立体几何
立体几何(解析版)
立体几何(解析版)立体几何(解析版)立体几何是数学中的一个重要分支,研究物体的空间形状、尺寸以及相互关系。
通过立体几何的学习,我们可以更好地理解并描述物体的形状,并运用相关理论方法解决实际问题。
本文将以解析的方式介绍立体几何的基本概念、性质和定理,并探讨其在实际问题中的应用。
1. 点、线、面的基本概念在立体几何的世界中,点、线、面是最基本的几何元素。
点是没有大小的,只有位置的几何对象。
线由无数个点组成,是长度没有宽度的几何对象。
面是由无数个点和线组成,有着长度和宽度的几何对象。
了解这些基本概念是理解立体几何的第一步。
2. 空间几何关系的性质在立体几何中,物体之间有着各种各样的空间几何关系。
例如,平行是最基本的几何关系之一。
当两条直线或两个平面在空间中永远不相交时,我们称它们为平行。
此外,垂直、相交、共面等几何关系都在立体几何中发挥着重要作用。
通过研究这些几何关系的性质,可以更好地理解物体在空间中的位置和相互关系。
3. 空间几何图形的性质和分类空间几何图形是由点、线、面组成的。
常见的空间几何图形包括球、立方体、锥体等。
每种空间几何图形都有其独特的性质和分类标准。
例如,球是由所有距离圆心相等的点组成的,而立方体则有六个平面和八个顶点等。
通过深入研究这些性质和分类标准,我们能够更好地认识和应用空间几何图形。
4. 空间几何定理及其应用在立体几何中,有许多重要的定理和定律来描述和证明空间几何图形的性质。
例如,欧几里得空间中的平行公设和垂直公设是我们研究空间几何的基础。
此外,勾股定理、皮亚诺定理、欧拉公式等也为我们解决实际问题提供了强大的工具。
在实际问题中,我们可以通过运用这些定理和定律,推导出几何图形之间的关系,解决诸如面积、体积、距离等方面的问题。
5. 立体几何的应用立体几何的应用广泛而重要。
在建筑设计中,我们需要合理利用立体几何理论,确定房屋的尺寸和结构,确保建筑的稳定和美观。
在工程测量中,立体几何被用于计算地表面积和体积,指导建设工程的施工。
立体几何新课标
立体几何新课标
新课标对立体几何的知识要求主要包括以下几点:
1. 认识空间图形:学生应从整体观察感知入手,认识和理解空间几何体,包括它们的形状、大小和位置关系。
2. 空间点、线、面的位置关系:以长方体为载体,直观认识和理解空间点、线、面的位置关系,并能用数学语言表述有关平行、垂直的性质与判定。
3. 计算简单几何体的表面积与体积:学生应了解一些简单几何体的表面积与体积的计算方法。
4. 培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。
新课标对立体几何教学的要求主要包括以下几点:
1. 降低学习门槛:采用先整体后局部的展开方式,将几何知识生活化地体现出来,有助于提高学生学习立体几何的兴趣,降低学习入门的门槛。
2. 培养学生的空间观念:通过立体几何的学习,学生应能发展他们的空间观念,把握图形的能力和空间想象能力。
3. 培养逻辑思维能力:在理解空间点、线、面的位置关系的过程中,学生需要运用逻辑推理和论证,有助于培养他们的逻辑思维能力。
总体来说,立体几何新课标旨在培养学生认识和描述三维空间的
能力,通过直观的方式引导他们理解和掌握空间几何体的基本知识,并在此基础上发展他们的空间思维和逻辑推理能力。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
如果两个平行平面同时和第三个平面相交,则交线平行。
8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
立体几何向量法解题步骤
立体几何向量法解题步骤嘿,小伙伴们!今天咱们来讲讲立体几何向量法解题的步骤呀。
一、建立合适的空间直角坐标系1. 首先呢,你得观察这个立体几何图形的特点。
看看有没有现成的互相垂直的三条棱或者三条线呀。
这一步很关键哦!要是找不到现成的,你可能就得自己想办法构造啦。
比如说,利用图形中的垂直关系,像正方体、长方体那些棱就很好找垂直关系啦。
不过呢,有时候图形比较复杂,这就需要你多花点时间仔细观察啦。
我自己做的时候,在这个环节都会特别小心,因为这个坐标系建得好不好,直接影响后面的计算呢。
你可千万别小瞧这一步呀!2. 确定好坐标轴之后呢,把原点定好。
这就像给整个解题过程打地基一样重要呢。
通常我们会选择图形中比较特殊的点作为原点,比如顶点或者对称中心之类的。
这一步看起来很简单,但建议不要跳过,避免后续出现问题。
