温度循环与冷热冲击的区别
温度冲击试验 VS 实际使用寿命如何换算?
温度冲击试验VS实际使用寿命如何换算?众所周知,可靠性实验主要的原理是模拟、加速。
今天分享一下温度冲击试验,跟实际环境的对应关系。
如何换算及换算演示在文末。
1、温度冲击的定义热冲击试验(ThermalShockTesting)常被称作温度冲击试验(TemperatureShockTesting)或者温度循环(TemperatureCycling),高低温冷热冲击试验。
温度冲击按照GJB150.5A-20093.1的说法,是装备周围大气温度的急剧变化,温度变化率大于10度/min,即为温度冲击。
MIL-STD-810F503.4(2001)持相类似的观点。
2、温度冲击测试的目的温度冲击试验的目的:工程研制阶段可用于发现产品的设计和工艺缺陷;产品定型或设计鉴定和量产阶段用于验证产品对温度冲击环境的适应性,为设计定型和量产验收决策提供依据;作为环境应力筛选应用时,目的是剔除产品的早期故障。
3、温度冲击的应用电子设备和元器件中发生温度变化的情况很普遍。
当设备未通电时,其内部零件要比其外表面上的零件经受的温度变化慢。
下列情况下,可预见快速的温度变化:——当设备从温暖的室内环境转移到寒冷的户外环境,或相反情况时;——当设备遇到淋雨或浸入冷水中而突然冷却时;——安装于外部的机载设备中;——在某些运输和贮存条件下。
通电后设备中会产生高的温度梯度,由于温度变化,元器件会经受应力,例如,在大功率的电阻器旁边,辐射会引起邻近元器件表面温度升高,而其他部分仍然是冷的。
当冷却系统通电时,人工冷却的元器件会经受快速的温度变化。
在设备的制造过程中同样可引起元器件的快速温度变化。
温度变化的次数和幅度以及时间间隔都是很重要的。
4、温度冲击的效应温度冲击通常对靠近装备外表面的部分影响更严重,离外表面越远(当然,与相关材料的特性有关),温度变化越慢,影响越不明显。
运输箱、包装等还会减小温度冲击对封闭的装备的影响。
急剧的温度变化可能会暂时或永久地影响装备的工作。
电工电子产品环境试验基础知识
环境试验基础知识一、温度试验:电工电子产品在温度应力的作用下会造成塑料、树脂的老化、分解、变形、甚至燃烧;金属短路、断路、损坏;焊剂流动、焊接不实形成噪声。
根据“10℃规则”,当环境温度上升10℃时,产品寿命会减少一半;当环境温度上升10℃时,产品寿命会减少到四分之一。
根据这一现象,我们可以升高环境温度,加速失效现象的发生。
这就是我们进行的加速寿命老化试验。
还必须对早期失效的不合格的产品进行筛选测试。
二、湿热试验:试验样品在高温高湿条件下,会造成水气吸附和扩散。
许多材料吸湿后体积膨胀、强度降低、电性能下降、金属腐蚀、离子迁移、造成开路或短路。
典型的半导体器件加速湿阻试验下述结论不仅适用于湿热试验,同时也适用于其他环境试验湿热试验的注意事项:1、试验目的明确,进行与目的相符的试验。
积累每一次的失效数据,为以后的试验能有效地进行。
2、关心测试数据的准确性,湿球纱布变质变赃会导致测量精度偏差5%~10%:要使用脱脂的干净纱布和蒸馏水。
3、在进行温度-湿度偏压试验(THB)时,因试件内部发热,试样表面附近的相对湿度会降低,影响试验的准确性。
试验方式可调整为:通电1小时断电3小时,断续电试验。
4、试验箱内的温湿度条件应与试样内部的温湿度条件保持一致,且均匀度要好。
在高湿度试验中,如果某一点的温度低1℃ ,这一点的湿度就可能变成100%RH,就会有凝结的水珠出现,使试验数据发生很大变化。
5、防止试验箱顶部凝露水滴到度样上,造成不必要的损失。
6、在压力蒸煮锅试验结束后,要冷却后再取出。
防止试样受到压力冲击和温度冲击,造成样品破裂损坏。
三、高低温温度冲击试验:航空器起飞或降落时,机载外部器材会出现温度的急剧变化;设备从高温区移到低温区或从低温区移到高温区;设备通电与断电;采用锡焊焊接;整机小型化,元件密集,元器件更容易受热,等等。
都会引起高低温温度的冲击。
元器件都是由不同材料构成,由热膨胀系数不同引起的故障时有发生。
冷热冲击试验和温度循环试验有何区别
冷热冲击试验和温度循环试验有何区别冷热冲击试验和温度循环试验都属于可靠性试验的一种。
在产品生产前或生产后对其进行质量测试可以帮助预测其在使用过程中可能出现的问题,并提高产品的可靠性和稳定性。
冷热冲击试验冷热冲击试验是将被测材料或零件在热箱和冷箱之间不断切换,以模拟在不同温度环境下产品的使用条件。
冷热冲击试验常用于测试产品的热胀冷缩性和耐热性,如汽车外壳、电子元器件、机械零件等。
通常,冷热冲击试验会以快速温度变化的形式进行,使测试材料或零件在一定时间内分别处于高温和低温环境内,然后在这两个环境之间反复转换,观察其耐热和耐冷性能的变化,以此检验产品的质量。
这些快速的温度变化在短时间内会导致材料的热胀冷缩和应力积累,这些条件是产品在使用过程中可能遇到的。
