Λ10)(对n+1个不同的x 值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)。
《线性代数》第一章行列式精选习题及解答
第一章 行列式1.1 目的要求1.会求n 元排列的逆序数;2.会用对角线法则计算2阶和3阶行列式; 3.深入领会行列式的定义;4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质;7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.1.2 重要公式和结论1.2.1 n 阶行列式的定义n 阶行列式 nnn n n n a a a a a a a a a D (2122221)11211=n n np p p tp p p a a a ...)1(212121)...(∑−=.其中是n 个数12…n 的一个排列,t 是此排列的逆序数,∑表示对所有n 元排列求和,故共有n !项. n p p p ...211.2.2 行列式的性质1.行列式和它的转置行列式相等;2.行列式的两行(列)互换,行列式改变符号;3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于用该数乘此行列式的任意一行(列);4.行列式中若有两行(列)成比例,则该行列式为零;5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n in i i nnn n n in in i i i i n a a a a a a a a a a a a b a b a b a a a a L MMM L M M M L LMM M L MM M L21211121121221111211=++++nnn n ini i na a ab b b a a a L MMM L M M M L 2121112116. 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变. 1.2.3 行列式按行(列)展开设D 为n 阶行列式,则有=∑=nK jkika A 1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0...2211=∑=nK jkika A1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0 (2211)其中是的代数余子式. st A st a 1.2.4 克拉默法则1.如果线性非齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L M M M M M L L 22112222212111212111的系数行列式,则方程组有唯一解0≠D DD x 11=( i=1,2,…,n ),其中是D 中第i 列元素(即的系数)换成方程中右端常数项所构成的行列式.i D i x 2.如果线性齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a L M M M M M L L的系数行列式,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行列式.0≠D 0=D 1.2.5 一些常用的行列式1.上、下三角形行列式等于主对角线上的元素的积.2.设 kk k k a a a a D L M M ML 11111=,nnn nb b b b D L M M M L 11112=,则 211111*********D D b bc c b b c c a a a a nn n nkn n k kkk k =L L M M M MM ML L L MMM L .3.范德蒙行列式)(..................1 (11)11121121i j nj i n nn n n a a aaaa a a −=∏≤<≤−−−.1.2.6 计算行列式的常用方法1.利用对角线法则计算行列式,它只适用于2、3阶行列式; 2.利用n 阶行列式定义计算行列式; 3.利用行列式的性质化三角形法计算行列式; 4.利用行列式按某一行(列)展开定理计算行列式; 5.利用数学归纳法计算行列式; 6.利用递推公式计算行列式;7.利用范德蒙行列式的结论计算特殊的行列式; 8.利用加边法计算行列式; 9.综合运用上述方法计算行列式.1.3 例题分析例1.1 排列14536287的逆序数为 ( )(A) 8 (B) 7 (C) 10 (D) 9解 在排列14536287中,1排在首位,逆序数为0;4、5、6、8各数的前面没有比它们自身大的数,故这四个数的逆序数为0;3的前面比它大的数有2个(4、5),故逆序数为2; 2的前面比它大的数有4个(4、5、3、6),故逆序数为4;7的前面比它大的数有1个(8),故逆序数为1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B ).例1.2 下列排列中( )是偶排列.(A)54312 (B)51432 (C) 45312 (D) 654321解 按照例1的方法计算知:排列54312的逆序数为9;排列51432的逆序数为7;排列45312的逆序数为8;排列654321的逆序数为15;故正确答案为(C ).例1.3 下列各项中,为某五阶行列式中带正号的项是( ). (A) (B) (C)(D) 5541324413a a a a a 5415413221a a a a a 5214432531a a a a a 5344223115a a a a a 解 由行列式的定义知,每一项应取自不同行不同列的五个元素之积,因此(A)、(B)不是五阶行列式的项,但(C)应取负号,故正确答案为(D ).例1.4 行列式351232113,010101021=−=D D λλλ, 若21D D =,则λ的取值为( ) (A) 2, —1 (B) 1, —1 (C)0, 2 (D)0,1解 按三阶行列式的对角线法则得.若,则,于是0,)1)(1(221=−+=D D λλ21D D =0)1)(1(2=−+λλ1,1−=λ,故正确答案为(B ).例1.5 方程组有唯一解,则( ).⎪⎩⎪⎨⎧=++=++=++111321321321x x x x x x x x x λλλ(A)1−≠λ且2−≠λ (B) 1≠λ且2−≠λ (C) 1≠λ且2≠λ (D) 1−≠λ且2≠λ解 由克拉默法则知,当所给非齐次线性方程组的系数行列式不等于0时,该方程组有唯一解,于是令行列式0)1)(2(1111112≠−+=λλλλλ 即1≠λ且2−≠λ,故正确答案为(B ).例1.6 ==2006200420082006D ( ).分析 对于2、3阶行列式的计算,元素的数值较小时,可以直接采用对角线法则进行计算;但元素的数值较大时,一般不宜直接采用对角线法则进行计算,而是用行列式的性质进行计算.解 此题是一个2阶行列式,虽然可以直接用对角线法则计算,但因数值较大,计算较繁,因此要仔细观察分析,用行列式的性质求解.402221003200622008220062004200820061221=−−+−−−=c c c c D ,故答案为4.例1.7 ==3214214314324321D ( ). 分析 如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加法) .解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得===321421431432101010103214214314324321D 101230121012101111103214214314321111−−−−−−= 160400004001210111110=−−−=.