2019-2020学年海南省三亚市数学高二第二学期期末综合测试试题含解析
2019-2020年高二下学期期末考试数学(理)试题 含答案

2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
2019-2020学年第二学期高二开学考测试卷数学(文)

2019-2020学年第二学期高二开学考测试卷学科:数学(文)测试时间:120分钟满分:150分第I卷一、选择题:本大题共12小题,每小题5分,共60分1.双曲线的焦距长为()B. C.D2.下列各式正确的是()A. B. C. D.3.在点(1,0)处的切线方程为()A. x + y —1 = 0B. x + 2y -1 = 0C. x — y — \ = 0D. x —2y+ 1 = 04.己知抛物线则焦点坐标为( )A.()B.C.D.5.下列判断错误的是()A.是为函数y=f(x)的极值点的必要不充分条件B.命题 “”的否定是C.命题“若-1<x<1,则”的逆否命题是“若x²>1,则x>1或x<-1”D.若m>0.则方程x²+x-m = 0有实数根的逆命题是假命题6.若抛物线y² = 2px的焦点与椭圆的右焦点重合,则P的值为()A. -2B.2C.-4D. 47. 函数,x∈[0,1]的最大值是( )A.1B.C.0D.-18.焦点为(0,6),且与双曲线=1有相同的渐近线的双曲线方程是( )A. B. C. D.9.已知椭圆的焦点分别为F₁F₂,,点P在椭圆上,若|PF₁| =4则三角形F₁PF₂的面枳为()A. B. C. D.10.设函数f(x)在定义域内可导,y=f(x)的函数图像如图1所示,则导函数y=f(x)的图像可能为( )11.设ΔABC是等腰三角形,∠ABC=120⁰,则以A,B为交点,且过点C的双曲线的离心率为( )A. B.C D.12.设f(x)是定义在(-∞,0)∪(0,+∞)上的偶函敏:当x<0时.,B.= 0.则不等式f(x)<0的解集是( )A.(-3,0)∪(3,+∞)B. (-3,0)∪(0,3)C. (-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3)第Ⅱ卷二、填空题,本大题共4小题,毎小题5分.13.己知的一个焦点为(0,1),则m的值为14.已知函数f(x)=x³+ax在R上単调递増,则实数a的取值范围是15.双曲线上一点P到点F₁(-5,0)的距离为9,则点P到点F₂(5,0)的距离16.己知椭圆,则以点M(1,1)为中点的弦所在直线方程为三、解答題:本大題共6小題,共70分17.(本小题满分10分〉已知命题P:实数x满足-a<x<3a (其中a>0),命题q:实数x满足1 <x<4(1)若a=1.且p与q都为真命题,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.18.(本小題满分12分)己知曲线:9x²+y²=81(1)求其长轴长,焦点坐标,髙心率;(2)求与己知曲线共焦点且簡心率为的双曲线方程.19.(本小題满分12分)用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2 :1;问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?20.(本小题满分12分)已知函数f(x) = x3+ac2+bx+ c,曲线y =f(x)在点P(l,f(1))处的切线方程为y = 3x+1, 且y=f(x)在x = -2处有极值.(1)求f(x)的解析式:(2)求y = f(x)[3,1]上的最大值.21.(本小題满分12分)己知抛物线 C: y2 = 2px(p>0)过点M(1,-)(1)求抛物线C的方程:(2)设F为抛物线C的焦点,直线l:y=2x-8与抛物线C交于A,B两点,求△FAB的面积.22.(本小题満分12分)已知柚圆的焦点坐标是F₁(-1,0),F₂(1,0),过点F2垂直于长轴的直线交椭圆与P,Q两点, 且|PQ| = 3.(1)求椭圆方程:(2)过坐标原点O做两条互相垂直的射线,与椭圆分别交于M,N两点.求证:点O到直线MN的距离为定值。
海南省三亚市2019-2020学年高二下学期期末2份数学综合测试试题

同步测试一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若实数满足约束条件,则的最大值是( )A .B .1C .10D .122.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为 A .23B .43C .63D .833.设函数21y x =-的定义域A ,函数3x y =的值域为B ,则A B =( )A .(0,1)B .(0,1]C .[1,1]-D .(0,)+∞4.函数()f x 是定义在R 上的奇函数,当0x >时,()21f x x =+,则()1f -= A .1B .1-C .2D .2-5.以下几个命题中:①线性回归直线方程y bx a =+恒过样本中心(),x y ;②用相关指数2R 可以刻画回归的效果,值越小说明模型的拟合效果越好;③随机误差是引起预报值y 和真实值y 之间存在误差的原因之一,其大小取决于随机误差的方差; ④在含有一个解释变量的线性模型中,相关指数2R 等于相关系数r 的平方. 其中真命题的个数为( ) A .1个 B .2个 C .3个D .4个6.已知,其中是实数, 是虚数单位,则的共轭复数为A .B .C .D .7.对于实数x ,y ,若:2p x ≠或y 1,:3q x y ≠+≠,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.下列有关命题的说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x≠1”B .“x=-1”是“x 2-5x -6=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y”的逆否命题为真命题D .命题“∃x 0∈R 使得20010x x ++<”的否定是“∀x∈R,均有x 2+x +1<0”9.已知()8278012781x a a x a x a x a x ++++++=,集合,i jaM x x x a ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭R {}(),0,2,4,6,8i j ∈,集合{}1,0,1N =﹣,则从M 到N 的函数个数是( ) A .6561B .3363C .2187D .21010.计算(1)(2)i i +⋅+= A .1i -B .13i +C .3i +D .33i +11.已知,,0a b c >,则,,b c aa b c的值( )A .都大于1B .都小于1C .至多有一个不小于1D .至少有一个不小于112.用反证法证明命题“已知函数()f x 在[,]a b 上单调,则()f x 在[,]a b 上至多有一个零点”时,要做的假设是( )A .()f x 在[,]a b 上没有零点B .()f x 在[,]a b 上至少有一个零点C .()f x 在[,]a b 上恰好有两个零点D .()f x 在[,]a b 上至少有两个零点二、填空题:本题共4小题13.超速行驶已成为马路上最大杀手之一,已知某路段属于限速路段,规定通过该路段的汽车时速不超过60/km h ,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图,则违规的汽车大约为___________.14.已知n S 为数列{}n a 的前n 项和,若12a =且12n n S S +=,设2log n n b a =,则122320172018111b b b b b b +++的值是__________.15.已知函数()28f x x x =-+,()6ln g x x m =+,当78m <<时,这两个函数图象的交点个数为____个.(参考数值:2069331099ln .,ln .≈≈)16.数列{}n x 满足*1112,2,,,n n n x x x n n N x a x b +-=-≥∈==,则2019x =_________.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
海南省2019-2020学年高二下学期期末考试数学试题及答案

海南省2019-2020学年高二下学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知集合1{|2x M y y -==},{|01}N x x =<≤,则M N =( )A .{|0}x x >B .{|1}x x ≤C .{|01}x x <≤D .{|01}x x <<2.命题“2,320x R x x ∃∈-+”的否定是( ) A .2,320x R x x ∃∈-+> B .2,320x R x x ∀∈-+ C .2,320x R x x ∃∈-+ D .2,320x R x x ∀∈-+>3.设,a b ∈R ,则“0ab=”是“复数a bi +为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.5122x y ⎛⎫- ⎪⎝⎭的展开式中23x y 的系数是( )A .20-B .5-C .5D .205.函数()cos 2f x x x π⎛⎫=- ⎪⎝⎭ 的图象大致为( )A .B .C .D .6.已知某批零件的长度X (单位:毫米)服从正态分布()260,N σ,且()620.8P X <=,从中随机取一个零件,其长度落在区间()58,60内的概率为( )A .0.3B .0.4C .0.5D .0.67.某机构为研究中老年人坚持锻炼与患糖尿病、高血压、冠心病、关节炎四种慢性疾病之间的关系,随机调查部分中老年人,统计数据如下表1至表4,则这四种慢性疾病可以通过坚持锻炼来预防的可能性最大的是( ) 表1 表2表3 表4A .糖尿病B .高血压C .冠心病D .患关节炎8.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 在线段BD 上,且13DE DB =,若AE AD AC λμ=+(λ,R μ∈),则λμ+=( )A .1B .34C .23D .12二、多选题9.某型号汽车的平均油耗y (单位:L /100km )与使用年数x 具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为ˆ0.28 6.25y x =+,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .所有的样本点都在回归直线上C .若该型号汽车多使用一年,则其平均油耗约增加6.25L /100kmD .预计该型号汽车使用到第10年平均油耗会超过9L /100km 10.若01a b <<<,则下列不等式成立的是( ) A .ln ln a b >B .ln ln a b <C .ln ln a b b a <D .ln ln a b b a >11.