冷热冲击试验的过程非常严峻,能够挑战产品的真实环境中所面临的最严峻的环境。
温度循环试验温度循环试验是将测试材料或零件置于高温和低温环境中,使其在高温条件下进行一段时间,然后在低温环境中进行另外一段时间,以此重复进行,来检验材料或零件在不同温度环境下的稳定性和可靠性。
与冷热冲击试验不同,温度循环试验的环境温度变化相对缓慢,且变化预测性更强。
它通常用于测试产品在稳定温度条件下的性能如可靠性、气密性、机械性能等。
与冷热冲击试验相比,温度循环试验更加耗时和耗费资源,但它可以更细致地检测产品的稳定性。
区别和联系在实际应用中,冷热冲击试验和温度循环试验的区别不仅仅在于温度的快慢变化,两者的试验理论与实践也有区别。
一般来说,冷热冲击试验注重材料的抗快速温度变化的能力与应变能力的评估,同时也关注于产品的可靠性和永久性的稳定性实验;而温度循环试验则关注产品的耐久性和稳定性,注重对产品进行长时间、正常温度条件下的质量评估。
此外,冷热冲击试验和温度循环试验通常根据产品要求指定不同的方案,目标与范围也不尽相同。
在产品实际测试过程中,应根据材料的实际情况以及相关的规定和标准选择适合的测试方案,并综合考虑两种试验的结果,以衡量产品的质量与性能。
可靠性试验介绍
冷热冲击试验不同于环境模拟试验,它是通过冷热温度冲击发现在常温 状态下难以发现的潜在故障问题。决定冷热温度冲击试验的主要因素有: 试验温度范围、暴露时间、循环次数、试验样品重量及热负荷等。
温度冲击设备有:两箱法、三箱法和液槽式三种,其中设备内湿度不能 超过50%RH即20g/m³。
公司常做的快捷温度冲击的条件:-65℃,150℃,停留时间14min,循 环次数:300个(如下图为此试验单个循环的温度曲线)
上述公式显示半导体寿命取决于半导体受到的温度。 加速的测试利用这一特性被称为温度加速测试不过例如一些因为热载体
的影响导致的失效(高能源载体产生的电场捕捉的栅氧化膜的现象)可能 有负面的活化能值。当加速这些类型的失效,作为温度测试增加试验效 果是减少的。
加速寿命实验
4.3.3 温湿度加速 大规模集成电路在高温高湿环境为了解暴露在高温、 高湿下进行测试半
高温试验 产品寿命遵循"10℃规则",因而高温试验作为最常用的试验,用于元器件
和整机的筛选、老化试验、寿命试验、加速寿命试验、评价试验、同时 在失效分析的验证上起重要作用。 高温试验的技术指标包括:温度、时间、上升速率。 注意产品和元器件的最大耐受温度极限。 样品放入试验箱内为保持样品的受热均匀性,样品距离箱壁的距离最少 为5cm GB/T 2423.2中高温的试验方法分:散热样品的温度渐变,非散热样品的 温度渐变 试验结束后需要将样品在箱体内恢复至稳定状态,或将样品放置在常温 常湿环境下进行恢复至稳定状态。
冷热冲击箱与快速温度试验机的区别
冷热冲击箱与快速温度试验机的区别一、测试产品:-40℃冷热冲击测试设备又称快速温变试验(ESS)的比较最近几年我们跟很多客户交流,谈到冷热冲击试验和快速温变试验两者之间的区别时,由于每个用户测试产品不同,测试的阶段和目的也不相同,以至于对这两种测试方法存在很多不同的见解。
我们收集了一些大家比较认同的见解做为参考,下面是对比表,相信大家以后对这两种试验方法和试验设备会更了解。
项目冷热冲击试验快速温变(环境应力筛选ESS)备注试验目的主要考核试件在温度瞬间急剧变化一定次数后,检测试样因热胀冷缩(CTE见注释#1)所引起的化学变化或物理破坏利用外加的环境应力,使潜存于电子产品研发、设计、生产制程中,因不良元器件、制造工艺和其它原因等所造成的早期故障提早发生而暴露出来,给予修正和更换试验目的不一样测试阶段主要在研发设计阶段,试制阶段主要在量产阶段阶段不一样测试对象主要用于测试材料结构或复合材料,现在用的最多的还是电子产品的元器件或者组件级(如PCBA,IC)主要适用于电子产品的元器件级,组件级和设备级冷热冲击很少用于做设备级温度变化速率要求无温变速率指标,但要求温度恢复时间,参考点一般在出风口,国内外标准都要求5min以内,越快越好;也有标准要求在产品表面量测,温度恢复时间在15min以内为了增强筛选效果,常见快速温变箱建议选择温变速率为10~25℃/min,且温变速率可控;样品失效模式由于材料蠕变(见注释#2)及疲劳损伤引起的失效,也称脆性失效由于材料疲劳(见注释#3)引起的失效失效模式不一样常见故障现象如零部件的变形或破裂,绝缘保护层失效,运动部件的卡紧或松弛电气和电子元器件的变化,快速冷凝水或结霜引起电子或机械故障如涂层、材料或线头上各种微裂纹扩大;使粘结不好的接头松驰;使螺钉连接或铆接不当的接头松驰;材料热膨胀系数不同产生的变形和应力引起的故障,使固封材料绝缘下降;使机械张力不足的压配接头松驰;使质差的钎焊接触电阻加大或造成开路;使运动件及密封件故障从故障现象看上看二者有一些相同之处参考标准JESD22-A106BGJB-150-AMIL-STD-810GMIL-STD-202GJEDECJESD22-A104-bIEC68-2-1MIL-STD-2164-85IEC60749-25设备选择a.