2017年春季学期新版新人教版九年级数学下学期26.1.2、反比例函数的图象和性质同步练习7
人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2
人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。
本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。
通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。
但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。
同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。
三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。
2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。
3.能将反比例函数应用于实际问题中,提高解决问题的能力。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图象的绘制和分析。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。
六. 教学准备1.准备反比例函数的相关案例和问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备反比例函数图象的素材,如图片、图表等。
七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。
让学生思考并讨论这些问题,引导学生发现其中的规律。
呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。
同时,教师给出反比例函数的定义,并解释反比例函数的性质。
操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。
26.1.2 反比例函数的图象和性质 教案 人教版九年级数学下册
环节2:对比思考(对比一次函数的图象性质增减性的学习,结合反比例函数的图象,初步描述反比例函数图象的增减性)
【解说词】我们在学习一次函数的时候就知道,系数k不仅会影响函数图象的分布,还会影响到图象的上升和下降,也就是增减性。对于反比例函数而言,情况又会如何呢?请大家暂停视频片刻,结合反比例函数图象,独立思考后组织语言尝试描述,反比例函数图象的增减性。
【解说词】其实啊,两位同学的描述都抓住了反比例函数图象增减性的特点,不过还不够全面和准确,在这之前我们需要给出一个重要的前提:在同一象限内。所以最准确的反比例函数增减性的描述应该是:当k>0时,在每一象限内,y的值随x的值增大而减小,图象“下降”;当k<0时,在每一象限内,y的值随x的值增大而增大,图象“上升”。请同学们注意:“在每一象限内”这个前提条件必不可少。你明白了吗?
承接上一环节,学生有很多参差不齐的答案,教师在预设学生错误表达时,选取了两种具有代表性的错误描述语,供学生思考和分辨。学生通过思考、辨别、试举反例等思维活动,去判断学生代表的描述是否有误。这一过程中可能会有学生认同学生代表的说法,也有可能会发现其问题所在,不论结果如何,都需要让学生在此环节中充分的思考和判断。
通过对比学习,不仅回顾了一次函数的图象性质,同时可以参照一次函数的图像性质描述语,初步组织语言进行描述。学生的描述用语可能不规范、不正确,但通过该环节,能够引导学生进行思考、仿读、初步总结。结合图象也能够培养学生数形结合的数学思想。
环节3:交流讨论
微课中通过老师转述两名学生具有代表性的图象增减性描述语,引发学生的对比思考,模拟课堂中师生、生生互动的场景。
本环节是教师需要意识到的关键环节,面对学生的认知不一,需要教师在学生不准确的结论中提出反例或质疑,让学生重新回到起点进行思考:如何改进、更正才能使结论描述更加完善和准确?这其实也是给学生一个自我反思的机会,梳理疑惑,寻找更为准确的描述语。
人教版九年级下册第二十六章:26.1.2反比例函数的图象和性质 教学设计
26.1.2《反比例函数的图像和性质》教材分析众所周知,函数知识是中学代数的核心内容,反比例函数是初中阶段所要学习的三种函数之一,反比例函数这部分的体系和安排,基本上与一次函数部分相同,教学中要注意和一次函数,尤其是正比例函数对比,引导学生从函数的意义,自变量的取值范围,图象的形状等方面辨明相应的区别。
《反比例函数的图像和性质》在反比例函数这部分的第二小节,是在学生学习了反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的。
反比例函数图像与一次函数图像不同,研究方法更具有一般性和代表性。