例1.8设xx x x x x f 111123111212)(−=,则的系数为( ),的系数为( ). 4x 3x 分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦时,再考虑用行列式的计算方法进行计算.解 从的表达式和行列式的定义可知,当且仅当的主对角线的4个元素的)(x f )(x f积才能得出,其系数显然是2. 当第一行取4x )1(13=a 或)2(14=a ,则含或的行列式的项中是不出现,含的行列式的项中是不出现,于是含的项只能是含,,,的积,故的系数为13a 14a 3x )2(11x a =3x 3x 12a 21a 33a 44a 3x 1−.故答案为2 ,1−.例1.9 设0123411222641232211154321=D ,则(1)=++333231A A A ( ), (2)=+3534A A ( ), (3)=++++5554535251A A A A A ( ). 分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,充分利用按行(列)展开的计算方法来进行技巧计算.解 00123411222221112211154321)(23534333231==++++A A A A A (第2,3行相同) 即 =0. 同理 )(2)(3534333231A A A A A ++++)()(23534333231A A A A A ++++=0 于是 0, =++333231A A A =+3534A A 0.011111333336412322111543211111111222641232211154321245554535251=+=++++r r A A A A A 故答案为0,0,0.例1.10 2007000000002006000200500020001000L L L MM MM M M L =D .分析 当行列式中有较多零元素时,一般可以采用行列式的定义或按行(列)展开来计算.解 此行列式刚好只有n 个非零元素,故非零项只有一项:nn n n n a a a a ,,,,112211−−−L nn n n n t a a a a 112211)1(−−−−L ,其中 2)2)(1(−−=n n t ,因此 !2007!2007)1(2)22007)(12007(−=−=−−D .此题也可以按行(列)展开来计算. 例1.11 计算n 阶行列式2111121111211112L M M M M L L L =n D解法1 (行(列)加法)因为这个行列式的每一行的n 个元素的和都为n+1, 所以将第2,3,…,n 列都加到第一列上,得),3,2(,2111121111211111)1(21111211112111111n i r r n n n n n D i n L L M M M ML L L L M M M M L L L =−+=++++=1101000101111)1(+=+n n L M M M M L L L解法2 (加边法))1,,3,2(211111211111211111210000111+=−==+n i c c D D i n n L L M M M M M LL L L11000101001010100011000011000101001001010001111111121+=++++−−−−+n n r r r n L M M M M M LL L L L L M M M M M L L L L . 解法3 (利用行列式的性质)101010100111112),,3,2(21111211112111121L M M M M L L L L L M M M M L L L −−−=−=n i r r D i n11000100010111121+=++++n n c c c n L M M M M L L L L .例 1.12 计算nn n n nn n y x y x y x y x y x y x y x y x y x D +++++++++=111111111212221212111L MM M L L . 解 当n=2时,))((11111212221221112y y x x y x y x y x y x D −−=++++=当n≥3时,111212112122111121111()()()0()()()n nn n n n x y x y x y x x y x x y x x y D x x y x x y x x y +++−−−==−−−L L M M M L n.例1.13 计算nn n n nn n n x x x x x x a a a a a x a D 1122112321100000000000−−−−−−−−+=L L M M M M M M LL其中.),,2,1(0n i x i L ≠≠解 因 )1(11111111x a x x a x a D +=+=+=, 1(221121212112x ax a x x x x a x a D ++=−+=, 归纳推得 )1(1121nn n n x a x a x x x D +++=L L . 用数学归纳法证明上式, 假设当k=n-1时结论成立,即)1(11111211−−−−+++=n n n n x a x a x x x D L L . 则当k=n 时,将按第n 列展开,得n D ))(())(()1(122111−−+−−−−−−+=n n n n n n n x x x x a D x D L 1221111)1()1(−−−+−−−+=n n n n n n n x x x x a D x Ln n nn n n n x a x x x x x D x 12211−−−+=L 1(1121nn n x a x ax x x +++=L L 即当k=n 时结论也成立,故对一切自然数结论都成立.例1.14 计算222111222333n nn nD n n n =L L L M M M L 解 (利用范德蒙行列式计算)1113213211111!−−−==n n n Tnn n n n D D L MMM M LL )]1([)2()24)(23)(1()13)(12(!−−−−−−−−=n n n n n L L L !2)!2()!1(!L −−=n n n .例 1.15 计算 βαβαβαβαβαβαβαβα+++++=L L MM M M ML LL 000000000000n D .解 按第一列把D n 分成两个行列式的和+++++=βαβαβαβαβαβαααL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαβ++++L L MM MM M LL L0000000000000n n n D D βαβαββαβαβα+=+=−−110000000000000000L L MM M M M L L L (1) +++++=βαβαβαβαβαβααβL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαα++++L L MM MM M LL L 00000000000000n n n D D αβαβααβαβαβ+=+=−−1100000000000000L L M MM M M L L L (2) (a) 当βα≠时 ,由(1)(2)得 =, 则n n D βα+−1nn D αβ+−1βαβα−−=−nn n D 1.于是 βαβα−−=++11n n n D .(b) 当βα=时,由(1)得 .n n n n n D D ααα)1(1+==+=−L例1.16 设, 证明:0>>>c b a 01222<++abca bc c b a cb a cabc ab . 