对元器件(电容、电感、IC),板卡的中小尺寸产品,最优选择提篮式冷热冲击,测试效果更严苛b.对超大尺寸产品,如液晶电视或者重型产品,建议选择三箱式会更适合c.如果遇到重型产品,而且尺寸也比较大,同时要求过冲小,可选择水平式提篮冷热冲击箱做参考d.除霜周期要求a.设备尺寸大小,常见尺寸400L,800L,1000L或定制b.实际测试温度范围(如:-40℃~85℃),同时也要求设备全程温度范围(如:-70℃~190℃)c.温变速率要求;是线性温变速率还是平均温变速率;如有带载温变速率要求,要明确带载情况,包括静态负载(通常拿铝锭做参考)和热负载(产品带电发热)d.验收标准(如:IEC-60068-3-5和GB/T5170)二、问题探讨:1.有些用户认为冷热冲击试验箱与快速温变箱在某些特定条件下可以共用,比如:温度冲击测试条件是-40℃~85℃,温度恢复时间5min以内,高低温驻留时间30min。
冷热冲击试验箱常见故障及处理方法
冷热冲击试验箱常见故障及处理方法冷热冲击由于操作的频繁使用,时间一长容易产生问题,今天昆山海达仪器小编结合日常中所出现的故障为广大用户做一个具体介绍。
1、温度冲击试验温变率是否是越快越好?解决方案:温度冲击试验中的温变率是否是越快越好,温变率到底对于试验结果有没有影响,怎么样的温变率才是好的冲击温变率?2、温度冲击与温度循环如何分辨?解决方案:温度冲击与温度循环两者的差异性在哪里,还是都一样只是称呼不一样而已?3、温度冲击试验驻留时间如何决定?解决方案:在冲击过程当中有所谓的驻留时间,待测品的驻留时间要如何决定,是依据待测品的数量,还是看待测品的材质而定?4、冲击温度需OVER或低于设定值?解决方案:冲击过程中,冲击温度因该是高于设定值,还是低于设定值才是正确的?5、冲击试验的温度感知器,因放置于测试区还是风道里面?解决方案:冲击试验机的温度传感器,其放置位置因该要放在测试区里面还是风道里面?6、先冲高温还是先冲低温?解决方案:温度冲击试验中,因该是要先冲高温还是先冲低温,如果规范没有要求的话怎么决定?7、为什么有些冲击要过常温?解决方案:为什么有些冲击要过常温,而有些冲击不需要过常温,过常温的冲击试验对于产品有什么影响?8、使用烤箱与冷冻柜是否可以取代冷热冲击机来进行试验?解决方案:如果没有钱买冷热冲击机的话,是否可以使用烤箱与冷冻柜透过人工搬运的方式来取代冷热冲击机9、如何透过冷热冲击机来计算产品预估寿命?解决方案:使用冷热冲击机使否可以计算预估产品可能的使用寿命9、试验中的问题:手持待测品的要点?解决方案:要将待测品拿到试验炉内放置,怎么样拿才正确试验炉壁多久需要擦拭?10、:试验炉壁多久需要擦拭,是年保养还是季保养还是周保养,如果不擦的话又会怎么样11、我想要缩短试验时间因该怎么做?解决方案:我在进行高温高湿试验或是冲击试验时,有没有办法缩短我的试验时间,让试验结果一样。
温度循环与冷热冲击的区别
想想他说的有道理,温冲应该是针对结构性,工艺性的缺陷的测试,而温度变化是把器件缺陷暴露出来,当然材料缺陷也可以发现。
实践中,温度变化速度一般为5到10度每分钟,低之变成了高低温试验,高了我们称为快速温变,温度变化呈线性,试验时间一般较长,短时间难以发现产品缺陷温冲一般规定变化时间在5min以内,指温度点到达稳定时耗的时间,温度变化不追求线性,只追求速度,一般过冲较大(我们不是2箱式的,是吹风式的),再有一个证据支持timex观点的是,做高低温循环试验有时候会通电工作,做温冲比较少。
我们实验室是做电子产品的,不知道其他产品的试验方法温度冲击和温度循环可以统称为温度变化试验,IEC称之为change of temperature。
温度变化方式有两种,一种是规定转换时间,譬如两箱法的温度冲击箱,一种是规定温变率,普通的温湿度或快速温变箱(又有人叫EES箱)、甚至是HALT箱都可以实现特定的温变率,好像没有哪个标准界定多大的温变率才叫做温度冲击。
我觉得叫啥不重要,关键是要分清两种方法的试验目的,或者说想针对什么失效模式,通常而言,温度冲击针对元器件级或工艺;温度循环针对整机,譬如容差检验方面,16楼斑竹贴的东西就解释得很好,大家不妨在实际工作中尝试下二者的区别,有啥心得了在到此跟大家分享。
失效机理不一样:1. 温度循环和温度冲击最大的区别是温度变化率的大小区别。
这就导致了在不同温度变化率的情况下,物质的热胀冷缩的性能区别。
不同材料的CTE 的能力不同,温度变化太快的话,会对材料的保持力(金属键-李自健-共价键-范德华力,主要将来就是长程有序(晶体) 和短程有序(塑料) ) 产生影响,一般晶格结构的材料((金属键-李自健-共价键-范德华力)失效机理是CTE,但是非晶格结构(范德华力)的材料(如塑料材料)不仅是CTE,还会由于温度变化太快产生的内部由于短程有序的分子间力的剧烈变化的龟裂。