二、求出相关点的坐标1. 在坐标系建立好之后,就要找出题目中涉及到的点的坐标啦。
这时候呢,你要根据图形的已知条件,比如边长比例关系呀来确定坐标。
有些点的坐标可能很容易看出来,但是有些可能就需要你稍微推导一下喽。
比如说,如果知道一个点在某条棱上,而且知道它的比例位置,那就可以通过计算得到坐标。
我在求坐标的时候,经常会反复核对好几遍呢,因为一旦坐标错了,后面可就全错啦,这一点真的很重要,我通常会再检查一次,真的,确认无误是关键。
三、求出相关向量的坐标1. 根据已经得到的点的坐标,就可以求出我们需要的向量的坐标啦。
这一步就是简单的坐标相减啦。
不过呢,可别粗心算错了哦。
我就有过这样的经历,因为一个小的计算失误,结果整个题都做错了,真是太懊恼了!所以在这一步也要认真对待呢。
2. 如果涉及到多个向量,要一个一个耐心地求出来。
这时候,你可以把每个向量的坐标都写清楚,这样后面计算的时候就不容易混淆啦。
四、利用向量的运算解决问题(比如求角度、距离等)1. 要是求异面直线所成的角呢,我们就可以利用向量的夹角公式啦。
先算出两个向量的点积,再算出它们的模长,然后根据公式就能求出夹角的余弦值啦。
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
(完整版)立体几何初步知识点(很详细的)
立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
行。
8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
立体几何基本概念
1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。
立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。
立体测绘(Stereometry)是处理不同形体的体积的测量问题。
如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。
立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。
立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。
各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。
学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。
三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。
立体几何公式
立体几何公式1. 三角形面积(Triangle Area)三角形是立体几何中最基本的几何图形之一,其面积计算公式如下:面积 = (底边长 × 高) ÷ 2其中,底边长和高分别表示三角形的底边长度和与底边垂直的高。
2. 矩形面积(Rectangle Area)矩形是一种具有四个直角的四边形,其面积计算公式如下:面积 = 长 × 宽其中,长表示矩形的长边长度,宽表示矩形的短边长度。
3. 正方体体积(Cube Volume)正方体是一种具有六个相等的正方形面的立体,其体积计算公式如下:体积 = 边长 × 边长 × 边长其中,边长表示正方体的边长长度。
4. 圆柱体积(Cylinder Volume)圆柱体是由一个圆形底面和与底面平行的侧面所围成的立体,其体积计算公式如下:体积= π × 半径 × 半径 × 高其中,π(pi)是一个常数,约等于3.14159,半径表示圆柱体底面的半径长度,高表示圆柱体的高度。
5. 球体积(Sphere Volume)球体是由所有到一个固定点距离小于等于特定半径的点的集合构成的立体,其体积计算公式如下:体积= (4/3) × π × 半径 × 半径 × 半径其中,π(pi)是一个常数,约等于3.14159,半径表示球体的半径长度。
6. 圆锥体积(Cone Volume)圆锥体是由一个圆形底面和一个尖顶连接而成的立体,其体积计算公式如下:体积= (1/3) × π × 半径 × 半径 × 高其中,π(pi)是一个常数,约等于3.14159,半径表示圆锥体底面的半径长度,高表示圆锥体的高度。