已知函数()22cos f x x =,则下列结论正确的是( )A .()f x 的最小正周期为2πB .直线2x π=是()f x 图象的一条对称轴C .()f x 的值域为[]0,2D .4f x π⎛⎫+ ⎪⎝⎭为奇函数12.已知函数()()ln 21f x x =-+,则下列结论正确的是( ) A .()f x 的图象关于直线2x =对称B .()f x 在(),2-∞上单调递增,在()2,+∞上单调递减C .曲线()y f x =与直线()2y k x =-至多有两个公共点D .函数()13xy f x ⎛⎫=- ⎪⎝⎭的零点个数为3三、填空题13.甲、乙、丙、丁4个人站成一排合影,若甲和乙不相邻,且丙和丁相邻,则不同的站法有_____种.14.从某市随机抽取200名6~10岁的儿童,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图). 若要从身高在[)120,130,[)130,140,[]140,150三组内的儿童中,按人数比例用分层抽样的方法抽取30人参加一项活动,则从身高在[)120,130内的儿童中抽取的人数应为_____.15.若奇函数()f x 的定义域为R ,()()2f x f x +=-,且当[)1,0x ∈-,()322f x x x =-+,则172f ⎛⎫= ⎪⎝⎭_____.四、双空题16.已知R λ∈,函数23,()2,x x f x x x x λλ-≥⎧=⎨-<⎩,当1λ=时,函数()f x 的单调递增区间为_________,若()f x 仅有2个零点,则λ的取值范围是________. 五、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足2cos cos cos a A b C c B =+.(1)求A 的大小;(2)若2b =,1c =,求AC 边上的中线长度.18.如图所示,在长方体1111ABCD A B C D -中,122AA AB AD ==,点P 为侧棱1CC 上一动点.(1)证明:11B D AP ⊥;(2)若1CP CC =,求AP 与平面11BDD B 所成角的大小. 19.已知数列{}n a 的前n 项和122n n S +=-(*n N ∈).(1)求{}n a 的通项公式; (2)从①ln ln 0n n a b +=,①2211log log n n n b a a +=⋅,①()27log 2n n b S =+这三个条件中任选一个,补充在下面问题中,并解答.设数列{}n b 满足 ,n T 为{}n b 前n 项和,是否存在*k N ∈,使得1k T a =?若存在,求出k 的值;若不存在,请说明理由.20.某人计划到某城市出差,准备随机选择7月1日至7月13日中的一天到达该市,并停留3天. 他查询了该城市7月1日至15日的天气预报(假设天气预报是准确的),如下表所示:(1)求此人到达当日最高气温低于30C ︒的概率;(2)设此人停留期间下雨的天数为X ,求X 的分布列和数学期望. 21.已知函数()21exax x f x -+=,a R ∈.(1)求曲线()y f x =在点()0,1处的切线方程; (2)若()e f x ≤恒成立,求a 的取值范围.22.已知椭圆C :2221x y a +=(0a >)的离心率为2,分别过左、右焦点1F ,2F 作两条平行直线1l 和2l .(1)求1l 和2l 之间距离的最大值;(2)设1l 与C 的一个交点为A ,2l 与C 的一个交点为B ,且A ,B 位于x 轴同侧,求四边形12AF F B 面积的最大值.参考答案:1.C 【解析】 【分析】求出M 中y 的范围确定出M ,再求出两集合的交集即可. 【详解】由M 中120x y -=>,得到{|0}M y y =>, 由{|01}N x x =<≤, 则MN ={|01}x x <≤.故选:C . 2.D 【解析】 【分析】由特称命题否定知改为全称命题即可. 【详解】命题“2,320x R x x ∃∈-+”的否定是:“2,320x x x ∀∈-+>R ”. 故选:D 3.C 【解析】 【分析】根据复数的概念和充分必要条件的概念可得选项. 【详解】 当0ab=时,0a =且0b ≠,所以复数a bi +为纯虚数; 当复数a bi +为纯虚数时,0a =且0b ≠,所以0ab=, 所以“0ab=”是“复数a bi +为纯虚数”的充分必要条件, 故选:C. 4.B 【解析】【分析】根据二项式定理求出答案即可. 【详解】5122x y ⎛⎫- ⎪⎝⎭的展开式中23x y 的系数是33251252C ⎛⎫⋅-=- ⎪⎝⎭故选:B 5.A 【解析】分析函数()y f x =的奇偶性以及函数()y f x =在区间()0,π上的函数值符号,结合排除法可得出正确选项. 【详解】根据题意,()cos sin 2f x x x x x π⎛⎫=-= ⎪⎝⎭,定义域为R ,定义域关于原点对称.有()()()()sin sin f x x x x x f x -=--==,即函数()y f x =为偶函数,排除B 、D ; 当()0,x π∈时,0x >,sin 0x >,有()0f x >,排除C. 故选:A . 【点睛】本题考查函数的图象分析,注意分析函数的奇偶性以及特殊值,属于基础题. 6.A 【解析】 【分析】由题意知()()()62606062P X P X P X <=<<<+,得到()60620.3P X <<=,再由对称性计算()58600.3P X <<=的值. 【详解】由题意知()2,~60X N σ,所以60μ=,所以()()()620.8606062P X P X P X <==<+<<,又()600.5P X <=, 所以()60620.3P X <<=,由正态密度曲线的对称性可得()58600.3P X <<= 故选:A .7.B 【解析】 【分析】根据独立性检验计算2k ,比较可得选项. 【详解】解:由表1得:()22526257140.4320321339k ⨯⨯-⨯=≈⨯⨯⨯, 由表2得:()22522211118 3.920321339k ⨯⨯-⨯=≈⨯⨯⨯, 由表3得:()22524239160.4320321339k ⨯⨯-⨯=≈⨯⨯⨯, 由表4得:()2252726613 1.7320321339k ⨯⨯-⨯=≈⨯⨯⨯, 所以这四种慢性疾病可以通过坚持锻炼来预防的可能性最大的是高血压, 故选:B. 8.C 【解析】 【分析】以,AD AC 为基底表示出AE ,求得13λ=,13μ=,从而确定正确答案.【详解】由ABCD 为平行四边形,13DE DB =,①()2233DE DO AO AD ==-,又12AO AC =, ①21113233AE AD DE AD AC AD AC AD ⎛⎫=+=+-=+ ⎪⎝⎭,而AE AD AC λμ=+(λ,R μ∈),①13λ=,13μ=,则112333λμ+=+=.故选:C. 9.AD 【解析】【分析】根据回归方程及意义,可知ABC 的正误,将10x =代入回归直线,可得D 正确. 【详解】由回归方程为ˆ0.28 6.25yx =+,0.280>,所以y 与x 具有正的线性相关关系,故A 正确; 回归直线过样本点的中心(x ,)y ,样本点不一定在回归直线上,故B 错误;因为回归方程为ˆ0.28 6.25yx =+,∴该型号汽车多使用一年,则其平均油耗约增加0.28L /100km ,故C 错误;10x =时,ˆ0.2810 6.259.059y=⨯+=>,所以预计该型号汽车使用到第10年平均油耗会超过9L /100km ,D 正确. 故选:AD . 10.BD 【解析】 【分析】利用对数函数的单调性可判断AB 选项的正误,利用函数()ln xf x x=在()0,1上的单调性可判断CD 选项的正误. 【详解】因为函数ln y x =在()0,∞+上为增函数,且01a b <<<,则ln ln a b <,A 错,B 对; 构造函数()ln xf x x =,其中01x <<,则()21ln 0x f x x -'=>, 所以,函数()f x 在()0,1上为增函数, 因为01a b <<<,则()()f a f b <,即ln ln a ba b<,则ln ln a b b a >,C 错,D 对. 故选:BD. 11.BC 【解析】 【分析】运用二倍角公式将()22cos f x x =化为()cos21f x x =+,就可以对每一个选项进行判断.【详解】因为()22cos f x x =cos21x =+,所以其周期为22ππ=,故选项A 不正确;当2x π=时,()f x 有最小值,故选项B 正确;由于1cos21x -≤≤,所以()f x 的值域为[]0,2,故选项C 正确;cos 2()1sin 2144f x x x ππ⎛⎫+=++=-+ ⎪⎝⎭,不是奇函数,故选项D 不正确.故选:BC 12.ACD 【解析】 【分析】借助于()()ln 1g x x =+为偶函数及图像平移的性质,得到选项A 正确;将()f x 去绝对值化简,得到选项B 错误;利用数形结合得到选项C 和D 正确. 【详解】令()()ln 1g x x =+,则()()()()ln 1ln 1g x x x g x -=-+=+=, 所以()()ln 1g x x =+为偶函数,所以()()ln 1g x x =+关于直线0x =对称,又()()ln 21f x x =-+的图像是由()()ln 1g x x =+的图像向右平移2个单位得到的, 所以()f x 的图象关于直线2x =对称,选项A 正确;对于()()()()ln 1,2ln 21ln 3,2x x f x x x x ⎧-≥⎪=-+=⎨-+<⎪⎩,所以()f x 在(),2-∞上单调递减,在()2,+∞上单调递增,选项B 错误;因为()()()ln 1,2ln 3,2x x f x x x ⎧-≥⎪=⎨-+<⎪⎩,作出图像如图:因为直线()2y k x =-恒过(2,0),曲线()y f x =也过(2,0),所以曲线()y f x =与直线()2y k x =-如图,至多有两个公共点,所以选项C 正确;对于选项D ,作出13xy ⎛⎫= ⎪⎝⎭与()y f x =的图像,如图,有3个交点,所以函数()13xy f x ⎛⎫=- ⎪⎝⎭的零点个数为3,正确;故选:ACD 13.4 【解析】 【分析】根据题意,丙丁看成整体,并且在甲和乙之间,从而得到结果. 【详解】①甲和乙不相邻,且丙和丁相邻, ①丙和丁必在甲和乙之间,①不同的站法有22224A A =,故答案为:4 14.15 【解析】 【分析】先由频率之和等于1求出a ,再由分层抽样的性质计算身高在[)120,130内的儿童中抽取的人数. 【详解】10(0.0050.0350.020.01)1a ⨯++++=,解得0.03a =则从身高在[)120,130内的儿童中抽取的人数应为0.330150.30.20.1⨯=++故答案为:1515.58-【解析】 【分析】根据题意,由函数的奇偶性以及()()2f x f x +=-分析可得函数()f x 为周期为4的周期函数,据此计算可得答案. 