長久以來,溫度循環與溫度衝擊再說法上就一直沒有明確的定義,若以IEC 60068 Part 2-14 Change of temperature的定義又區分為Test Na: Rapid change of temperature with prescribedtime of transition,Test Nb: Change of temperature with specified rate of change以及Test Nc:Rapid change of temperature. two-fluid-bath method.Test Na則應屬溫度衝擊試驗(air to air),Test Nb屬溫度循環試驗(air to air), Test Nc亦屬溫度衝擊試驗,不同於Na是Nc是採用雙槽式液態衝擊.美軍規範MIL-STD-810F Method 503.4 則定義為當溫度變化率超過10c/分鐘時定義為溫度衝擊,IPC 9701則定義當溫度變化率<=20c/分鐘時為溫度循,>20c/分鐘時為溫度衝擊試驗.使用上需,溫度循環與溫度衝擊使用時機與產品型態及產品生命週期所負責的任務需求有關謹慎以免過應力(Over strress)造成產品終其一生都不會出現的失效的模式再試驗中出現.對於使用在汽車引擎室及車身外部的車電產品在執行可靠度驗證時可考慮採用Liquid to Liquid的溫度衝擊,日系廠商對於PCB裸板(Bare board)亦傾向採用Liquid to Liquid的溫度衝擊,至於SMT後的PCBA則大都以溫度循環為主要驗證方式才能充分驗證CTE效應對可靠度所產生的影響.温度循环试验Temperature Cycling Test温度循环效应:丧失电性功能,润滑剂变质而失去润滑作用,焊点裂化、PCB脱层、结构丧失机械强度与塑性变形,玻璃与光学制品破裂,焊点裂锡, 零件特性能退化, 断裂,移动件松弛,材料收缩膨胀,气密与绝缘保护失效.1.环境模拟试验为主要目的,在试验应用上以高/低温缓慢变化为主。
温度循环与冷热冲击的区别
想想他说的有道理,温冲应该是针对结构性,工艺性的缺陷的测试,而温度变化是把器件缺陷暴露出来,当然材料缺陷也可以发现。
实践中,温度变化速度一般为5到10度每分钟,低之变成了高低温试验,高了我们称为快速温变,温度变化呈线性,试验时间一般较长,短时间难以发现产品缺陷温冲一般规定变化时间在5min以内,指温度点到达稳定时耗的时间,温度变化不追求线性,只追求速度,一般过冲较大(我们不是2箱式的,是吹风式的),再有一个证据支持timex观点的是,做高低温循环试验有时候会通电工作,做温冲比较少。
我们实验室是做电子产品的,不知道其他产品的试验方法温度冲击和温度循环可以统称为温度变化试验,IEC称之为change of temperature。
温度变化方式有两种,一种是规定转换时间,譬如两箱法的温度冲击箱,一种是规定温变率,普通的温湿度或快速温变箱(又有人叫EES 箱)、甚至是HALT箱都可以实现特定的温变率,好像没有哪个标准界定多大的温变率才叫做温度冲击。
我觉得叫啥不重要,关键是要分清两种方法的试验目的,或者说想针对什么失效模式,通常而言,温度冲击针对元器件级或工艺;温度循环针对整机,譬如容差检验方面,16楼斑竹贴的东西就解释得很好,大家不妨在实际工作中尝试下二者的区别,有啥心得了在到此跟大家分享。
失效机理不一样:1.温度循环和温度冲击最大的区别是温度变化率的大小区别。
这就导致了在不同温度变化率的情况下,物质的热胀冷缩的性能区别。
不同材料的CTE 的能力不同,温度变化太快的话,会对材料的保持力(金属键-李自健-共价键-范德华力,主要将来就是长程有序(晶体)和短程有序(塑料) )产生影响,一般晶格结构的材料((金属键-李自健-共价键-范德华力)失效机理是CTE,但是非晶格结构(范德华力)的材料(如塑料材料)不仅是CTE,还会由于温度变化太快产生的内部由于短程有序的分子间力的剧烈变化的龟裂。