7. 四棱锥体积(Tetrahedron Volume)四棱锥体是由一个四边形底面和四个三角形侧面所围成的立体,其体积计算公式如下:体积 = (底面边长 × 底面边长 × 高) ÷ 6其中,底面边长和高分别表示四棱锥体底面的边长和垂直于底面的高。
立体几何图形公式大全
立体几何图形公式大全最早的几何学当属平面几何。
平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。
平面几何的内容也很自然地过渡到了三维空间的立体几何。
为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
立方图形名称符号面积S和体积V1、正方体 a-边长 S=6a2 ; V=a32、长方体a-长;b-宽 ;c-高; S=2(ab+ac+bc) ; V=abc3、圆柱 r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h =πr2h4、空心圆柱 R-外圆半径;r-内圆半径;h-高V=πh(R2-r2)5、直圆锥r-底半径;h-高V=πr2h/36、圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/37、棱柱S-底面积;h-高;V=Sh8、棱锥 S-底面积h-高 ;V=Sh/39、棱台S1和S2-上、下底面积h-高 ;V=h[S1+S2+(S1S1)1/2]/310、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高V=h(S1+S2+4S0)/611、球 r-半径 ;d-直径V=4/3πr3=πd2/612、球缺 h-球缺高;r-球半径;a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)13、球台r1和r2-球台上、下底半径;h-高V=πh[3(r12+r22)+h2]/614、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径V=2π2Rr2=π2Dd2/415、桶状体D-桶腹直径;d-桶底直径;h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。
第9讲 立体几何
在四棱锥 P-ABCD 中,PA⊥底面 ABCD,底面各边 都相等, 是 PC 上的一动点, M 当点 M 满足BM⊥PC 时, 平面 MBD⊥平面 PCD. 立体几何中平行、垂直关系的证明的基本思路是利用线 面关系的转化,即: 线∥线↔线∥面↔面∥面
判定 线⊥线↔线⊥面↔面⊥面 性质
线∥线↔线⊥面↔面∥面 如(ⅲ)已知直线 l⊥平面 α,直线 m⊂平面 β,给出下列 四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒ α⊥β ; ④l⊥m ⇒ α∥β. 其 中 正 确 的 命 题 是
8.直线与平面平行的判定和性质 (1)判定:①判定定理:如果平面外的一条直线和这个 平面内的一条直线平行,那么这条直线和这个平面平 行;②面面平行的性质:若两个平面平行,则其中一 个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这 条直线的平面和这个平面相交的交线和这条直线平 行.在遇到线面平行时, 常需作出过已知直线且与已知 平面相交的辅助平面,以便运用线面平行的性质.如 α、β 表示平面,a、b 表示直线,则 a∥α 的一个充分 不必要条件是( D ) A.α⊥β,a⊥β C.a∥b 且 b∥α B.α∩β=b,且 a∥b D.α∥β 且 a⊂β
(4)体积公式 V 柱=S·h (S 为底面面积,h 为高), 1 V 锥= S·h(S 为底面面积,h 为高). 3 (5)球的表面积和体积 4 3 2 S 球=4πR ,V 球= πR . 3
2.空间直线的位置关系:①相交直线——有且只有一个 公共点.②平行直线——在同一平面内,没有公共 点.③异面直线——不在同一平面内,也没有公共点. 如(1)空间四边形 ABCD 中,E、F、G、H 分别是四边 上的中点,则直线 EG 和 FH 的位置关系是 相交 . (2)给出下列四个命题: ①异面直线是指空间既不平行又不相交的直线; ②两异面直线 a,b,如果 a 平行于平面 α,那么 b 不 平行平面 α; ③两异面直线 a,b,如果 a⊥平面 α,那么 b 不垂直 于平面 α; ④两异面直线在同一平面内的射影不可能是两条平 行直线.其中正确的命题是 ①③ .