证明 将行列式的第1行)(c b a ++×,第2行)1(−×,然后加到第3行,得ca bc ab ca bc ab ca bc ab c b a c b a ab ca bc c b a c b a ++++++=222222 222222111)(111)(c b a c b a ca bc ab c b a c b aca bc ab ++=++= ))()()((a b b c a c ca bc ab −−−++=于是,不等式的左边=))()((a b b c a c −−−.由于,从而,0>>>c b a 0)(<−a c 0)(,0)(<−<−a b b c ,因此,当时,0>>>c b a 01222<++abca bc c b a cb a cabc ab .例 1.17 设在上连续,在内可导,试证:至少存在一个)(),(),(x h x g x f ],[b a ),(b a ),(b a ∈ξ,使得0)(=′ξH .其中 )()()()()()()()()()(x h x g x f b h b g b f a h a g a f x H =.证明 由题设知在上连续,在内可导,又由行列式的性质可知,于是由洛尔中值定理可知,至少存在一个)(x H ],[b a ),(b a 0)()(==b H a H ),(b a ∈ξ,使得0)(=′ξH .1.4 独立作业1.4.1 基础训练1.设ij a D =为阶行列式,则在行列式中的符号为( ) . n 11342312n n n a a a a a −L (A) 正 (B) 负 (C) (D) 1)1(−−n 2)1()1(−−n n2.行列式为0的充分条件是( ).n D(A) 零元素的个数大于n; (B) 中各行元素的和为零; n D (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式不为零,利用行列式的性质对进行变换后,行列式的值( ). n D n D (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=−−x x x的根为 ( ).(A) 1,2,2− (B)1,2,3 (C)1,1−,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=−−−−−−=33323331232223211312131********a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.ab b a log 11log = ( ).8.行列式c b d c a b cb a , 则=++312111A A A ( ).9.函数x x x x x f 121312)(−=中,的系数为( ).3x 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.00000000x y y x y x x y D = 13.20000120000001301200101−−=D , 14.xyz zx yyz x 111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000−−−−−L M M M M M LL L ,(其中),,2,1(,0n i a i L =≠) 18.n x x x D L M M M M LL L 01001001111021= (),,2,1,0n i x i L =≠ 19.43211111111111111111x x x x ++++, 20.nL M M M ML L L 22223222222222121.211121112L L L L L L =n D .22.当μ取何值时,齐次线性方程组有非零解?⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明αααααααsin )1sin(cos 210001cos 200000cos 210001cos 210001cos 2+=n L L M MM M M LL L (其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,为*A A 的伴随矩阵,则*A A 为( ) (A) 2A (B) 12−n A(C) nA2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00A B( ). (A)B A − (B) B A (C) B A mn )1(− (D) B A n m +−)1(3.若xxx x x x g 171341073221)(−−−−=,则的系数为( ). 2x (A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212−−−−−−−−−−−−−−−=x x x x x x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当( )时,方程组只有零解.≠a ⎪⎩⎪⎨⎧=+−=++=+02020z y ax z ax x z ax (A)-1 (B) 0 (C) -2 (D) 26.排列可经过( )次对换后变为排列. n r r r r L 321121r r r r n n n L −−7.四阶行列式中带负号且含有因子和的项为( ).12a 21a 8.设y x ,为实数,则当=x ( ),=y ( )时,010100=−−−x yy x . 9.设A 为4阶方阵,B 为5阶方阵,且,2,2−==B A 则 =−A B ( ),=−B A ( ).10.设A ,B 为n 阶方阵,且,2,3−==B A 则 =−1*3B A ( ). 11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A =+−12A E ( ).13.解方程组011112222212112=nnnnnnn b b b b b b b b b x x x L M M M M L L L ,其中为各不相同的常数. n b b b b ,,,,321L 14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n L M M M L L =∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LM M M L M M M L 15.设xx x x x x x g 620321)(332=,求)(x g ′.16.设17131231533111)(85222−−−−−−=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(=′ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151−=A ,计算44434241A A A A +++的值,其中是)4,3,2,1(4=i A i A 的代数余子式.20.利用克莱默法则求解方程组.⎪⎩⎪⎨⎧=+−=+−=−+3232222321321321x x x x x x x x x 21.求极限111cos sin 3212sin 1231lim23x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B)6.解=×==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c a cb A A A ,故答案为09.解 因为在此行列式的展开式中,含有的只有主对角线上的元素的积,故答案为 10.解 由范德蒙行列式得行列式的值为2883x 2−11.