長久以來,溫度循環與溫度衝擊再說法上就一直沒有明確的定義,若以IEC 60068Part 2-14Change of temperature的定義又區分為Test Na:Rapid change of temperature with prescribed time of transition,Test Nb:Change of temperature with specified rate of change以及Test Nc:Rapid change of temperature. two-fluid-bath method.Test Na則應屬溫度衝擊試驗(air to air),Test Nb屬溫度循環試驗(air to air), Test Nc亦屬溫度衝擊試驗,不同於Na是Nc是採用雙槽式液態衝擊.美軍規範MIL-STD-810F Method 503.4則定義為當溫度變化率超過10c/分鐘時定義為溫度衝擊,IPC 9701則定義當溫度變化率<=20c/分鐘時為溫度循,>20c/分鐘時為溫度衝擊試驗.溫度循環與溫度衝擊使用時機與產品型態及產品生命週期所負責的任務需求有關,使用上需謹慎以免過應力(Over strress)造成產品終其一生都不會出現的失效的模式再試驗中出現.對於使用在汽車引擎室及車身外部的車電產品在執行可靠度驗證時可考慮採用Liquid to Liquid的溫度衝擊,日系廠商對於PCB裸板(Bare board)亦傾向採用Liquid to Liquid的溫度衝擊,至於SMT後的PCBA則大都以溫度循環為主要驗證方式才能充分驗證CTE效應對可靠度所產生的影響.温度循环试验Temperature Cycling Test温度循环效应:丧失电性功能,润滑剂变质而失去润滑作用,焊点裂化、PCB脱层、结构丧失机械强度与塑性变形,玻璃与光学制品破裂,焊点裂锡,零件特性能退化,断裂,移动件松弛,材料收缩膨胀,气密与绝缘保护失效.1.环境模拟试验为主要目的,在试验应用上以高/低温缓慢变化为主。
冷热冲击试验的用途
温馨小提示:本文主要介绍的是关于冷热冲击试验的用途的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇冷热冲击试验的用途能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。
冷热冲击试验的用途(大纲)一、引言1.1冷热冲击试验背景介绍1.2冷热冲击试验的意义与重要性二、冷热冲击试验的用途2.1产品质量检验2.1.1检验产品在温度变化环境下的稳定性2.1.2评估产品在极端温度下的可靠性2.2研发与设计参考2.2.1指导材料选择与工艺优化2.2.2验证产品设计的合理性2.3生产过程控制2.3.1监控生产过程中的温度变化2.3.2确保产品批量生产的一致性2.4市场竞争与国际贸易2.4.1满足国内外标准要求2.4.2提升产品在市场上的竞争力三、冷热冲击试验的类型与标准3.1常见冷热冲击试验类型3.1.1高低温循环试验3.1.2快速温度变化试验3.2国内外冷热冲击试验标准3.2.1国内相关标准3.2.2国际相关标准四、冷热冲击试验的设备与操作4.1冷热冲击试验设备介绍4.1.1设备类型与结构4.1.2设备性能参数4.2冷热冲击试验操作流程4.2.1试验准备4.2.2试验步骤与注意事项五、冷热冲击试验结果分析与应用5.1试验结果分析方法5.1.1数据收集与处理5.1.2结果分析技巧5.2试验结果在产品中的应用5.2.1产品质量改进5.2.2产品寿命预测六、总结与展望6.1冷热冲击试验在行业中的应用现状6.2冷热冲击试验的发展趋势与前景6.3面临的挑战与对策建议一、引言1.1冷热冲击试验背景介绍在科学技术日新月异的今天,电子产品、材料以及各类设备在复杂多变的环境条件下的可靠性和稳定性成为了研发和生产过程中的重要考量因素。
两种冲击试验的比较
两种冲击试验的比较
两种冲击试验的比较,特斯特检测仪器为您做以下分析:
温度冲击试验:
升温/降温速率不低于30℃/分钟。
温度变化范围很大,同时试验严酷度还随着温度变化率的增加而增加。
温度冲击试验与温度循环试验的差异主要是应力负荷机理不同。
温度冲击试验主要考察由于蠕变及疲劳损伤引起的失效,而温度循环主要考察由于剪切疲劳引起的失效。
温度冲击试验容许使用二槽式试验装置;温度循环试验使用单槽式试验装置。
在二槽式箱体内,温度变化率要大于50℃/分钟。
※引起温度冲击的原因:回流焊,干燥,再加工,修理等制造、修理工艺中剧烈的温度变化。
※加速应力试验:加速试验是使用比在实际环境中更短的时间,对试验样品进行的加速试验,以考察其失效机理。
试验的加速就是采用加大应力的方法促使试验样品在短期内失效,。
但是必须注意避免其它应力原因引起的失效机理。
温度循环试验:
温度循环就是将试验样品曝露于予设的高低温交替的试验环境中。
为避开温度冲击影响,试验时的温度变化率必须小于20℃/分钟。
同时,为达到蠕变及疲劳损伤的效果,推荐试验温度循环为25℃~100℃,或者也可根据产品的用途使用0℃~100℃的循环试验,曝露时间为各15分钟。
环境应力筛选试验(ESS= Environmental Stress Screening):
对产品施加环境应力促使早期失效产品存在的潜在缺陷尽快暴露而予以剔除。
ESS不是加速可靠性试验,主要适用于成品的可靠性筛选试验。
文章来源:特斯特检测仪器有限公司版权所有
恒温恒湿试验机,耐黄老化试验机,冷热冲击试验机。
高温放置,冷热冲击,温湿循环的原因