高中数学立体几何知识点总结
立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。
②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。
3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。
(完整版)高中立体几何知识点总结
高中立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
立体几何七大解题技巧
立体几何七大解题技巧
一、把问题转化成数学问题
三维几何的问题可以转化为数学问题,如求解三角形的面积、求解两个空间向量的点积、求解空间曲线的长度等,都可以用数学方法来解决。
二、利用空间几何公式
三维几何中有许多空间几何公式,如三角形面积公式、平面夹角公式等,利用这些公式可以解决许多三维几何问题。
三、利用空间图形构建
可以利用空间图形构建的方法,把三维几何问题转换成二维几何问题,这样就可以利用二维几何的知识来解决三维几何问题。
四、利用空间投影
可以利用空间投影的方法,把三维几何问题转换成二维几何问题,这样就可以利用二维几何的知识来解决三维几何问题。
五、利用空间变换
可以利用空间变换的方法,把三维几何问题转换成二维几何问题,这样就可以利用二维几何的知识来解决三维几何问题。
六、利用空间对称
可以利用空间对称的方法,把三维几何问题转换成二维几何问题,这样就可以利用二维几何的知识来解决三维几何问题。
七、利用空间分析
可以利用空间分析的方法,把三维几何问题转换成二维几何问题,这样就可以利用二维几何的知识来解决三维几何问题。
高中数学立体几何知识点归纳总结
高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S =2rh π;S=222rh r ππ+,V=Sh=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
数学立体几何模型
数学立体几何模型数学立体几何模型是指用于研究和描述三维空间中几何形状的数学模型。
在立体几何中,人们通常会使用一些基本的几何体,如球体、圆柱体、圆锥体、长方体等作为模型,来研究空间的点、线、面等元素之间的关系。
这些立体几何模型在数学中有着广泛的应用,如在解析几何、微积分、线性代数等领域中都会涉及到。
通过这些模型,人们可以更好地理解空间几何的性质,例如体积、表面积、角度、距离等。
此外,立体几何模型也常常被用于解决实际问题,例如建筑设计、机械制造、物理学等领域。
通过建立数学模型,人们可以更好地理解物体在空间中的位置和运动,从而更好地解决实际问题。
以下是一些常见的立体几何模型:1. 正多面体:包括四面体、立方体、八面体、十二面体和二十面体等,它们是具有相同边长和角度的多面体。
2. 柱体:由一个多边形在一条直线上移动形成的立体图形,如圆柱、棱柱等。
3. 锥体:由一个多边形绕其一边旋转形成的立体图形,如圆锥、棱锥等。
4. 球体:所有点与中心点距离相等的三维图形。
5. 椭球体:类似于球体,但在不同方向上的半径不同。
6. 双曲面体:由双曲线绕其轴旋转形成的立体图形。
7. 抛物面体:由抛物线绕其轴旋转形成的立体图形。
8. 环面:由一个圆绕着一个与它不相交的轴线旋转形成的立体图形。
综上所述,这些模型不仅在数学教学中有重要作用,帮助学生直观理解空间几何概念,而且在工程、建筑、艺术设计等领域也有广泛的应用。
通过使用这些模型,可以更好地理解和解决与体积、表面积、截面、投影等相关的立体几何问题。
总之,数学立体几何模型是研究空间几何的重要工具,它们可以帮助人们更好地理解空间的性质和解决实际问题。
高中数学立体几何知识点
高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
(2):棱柱中除底面的各个面。
(3):相邻侧面的公共边叫做棱柱的侧棱。
(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。
如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。
棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱(1):旋转轴叫做圆柱的轴。
(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
圆锥(1):作为旋转轴的直角边叫做圆锥的轴。
(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。
(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
(4):作为旋转轴的直角边与斜边的交点。
(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。
如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。
棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。
立体几何在生活中的应用
立体几何在生活中的应用立体几何在生活中的应用非常广泛,包括以下几个方面:1. 建筑设计:立体几何是建筑设计的基础。
设计师需要应用立体几何原理研究建筑物的结构、形状和布局。
例如,设计师使用立体几何原理来计算建筑物的支撑结构和材料的使用,以确保建筑物的稳定和安全。
2. 地图制作:地图通常是一个平面表面上的立体物体的表示。
制图师使用立体几何的原理来计算地形的高度和倾斜,以及建筑物和其他地物的位置和形状。
3. 工程测量:立体几何被广泛应用于工程测量中。
工程师使用立体几何原理来测量和计算地形的高度、建筑物的尺寸和倾斜,以及确定工程项目中各种对象的位置。
4. 产品设计:立体几何被应用于产品设计中。
设计师使用立体几何的原理来计算和绘制产品的形状、尺寸和位置。
立体几何还用于计算产品的表面积、体积和重量等参数。
5. 游戏和模拟:立体几何被广泛应用于计算机游戏和模拟软件中。
开发者使用立体几何原理来计算游戏场景的物体的位置、形状和动作,以及计算虚拟角色和物体之间的碰撞和交互。
6. 医学成像:立体几何被应用于医学成像中。
例如,立体几何原理被用于计算机断层扫描(CT)和磁共振成像(MRI)等医学图像的重建和分析。