【详解】根据题意,()f x 是定义域为R 的奇函数,则()()f x f x -=-, 又由()f x 满足(2)()()f x f x f x +=-=-,所以(22)(2)()()f x f x f x f x ++=-+=--=,即(4)()f x f x +=, 所以函数()f x 为周期为4的周期函数;则21721⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭f f ,当[)1,0x ∈-,()322f x x x =-+,可得32111115()2()222828f ⎛⎫-=--+⨯-=+= ⎪⎝⎭,所以115228f f ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,故答案为:58-16. ()1+∞, 02λ<≤或>3λ 【解析】 【分析】在同一坐标系中作出22,3y x x y x =-=-的图象,运用数形结合的思想可得出答案. 【详解】解:在同一坐标系中作出22,3y x x y x =-=-的图象,如下图所示,所以当1λ=时,函数23,1()2,1x x f x x x x -≥⎧=⎨-<⎩,所以函数()f x 的单调递增区间为()1+∞,; 当0λ≤时,函数()f x 仅有1个零点:3x =;当23λ<≤时,函数()f x 有3个零点,0x =,2x =和3x =; 当02λ<≤时,函数()f x 有2个零点,0x =和3x =; 当>3λ时,函数()f x 有2个零点,0x =和2x =;所以要使函数()f x 仅有2个零点,则λ的取值范围是02λ<≤或>3λ,故答案为:()1+∞,;02λ<≤或>3λ.17.(1)3π(2)1【解析】 【分析】(1)利用正弦定理及两角和正弦公式可得2sin cos sin A A A =,从而可得结果; (2)设AC 的中点为D ,易得ABD △为等边三角形,从而得到AC 边上的中线长度. (1)①2cos cos cos a A b C c B =+,①()2sin cos sin cos sin cos sin sin A A B C C B B C A =+=+=, 又sin 0A ≠, ①1cos 2A =,()0,A π∈, ①3A π=;(2)设AC 的中点为D , 则1,1,,3AD AB A π===①ABD △为等边三角形,(也可用余弦定理求中线长) ①AC 边上的中线1AD =. 18.(1)证明见解析; (2)3π. 【解析】 【分析】(1)连接AC ,证明出11B D ⊥平面11ACC A ,利用线面垂直的性质可证得结论成立;(2)设AB AD ==1AA =D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得AP 与平面11BDD B 所成角的大小. (1)证明:连接AC ,在长方体1111ABCD A B C D -中,AB AD =,即1111A B A D =, 所以,四边形1111D C B A 为正方形,所以,1111B D A C ⊥,因为1AA ⊥平面1111D C B A ,11B D ⊂平面1111D C B A ,故111⊥B D AA , 1111AC AA A =,11B D ∴⊥平面11ACC A ,AP ⊂平面11ACC A ,故11B D AP ⊥.(2)解:设AB AD ==1AA =以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,因为1CP CC,则)A、()P、)B、()0,0,0D、(10,0,D ,设平面11BDD B 的法向量为(),,m x y z =,()6,DB=,(1DD =,()AP =-,由160260m DB x m DD ⎧⋅==⎪⎨⋅==⎪⎩,取1x =,可得()1,1,0m =-, 2cos ,4AP mAP m AP m⋅-<>===⨯⋅AP 与平面11BDD B因此,AP 与平面11BDD B 所成角的大小为3π. 19.(1)2n n a =(2)答案不唯一,见解析 【解析】 【分析】(1)直接利用数列的递推关系式求出数列的通项公式;(2)利用(1)的结论,求出数列{}n b 的通项公式,求出数列的和n T ,解方程1k T a =即可. (1)当1n =时,112a S ==,当2n 时,1122222n n n n n n a S S +-=-=--+=(首项符合通项), 故2n n a =; (2)若选①:ln ln 0n n a b +=,由(1)得:1()12nn nb a ==,则]11[1()1221()1212n nn T -==-- 若存在*k N ∈,使得1k T a =,则1211()2k a ==-,得到1()21k =-,无解 若选①:2211111log log (1)1n n n b a a n n n n +===-⋅⋅++,则1111111 (12)3112n T n nn =-+-++-=-++,若存在*k N ∈,使得1k T a =,则1112k -+=,所以111k +=-,无解; 若选①:()27log 2n n b S =+,则()2log 2177n n S n b ++==,所以(121[]72)(3)14n n n n T n ==+++,若存在*k N ∈,使得1k T a =,则(3)(23)28414k k k k k ++=⇒⇒==.所以存在且4k =. 20.(1)413(2)分布列见解析,()1713E X = 【解析】 【分析】(1)设i A 表示事件“此人于7月i 日到达该市”,(1i =,2,⋯,13).根据题意,1()13i P A =,由此能求出此人到达当日最高气温低于30C ︒的概率.(2)由题意可知,X 的所有可能取值为0,1,2,3,分别求出其概率,由此能求出X 的分布列和数学期望. (1)设i A 表示事件“此人于7月i 日到达该市”,(1i =,2,⋯,13). 根据题意,1()13i P A =,且()ij A A i j =∅≠,设B 为事件“此人到达当日最高气温低于30C ︒”, 则56311B A A A A ⋃⋃⋃=,所以P (B )561314()13P A A A A ⋃⋃⋃==. (2)由题意可知,X 的所有可能取值为0,1,2,3, 且1783(0)()13P X P A A A ⋃=⋃==, 26910(1)()134P X P A A A A ⋃⋃=⋃==, 312135115(2)()13P X P A A A A A ⋃⋃⋃=⋃==, 41(3)()13P X P A ===, 所以X 的分布列为:故X 的期望()34511701231313131313E X =⨯+⨯+⨯+⨯= 21.(1)21y x =-+; (2)1a ≤-. 【解析】 【分析】(1)求出()0f '的值,利用点斜式可得出所求切线的方程;(2)分析可知21e 1x ax x +≤+-对任意的x ∈R 恒成立,验证0x =满足条件,在0x ≠时,可得12e 1x x a x ++-≤,构造函数()()12e 10x x g x x x ++-=≠,利用导数求出函数()g x 的最小值,即可得出实数a 的取值范围. (1)解:因为()21e x ax x f x -+=,则()()()()22211212e e x x ax ax x ax a x f x ---+-++-'==, 则()02f '=-,故曲线()y f x =在点()0,1处的切线方程为21y x =-+. (2)解:由()21e exax x f x -+=≤,得21e 1x ax x +≤+-. 当0x =时,则有0e 1≤-,原不等式成立;当0x ≠时,则由12e 1x x a x ++-≤,构造函数()12e 1x x g x x ++-=,其中0x ≠,则()()()()()121143e12e 12e 1x x x x x x x g x x x ++++-+---'==,列表如下:构造函数()1e 1x h x x +=+-,则()1e 10x h x +'=+>,即函数()h x 单调递增,因为()110h -=-<,()0e 10h =->,所以,存在()01,0x ∈-,使得()00h x =, 当0x x <时,()()00h x h x <=;当0x x >时,()()00h x h x >=, 所以,当0x x <时,()0g x <;当0x x >且0x ≠时,()0g x >. 所以,()()min 11g x g =-=-,故1a ≤-. 综上所述,实数a 的取值范围是1a ≤-. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 22.(1)2【解析】 【分析】(1)由题意先明确椭圆方程,设直线1l :1x ty =-;直线2l :1x ty =+,利用两平行线间距离公式可得结果;(2)不妨设直线1l 与椭圆C 交于A 、D 两点,直线2l 与椭圆C 交于B 、N 两点,四边形12AF F B 面积为四边形ABND 面积的一半,表示面积,利用均值不等式可得结果.(1)①椭圆C :2221x y a +=(0a >,且1b =,①1,1a b c ==, ①2212x y +=, 设直线1l :1x ty =-;直线2l :1x ty =+.①1l 和2l 之间距离2d =≤,当0=t 时,max 2d =; (2)根据题意,不妨设直线1l 与椭圆C 交于A 、D 两点,直线2l 与椭圆C 交于B 、N 两点, 则AD BN ,且AD BN =,即四边形ABND 为平行四边形, ①四边形12AF F B 面积为四边形ABND 面积的一半, 由(1)知,d =答案第15页,共15页 联立方程221,22x ty x y =-⎧⎨+=⎩则()222210t y ty +--=,①()212122221810,,22t t y y y y t t ∆=+>+==-++, ①)212212t AD y t +=-=+,①)2211112222ABND t S d AD t +=⋅==+ 令211u t =+≥,12ABND S == ①1u ≥,①124u u ++≥,①12ABND S ≤0=t 时,取等号. 故四边形12AFF B .。
2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
三亚市2019-2020学年数学高二下学期理数期末考试试卷B卷