高温放置,冷热冲击,温湿循环的原因以高温放置、冷热冲击和温湿循环为主题,我们将分别探讨它们的原因及相关影响。
一、高温放置的原因及影响高温放置是指将物体或设备暴露在高温环境中一段时间。
这种做法可能会导致一系列问题,其中最主要的原因是热胀冷缩效应。
当物体受热后,其中的分子会加速运动,使物体膨胀;相反,当物体冷却时,分子的运动减慢,物体收缩。
这种热胀冷缩的变化可能会对物体的结构、性能和功能产生不可逆的影响。
高温放置对物体的影响主要有以下几个方面:1. 结构变形:高温会导致物体内部结构的松散,甚至出现变形。
例如,金属材料在高温下容易融化或软化,使得构件失去原有的形状和机械强度。
2. 性能衰减:高温放置可能导致材料中的化学成分发生变化,从而降低其性能。
例如,高温下的电子元件可能会失去导电性能,导致设备无法正常工作。
3. 功能丧失:某些物体在高温环境下可能无法正常运行。
例如,电子设备的电路板在高温下容易烧毁,导致设备无法启动或执行任务。
二、冷热冲击的原因及影响冷热冲击是指物体或设备在短时间内从高温环境迅速转变到低温环境,或者反之。
这种温度的剧烈变化会引起物体内部的热胀冷缩效应,从而产生一系列问题。
冷热冲击对物体的影响主要有以下几个方面:1. 热应力:冷热冲击会在物体内部产生热应力。
当物体迅速从高温变为低温时,不同部分的温度变化速度不一致,导致内部产生应力。
这种应力可能会引起裂纹、脱落或失效等问题。
2. 热震荡:冷热冲击引起的温度变化还会导致物体的热震荡。
这种震荡可能会损坏物体的结构和连接件,导致设备失效。
3. 材料疲劳:频繁的冷热冲击会使材料内部的晶界和晶体发生位移和变形,从而引起材料疲劳。
长期以来,这可能会导致物体的可靠性下降。
三、温湿循环的原因及影响温湿循环是指物体或设备在不同温度和湿度环境中循环暴露。
这种循环可能会导致材料的物理、化学和电气性能发生变化。
温湿循环对物体的影响主要有以下几个方面:1. 湿热腐蚀:高温高湿环境中,湿气中的氧气和其他化学物质会与材料发生反应,导致腐蚀。
电路板温度冲击试验的定义及运用详解
电路板温度冲击试验的定义及运用详解
1、温度冲击的定义热冲击试验(Thermal Shock Testing)常被称作温度冲击试验(Temperature Shock Testing)或者温度循环(Temperature Cycling),高低温冷热冲击试验。
温度冲击按照GJB 150.5A-2009 3.1的说法,是装备周围大气温度的急剧变化,温度变化率大于10度/min,即为温度冲击。
MIL-STD-810F 503.4(2001)持相类似的观点。
2、温度冲击测试的目的温度冲击试验的目的:工程研制阶段可用于发现产品的设计和工艺缺陷;产品定型或设计鉴定和量产阶段用于验证产品对温度冲击环境的适应性,为设计定型和量产验收决策提供依据;作为环境应力筛选应用时,目的是剔除产品的早期故障。
3、温度冲击的应用电子设备和元器件中发生温度变化的情况很普遍。
当设备未通电时,其内部零件要比其外表面上的零件经受的温度变化慢。
下列情况下,可预见快速的温度变化:——当设备从温暖的室内环境转移到寒冷的户外环境,或相反情况时;——当设备遇到淋雨或浸入冷水中而突。
老化可靠性试验
老化、环境及可靠性试验技术中心:徐文斌2009-10-26目录概述1 环境应力与失效的关系1.1 温度应力对产品的影响1.2 湿度对产品的影响1.3 冷热温度冲击对产品的影响1.4 机械冲击和振动对产品的影响2 可靠性试验分类2.1 试验形式2.1 筛选试验2.2 老化试验2.3 型式试验(验证试验、定型试验)2.4 例行试验2.5 寿命试验2.6 其他试验3 环境试验内容高温试验低温试验温度循环温度冲击恒温恒湿交变潮热(湿热)机械振动冲击和碰撞高压蒸煮试验盐雾试验气体腐蚀试验其他试验试验系统4寿命试验概述4.1寿命试验类别:4.2寿命试验设计方法5 如何使用环境试验(电子电工产品)标准制定环境试验方案5.1 电子类环境试验标准5.2 有具体标准规定的环境试验5.3无具体标准规定的环境试验方法5.4针对失效机理的试验方法5.5 列举具有代表性的冷热冲击试验条件以供参考概述评价产品价值不应仅仅局限于对产品自身功能与性能进行评价。
换句话说质量是产品价值的基础,产品价值取决于其自身质量。
产品投放到市场后发生质量问题时,性能的损坏程度并不直接影响产品成本,对厂家来讲最大损失莫过于品牌信誉的损失。
为了避免这些损失,在产品投放市场之前,就必须要对产品作质量鉴定。
环境试验不仅能够通过模拟试验和产品寿命老化试验对产品进行质量鉴定,同时还是质量保证体系中必不可少的先决条件。
环境试验始见于第二次世界大战,当时美军出现了诸如从美国运至东南亚60%的机载电子设备到达目的地后不能正常使用、将近一半以上的备用电子设备储备在仓库时就已经失效等问题引起美军的极大重视。
经确认大多数设备失效问题是起因于亚洲热带多雨潮湿环境下湿热应力混合作用。