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 x y x y x x xyy yxy xyyx y xxy D 0000000000000000−−==22222)(y x xyyx x x yy x y −−=−= 13.解 0131201014200013120101220000120000001301200101−×−=−×−=−−=D 20311243131200014=−−×−=−−×−=14.解 yzx z x y x z y x z x y z x y yzx xy zzx yyz x−−−−=−−−−−−=11))(()(0)(01111=))()((x z z y y x −−−15.解 520003520003520003500003352000352000352000352000325200035200035200035200035+= =5203520035200353252000352000352000350000332000320000320000320000325+=+==L 665 16.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x −−−+−−−+−−−+−−−+=++++++++++++++++=017.解132111322113210000000)1(00000000−+−−−−−−×−=−−−=n n n n n n n n a a a a b a a a a a a b b b b b D L MMM M MLL L L M M M M M M L L L=−−×+−−−−12221122100n n n n n a a a a a b b b b a L MMM M M LL L ==+−L L 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a L18.解 由第()列的i n i ,,2,1L =ix 1−倍加到第一列上去. nni inx x x x x x x D L MM M ML L LL MM M M LL L 0000000011111001001111021121∑=−===)1(121∑=−n i i n x x x x L19.解43211114321100100111111111111111111x x x x x x x x x x x −−−+=++++432111413121100000001x x x x x x x x x x x x x −−−++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221−−=n nL MM M M LL L L M M M M L L L 20212002−−=n L M M M ML L =)!2(2−−n 21.解 211121111)1(211121111211121112L LL L L L L L L L L L L L L L L L +=+++==n n n n D n 1101011001)1(+=+=n n L L L L L L22.解 由齐次线性方程组有非零解的条件可知0111213142=−−−−−−μμμ 解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组有非零解.⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明 (1)当时,结论显然成立, (2)假设当1=n k n ≤时,结论成立, (3)当时1+=k n11cos 2101cos 200000cos 210001cos 210001cos 2++=k k D αααααL L M M M M ML L Lkk D ααααcos 21010000cos 210001cos 2100001)1(cos 23L M M M M M LL L L −+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=−=−+=−k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(−n n , 7. 44332112a a a a 8.0, 0, 9.32, 64 , 10.2312−−n , 11.277, 12.6 13.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1L =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n L L M M ML L L ∑−== ))())(()()()1((111)(12211x a x a dx d x a x a n i n p p p p p p p tL L L ∑−=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LMM M L M M M L15.利用(14)的结论进行计算便可得结果,答案为6.2x 16.(用罗尔中值定理证)证明 (1)显然是多项式,故在上连续,在()(x g )(x g ]1,0[)1,0内可导,且 ,从而由罗尔中值定理知,存在0)1()0(==g g )1,0(∈ξ,使得0)(=′ξg . 17.用行列式的性质3的推论(同济四版)18.证明 33333333333301111x z xy xz xy x z x y x x z x y x z y x z y x−−−−=−−−−=0))()()((11))((2222=++−−−=++++−−=z y x y z x z x y xxz z x xy y x z x y 由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 6111132114311315144434241=−=+++A A A A , 20. 11=x ,, 22=x 33=x 21.解 (用罗必塔法则求解)11100013212001230000111231001100sin cos 3212sin 123230cos 11231lim1101cos sin 3212sin 1231lim223230=+=−+=→→x x x x x x x x x x x x x x x x x。
行列式习题课
210 121 012 Dn 000 000 000
000 210 000 121 000 012
210 000 120 000 011 000
000 000 000
210 121 011
27
由观察可知,上式右端第一个行列式按最后一列 展开得Dn-1,而第二个行列式从最后一行开始,每后一 行乘以(-1)加到相邻的前一行上,就变为下三角形,其 值为1,故得
2、行列式展开定理的推论.
ai1 Aj1 + ai2Aj2 + … + ainAjn = 0
a1jA1k+ a2jA2k + … + anjAnk = 0
( i= 1,2,…,n ). ( j= 1,2,…,n ).
( i ≠ j ).
( j ≠ k ).
3
3、非齐次线性方程组克拉默法则.
第1章
a11x1 a12 x2 a21x1 a22 x2 an1x1 an2 x2
●拆项法
●乘积法
●析因子法
应
●克拉默法则
用
●齐次线性方程组有非零解的充要条件
第1章
2
二、主要定理
1、行列式的展开定理.
a11 a12
a1n
D a21 a22
a2n
第1章
an1 an2
ann
= ai1Ai1 + ai2Ai2 + … + ainAin
= a1jA1j+ a2jA2j + … + anjAnj
质
●若行列式中某一行(列)的所有元素均为两元素之和.则该行
列式可拆成两个行列式.
●某行(列)的k倍加到另一行(列),行列式不变.