三亚市2019-2020学年数学高二下学期理数期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共14分)1. (1分)(2019·通州模拟) 已知集合,,则 ________.2. (1分)已知复数z=,则z的共轭复数的模为________3. (1分) (2017高三上·泰州开学考) 函数的单调递增区间是________.4. (1分) (2018高二下·赣榆期末) 已知函数,则 ________.5. (1分)对大于的自然数的次方幂有如下分解方式:,,,根据上述分解规律,的分解数中有一个是59,则的值是________.6. (1分)函数的最大值为________.7. (1分) 3e ,π3 ,3π , e3这四个数中最大的数是________.8. (1分)设x,y满足约束条件:;则z=x﹣2y的取值范围为________.9. (1分) (2017高二下·赤峰期末) 若函数在上有两个零点,则实数的取值范围是________.10. (1分)已知函数图象上任意不同的两点的连线的斜率都大于,则实数的取值范围为________.11. (1分)(2020·淮安模拟) 已知函数,其中e为自然对数的底数,若存在实数满足,且,则的取值范围为________.12. (1分) (2016高二下·潍坊期末) 若关于x的不等式≥0对任意n∈N*在x∈(﹣∞,λ]恒成立,则实常数λ的取值范围是________.13. (1分)(2017·江苏) 设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是________.14. (1分)若二次函数y=f(x)对一切x∈R恒有x2﹣2x+4≤f(x)≤2x2﹣4x+5成立,且f(5)=27,则f(11)=________二、解答题 (共6题;共65分)15. (10分) (2019高二上·江都月考) 设:函数在是增函数;:方程表示焦点在轴上的双曲线.(1)若为真,求实数的取值范围;(2)若“ 且”为假命题,“ 或”为真命题,求实数的取值范围.16. (5分)已知集合A={x|x2﹣x﹣2>0},B={x|2x2+(2k+5)x+5k<0}.(1)若k<0时,求B;(2)若A∩B中有且仅有一个整数﹣2,求实数k的取值范围.17. (15分) (2016高二下·三原期中) 设函数f(x)=﹣x3+ax2+bx+c的导数f'(x)满足f'(﹣1)=0,f'(2)=9.(1)求f(x)的单调区间;(2) f(x)在区间[﹣2,2]上的最大值为20,求c的值.(3)若函数f(x)的图象与x轴有三个交点,求c的范围.18. (10分) (2019高二上·榆林期中) 榆林市政府坚持保护环境和节约资源,坚持推进生态文明建设。
2019-2020学年海南省三亚市数学高二下期末综合测试试题含解析

2019-2020学年海南省三亚市数学高二下期末综合测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设数列{}n a 是单调递减的等差数列,前三项的和为12,前三项的积为28,则1a =() A.1B.4C.7D.1或7 【答案】C 【解析】试题分析:123212331228a a a a a a a ++==⎧⎨⋅⋅=⎩,所以131387a a a a +=⎧⎨⋅=⎩,因为递减数列,所以0d <,解得1371a a =⎧⎨=⎩。
考点:等差数列2.形状如图所示的2个游戏盘中(图①是半径为2和4的两个同心圆,O 为圆心;图②是正六边形,点P 为其中心)各有一个玻璃小球,依次摇动2个游戏盘后,将它们水平放置,就完成了一局游戏,则一局游戏后,这2个盘中的小球都停在阴影部分的概率是( )A .116B .18C .16D .14【答案】A 【解析】 【分析】先计算两个图中阴影面积占总面积的比例,再利用相互独立事件概率计算公式,可求概率. 【详解】一局游戏后,这2个盘中的小球停在阴影部分分别记为事件1A ,2A , 由题意知,1A ,2A 相互独立,且()22121(42)34416P A ππ-==,()213P A =,所以“一局游戏后,这2个盘中的小球都停在阴影部分”的概率为1212311()()()16316P A A P A P A ==⨯=. 故选A. 【点睛】本题考查几何概型及相互独立事件概率的求法,考查了分析解决问题的能力,属于基础题.3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于4”为事件A ,“两颗骰子的点数之和等于7”为事件B ,则(|)P B A =( ) A .13B .16C .19D .112【答案】B 【解析】 【分析】(|)P B A 为抛掷两颗骰子,红骰子的点数小于4同时两骰子的点数之和等于7的概率,利用公式()()(|)=n AB P B A n A 求解即可.【详解】解:由题意,(|)P B A 为抛掷两颗骰子,红骰子的点数小于4时两骰子的点数之和等于7的概率.抛掷两颗骰子,红骰子的点数小于4,基本事件有1863=⨯个,红骰子的点数小于4时两骰子的点数之和等于7,基本事件有3个,分别为(1,6),(2,5),(3,4), 1(|)1836P B A ∴==. 故选:B . 【点睛】本题考查条件概率的计算,考查学生分析解决问题的能力,属于基础题. 4.已知1iz i =-(i 为虚数单位) ,则z = A .1i -+ B .1i --C .1i +D .1i -【答案】B 【解析】 【分析】 由题得1iz i-=,再利用复数的除法计算得解. 【详解】 由题得21(1)111i i i iz i i i --+====---,故答案为:B 【点睛】本题主要考查复数的运算,意在考查学生对该知识的掌握水平和分析推理计算能力. 5.已知复数32i4iz x +=-,若z ∈R ,则实数x 的值为( ) A .6- B .6C .83D .83-【答案】D【解析】 【分析】 根据题目复数32i4iz x +=-,且z ∈R ,利用复数的除法运算法则,将复数z 化简成a bi +的形式,再令虚部为零,解出x 的值,即可求解出答案. 【详解】2232i 12238i 4i 1616x x z x x x +-+==+-++, ∵z ∈R ,∴380x +=,则83x =-.故答案选D .【点睛】本题主要考查了利用复数的除法运算法则化简以及根据复数的概念求参数.6.己知函数()f x =若3(1og )2f a =,则a =( ) A .13B .14 C .12D .2【答案】D 【解析】分析:首先将自变量代入函数解析式,利用指对式的运算性质,得到关于参数a 的等量关系式,即可求得结果.详解:根据题意有3(log )f a ===, 解得2a =,故选D.点睛:该题考查的是已知函数值求自变量的问题,在求解的过程中,需要对指数式和对数式的运算性质了如指掌.7.若复数34sin cos ()55z i R θθθ⎛⎫=-+-∈ ⎪⎝⎭是纯虚数,则cos cos2i θθ+的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】由纯虚数的定义和三角恒等式可求得cos θ,根据二倍角公式求得cos2θ;根据复数的几何意义可求得结果. 【详解】z 为纯虚数,3sin 054cos 05θθ⎧-=⎪⎪∴⎨⎪-≠⎪⎩,即3sin 54cos 5θθ⎧=⎪⎪⎨⎪≠⎪⎩,22sin cos 1θθ+=,4cos 5θ∴=-,2167cos 22cos 1212525θθ∴=-=⨯-=, cos cos2i θθ∴+对应点的坐标为47,525⎛⎫- ⎪⎝⎭,位于第二象限.则cos cos2i θθ+的共轭复数在复平面内对应的点位于第三象限 故选:C . 【点睛】本题考查复数对应点的坐标的问题的求解,涉及到同角三角函数值的求解、二倍角公式的应用、复数的几何意义等知识.8.函数()()3xf x x e =- 的单调递增区间是( )A .(),2-∞-B .()2,+∞C .(1,4)D .(0,3)【答案】B 【解析】 【分析】求出函数()y f x =的导数,在解出不等式()0f x '>可得出所求函数的单调递增区间. 【详解】()()3x f x x e =-,()()2x f x x e '∴=-,解不等式()0f x '>,解得2x >,因此,函数()()3xf x x e =-的单调递增区间是()2,+∞,故选B.【点睛】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.9.设α,β是两个不重合的平面,l ,m 是空间两条不重合的直线,下列命题不正确...的是() A .若l α⊥,l β⊥,则αβ∥ B .若l α⊥,m α⊥,则l m C .若l α⊥,l β∥,则αβ⊥ D .若l α⊥,αβ⊥,则l β∥【答案】D 【解析】 【分析】选项逐一分析,得到正确答案.【详解】A.正确,垂直于同一条直线的两个平面平行;B.正确,垂直于同一个平面的两条直线平行;C.正确,因为平面β内存在直线m ,使//l m ,若l α⊥,则,m m αβ⊥⊂,则αβ⊥;D.不正确,有可能l β⊂. 故选D. 【点睛】本题重点考查了平行和垂直的概念辨析问题,属于简单题型.10.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( )A .-3<m <0B .-3<m <2C .-3<m <4D .-1<m <3【答案】A 【解析】由题意知,()()23032m m m -+<⇒-<<,则C ,D 均不正确,而B 为充要条件,不合题意,故选A. 11.在空间中,设α,β表示平面,m ,n 表示直线.则下列命题正确的是( ) A .若m∥n,n⊥α,则m⊥α B .若m 上有无数个点不在α内,则m∥α C .若,m αβα⊥⊂,则m β⊥ D .若m∥α,那么m 与α内的任何直线平行 【答案】A 【解析】 【分析】根据线面位置关系的判定定理与性质定理,逐一判定,即可求解,得到答案. 【详解】对于A 中,若//,m n n α⊥,则m α⊥,根据线面垂直的判定定理,可知是正确的; 对于B 中,若直线与平面相交,则除了交点以外的无数个点都不在平面内,所以不正确; 对于C 中,若,m αβα⊥⊂,则m β⊥或//m β或m 与β相交,所以不正确; 对于D 中,若//m α,则m 与平面α内的直线平行或异面,所以不正确, 故选A. 【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与运算能力,属于基础题.12.若函数()y f x =的图像如下图所示,则函数()'y f x =的图像有可能是()A .B .C .D .【答案】A 【解析】 【分析】根据函数图象的增减性与其导函数的正负之间的关系求解。
2019-2020学年海南省海口市数学高二下期末复习检测试题含解析