环境试验可大致可分为"气候环境试验"、"机械环境试验"和"综合环境试验"。
与气候有关的环境试验包括温度,湿度与压力等环境应力试验,而机械环境试验则包括冲击和振动等环境应力试验。
快速温变、冷热冲击温变速率
快速温变、冷热冲击温变速率
快速温变和冷热冲击温变速率是在材料科学和工程领域中常常涉及到的概念。
快速温变是指材料在很短的时间内经历温度的快速变化,而冷热冲击温变则是指材料在短时间内经历由高温到低温或者由低温到高温的急剧变化。
在工程应用中,快速温变和冷热冲击温变速率对材料的性能和稳定性有着重要影响。
首先,快速温变和冷热冲击温变速率会导致材料内部产生应力和变形,特别是对于一些脆性材料来说,容易引发裂纹和破坏。
其次,快速温变和冷热冲击温变速率也会影响材料的热传导性能,导致材料的热膨胀系数发生变化,进而影响材料的尺寸稳定性。
此外,对于一些复合材料或者涂层材料来说,快速温变和冷热冲击温变速率还会影响其界面的结合强度,导致材料层间的剥离和破坏。
针对快速温变和冷热冲击温变速率对材料性能的影响,工程师和科研人员通常会通过一系列的实验和模拟分析来评估材料的耐温变性能。
他们会利用热机械分析仪器、热冲击试验台等设备,对材料进行快速温变和冷热冲击温变速率下的性能测试,以获取材料的热膨胀系数、热传导性能、抗裂纹性能等数据,从而评估材料在实
际工程应用中的稳定性和可靠性。
总之,快速温变和冷热冲击温变速率是材料工程中重要的研究内容,对于材料的性能和稳定性有着重要的影响,科研人员和工程师需要通过实验和分析来评估材料的耐温变性能,以确保材料在实际工程应用中的可靠性和安全性。
冷热试验名词解释
冷热试验名词解释
冷热试验是一种常用于测试物体耐温性能的实验方法。
在这种试验中,物体会
暴露在极端低温和极端高温环境中,以检测其在不同温度条件下的稳定性和可靠性。
在冷热试验中,常见的名词解释包括:
1. 冷却过程:指物体从高温到低温的过程。
在冷热试验中,冷却过程用于模拟
物体在环境温度下的自然冷却情况。
2. 加热过程:指物体从低温到高温的过程。
在冷热试验中,加热过程用于模拟
物体在受热条件下的耐温性能。
3. 热循环:是指在冷热试验中,物体在不同温度之间进行循环运行的过程。
这
个过程可以测试物体在温度变化过程中的稳定性和可靠性。
4. 温度梯度:是指冷热试验中物体表面的温度差异。
较大的温度梯度可能对物
体造成应力,因此需要对温度梯度进行控制和评估。
5. 热休克:是冷热试验中物体在温度突然变化的情况下所经历的过程。
热休克
可以模拟物体在快速温度变化环境下的响应能力。
冷热试验是工业界广泛应用的一种方法,可用于评估材料和产品在极端温度条
件下的性能。
通过了解冷热试验中的这些名词解释,我们可以更好地理解和应用这一实验方法,提高产品的质量和可靠性。
冷热冲击循环标准
冷热冲击循环标准
冷热冲击试验是用高温和低温冲击测试产品的试验,考核产品对于周围空气温度的激烈变化的适应性。
常见的冷热冲击参考标准有国标GB2423《电工电子产品基本环境试验规程》,IEC60068-2-14基本环境试验规范。
第2部分试验N温度变化)。
国标GB2423里高温试验的将试验样品放入温度为试验室温度的试验箱中,然后将温度调节到符合相关规范规定的严酷等级温度。
当试验样品温度达到稳定后,在该条件下暴露到规定的持续时间。
对于试验时需要通电运行的试验样品(即使它们不属于散热试验样品),应在试验样品温度达到稳定后通电,根据需要进行功能检测。
这种情况下,可能还需要一段时间达到温度稳定,然后试验样品在该高温条件下暴露到相关规范规定的持续时间。
冷热冲击试验各类标准中的冷热冲击试验均来源于试验方法N:温度变化中的Na。
在特定时间内快速温度变化试验。
它的定义在特定时间内进行快速温度变化,转换时间一般设定为手动2~3分钟,自动少于30秒,小试件则少于10秒。
常用术语中的温度冲击试验也属于冷热冲击试验。
冷热冲击试验有几个重要参数需要考虑:循环数、温度转换时间、温度保持时间、温度极限值(因此项试验为存储类试验,故其极限值为存储极限温度值)。
冲击温度与使用温度间的关系
冲击温度与使用温度间的关系
随着科技的不断发展,人们对物质和材料性能的要求越来越高。
其中,温度是影响材料性能的重要因素之一。
材料在不同温度下的性能表现也是研究热点之一。
温度对材料性能的影响是双向的,即温度的升高和降低都会对材料的性能产生影响。
冲击温度是指在高温或低温条件下,材料所能承受的冲击负荷的温度。
使用温度是指在正常使用条件下,材料所能承受的温度范围。
在实际应用中,冲击温度和使用温度的关系非常重要。
如果一个材料的使用温度范围比冲击温度范围小,那么它在实际使用中很容易受到温度的影响而失效。
因此,在材料的研究和应用中,需要对材料在不同温度下的性能进行深入研究和评估。