总之,立体几何在现代生活中扮演着重要的角色,不仅在设计和工程领域有着广泛的应用,还在许多其他领域的技术和科学中发挥着重要作用。
除了上述提到的应用外,立体几何还在以下方面有广泛的应用:7. 计算机图形学:立体几何是计算机图形学中的核心概念。
计算机图形学利用立体几何原理来创建和渲染图形对象,包括三维模型、虚拟场景和特效等。
立体几何的算法被用于计算光线追踪、视角变换、投影和可视化等。
8. 航空航天工程:立体几何在航空航天工程中发挥着关键作用。
工程师使用立体几何原理来计算飞行器的外形、气动性能和推力分布等关键参数。
立体几何还被用于设计和计算航天器中的舱室、发动机和飞行控制系统等。
9. 电脑游戏:立体几何是电脑游戏中的基础之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何
教学重、难点
及处理方法 重点及方法: 立体几何基本定理,三视图,体积表面积求法 难点及方法: 棱锥中垂直平行证明
学情分析 相关知识掌握情况 解题技巧掌握情况
学习态度评价
教学过程
常考基础知识点
一、柱、锥、台、球的结构特征 (1)棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互
相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -
或用对角线的端点字母,如 五棱柱'AD
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面
的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围
成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥'''''E D C B A P -
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比
的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台'
''''E D C B A P
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的
顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边
旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆
的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所
围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间
的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展
开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形
成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
3、空间几何体的三视图和直观图
(1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
(2)画三视图的原则:
长对齐、高对齐、宽相等
(3)直观图:斜二测画法
4、空间几何体的斜二测画法
(1)用来表示空间图形的平面图形叫作空间图形的直观图;
(2)用斜二测画法画平面图形的步骤:
(1)建系:在已知图形中建立直角坐标系,画直观图时,把它们画成对应的轴和轴,
两轴交于点,且使(或);
(2)位置关系:已知图形中平行于轴和轴的线段在直观图中分别画成平行于轴和轴的线段;
(3)长度规则:已知图形中平行于轴的线段,在直观图中保持长度不变,平行于轴的线段,长度变
为原来的一半.
示例、画出水平放置的等边三角形的直观图.
解:画法,如图:
(1)在三角形ABC中,取AB所在直线为x轴,AB边的高所在直线为y轴;画出相应的轴和轴,两轴交于点,且使;
(2)以为中点,在轴上取,在轴上取;
(3)连接、,并擦去辅助线轴和 轴,便获得正△ABC 的直观图△.
结论:用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
一般地,采用斜二测法作出的直观图面积是原平面图形面积的24
倍。
几何体的表面积为几何体各个面的面积的和。
柱体、锥体、台体的体积公式
V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 23
1π=圆锥 ''1()3
V S S S S h =++台 ''2211()()33V S S S S h r rR R h π=++=++圆台 球体的表面积和体积公式:V 球=343R π ; S 球面=24R π
证明应用到的定理
线线平行定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
线线平行定理:垂直于同一个平面的两条直线平行。
线线平行判定定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
面面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
考试题型:
证明平行(线面平行,面面平行) 证明垂直(线面垂直,面面垂直)
平行例题
1.已知长方体的长、宽、高分别是2、3、4,那么它的一条对角线长为_____.
2. 半径为R 球的内接正方体的体积为__________.
3. 在四棱锥ABCD P -中,底面是边长为a 的正方形,侧棱a PD =,
a PC PA 2==.
(1) 求证:ABCD PD 平面⊥;
(2) 求证:AC PB ⊥;
4. 在正四棱柱1111D C B A ABCD -中,AB =1,21=AA .
(1) 求1BC 与ABCD 平面所成角的余弦值;
(2) 证明:BD
AC⊥
1
;
5. 在直三棱柱ABC-A1B1C1中,D是AB的中点,AC=BC=2,AA1=3
2.
(1) 求证:DC
D
A⊥
1; (2) 求二面角A
CD
A-
-
1
的正切值;
6一个底面是正三角形的直三棱柱的正(主)视图如图所示,则其侧面积等于
A.6
B.8
C.12
D.24
2 7如图,四棱锥P-ABCD的底面是平行四边形,E,F分别是棱PB,PC的中点,求证EF∥平面PAD。