2019-2020学年海南省海口市数学高二下期末复习检测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设35z i =-,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】先求出z ,再判断得解. 【详解】35z i =+,所以复数z 对应的点为(3,5), 故复数z 表示的点位于第一象限. 故选A 【点睛】本题主要考查共轭复数的计算和复数的几何意义,意在考查学生对该知识的理解掌握水平,属于基础题. 2.设α、β是两个不同的平面,m 、n 是两条不同的直线,有下列命题: ①如果m n ⊥,m α⊥,//n β,那么αβ⊥; ②如果m α⊥,//n α,那么m n ⊥; ③如果//αβ,m α⊂,那么//m β;④如果平面α内有不共线的三点到平面β的距离相等,那么//αβ; 其中正确的命题是( ) A .①② B .②③C .②④D .②③④【答案】B 【解析】 【分析】根据线面垂直与线面平行的性质可判断①;由直线与平面垂直的性质可判断②;由直线与平面平行的性质可判断③;根据平面与平面平行或相交的性质,可判断④. 【详解】对于①如果m n ⊥,m α⊥,//n β,根据线面垂直与线面平行性质可知αβ⊥或//αβ或αβ⋂,所以①错误对于②如果m α⊥,//n α,根据直线与平面垂直的性质可知m n ⊥,所以②正确; 对于③如果//αβ,m α⊂,根据直线与平面平行的判定可知//m β,所以③正确;对于④如果平面α内有不共线的三点到平面β的距离相等,当两个平面相交时,若三个点分布在平面β的两侧,也可以满足条件,所以//αβ错误,所以④错误; 综上可知,正确的为②③ 故选:B 【点睛】本题考查了直线与平面平行、直线与平面垂直的性质,平面与平面平行的性质,属于中档题. 3.如图1是把二进制数(2)11111化为十制数的一个程序框图, 则判断框内应填入的条件是( )A . 5i >B . 5i ≤C . 4i >D . 4i ≤【答案】C 【解析】略4.设命题甲:关于x 的不等式2240x ax ++>对一切x ∈R 恒成立,命题乙:对数函数42log a y x -=()在(0,)+∞上递减,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】 【详解】试题分析:若x 的不等式2240x ax ++>对一切x ∈R 恒成立,则2(2)440a -⨯<,解得22a -<<;42log a y x -=()在(0,)+∞上递减,则0421a <-<,解得322a <<,易知甲是乙的必要不充分条件,故选B.考点:1.充分条件与充要条件;2.二次函数与对数函数的性质. 5.已知曲线2yx 和曲线y x = ( )A .1B .12C .22D .13【答案】D否1,1s i ==12s s =+*1i i =+开始是【解析】 【分析】先作出两个函数的图像,再利用定积分求面积得解. 【详解】由题得函数的图像如图所示,联立2y x y x⎧=⎪⎨=⎪⎩1,1)所以叶形图面积为31231200211)=()|333x x dx x x -=⎰(. 故选:D 【点睛】本题主要考查定积分的应用,意在考查学生对该知识的理解掌握水平和分析推理能力. 6.与复数52i -相等的复数是( ) A .2i + B .2i -+C .2i --D .2i -【答案】C 【解析】 【分析】根据复数运算,化简复数,即可求得结果. 【详解】因为52i -()()()52222i i i i --==---+--. 故选:C. 【点睛】本题考查复数的运算,属基础题.7.若曲线()f x =()a g x x =在点(1,1)P 处的切线分别为12,l l ,且12l l ⊥,则a 的值为( )A .2-B .2C .12D .12-【答案】A 【解析】试题分析:因为1a f x g x ax -'='=()(),则f′(1)=12,g′(1)=a ,又曲线()()a f x g x x =a在点P (1,1)处的切线相互垂直,所以f′(1)•g′(1)=-1,即112a =-,所以a=-1.故选A . 考点:利用导数研究曲线上某点切线方程. 8.已知()()31303f x x xf '=+,则()1f '的值为( ) A .1- B .1C .2D .3【答案】B 【解析】 【分析】根据导函数求得()0f ',从而得到()2f x x '=,代入1x =得到结果.【详解】由题意:()()230f x x f ''=+,则()()0030f f ''=+解得:()00f '= ()2f x x '∴=()11f '∴=本题正确选项:B 【点睛】本题考查导数值的求解问题,关键是能够通过导函数求得()0f ',从而确定导函数的解析式. 9.已知i 为虚数单位,复数9321iz i i-=++,则z =( )A .2+BC .5D .25【答案】C 【解析】 【分析】对z 进行化简,得到标准形式,在根据复数模长的公式,得到z 【详解】对复数z 进行化简()()93193223412i i iz i i i i ---=+=+=-+ 所以22345z =+= 【点睛】考查复数的基本运算和求复数的模长,属于简单题.10.条件:24p x -<<,条件()():20q x x a ++<,若p ⌝是q ⌝的必要不充分条件,则a 的取值范围是 ( ) A .()4,+∞ B .(),4-∞-C .(],4-∞-D .[)4,+∞【答案】B 【解析】因为p ⌝是q ⌝的必要不充分条件,所以q 是p 的必要不充分条件,p ∴可以推导出q ,但是q 不能推导出p ,若2a >,则q 等价于2,a x p -<<-无法推导出q ;若2a =,则q 等价于满足条件的x 为空集,p无法推导出q ;若2a <,则q 等价于2x a -<<-,由题意可知,4a <-,4a ∴<-,,a ∴的取值范围是(),4-∞-,故选B.11.集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B =( )A .{|23}x x -<<B .{|-12}x x ≤<C .{|21}x x -<≤D .{|-23}x x <<【答案】D 【解析】 【分析】把两个集合的解集表示在数轴上,可得集合A 与B 的并集. 【详解】把集合A 和集合B 中的解集表示在数轴上,如图所示,则A ∪B={x|-2<x <3}故选A .【点睛】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题.12.从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是( ) A .435B .635C .1235D .36343【答案】C【解析】分析:根据古典概型计算恰好是2个白球1个红球的概率.详解:由题得恰好是2个白球1个红球的概率为2134371235C C C =. 故答案为:C.点睛:(1)本题主要考查古典概型,意在考查学生对这些知识的掌握水平.(2) 古典概型的解题步骤:①求出试验的总的基本事件数n ;②求出事件A 所包含的基本事件数m ;③代公式()P A =A mn=包含的基本事件数总的基本事件个数.二、填空题:本题共4小题13.设集合{1,3,5}A =,{3,4,5}B =,则集合A B =______.【答案】{}3,5 【解析】 【分析】根据集合A ,B ,求出两集合的交集即可 【详解】{}1,3,5A =,{}3,4,5B = {}35A B ,∴⋂= 故答案为{}35,【点睛】本题主要考查了集合交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.14.已知函数25()21x x f x +=-,则函数()f x 的值域为__________【答案】()(),51,-∞-⋃+∞ 【解析】 【分析】()f x 化为6121x+-,0x >时,()1f x >,0x <时,()5f x <-,从而可得结果. 【详解】()2521x x f x +=- 216612121x x x -+==+--, 当0x >时,()1f x >,当0x <时,()5f x <-,函数()2521x x f x +=-,则函数()f x 的值域为()(),51,-∞-⋃+∞,故答案为()(),51,-∞-⋃+∞.【点睛】本题考查函数的值域,属于中档题. 求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法:借助于基本不等式 求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间 ,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.15.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5 y7.06.5m3.82.2已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________. 【答案】5.5 【解析】19.5,15,5my x +== 将样本中心代入回归方程得到m=5.5. 故答案为:5.5.16.某中学开设类选修课门,类选修课门,类选修课门,每位同学从中共选门课,若每类课程至少选一门,则不同的选法共有_______种. 【答案】【解析】 【分析】每位同学共选门课,每类课程至少选一门,则必有某类课程选2门,另外两类课程各选1门,对选2门的这类课程进行分类,可能是A 类,可能是B 类,可能是C 类. 【详解】(1)当选2门的为A 类,, (2)当选2门的为B 类,, (3)当选2门的为C 类,,选法共有.【点睛】分类与分步计数原理,要确定好分类与分步的标准,本题对选2门课程的课程类进行分类,再对每一类情况分3步考虑.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2020年海南省三亚市数学高二下期末质量跟踪监视试题含解析

2020年海南省三亚市数学高二(下)期末质量跟踪监视试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知i 为虚数单位,则复数1z i i =+在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.已知函数23()x f x e -=,1()ln 42x g x =+,若()()f m g n =成立,则n m -的最小值为() A .1ln 22+ B .ln 2 C .12ln 22+ D .2ln 2 3.设m R ∈,命题“若m 0≥,则方程2x m =有实根”的逆否命题是( )A .若方程2x m =有实根,则m 0≥B .若方程2x m =有实根,则m 0<C .若方程2x m =没有实根,则m 0≥D .若方程2x m =没有实根,则m 0< 4.若对于任意实数0x ≥,函数()x f x e ax =+恒大于零,则实数a 的取值范围是( )A .(),e -∞B .(],e -∞-C .[),e +∞D .()e,-+∞5.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 6.定义域为R 的可导函数()y f x =的导函数()f x ',满足()()f x f x '<,且()02f =,则不等式()2x f x e >的解集为( )A .(),0-∞B .(),2-∞C .()0,∞+D .()2,+∞7.在ABC ∆中,0CA CB ⋅=u u u v u u u v ,2BC BA ⋅=u u u v u u u v ,则BC =uu u v ( ) A .1 B 2 C 3D .28.球面上有三个点,其中任意两点的球面距离都等于大圆周长的16,经过这3个点的小圆周长为4π,那么这个球的半径为( )A .43B .23C .2D 39.一个几何体的三视图如图所示,若主视图是上底为2,下底为4,高为1的等腰梯形,左视图是底边为2的等腰三角形,则该几何体的体积为( )A .103B .113C .2D .410.