《反比例函数的图像和性质》分两课时完成:第一课时,主要内容反比例函数的图像和性质;第二课时;反比例函数与一次函数的图像和性质对比,确定反比例函数的表达式,本课为第一课时主要内容为探究反比例函数的图像和性质。
学情分析此时学生已经学习了函数及其图像的初步知识,及系统的研究了一次函数和二次函数的概念,图像,性质以及简单应用。
学生研究函数的基本方法有一些初步的了解。
但是反比例函数图像分两支,与一次函数、二次函数图像有很大的差别,学生很容易走进误区。
教学目标分析知识与技能(1)进一步熟悉作函数图像的主要步骤和注意事项;(2)会用描点法画反比例函数图像;(3)理解反比例函数的图像与性质。
过程与方法(1)学生通过自己动手,列表,描点,连线,提高学生的作图能力;(2)通过观察反比例函数图像,分析、探究反比例函数的性质,培养学生探究、归纳及概括的能力。
体会数形结合思想和分类讨论思想。
情感与态度通过对本节课的学习,让学生感受双曲线对称美,有限和无限思想,激发他们对数学学习的兴趣;教学重、难点分析基于本节课的教学内容和教学目标,结合学生学情。
确定本节课的重难点如下:重点:用描点法画反比例函数图像,理解反比例函数的性质。
难点:用描点法画反比例函数图像,理解反比例函数的性质。
教法学法分析学法:学生已经研究了一次函数、二次函数,对研究函数的图像和性质的思想方法有所了解,学生可以通过类比的方法学习,实现知识的迁移。
人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例
在学生掌握了反比例函数的基本性质后,我会组织小组讨论。每个小组选取一个或几个反比例函数,通过绘制图象、分析性质,探讨反比例函数在实际问题中的应用。我会鼓励学生尝试用反比例函数解决一些简单的几何问题,如求两个反比例函数交点的问题。
(四)总结归纳
在总结归纳环节,我会邀请几个小组代表展示他们的讨论成果,让学生通过对比和讨论,总结出反比例函数的普遍性质和图象特征。我会引导学生从数形结合的角度,理解反比例函数的本质,并强调反比例函数在实际问题中的应用价值。
二、教学目标
(一)知识与技能
1.理解反比例函数的定义,掌握反比例函数的一般形式,并能准确表述。
2.学会绘制反比例函数的图象,分析图象特征,总结反比例函数的性质。
3.能够运用反比例函数的性质解决实际问题,提高数学应用能力。
4.掌握反比例函数与一次函数、二次函数等其他类型函数之间的关系,拓展函数知识体系。
(五)实施多元化评价
本案例采用多元化的评价方式,包括自评、互评、师评等,全面评价学生的学习过程和结果。这种评价方式有助于激发学生的学习动力,促使学生反思自己的学习,不断提高。
(二)问题导向
在教学过程中,我将采用问题导向法,引导学生发现问题、提出问题、解决问题。首先,通过提出问题“反比例函数的图象有什么特点?”让学生进行独立思考。然后,组织学生进行小组讨论,共同探讨反比例函数的性质。在学生掌握性质后,再提出问题:“反比例函数在实际生活中有哪些应用?”引导学生将所学知识运用到实际问题中。
(五)作业小结
为了巩固本节课的学习内容,我会布置以下作业:
1.绘制并分析至少三个不同反比例函数的图象,总结它们的性质。
2.结合实际情境,编写至少两个反比例函数的应用问题,并解答。
九年级数学下册 26.1.2 反比例函数的图象和性质课件 (新版)新人教版
【跟踪训练】 1.图 26-1-2 是我们学过的反比例函数图象,它的函数解 析式可能是( B ) A.y=x2
B.y=4x C.y=-3x D.y=12x
图 26-1-2
2.在同一坐标系中,正比例函数 y=x 与反比例函数 y=2x的 图象大致是( B )
知识点 2 反比例函数的性质(重难点)
(2)当 k<0 时,由于_____x_y____得负,因此可以判断 x,y 的符号__相__反____,所以点(x,y)在__第__二__或__第__四__象限,所以函数 图象位于___二__、__四___象限.
归纳:反比例函数的图象是_双__曲__线__,它有__两__个_分支. 当 k>0 时,函数图象位于____一__、__三____象限; 当 k<0 时,函数图象位于____二__、__四____象限.
第2课时 反比例函数的图象和性质
1.反比例函数的图象 探究:y= k(k≠0)可变形为 k=______x_y___.
x
(1)当 k>0 时,由于___x_y__得正,因此可以判断 x,y 的符号 ___相__同___,所以点(x,y)在__第__一__或__第__三__象限,所以函数图象位 于___一__、__三___象限.
3
4
y=
4 x
-1
-4 3
-2
-4
4
2
4 3
1
y=-4 1 x
Байду номын сангаас
4 3
2
4
-4
-2
-4 3
-1
描点、连线,如图 D54.
图 D54 (1)其两个分支关于原点对称. (2)在同一坐标系中,反比例函数 y=4x与 y=-4x的图象关于 x 轴对称,也关于 y 轴对称.