线性代数行列式计算习题课
b11
b1n
ak1
akk bn1
bn1
bnn
1
xn
xn2
1 x1
1 (xi x j )
x2
x12 x22
ni j1
x n 1 n
1 xn xn2
b1n bnn
x n 1 1
x n 1 2
x n 1 n
第8页
学习要求
计算排列旳逆序数 代数余子式旳有关计算 计算行列式
第9页
经典习题
计算排列旳逆序数 代数余子式旳有关计算 计算行列式
(1) 2 a1na2,n1
an1
ann
an,n1 ann an1
ann a1n
a2,n1
第7页
几类特殊行列式旳值
a11
a1k c011
c01k
3. ak1 c011
c0n1 1 x1 4. x12
x n 1 1
akk c01k
c0nk 1 x2 x22
x n 1 2
c0n1
c0nk
a11
a1k b11
(a1a2 an 0) 1 an
,
第18页
c. 可利用递推措施旳行列式
x 1
x 1
9. Dn
x 1
(1)n1
x Dn1 an
an an1 an2
x 1 a 2 x a1
Dn (x1n)na11xn1 a2 xn2 a3xn3 an1x an
第19页
d. 利用范德蒙德行列式旳结论计算
1
2
5 3
1 3 4 2
4 1 1
0 20
4
0 1 0 1
2 3 4 9
线性代数1-习题课
a b D d d
b a a b
c d c d c b c a
则有
A11 A21 A31 A41
4 1 10 1
1 2 5 2
2 0 0 0
4 2 1 7
测试题答案
一、. 1 a; 1
n
a2 a3 b2 b3 a1a4 b1b4 ; 5. 0; 4. 7. 2;
a21 a22 a2 n D an1 an 2 ann
1 a
t
1 p1
a2 p2 anpn
n阶行列式D亦可定义为 D
p1 p2 pn
( 1) a p11 a p2 2 a pn n ,
t
其中t为行标排列 p1 p 2 p n 的逆序数.
第一章
测试题
一、填空题(每小题4分,共40分)
1. 若Dn aij a , 则D aij
0 0 0 0 0 1 0 2 0 0
D
0 1997 0 0 0 1998 0 0 0 0 0 0 0 0 1
a1 0 4. 四阶行列式 0 b4
n
8
a x a x a x b . n2 2 nn n n n1 1 的系数行列式 D 0, 那么它有唯一解 Dj x j D , j 1, 2, , n. 其中D j j 1, 2, , n)是把系数行列式 D中第j列 ( 换成常数项b1, b2 b n所得到的行列式. ,
1 3 1. D5 2 1 2
0 a2 b3 0
0 b2 a3 0
b1 0 0 a4
3 2 0 1 1 2 1 0
1 2 1 1 3 2 2 3 1
线性代数课件第一章行列式-习题课PPT
目录
• 习题回顾 • 习题解析 • 习题解答 • 习题拓展
01
习题回顾
习题一:二阶行列式的计算
总结词
理解二阶行列式的计算规则
详细描述
二阶行列式是线性代数中的基本概念,通过习题一,学生应掌握二阶行列式的 计算方法,理解行列式的定义和性质,为后续学习打下基础。
习题二:三阶行列式的计算
06
详细描述
通过习题的拓展,学生可以学会应用行列式解 决物理问题,如利用行列式计算物理量如力矩、 动量等。
THANKS
感谢观看
04
习题拓展
拓展一:高阶行列式的计算
总结词
掌握高阶行列式的计算方法
详细描述
高阶行列式是线性代数中的重要概念,通过习题的拓展, 学生可以掌握高阶行列式的计算方法,包括对角线法则、 Laplace定理等。
总结词
理解高阶行列式的性质
详细描述
通过习题的拓展,学生可以深入理解高阶行列式的性质, 如转置行列式、行列式的乘法、行列式的加减法等。
解析三:代数余子式的计算方法
深化理解
代数余子式是线性代数中一个重要的概念,它涉及到行列式的展开和计算。通过习题课,学生可以深 入理解代数余子式的定义和计算方法,掌握其在实际问题中的应用,提高解决线性代数问题的能力。
03
习题解答
解答一:二阶行列式的计算答案
总结词
掌握二阶行列式的计算方法
详细描述
二阶行列式是线性代数中的基本 概念,通过计算二阶行列式,可 以掌握行列式的计算方法,为后 续学习高阶行列式打下基础。
总结词
掌握三阶行列式的计算技巧
详细描述
三阶行列式是线性代数中一个重要的概念,通过习题二,学生应学会如何计算三 阶行列式,理解其性质和计算技巧,加深对线性代数基本概念的理解。
线性代数典型习题讲解
1 2 0 5
解1 首先寻找含零个数最多的行或列。本题第3列含两个零,于是
从第三列着手,再变出一个零元素。
12 0 4
1 0 r3r2 1 2 D 3 1 1 0
(按第3列展开得)
1 2 0 5
12 4
12 4
D 1 (1)23 4 1
2
r3 r1
4 1
2 (再按第3列展开得)
1 2 5
0
0
1
2 1
1 0
11 11
【例】
利用逆矩阵求下列方程组的解
x2 2x3 1 x1 x2 4x3 0
2x1 x2
2
解 设所给方程组的系数矩阵为 A ,未知量矩阵为 X ,常数项矩阵
为 B ,即
0 1 2
x1
1
A
1
2
1 1
4
0
X
x2
x3
B
0
2
于是,线性方程组可以写成矩阵方程:AX B
012
因为 A 1 1 4 2 0
2 1 0
所以 A1存在,在上式 AX
B
两边同乘A1 ,得:X
A1B
12 12
下页继续……
又因为 所以
4 2 2
A
8
4
2
3 2 1
2 1 1
A1
1 A
A
4
3
2 1
1
1
2
2
2 1 1 1 0
则
X
A1B
4
2
1
0
2
3
1
1
2
1
2
2
2
即原方程组的解为:
2020年同济大学线性代数第六版第一章《行列式》同步练习与解析
第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c a cbc b a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ;解 222111c b a cb a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b)(b -c)(c -a).(4)y x y x x y x y yx y x +++.解 yx y x x y x y y x y x +++=x(x +y)y +yx(x +y)+(x +y)yx -y 3-(x +y)3-x 3=3xy(x +y)-y 3-3x 2y -x 3-y 3-x 3=-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n); 解 逆序数为2)1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(6)1 3 ⋅ ⋅ ⋅ (2n -1) (2n) (2n -2) ⋅ ⋅ ⋅ 2. 解 逆序数为n(n -1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n)2, (2n)4, (2n)6, ⋅ ⋅ ⋅, (2n)(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)ta 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)ta 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)ta 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214;解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 1110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1.5. 