1.第二章(误差与数据处理)
第二章误差和数据处理
0.501.00 0.025
1.002.00 0.035
2.003.00 0.045
3.004.00 0.050
> 4.00 0.060
公差 0.015 ( ± %)
例行分析一般测两次,若2次平行测定之差在2倍公差范 围之内,取平均值报出结果;否则称为“超差”,必须重做。
例如,水泥中SiO2的测定。标准规定同一实验室内公差 ( 允许误差 ) 为±0.20% ,如果两次平行测定测得的数据分别 为 21.14% 及 21.58% ,两次测定结果的差值为 0.44% ,超过双
相关案例 食用醋总酸度的测定,每个人平行测定3次,统计测定结果。 结论: 误差是客观存在的!
本课程主要任务是学习定量分析方法,要求测定结果必须
有一定的准确度,以满足生产和科研需要。
分析测试:多次平行测定
结果计算 结果评价:准确度、精密度
定量分析的任务
找出误差产生原因,设法减免误差。
一、误差的表征——准确度与精密度
1. 准确度与误差 准确度:是指分析结果与真值之间的接近程度。
准确度的高低常以误差的大小来衡量。
误差:测定值与真值之间的差值。
误差越小,表示测定结果与真值越接近,准确度越高;
反之,测定结果的准确度越低。
真值:某一物理量本身具有的客观存在的真实数值。 一般说来,真值是未知的,在分析化学中,常将以下的值 当作真值来处理: (1)理论真值:如化合物的理论组成等。
•掌握有效数字的概念和运算规则。
能力目标:
•能够正确计算分析结果的误差、偏差。
•能够分析定量过程中产生误差的原因,提出减免方法。 •能正确计算平均值的置信区间。 •能正确判断并取舍测量数据中的可疑值。 •能够正确记录测量数据、正确计算和保留分析结果的有效
第二章 误差和分析数据处理
课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。
第二章 误差和数据处理
双向性、不可测性、 单向性、重现性、可测性 服从统计规律 准确度 精密度 进行多次平行测定
消除或减小 校正或减免 的方法
3.提高分析结果准确度的方法
(1)选择合适的分析方法
化学分析:滴定分析,重量分析灵敏度不高,准确度高, 常量、高含量组分较合适。 仪器分析:灵敏度高,准确度不高,微量组分分析较合适。
E x xT
Er x xT 1平行测定数据相互接近的程度,平行测
定的结果相互越接近,则测定的精密度越高。 精密度通常用与平均值相关的各种偏差来表示。 (1)偏差 偏差是测量值与平均值的差值。 与误差类似,偏差也有绝对偏差和相对偏差。
(1)精密度是保证准确度的先决条件;
(2)精密度高,准确度不一定高(可能存在系统误差) ;
(3)消除系统误差后,精密度高,准确度也高。——好结果!
三、公差
生产部门对于分析结果允许误差的一种限量(允差) 。 如钢铁中碳含量的公差范围,国家标准规定下表所示:
碳含量 范围(%)
0.100.20
0.200.50 0.020
用标准样品对照
用标准方法对照
做加标回收试验
2)空白实验
在不加试样的情况下,按照与试样分析同样的步骤和条件 进行的测定,试验得到的结果称为空白值。从试样分析结果中
扣除空白值即可消除试剂、蒸馏水和实验器皿带进杂质所引起
的误差。 空白值一般不应很大,否则应采取提纯试剂或改用适当器 皿等措施来减小误差。
过失(mistake)
由粗心大意或违反操作规程引起的,可以避免的。
例如:溶液溅失、沉淀穿滤、加错试剂、读错刻度、记录
和计算错误等。非随机误差 。
弃去该结果!