26.1.2反比例函数的图象与性质
在求解反比例函数相关问题时,要确保 $x$ 的取值范围使得函数有意义(即 $x neq 0$ )。
在实际应用中,要注意理解反比例关系背后 的实际意义,避免盲目套用公式。
拓展延伸:反比例函数在其他领域应用
经济学中的应用
在经济学中,反比例函数可以表 示某些经济变量之间的关系,如 价格与需求量之间的反比关系。
04
感谢您的观看
THANKS
06
函数图像在第二象限和第四象限内分别位于 $x$ 轴和 $y$ 轴的两侧,且无限接近于坐标轴。
02
反比例函数图象特征
图象形状与位置
图象形状
反比例函数的图象为双曲线,两 支分别位于第一、三象限或第二 、四象限。
图象位置
当$k > 0$时,图象位于第一、三 象限;当$k < 0$时,图象位于第 二、四象限。
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
自变量取值范围
自变量 $x$ 的取值范围
在反比例函数中,自变量 $x$ 不能取值为 0,即 $x neq 0$。
函数定义域
反比例函数的定义域为 $x in R$ 且 $x neq 0$。
偶函数性质
反比例函数不是偶函数,即不满足$f(-x)=f(x)$,图像不关于 y轴对称。
周期性考察
无周期性
反比例函数不具有周期性,即不存在 一个正数T,使得对于定义域内的任 意x,都有$f(x+T)=f(x)$成立。
图像特征
反比例函数的图像是双曲线,两支分 别位于第一、三象限和第二、四象限 ,且无限接近坐标轴但永不相交。
渐近线与交点情况
渐近线
人教版数学九年级下册26.1.2反比例函数图象和性质课件
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。
26.1.2反比例函数的图像与性质
通过练习认识反比例函数的图象与性质
设计意图:
在总结中认识反比例函数的图象与性质
设计意图:
通过检测认识反馈自己存在的问题,并及时纠正。
板
书
设
计
26.1.2反比例函数的图象与性质
一、画图
二、性质
三、应用
教
学
反
思
四、归纳总结,引领提高
比较正比例函数和反比例函数的区别
函数
正比例函数
反比例函数
解析式
图象形状
K>0
K<0
1.反比例函数的图像是双曲线;
2.图像性质:
五、当堂检测,寻找不足
1.函数y= 4/x的图象在第________象限,
在每一象限内,Y随x的增大而_________.
2.函数y= -4/x的图象在第________象限,
函数y=∏/x ,当x>0时,图象在第____象限,y随x的增大而_________.
3、关于x,y的函数k+1/x图象位于第一、三象限,则k的取值范围是
4.甲乙两地相距100km,一辆汽车从甲地开往乙地,
把汽车到达乙地所用的时间y(h)表示为汽车的平均
速度x(km/h)的函数,则这个函数的图象大致是()
函数图象画法
描点法列表描点连线
请大家仔细观察反比例函数
y=6/x和y=-6/x的函数图象,找找看,他们有什么共同的特征?
再让我们仔细看看,这两个函数图象在位置上有什么关系?
操作二:比一比:
同桌两人分别画出函数y=8/x或y=-8/x
的图象,看谁画得又快又好.
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计
人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。
本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。
因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。
3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。
四. 教学重难点1.反比例函数的概念及其图象的画法。
2.反比例函数的性质及其运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。
2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。
3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。
教师选取部分学生的作业进行讲解和点评。
4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。
人教版数学九年级下册26.1.2反比例函数的图象和性质(教案)
在本次教学过程中,我尝试了多种方法来帮助学生理解反比例函数的图象和性质。从导入新课到实践活动,再到小组讨论,我注重引导学生从生活实例中发现数学问题,并运用反比例函数来解决。以下是我对这次教学的几点反思:
首先,我发现通过生活实例导入新课能够有效激发学生的学习兴趣。在提问关于速度与时间关系的问题时,学生们表现出很高的积极性,这为后续的学习奠定了良好的基础。然而,在讲授过程中,我意识到有些学生对反比例函数的基本概念仍然存在理解困难,特别是对于k值的取值范围和函数图象的绘制。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的图象特点及其性质这两个重点。对于难点部分,如双曲线的绘制和单调性理解,我会通过图象展示和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题,如速度与时间的反比关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过改变物体质量来观察重力与质量的关系,从而理解反比例函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在小组讨论环节,学生们展示了他们的成果,但我感觉有些学生的思考还不够深入。为了提高学生的思考能力,我计划在接下来的课程中,逐步增加问题的难度,引导学生深入探讨反比例函数在实际生活中的应用。
此外,教学过程中的难点部分,如反比例函数的单调性,我感觉讲解得还不够透彻。在今后的教学中,我将采用更多具体的例子和对比分析,帮助学生更好地理解这一难点。
人教版九年级下册数学26.1.2 第1课时 反比例函数的图象和性质课件
试一试,你能在坐标轴中画出这个函数的图象吗?