证明:(1)1112222b b a a b ab a +=(a -b)3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b)3.(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a=(a -b)(a -c)(a -d)(b -c)(b -d)(c -d)(a +b +c +d);证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b)(a -c)(a -d)(b -c)(b -d)(c -d)(a +b +c +d).(5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n+a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n.证明 用数学归纳法证明. 当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立.假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n+a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n-a n -2=a n -2(a 2-1).(2)xa a a x a a a x D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a](x -a)n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n n n n ;解 根据第6题结果, 有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nn nnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 000 011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni ii ii n D c b d a D 222)(.而 111111112c b d a d c b aD -==, 所以 ∏=-=ni ii ii n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j|; 解 a ij =|i -j|,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D ,142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 70351100650000601000051001653==D , 395510601000051000651010654-==D , 2121105100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D =(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.。
行列式课后练习及答案
n ( n 1) 2
an an 1
4.计算 D2 n
bn bn 1 a1 c1 cn 1 b1 d1 d n 1 dn
cn
解:按第一行展开 an 1 an 2 D2 n an cn 1 0 a1 c1 b1 d1 d n 1 dn cn cn 1 (1) 2 n 1 bn bn 1 0 0 an 1 a1 c1 b1 d1 d n 1 0 bn 1
0
0 0 0 0 0 0
ቤተ መጻሕፍቲ ባይዱ
0 解:Dn (1)
n ( n 1) 2
0 0 0
0 0
0 0
...............................
0
(1)
n ( n 1) 2
[ n ( 1) n 1 n ]
[ n 1 (1) n 1 n 1 ] (1)
x1 2 x2 x3 1, 5.用克莱姆法则求解 2 x1 3x2 x3 0, 4 x 7 x 2 x 2. 2 3 1
1 2 3 n a
1 2 1 1 2 1 1 1 1 1 2 1 解:D 2 3 1 1,D1 0 3 1 3,D2 2 0 1 2,D3 2 3 0 0 4 7 2 2 7 2 4 2 2 4 7 2 x1 3,x2 2,x3 0
答案:1.行列式概念的引进课后作业
a11
1. a21
a12 a22 a32 4 3 6 1 0 0 3 5
a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
线性代数习题册(答案)
线性代数习题册答案第一章 行列式 练习 一 班级 学号1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ (3421)= 5 ; (2)τ (135642)= 6 ;(3)τ (13⋯ (2n-1)(2n ) ⋯42) = 2+4+6+ ⋯ +(2 n-2)= n (n-1). 2.由数字 1 到 9 组成的排列 1274i56j9 为偶排列,则 i= 8 、 j= 3 3.在四阶行列式中,项 a 12a 23a 34a 41 的符号为 负 .= - 3 + 3 +2= (2 )( 1)21 2 21) 2 1 2 = - 1+2 2 15.计算下列行列式:- 8)+(- 8 )-(- 4 )或 -(- 4)―(- 4) = - 511 2) 111 13+1+ 1-(- )-(- )―(- )00 4. 0 421练习班级学号31.已知 3阶行列式det(a ij ) =1,则行列式det( a ij )= -1 . ( 1)3 111 1 1 2.234 = 24 9 161 a b c(1) a 1 b c a b 1 cx y x y (2) y x y xx y x y 1 0 110 0r1 r,rr30 1 1c3 c1 0 1 1a b 1c a b 1c111 a b cb1c0 1 21 0 3,则A41 A421 1 02 5 4113.已知 D=1 1用 1, 1,1,1 替换第4 行4.计算下列行列2 1 5 1 13 0 60 2 1 21 4 7 61 2 1 40 1 2 11 0 1 3 0 1 3 15.计算下列n 阶行列式:每行都加到第一行,并提公因式。
)(2 ) 21M13MLLM11ML1 1 n1a1 b a2 a3 L a n(3 ) a1 a2 b a3 L a n M M M M Ma1 a2 a3 L a n b练习班级学号x3 1x1 x21.设线性方程组x1 x2 x3 1 有惟一解,则满足的条件是什么?x1 x2 x3 11, 0, 1x1 x2 x3 x4 5x1 2x2 x3 4x4 22. 求解线性方程组12x1 3x2 x3 5x4 23x1 x2 2x3 11x4 0x1 x2 x3 03.已知齐次线性方程组x1 x2 x30 有非零解,求的值。
行列式习题课.ppt
假 设 对 阶 数 小 于n的 行 列 式 结 论 成 立, 下 证 对
于阶数等于n的行列式也成立.现将 Dn 按最后一行 展开, 得
Dn 2cos Dn1 Dn2 .