在材料的选择和设计中,需要考虑到材料在不同温度下的强度、韧性、耐磨性、耐腐蚀性等性能指标。
同时,也需要考虑到不同材料的热膨胀系数、导热系数、比热容等热学性质,以及不同材料的机械性质和热学性质之间的相互影响。
总之,冲击温度和使用温度是材料性能研究中的两个重要因素,需要深入研究和评估。
只有了解材料在不同温度下的性能表现,才能更好地选择和设计材料,提高材料的性能和使用寿命。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想想他说的有道理,温冲应该是针对结构性,工艺性的缺陷的测试,而温度变化是把器件缺陷暴露出来,当然材料缺陷也可以发现。
实践中,温度变化速度一般为5到10度每分钟,低之变成了高低温试验,高了我们称为快速温变,温度变化呈线性,试验时间一般较长,短时间难以发现产品缺陷
温冲一般规定变化时间在5min以内,指温度点到达稳定时耗的时间,温度变化不追求线性,只追求速度,一般过冲较大(我们不是2箱式的,是吹风式的),
再有一个证据支持timex观点的是,做高低温循环试验有时候会通电工作,做温冲比较少。
我们实验室是做电子产品的,不知道其他产品的试验方法
温度冲击和温度循环可以统称为温度变化试验,IEC称之为change of temperature。
温度变化方式有两种,一种是规定转换时间,譬如两箱法的温度冲击箱,一种是规定温变率,普通的温湿度或快速温变箱(又有人叫EES箱)、甚至是HALT箱都可以实现特定的温变率,好像没有哪个标准界定多大的温变率才叫做温度冲击。
我觉得叫啥不重要,关键是要分清两种方法的试验目的,或者说想针对什么失效模式,通常而言,温度冲击针对元器件级或工艺;温度循环针对整机,譬如容差检验方面,16楼斑竹贴的东西就解释得很好,大家不妨在实际工作中尝试下二者的区别,有啥心得了在到此跟大家分享。
失效机理不一样:
1. 温度循环和温度冲击最大的区别是温度变化率的大小区别。
这就导致了在不同温度变化率的情况下,物质的热胀冷缩的性能区别。
不同材料的CTE 的能力不同,温度变化太快的话,会对材料的保持力(金属键-李自健-共价键-范德华力,主要将来就是长程有序(晶体) 和短程有序(塑料) ) 产生影响,
一般晶格结构的材料((金属键-李自健-共价键-范德华力)失效机理是CTE,但是非晶格结构(范德华力)的材料(如塑料材料)不仅是CTE,还会由于温度变化太快产生的内部由于短程有序的分子间力的剧烈变化的龟裂。
長久以來,溫度循環與溫度衝擊再說法上就一直沒有明確的定義,若以IEC 60068 Part 2-14 Change of temperature的定義又區分為Test Na: Rapid change of temperature with prescribed time of transition,Test Nb: Change of temperature with specified rate of change以及Test Nc: Rapid change of temperature. two-fluid-bath method.
Test Na則應屬溫度衝擊試驗(air to air),Test Nb屬溫度循環試驗(air to air), Test Nc亦屬溫度衝擊試驗,不同於Na是Nc是採用雙槽式液態衝擊.
美軍規範MIL-STD-810F Method 503.4 則定義為當溫度變化率超過10c/分鐘時定義為溫度衝擊,IPC 9701則定義當溫度變化率<=20c/分鐘時為溫度循,>20c/分鐘時為溫度衝擊試驗.
溫度循環與溫度衝擊使用時機與產品型態及產品生命週期所負責的任務需求有關,使用上需
謹慎以免過應力(Over strress)造成產品終其一生都不會出現的失效的模式再試驗中出現.
對於使用在汽車引擎室及車身外部的車電產品在執行可靠度驗證時可考慮採用Liquid to Liquid的溫度衝擊,日系廠商對於PCB裸板(Bare board)亦傾向採用Liquid to Liquid的溫度衝擊,至於SMT後的PCBA則大都以溫度循環為主要驗證方式才能充分驗證CTE效應對可靠度所產生的影響.
温度循环试验Temperature Cycling Test温度循环效应:丧失电性功能,润滑剂变质而失去润滑作用,焊点裂化、PCB脱层、结构丧失机械强度与塑性变形,玻璃与光学制品破裂,焊点裂锡, 零件特性能退化, 断裂,移动件松弛,材料收缩膨胀,气密与绝缘保护失效.
1.环境模拟试验为主要目的,在试验应用上以高/低温缓慢变化为主。
2.观察焊点可靠度(Solder Reliability)为主要目的,则以快速温度变化为主,目前针对PCBA 之无铅焊点可靠度验证则大都以每分钟15℃~20℃的温变化率作为最主要试验条件。
温度冲击试验(Thermal Shock-TST) 对于IC’s、PCB以及需具有高可靠度需求之产品进行可靠度寿命测试。