讲授新课
反比例函数的图象和性质
合作探究
例1 画反比例函数 y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
图象,有哪些共同特征?
y
y 2 x
O
x
y y 6
x
O
x
y
O
x
回顾上面我们利用函数图象,从特殊到一般研究
反比例函数 y k (k>0) 的性质的过程,你能用类似的 x
方法研究反比例函数 y k (k<0)的图象和性质吗? x
y
y 2 x
O
x
y y 6
x
O
x
y
O
x
归纳:
反比例函数 y k (k<0) 的图象和性质:
(3) 双曲线位于二、四象限.
其中正确的是 (1)(3) (填序号).
5. 已知反比例函数 y k 的图象过点(-2,-3),图象 x
上有两点 A (x1,y1),B (x2,y2), 且 x1 > x2 > 0,则 y1-y2 < 0.
6. 已知反比例函数 y = mxm²-5,它的两个分支分别在 第一、第三象限,求 m 的值.
图象位于第一、 三象限
图象位于第二、 四象限
在每个象限内,y 随 在每个象限内,y 随
x 的增大而减小
x 的增大而增大
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►冲冠一怒为红颜,英雄难过美人关。只愿博得美人笑,烽火戏侯弃江山。 宁负天下不负你,尽管世人唾千年。容颜迟暮仍为伴,倾尽温柔共缠绵。 ►蜜蜂深深地迷恋着花儿,临走时留下定情之吻,啄木鸟暗恋起参天大树, 转来转去想到主意,便经常给大树清理肌肤。你还在等待什么呢?真爱是 靠追的,不是等来的!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1.2 反比例函数的图象和性质
姓名
环节一、温故知新 1、反比例函数的定义
一般地,形如 ( 为常数, 0≠)的函数,叫做反比例函数, 其中 是自变量, 是函数。
自变量 的取值范围为 。
2、描点法画函数图象的一般步骤如下:
第一步: 第二步: 第三步:
环节二、动手探究 1、画反比例函数x
y 6
=的图象。
解:(1
(2)描点: (3)连线:
由上面函数的图象可知,反比例函数x
y 6
=
图象有以下两个特点: (1)分别位于第 、第 象限,
(2)在每一个象限内,y 随x 的增大而 。
请结合反比例解析式x
y 6
=解释以上两个特点。
2、画反比例函数x
y 6
-=的图象。
解:(1
(2)描点: (3)连线:
由上面函数的图象可知,反比例函数x
y 6
-
=图象有以下两个特点: (1)分别位于第 、第 象限,
(2)在每一个象限内,y 随x 的增大而 。
请结合反比例解析式x
y 6
-=解释以上两个特点。
3、【思考】观察反比例函数x
y 6=
和x y 6
-=的图象,它们有什么共同点和不同点?
共同点:它们的图象都是 支,称为 线; 不同点:所在象限 ,y 随x 的变化趋势 。
4、反比例函数x
y 6=
中,=k ,反比例函数x y 6
-=中,=k ,
由此可知, 的值决定了反比例函数)0(≠=k x
y 的图象特征。
5、请观察课件演示,归纳: 环节三、巩固练习
1、下列图象中,是反比例函数的图象的是 ( )
2、已知反比例函数y=
x
k
的图象如图所示,则k 0,图象位于第 、第 象限, 在每个象限内y 随x 的增大而 。
3、反比例函数x
y 2
=
中k = ,k 0,图象位于第 、第 象限,在下图画出大致图象,当x <0时,y 随x 的增大而 ,当x >0时,y 随x 的增大而 .
4、请你写出一个反比例函数的解析式,使它的图象在第二、四象限: 。
5、如果双曲线x
m
y 4=在每一个象限内y 随x 的增大而增大,那么m 的取值范围是 。
6、若点),2(1y -、),1(2y -在反比例函数x
y 100
-=的图象上,则( )
A .21y y >
B .21y y =
C .21y y <
___每一个象限.....内,
环节四、课后作业 1、若反比例函数x
m y 1
-=
图像的一支在第四象限,求m 的取值范围。
解:∵图象一支在第四象限,即图象在第 、第四象限,
∴m -1 0, ∴m 。
2、如图是反比例函数x
m y 6
-=的图象的一支,根据图象 回答下列问题:
(1)图象的另一支位于第 象限,常数m 的取值范围是 ;
(2)在这个函数图象的某一支上任取点A ()b a ,和点B ()b a '',,如果a a '>,那么b b '。
3、已知反比例函数2
3
1m
m y x --=的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的
变化情况?
4、如图,过反比例函数x
y 1
=
(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定。