由归纳假设,
Dn1 cos(n 1) , D cos(n 2) ,
n2
Dn 2cos cos(n 1) cos(n 2) [cosn cos(n 2) ] cos(n 2)
n
x ai
a1
a2
an
i 1
n
x ai
x
a2 an
i 1
Dn1
x
n
ai
a2
x
an
i 1
n
x ai
a2
a3
x
i 1
提取第一列的公因子,得
1 a1 a2 an
1 x a2 an
n
Dn1 ( x ai) 1
a2
x
an .
i1
1 a2 a3 x
将第1列的( a1)倍加到第2列,将第1列的
cos n;
所以对一切自然数n结论成立.
7 用展开、递推法
求值
an
0
bn
D2n 0
a1 b1 c1 d1
cn
0
dn
an1
0
bn1 0
按第一行 0
a1 b1
0
展开 an
c1 d1
cn1
0
dn1 0
0
0 dn
0 (1)2n1 bn 0
an1
0
bn1
a1 b1
0
c1 d1
cn1
d n1
cn
0
0
加到另一行(列)上去,行列式值不变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 12 a 22
a1n
a2n ,
1
a n 2 a nn
a 12 b a 22 an2 b
n 2
a1n b
1 n
a 2 n b2 n , a nn
n 1
证明: 1 D 2 . D
证明
由行列式的定义有
D 1 ( 1 ) a 1 p1 a 2 p 2 a n p n ,
1 1
n
a1 x
a2 a2
an an
D n1 ( x a i ) 1 a 2 x a n . i 1 1 a2 a3 x
将第 1列的 ( a 1 )倍加到第 2列,将第 1列的 ( a2)倍加到第 3列, , 将第 1列的 ( a n )倍加到最 后一列,得
等于零 . 4 )行列式的某一行 (列 )中所有的元素都乘以同 一数 k , 等于用数 k 乘此行列式 .
5 )行列式中某一行 (列 ) 的所有元素的公因子可 以 提到行列式符号的外面 . 6 )行列式中如果有两行 (列 ) 元素成比例 , 则此行列 式为零 . 7 )若行列式的某一列 (行 ) 的元素都是两数之和 , 则 此行列式等于两个行列 式之和 . 8 )把行列式的某一列 (行 ) 的各元素乘以同一数 , 然 后加到另一列 (行 ) 对应的元素上去 , 行列式的值不变 .
D ,当 i j ; a ki A ki D ij k 1 0 ,当 i j .
n
或 D ,当 i j ; a ik A jk D ij k 1 0 ,当 i j .
n
1, 当 i j ; 其中 ij 0 ,当 i j .
克拉默法则的理论价值
定理 如果线性方程组
a 11 x 1 a 12 x 2 a 1 n x n b 1 , a 21 x 1 a 22 x 2 a 2 n x n b 2 , a n1 x 1 a n 2 x 2 a nn x n b n . 的系数行列式 D 0 , 那么它一定有解,且解 唯一 .
次数自左至右按递升次 序排列,但不是从 0变到 n 1, 而是由 1递升至 n .若提取各行的公因子, 则方 幂次数便从 0增至 n 1,于是得到 1 1 1
1 2
n 1 n 1 3 .
1 D n n! 1 1
2 3 n
2
2 2
3 n
2
n
n 1
上面等式右端行列式为n阶范德蒙行列式,由 范德蒙行列式知
8
克拉默法则
a 11 x 1 a 12 x 2 a 1 n x n b 1 , a 21 x 1 a 22 x 2 a 2 n x n b 2 , 如果线性方程组 a n 1 x 1 a n 2 x 2 a nn x n b n . 的系数行列式 D 0 , 那么它有唯一解 Dj , j 1, 2 , , n . xj D 其中 D( j 1, 2 , , n )是把系数行列式 D 中第 j列 j 换成常数项 b 1 , b2, b n 所得到的行列式 .
5
n阶行列式的定义
a11 a12 a 22 a1 n a2n
p1 p 2 p n
D
a 21 a n1
a n 2 a nn
1 a p1 1a p 2 2 a p n n
t
其中 p 1 p 2 p n 为自然数 1, 2 , , n 的一个排列 ; t为这 个排列的逆序数 ; 列取和 . 表示对 1, 2 , , n 的所有排
解 将第 2,3, , n 1列都加到第一列,得
x ai x ai D n1 x ai
i 1 n i 1 n i 1 n n
a1 x a2 a2
a2 an a2 an x a3 an x
x ai
i 1
提取第一列的公因子,得
t
其中 t是排列 p 1 p 2 p n 的逆序数 .