已知向量a r 与b r 的夹角为3π,(2,0)a =v ,||1b =v ,则2a b -=v v ( ) A .3 B .23 C .2 D .4 11.某食堂一窗口供应2荤3素共5种菜,甲、乙两人每人在该窗口打2种菜,且每人至多打1种荤菜,则两人打菜方法的种数为( )A .64B .81C .36D .10012.设p 、q 是两个命题,若()p q ⌝∨是真命题,那么( )A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题二、填空题(本题包括4个小题,每小题5分,共20分) 13.已知直线l 的一个方向向量()2,3,5d =v ,平面α的一个法向量()4,,u m n =-v ,若l α⊥,则m n +=______.14.若随机变量()2~,X N μσ,且()()510.2P X P X >=<-=,则()25P X <<=__________. 15.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).16.在直角坐标系中,已知()1,0A ,()4,0B ,若直线10x my +-=上存在点P ,使得2PA PB =,则实数m 的取值范围是______.三、解答题(本题包括6个小题,共70分)17.已知命题2:7100,:(1)(1)0p x x q x a x a -+≤--+-≤(其中0a > ).(1)若2a = ,命题“p 或q ”为假,求实数x 的取值范围;(2)已知p 是q 的充分不必要条件,求实数的取值范围.18.已知函数2()2sin sin cos f x x b x x =+满足()26f π=,其中b R ∈. (1)求b 的值及()f x 的最小正周期;(2)当5[,]412x ππ∈时,求()f x 的最值.19.(6分)已知函数()2ln f x x ax x =+-,a R ∈.(I )若1a =,求曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若函数()f x 在[]1,3上是减函数,即()0f x '…在[]1,3上恒成立,求实数a 的取值范围. 20.(6分)如图,在等腰梯形ABCD 中,//AB CD ,2(62)CD =+,22BC =,BF BC <,梯形ABCD 的高为31+,E 是CD 的中点,分别以,C D 为圆心,CE ,DE 为半径作两条圆弧,交AB 于,F G 两点.(1)求∠BFC 的度数;(2)设图中阴影部分为区域Ω,求区域Ω的面积.21.(6分)已知函数()322133f x x cx c x =--. (1)若函数()f x 在x=﹣3处有极大值,求c 的值;(2)若函数()f x 在区间(1,3)上单调递增,求c 的取值范围.22.(8分)将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为()1,2,3,4i i =的纸箱放入的小球编号为i a ,定义吻合度误差为1212X a a =-+-3434a a +-+-(1) 写出吻合度误差X 的可能值集合;(2) 假设1234,,,a a a a 等可能地为1,2,3,4的各种排列,求吻合度误差X 的分布列;(3)某人连续进行了四轮“放球”,若都满足37X <<,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.A【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,从而可得结果.详解::由于复数,1i z i =+()()()i 1i 1+i 11i 1i 1i 222-===++-, 在复平面的对应点坐标为11,22⎛⎫⎪⎝⎭, ∴在第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A【解析】【分析】根据()()f m g n k ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.【详解】 设231ln (0)42m n e k k -=+=>,则3ln 22k m =+,142k n e -=, 令14ln 3()222k k h k n m e-=-=--,所以141()22k h k e k -'=-, 又141()22k h k e k-'=-在()0,∞+增函数,且104h '⎛⎫= ⎪⎝⎭, 当10,4k ⎛⎫∈ ⎪⎝⎭时,()0h k '<,当1,4k ⎛⎫∈+∞ ⎪⎝⎭时,()0h k '>, 所以14ln 3()222k k h k e -=--在10,4⎛⎫ ⎪⎝⎭上递减,在1,4⎛⎫+∞ ⎪⎝⎭上递增. 所以min 11()ln 242h k h ⎛⎫==+⎪⎝⎭,即n m -的最小值为1ln 22+. 故选A.【点睛】 本题主要考查导数的应用,利用消元法进行转化,构造函数,求函数的导数,利用导数研究函数的极值和最值是解决本题的关键,有一定的难度.3.D【解析】【分析】根据已知中的原命题,结合逆否命题的定义,可得答案.【详解】命题“若m 0≥,则方程2x m =有实根”的逆否命题是命题“若方程2x m =没有实根,则m 0<”, 故选:D .【点睛】本题考查的知识点是四种命题,难度不大,属于基础题.4.D【解析】【分析】求出函数的导数,根据导数的符号求出函数的单调区间,求出最值,即可得到实数a 的取值范围【详解】Q 当0x ≥时,()0x f x e ax =+>恒成立∴若0x =,a 为任意实数,()0x f x e ax =+>恒成立若0x >时,()0xf x e ax =+>恒成立 即当0x >时,xe a x>-恒成立, 设()x e g x x =-,则()()221xx x x e e x e g x x x --=-=' 当()01x ∈,时,()0g x '>,则()g x 在()01,上单调递增当()1x ∈+∞,时,()0g x '<,则()g x 在()1+∞,上单调递减 ∴当1x =时,()g x 取得最大值为e -则要使0x ≥时,()0xf x e ax =+>恒成立,a 的取值范围是()e -+∞, 故选D【点睛】本题以函数为载体,考查恒成立问题,解题的关键是分离含参量,运用导数求得新函数的最值,继而求出结果,当然本题也可以不分离参量来求解,依然运用导数来分类讨论最值情况。
《试卷3份集锦》海南省三亚市2020高二数学下学期期末综合测试试题

提高练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线()2222100x y a b a b-=>,>的左右焦点分别为F 1,F 2,过F 1的直线交曲线左支于A ,B 两点,△F 2AB是以A 为直角顶点的直角三角形,且∠AF 2B =30°.若该双曲线的离心率为e ,则e 2=( ) A .1143+B .1353+C .1663-D .19103-2.已知三角形ABC 的面积是12,1c =,2a =,则b 等于( ) A .1B .2或1C .5或1D .5或13.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,8,,5AF BF AB BF cos ABF C ==∠=连接若则的离心率为A .35B .57C .45D .674.若平面四边形ABCD 满足0,()0AB CD AB AD AC +=-⋅=,则该四边形一定是( ) A .正方形B .矩形C .菱形D .直角梯形5.已知x ,y 取值如下表:x0 1 4 5 6 8y1.3 1.8 5.66.17.4 9.3从所得的散点图分析可知:y 与x 线性相关,且0.95y x a =+,则a 等于( ) A .1.30 B .1.45C .1.65D .1.806.设集合,,则( ) A .B .C .D .7.已知()()31303f x x xf '=+,则()1f '的值为( ) A .1-B .1C .2D .38.抛物线28x y =的焦点坐标为 A .(0,2)B .(2,0)C .(0,4)D .(4,0)9.设0a >,当0x >时,不等式2213(1)ln 222x a x a x a a +-->-恒成立,则a 的取值范围是 A .(0,1)(1,)⋃+∞B .(0,)+∞C .(1,)+∞D .(0,1)10.已知是i 虚数单位,z 是z的共轭复数,若1i(1i)1iz -+=+,则z 的虚部为( ) A .12B .12-C .1i 2D .1i 2-11.若复数22(232)(32)z m m m m i =--+-+是纯虚数,则实数m 的值为() A .1或2B .12-或2 C .12-D .212.若函数()()320ax bx d a f x cx =+++≠无极值点,则( ) A .23b ac ≤B .23b ac ≥C .23b ac <D .23b ac >二、填空题:本题共4小题13.某工厂生产甲、乙、丙、丁4类产品共计3000件.已知甲、乙、丙、丁4类产品数量之比为1:2:4:8.现要用分层抽样的方法从中抽取150件进行质量检测,则乙类产品抽取的件数为______.14.若15520n n C C ++=,则整数n =__________.15.各棱长均相等的正三棱锥,其任意两个相邻的面所成的二面角的大小为________.16.甲、乙设备生产某产品共500件,采用分层抽样的方法从中抽取容量为30的样本进行检测.若样本中有12件产品由甲设备生产,则由乙设备生产的产品总数为_______件. 三、解答题:解答应写出文字说明、证明过程或演算步骤。
海南省三亚市2019-2020学年新高考高二数学下学期期末综合测试试题