1 p 2 p n p D 2 ( 1) ( a 1 p1 b 1 )( a 2 p 2 b 2 ) ( a n p n b n ) t
( 1 ) a 1 p1 a 2 p 2 a n p n b ( 1 2 n ) ( p1 p 2 p n ) ,
评注 本题所给行列式各行(列)都是某元 素的不同方幂,而其方幂次数或其排列与范德蒙 行列式不完全相同,需要利用行列式的性质(如 提取公因子、调换各行(列)的次序等)将此行 列式化成范德蒙行列式.
3 例5
用化三角形行列式计算 计算
x a1 a1 x a2 a2 a3 a3 an an
D n1 a1 a 2 x a 3 a n . a1 a2 a3 a4 x
逆序数为奇数的排列称为奇排列,逆序数为 偶数的排列称为偶排列.
3
计算排列逆序数的方法
方法1
分别计算出排在 1 ,2 , , n 1 , n 前面比它大的 数码之和,即分别算出 1 ,2 , , n 1 , n 这 n 个元素 的逆序数,这 n 个元素的逆序数之总和即为所求 排列的逆序数. 方法2
p1 p 2 p n
n 阶行列式 D 亦可定义为 D
p1 p 2 p n
( 1 ) a p1 1 a p 2 2 a p n n ,
t
其中 t为行标排列 p 1 p 2 p n 的逆序数 .
6
n阶行列式的性质
1)行列式与它的转置行列 式相等 , 即 D D T . 2 )互换行列式的两行 (列 ), 行列式变号 . 3 )如果行列式有两行 (列 )完全相同 , 则此行列式
t
其中 t是排列 p 1 p 2 p n 的逆序数 .
而
p1 p 2 p n 1 2 n ,
t
所以 2 ( 1) a1 p1 a 2 p 2 a n p n D1 . D
评注 本题证明两个行列式相等,即证明两 点,一是两个行列式有完全相同的项,二是每一 项所带的符号相同.这也是用定义证明两个行列 式相等的常用方法.
行列式习题课
1
全排列
把 n 个不同的元素排成一列,叫做这 n 个元 素的全排列(或排列).
n 个不同的元素的所有排列的种数用 Pn 表示, 且 Pn n!.
2
逆序数
在一个排列 i1 i 2 i t i s i n 中,若数 i t i s, 则称这两个数组成一个逆序.
一个排列中所有逆序的总数称为此排列的逆 序数.
7
行列式按行(列)展开
在 n 阶行列式中,把元素 a ij 所在的第 i行和第
1)余子式与代数余子式
j 列划去后,留下来的 n 1阶行列式叫做元素 a ij 的余子式,记作 M ij ;记 A ij ( 1)
i j
M ij ,
A ij 叫做元素 a ij 的代数余子式 .
2)关于代数余子式的重要性质
1), 故逆序数为 2; k 1的前面比 k 1大的数有 k 1个 ( 2 k ,2 k 1, , k 2 ), 故逆序数为 k 1; k 1的前面比 k 1大的数有 k 1个 ( 2 k , 2 k 1, , k 2 ), 故逆序数为 k 1; k的前面比 k大的数有 k个 ( 2 k , 2 k 1, , k 1), 故逆序数为 k ;
定理
如果上述齐次线性方程 组有非零解,则
它的系数行列式必为零 .
典
型
例
题
一、计算排列的逆序数
二、计算(证明)行列式
三、克拉默法则
一、计算排列的逆序数
例1 求排列 2 k 1 2 k 1 2 2 k 2 3 2 k 3
k 1k 的逆序数 , 并讨论奇偶性 .
D n n! ( x i x j)
n i j 1
n! ( 2 1)( 3 1) ( n 1) ( 3 2 )( 4 2 ) ( n 2 ) [ n ( n 1)] n! ( n 1)! ( n 2 )! 2!1!.
分别计算出排列中每个元素前面比它大的数 码个数之和,即算出排列中每个元素的逆序数, 每个元素的逆序数之总和即为所求排列的逆序数.
4
对
换
定义 在排列中,将任意两个元素对调,其余元 素不动,称为一次对换.将相邻两个元素对调, 叫做相邻对换.
定理 一个排列中的任意两个元素对换,排列改 变奇偶性.
推论
奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数.
0 a 21 D 5 a 31 0 0 a 12 a 22 a 32 a 42 a 52 a 13 a 23 a 33 a 43 a 53 0 a 24 a 34 0 0 0 a 25 a 35 0 0
例2
解 设 D 5 中第 1, 2 , 3 ,4 ,5 行的元素分别为 a 1 p1 , a 2 p 2 ,
评注 本例是从一般项入手,将行标按标准 顺序排列,讨论列标的所有可能取到的值,并注 意每一项的符号,这是用定义计算行列式的一般 方法. 注意 如果一个 n 阶行列式中等于零的元 素比
2 n n 还多,则此行列式必等 于零 .
例3
设
a 11 a 21 D1 a n1
a 11 a 21 b D2 a n1 b
定理 如果上述线性方程组无 解或有两个不同的
解,则它的系数行列式 必为零 .
定理
如果齐次线性方程组