基础练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列四个命题中,真命题的个数是( )①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”;③命题“所有幂函数()af x x =的图象经过点()1,1”; ④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”.A .1B .2C .3D .42.现有A B C D E 、、、、五位同学分别报名参加航模、机器人、网页制作三个兴趣小组竞赛,每人限报一组,那么不同的报名方法种数有( )A .120种B .5种C .35种D .53种3.设3(2)()(1)(2)x a x f x f x x -⎧+≤=⎨->⎩,若8(3)9f =-,则实数a 是( ) A .1 B .-1 C .19 D .04.已知离散型随机变量X 的分布列如图,则常数c 为( )A .3B .3C .13或23D .145.某科研单位准备把7名大学生分配到编号为1,2,3的三个实验室实习,若要求每个实验室分配到的大学生人数不小于该实验室的编号,则不同的分配方案的种数为( )A .280B .455C .355D .3506.已知双曲线的方程为22145y x -=,则下列说法正确的是( )A .焦点在x 轴上B .渐近线方程为20x ±=C .虚轴长为4D .离心率为357.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-8.已知某一随机变量ξ的概率分布列如图所示,且E(ξ)=6.3,则a 的值为( )ξ 4 a 9 P0.5 0.1b A .5 B .6 C .7 D .8 9.点P 是曲线2ln y x x =-上任意一点, 则点P 到直线2y x =-的距离的最小值是( )A .1B .2C .2D .2210.某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A .0.7 2.5ˆ0yx =+ B .0.71ˆy x =+ C .0.735ˆ0y x =+ D .0.70.5ˆ4y x =+ 11.函数()32292f x x x =+-在区间[]4, 2-上的最大值和最小值分别为()A .25,-2B .50,-2C .50,14D .50,-1412. “1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题 13.已知点(22,0)Q 及抛物线24x y =上的动点(,)P x y ,则y PQ +的最小值为______. 14.已知球O 的半径为1,A 、B 是球面上的两点,且3AB =,若点P 是球面上任意一点,则PA PB ⋅的取值范围是__________.15.抛物线216y x =的准线方程是________.16.若(1)n nx +展开式的各二项式系数和为16,则展开式中奇数项的系数和为______.三、解答题:解答应写出文字说明、证明过程或演算步骤。
海南省名校2019-2020学年数学高二下期末综合测试试题含解析

海南省名校2019-2020学年数学高二下期末综合测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()12xex dx +⎰等于( )A .eB .1e -C .1D .1e + 【答案】A 【解析】 试题分析:因为()121002|=11xx ex dx e x e e +=++-=⎰(),故选A .考点:定积分的运算.2.甲、乙等五个人排成一排,要求甲和乙不能相邻,则不同的排法种数为( ) A .48 B .60 C .72 D .120【答案】C 【解析】 【分析】因为甲和乙不能相邻,利用插空法列出不同的排法的算式,得到答案. 【详解】甲、乙等五个人排成一排,要求甲和乙不能相邻, 故先安排除甲、乙外的3人,33A然后安排甲、乙在这3人之间的4个空里,24A所以不同的排法种数为323472A A ⋅=,故选C 项. 【点睛】本题考查排列问题,利用插空法解决不相邻问题,属于简单题.3.已知函数log (8)a y ax =-(其中0a >,1a ≠)在区间[1,4]上单调递减,则实数a 的取值范围是( ) A .(0,1) B .1(0,)2C .1(,1)2D .(1,2)【答案】D 【解析】 【分析】分类讨论a 的范围,根据真数的符号以及单调性,求出a 的范围. 【详解】解:函数y =log a (8﹣ax )(其中a >0,a ≠1)在区间[1,4]上单调递减, 当a >1时,由函数t =8﹣ax 在区间[1,4]上单调递减且t >0,故8﹣4a >0,求得1<a <1.当0<a <1时,由函数t =8﹣ax 在区间[1,4]上单调递减,可得函数y =log a (8﹣ax )在区间[1,4]上单调递增,这不符合条件. 综上,实数a 的取值范围为(1,1), 故选:D . 【点睛】本题主要考查复合函数的单调性,对数函数、一次函数的性质,属于中档题.4.已知函数()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()322f x x x =+,则()2f =( )A .12B .20C .28D .14-【答案】A 【解析】 【分析】 先计算出()2f -的值,然后利用奇函数的性质得出()()22f f =--可得出()2f 的值。
海南省海口市2019-2020学年数学高二第二学期期末复习检测试题含解析

海南省海口市2019-2020学年数学高二第二学期期末复习检测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若对任意的x ∈R ,关于x 的不等式|||214|x x m +--≥恒成立,则实数m 的取值范围为( ) A .(,1]-∞- B .5(,]2-∞- C .9(,]2-∞- D .(,5]-∞-【答案】C 【解析】 【分析】令f (x )=|2x+1|﹣|x ﹣4|,然后将f (x )化成分段函数,则m 的最大值为f (x )的最小值. 【详解】设F(x)=|2x +1|-|x -4|=15,,2133,4,25, 4.x x x x x x ⎧--<-⎪⎪⎪--≤≤⎨⎪+>⎪⎪⎩如图所示,F(x)min =-32-3=-92. 故m≤F(x)min =-92.【点睛】本题考查了绝对值在分段函数中的应用,正确去掉绝对值符号是关键.2.已知函数()()2xf x x a e =-,且()'13f e =,则曲线()y f x =在0x =处的切线方程为( )A .10x y -+=B .10x y --=C .310x y -+=D .310x y ++=【答案】B 【解析】 【分析】的切线方程。
【详解】()()()'2222x x x f x e x a e x a e =+-=+-,∴()()'143f a e e =-=,解得1a =,即()()21x f x x e =-,()01f =-,则()()'21x f x x e =+,∴()'01f =,∴曲线()y f x =在点0x =处的切线方程为()110y x +=⨯-,即10x y --=. 【点睛】本题考查求函数某点处的切线方程,解题关键是先由条件求出函数f(x)中的未知量a 。
3.定义在R 上的函数1()()12x mf x -=-为偶函数,记0.52(log 2),(log 1.5)a f b f ==,()c f m =,则( ) A .c a b << B .a c b << C .a b c << D .c b a <<【答案】C 【解析】分析:根据f (x )为偶函数便可求出m=0,从而f (x )=1()12x-,这样便知道f (x )在[0,+∞)上单调递减,根据f (x )为偶函数,便可将自变量的值变到区间[0,+∞)上:0.5(|log 2|)a f =,()2log 1.5b f =,()0c f =,然后再比较自变量的值,根据f (x )在[0,+∞)上的单调性即可比较出a ,b ,c 的大小.详解:∵f (x )为偶函数,∴f (﹣x )=f (x ).∴11()1()122x mx m----=-,∴|﹣x ﹣m|=|x ﹣m|,∴(﹣x ﹣m )2=(x ﹣m )2, ∴mx=0, ∴m=0. ∴f (x )=1()12x-∴f (x )在[0,+∞)上单调递减,并且0.5(|log 2|)a f ==2(log 2)(1)f f =,()2log 1.5b f = ,c=f (0),∵0<log 21.5<1 ∴a b c <<,故答案为C点睛:(1)本题主要考查函数的奇偶性和单调性,考查对数函数的性质,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解答本题的关键是分析出函数f (x )=1()12x-的单调性,此处利用了复合函数的单调性,当x>0时,u x =是增函数,1()2u v =是减函数,1t v =-是增函数,所以函数1()()12xf x =-4.如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种C .24种D .12种【答案】A 【解析】试题分析:先涂A 的话,有4种选择,若选择了一种,则B 有3种,而为了让C 与AB 都不一样,则C 有2种,再涂D 的话,只要与C 涂不一样的就可以,也就是D 有3种,所以一共有4x3x2x3=72种,故选A . 考点:本题主要考查分步计数原理的应用.点评:从某一区域涂起,按要求“要求相邻的矩形涂色不同”,分步完成.5.命题“0x ∃∈R ,20010x x -->”的否定是( )A .x ∀∈R ,210x x --≤B .x ∀∈R ,210x x -->C .0x ∃∈R ,20010x x --≤ D .0x ∃∈R ,20010x x --≥ 【答案】A 【解析】 【分析】根据含有一个量词的命题的否定,特称命题的否定是全称命题,写出原命题的否定,得到答案. 【详解】因为特称命题的否定是全称命题,所以命题“0x ∃∈R ,20010x x -->”的否定是“x ∀∈R ,210x x --≤”. 故选:A. 【点睛】本题考查含有一个量词的命题的否定,属于简单题. 6.已知复数31iz i-=+,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】根据复数的运算法则,化简复数12z i =-,再利用复数的表示,即可判定,得到答案. 【详解】 由题意,复数()()()()31324121112i i i iz i i i i ----====-++-, 所以复数z 对应的点(1,2)-位于第四象限. 故选D. 【点睛】本题主要考查了复数的除法运算,以及复数的表示,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题. 7.设函数23()x xf x e -=(e 为自然底数),则使()1f x <成立的一个充分不必要条件是( )A .01x <<B .04x <<C .03x <<D .34x <<【答案】A 【解析】 【分析】由()1f x <可得:03x <<,结合充分、必要条件的概念得解. 【详解】()1f x <⇔ 231x x e -<⇔230x x -<解得:03x <<又“01x <<”可以推出“03x <<” 但“03x <<”不能推出“01x <<”所以“01x <<”是“()1f x <” 充分不必要条件. 故选:A. 【点睛】本题主要考查了等价转化思想及充分、必要条件的概念,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年海南省三亚市数学高二第二学期期末综合测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.与曲线21y x e =相切于(,)P e e 处的切线方程是(其中e 是自然对数的底)( ) A .2y ex =-B .2y x e =-C .2y x e =+D .2y ex =+ 【答案】B【解析】【分析】求出导函数,把x e =代入导函数,可求出切线的斜率,根据P 的坐标和直线的点斜式方程可得切线方程.【详解】由21y x e =可得2y x e'=, 切线斜率2'||2x e x e k y x e =====, 故切线方程是()2y e x e -=-,即2y x e =-.故选B .【点睛】本题主要考查利用导数求曲线切线方程,属于简单题.求曲线切线方程的一般步骤是:(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=•-.2.如图,在正方体1AC 中,,,,E F G H 分别是11,AA BB ,11,CD C D 的中点,则四面体EFGH 在平面11CC D D 上的正投影是A .B .C .D .【答案】C【解析】分析:根据正投影的概念判断即可.详解:根据正投影的概念判断选C.选C.点睛:本题考查正投影的概念,需基础题.3.某科研单位准备把7名大学生分配到编号为1,2,3的三个实验室实习,若要求每个实验室分配到的大学生人数不小于该实验室的编号,则不同的分配方案的种数为( )A .280B .455C .355D .350【答案】B【解析】【分析】每个实验室人数分配有三种情况,即①1,2,4;②1,3,3;③2,2,3;针对三种情况进行计算组合即可【详解】每个实验室人数分配有三种情况,即1,2,4;1,3,3;2,2,3.当实验室的人数为1,2,4时,分配方案有124764105C C C =种; 当实验室的人数为1,3,3时,分配方案有133763140C C C =种; 当实验室的人数为2,2,3时,分配方案有223753210C C C =种. 故不同的分配方案有455种.选B.【点睛】本题考查排列组合的问题,解题注意先分类即可,属于基础题4.若正数,a b 满足12a b +=,则当ab 取最小值时,b 的值为 ( )A .BC .D 【答案】A【解析】【分析】根据正数,a b 满足12a b +=12a b =+≥可.【详解】因为正数,a b 满足12a b+=,12a b =+≥所以ab ≥当且仅当12a b =,12ab a b+=即4422,2a b ==时取等号. 故选:A【点睛】 本题主要考查基本不等式取等号的条件,还考查了运算求解的能力,属于基础题.5.已知随机变量服从正态分布,且,则实数的值为() A . B .C .D . 【答案】A【解析】试题分析:正态分布曲线关于均值对称,故均值,选A. 考点:正态分布与正态曲线.6.已知直线l 1:310ax y +-=与直线l 2:6430x y +-=垂直,则a 的值为( )A .﹣2B .92-C .2D .92【答案】A【解析】【分析】 根据两直线垂直的条件,得到6340a ⨯+⨯=,即可求解,得到答案.【详解】由题意,直线l 1:310ax y +-=与直线l 2:6430x y +-=垂直,则满足6340a ⨯+⨯=,解得2a =-,故选A.【点睛】本题主要考查了两条直线的位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.7.若复数11mi z i +=+在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .()1,1-B .()1,0-C .()1,+∞D .(),1-∞-【答案】A【解析】 11mi z i +=+(1)(1)11222mi i m m i +-+-==+ ,所以10211102m m m +⎧>⎪⎪∴-<<⎨-⎪<⎪⎩,选A.8.设函数2()ln 2a f x x x bx =+-,若1x =是函数()f x 的极大值点,则实数a 的取值范围是( ) A .(,1)-∞B .(,1]-∞C .(,0)-∞D .(,0]-∞ 【答案】A【解析】 分析:()f x 的定义域为10'f x ax b x+∞=+-(,),() ,由'10f =(), 得1b a =+. 所以()1(1)'ax x f x x--=() 能求出a 的取值范围. 详解:()f x 的定义域为10'f x ax b x +∞=+-(,),() ,由'10f =(), 得1b a =+. 所以()1(1)'ax x f x x--=(). ①若0a = ,当01x <<时,'0f x ()>,此时()f x 单调递增; 当1x >时,'0f x ()< ,此时()f x 单调递减.所以1x =是函数()f x 的极大值点. 满足题意,所以0a =成立.②若0a >,由'0f x =(),得11x x a ==.,当1 1a> 时,即1a < ,此时 当01x <<时,'0f x ()>,此时()f x 单调递增; 当1x >时,'0f x ()< ,此时()f x 单调递减.所以1x =是函数()f x 的极大值点. 满足题意,所以1a <成立..如果11a x =>, 函数取得极小值,不成立;②若0a < ,由'0f x =() ,得11x x a==.. 因为1x =是f (x )的极大值点,成立;综合①②:a 的取值范围是1a < .故选:A . 点睛:本题考查函数的单调性、极值等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.9.对于平面、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα【答案】C【解析】【分析】【详解】 若由线面垂直的判定定理知,只有当和为相交线时,才有错误; 若此时由线面平行的判定定理可知,只有当在平面 外时,才有错误; 由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若//αβ,a αγ⋂=,b βγ=,则//a b 为真命题, 正确; 若此时由面面平行的判定定理可知,只有当、为相交线时,才有//,D βα错误.故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.10.已知A =B ={1,2,3,4,5},从集合A 到B 的映射f 满足:①(1)(2)(3)f f f ≤≤ (4)(5)f f ≤≤;②f 的象有且只有2个,求适合条件的映射f 的个数为 ( )A .10B .20C .30D .40【答案】D【解析】分析:将元素1,2,3,4,5按从小到大的顺序排列,然后按照A 元素在B 中的象有且只有两个进行讨论. 详解:将元素1,2,3,4,5按从小到大的顺序排列,因恰有两个象,将A 元素分成两组,从小到大排列,有()(1),2,3,4,5一组; ()(1,2),3,4,5一组;()(1,2,3),4,5一组;()(1,2,3,4),5一组,B 中选两个元素作象,共有25C 种选法, A 中每组第一个对应集合B 中的较小者,适合条件的映射共有25440C ⨯=个,故选D.点睛:本题考查映射问题并不常见,解决此类问题要注意:(1)分清象与原象的概念;(2)明确对应关系.11.由①安梦怡是高二(1)班的学生,②安梦怡是独生子女,③高二(1)班的学生都是独生子女,写一个“三段论”形式的推理,则大前提,小前提和结论分别为( )A .②①③B .②③①C .①②③D .③①② 【答案】D【解析】【分析】根据三段论推理的形式“大前提,小前提,结论”,根据大前提、小前提和结论的关系,即可求解.【详解】由题意,利用三段论的形式可得演绎推理的过程是:大前提:③高二(1)班的学生都是独生子女;小前提:①安梦怡是高二(1)班的学生;结论:②安梦怡是独生子女,故选D.【点睛】本题主要考查了演绎推理中的三段论推理,其中解答中正确理解三段论推理的形式是解答的关键,着重考查了推理与论证能力,属于基础题.12.甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有( )A .30B .36C .48D .54 【答案】D【解析】分析:先排乙,再排甲,最后排剩余三人.详解:先排乙,有3种,再排甲,有3种,最后排剩余三人,有33A 种因此共有333354A ⨯⨯=, 选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”; (5) “在”与“不在”问题——“分类法”.二、填空题:本题共4小题13.已知函数11,1 ()3ln,1x xf xx x⎧+≤⎪=⎨⎪>⎩,则当函数()()F x f x ax=-恰有两个不同的零点时,实数a的取值范围是______.【答案】11,3e⎡⎫⎪⎢⎣⎭【解析】【分析】由题方程()f x ax=恰有两个不同的实数根,得()y f x=与y ax=有2个交点,利用数形结合得a的不等式求解即可【详解】由题可知方程()f x ax=恰有两个不同的实数根,所以()y f x=与y ax=有2个交点,因为a表示直线y ax=的斜率,当1x>时,1()f xx'=,设切点坐标为()00,x y,1kx=,所以切线方程为()001y y x xx-=-,而切线过原点,所以1y=,x e=,1ke=,所以直线1l的斜率为1e,直线2l与113y x=+平行,所以直线2l的斜率为13,所以实数a的取值范围是11,3e⎡⎫⎪⎢⎣⎭.故答案为11,3e⎡⎫⎪⎢⎣⎭【点睛】本题考查函数与方程的零点,考查数形结合思想,考查切线方程,准确转化题意是关键,是中档题,注意临界位置的开闭,是易错题14.通常,满分为100分的试卷,60分为及格线,若某次满分为100分的测试卷,100人参加测试,将这100人的卷面分数按照[24,36),[36,48),,[84,96]⋯分组后绘制的频率分布直方图如图所示.由于及格人数较少,某位老师准备将每位学生的卷面分采用“开方乘以10取整”的方式进行换算以提高及格率(实数a的取整等于不超过a的最大整数),如:某位学生卷面49分,则换算成70分作为他的最终考试成绩,则按照这种方式,这次测试的及格率将变为__________.【答案】0.82.【解析】【分析】通过题设中的频率分布直方图可计算不进行换算前36分以上(含36分)的学生的频率,此频率就是换算后的及格率.【详解】先考虑不进行换算前36分以上(含36分)的学生的频率,该频率为10.015120.82-⨯=,换算后,原来36分以上(含36分)的学生都算及格,故这次测试的及格率将变为0.82.【点睛】本题考查频率分布直方图的应用,属于基础题.15.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________.【答案】0.5【解析】分析:利用条件概率求解.详解:设第一道工序出废品为事件,A 则()0.4P A = ,第二道工序出废品为事件B ,则根据题意可得()0.2P AB =,故在第一道工序出废品的条件下,第二道工序又出废品的概率()()()1.2P AB P B A P A == 即答案为0.5点睛:本题考查条件概率的求法,属基础题. 16.将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为327πcm ,则该圆柱的侧面积为______2cm .【答案】18π【解析】将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为327cm π,设正方体的边长为cm a ,则227V a a ππ=⋅=,解得3cm,a =∴该圆柱的侧面积为223318cm S ππ=⨯⨯=,故答案为18π.三、解答题:解答应写出文字说明、证明过程或演算步骤。