系统误差与随机误差的比较
第二章 误差与数据处理
第二章误差与数据处理基本术语分析化学中的误差是客观存在的。
例如,设有一铁的标准样品,其含铁的标准值为T。
对这一铁标准样品进行分析,即使采用最可靠的方法,使用最精密的仪器,由最有经验的分析工作者进行测定,所得的结果也不可能与T完全一致;由同一有经验的分析人员对同一样品进行多次分析,所得的结果也不可能完全一致。
1、准确度准确度表征测定结果与真实值的符合程度。
准确度的高低用误差来衡量。
测量值与真实值之间差别越小,则分析结果的准确度越高。
2、精密度精密度表征几次平行测量值相互符合程度。
精密度的高低用偏差来衡量。
平行测定所得数据间差别越小,则分析结果的精密度越高。
3、精密度与准确度的关系例:A、B、C、D四个分析人员对同一铁标样(w Fe=37.40%)中的铁含量进行测量,结果如图示,比较其准确度和精密度?精密度与准确度的关系可表示为:1.精密度是保证准确度的前提;2.精密度高,不一定准确度高。
4、系统误差系统误差是由某种固定的原因造成的误差。
具有重现性,系统误差的正负、大小都有一定的规律性。
在理论上讲是可以测定的,又称可测误差。
系统误差存在与否决定分析结果的准确度。
1.方法误差,由分析方法自身不足所造成的误差。
如,重量分析法中,沉淀的溶解度大,沉淀不完全引起的分析结果偏低;滴定分析中,指示剂选择不适合,滴定终点与化学计量点不符合引起的误差。
2.仪器误差,由测量仪器自身的不足所引起的误差。
如,容量仪器体积不准确;分光光度计的波长不准确。
3.试剂误差,由于试剂不纯引起的误差。
如,试剂和蒸馏水含有待测组分,使测定结果系统偏高。
4.操作误差由分析人员的主观原因造成的误差。
如分析人员掌握的分析操作与正确的分析操作有差别;分析人员对颜色敏感度的不同等。
5、随机误差(亦称偶然误差)随机误差是由某些不确定的偶然的因素引起的误差。
例如,测量时环境温度、湿度和气压的微小波动;仪器电源的微小波动;分析人员对各份试样处理的微小差别等。
检测技术 第二章:误差分析与数据处理
可以得到精确的测量结果,否则还可能损坏仪器、设备、元器件等。
2.理论误差 理论误差是由于测量理论本身不够完善而采用近似公式或近似值计算测量 结果时所引起的误差。例如,传感器输入输出特性为非线性但简化为线性 特性,传感器内阻大而转换电路输入阻抗不够高,或是处理时采用略去高 次项的近似经验公式,以及简化的电路模 型等都会产生理论误差。
误差,周期性系统误差和按复杂规律变化的系统误差。如图2.1所示,其中1为定值系差,2 为
线性系统误差,3为周期系统误差,4为按复杂规律变化的系统误差。 系统误差的来源包括仪表制造、安装或使用方法不正确,
测量设备的基本误差、读数方法不正确以及环境误差等。
系统误差是一种有规律的误差,故可以通过理论分析采 用修正值或补偿校正等方法来减小或消除。
•理论真值又称为绝对真值,是指在严格的条件下,根据一定的理论,按定义确定的数值。 例如三角形的内角和恒为180°一般情况下,理论真值是未知的。 •约定真值是指用约定的办法确定的最高基准值,就给定的目的而言它被认为充分接近于 真值,因而可以代替真值来使用。如:基准米定义为“光在真空中1/299792458s的时间 间隔内行程的长度”。测量中,修正过的算术平均值也可作为约定真值。
表等级为0.2级。
r=
0.12 100% 100% 0.12 A 100
在选仪表时,为什么应根据被测值的大小,在满足被测量数值范围的前提下,尽可能 选择量程小的仪表,并使测量值大于所选仪表满刻度的三分之二。在满足使用 要求时,满量程要有余量,一般余量三分之一,为了装拆被测工件方便。 (同一精度,量程越大,误差越大,故量程要小,但留余量)
第二章 误差分析与数据处理
三.测量误差的来源
1.方法误差 方法误差是指由于测量方法不合理所引起的误差。如用电压表测量电压时,
第二章 误差和分析数据的处理
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第二章 误差与数据处理
x1
1
x2
x2
这里的P就是在x1~x2这个范围内测量值出现的 概率, 在正态分布曲线图上表现为曲线下x=x1和 x=x2两条直线之间所夹的面积。
为了把一个普通的正态分布转换为标准正态分布,
xμ 设 u u称为标准正态变量 σ
x为测定值,µ 为总体平均值,σ总体标准偏差。
二 偶然误差(随机误差)
由不确定原因产生
1.特点:
1)不具单向性(大小、正负不定)
2)不重复、不可测定 3)不可消除(原因不定)
但可减小(测定次数↑)
4) 分布服从统计学规律(正态分布)
二 偶然误差(随机误差)
偶然误差的分布
消除系统误差后,同样条件下重复测定,偶然
重复性和再现性的差别
在相同条件下,对同一样品进行多次重复测定,所
得数据的精密度称为方法的重复性。 在不同条件下,用同一方法对相同样品重复测定多 次,所得数据的精密度称为分析方法的再现性。
2-4 随机误差的分布规律
测量值x的分布规律——正态(高斯)分布曲 x 线 1
2
y f x
解: x 10 .43 %
d
n
di
0 .036 % × dr%= d × 100 % 100 % 0 . 35 % x 10 .43 %
s
0 . 18 % 0 . 036 % 5
d i2 n 1
8 .6×10 7 4 .6 ×10 4 0 .046 % 4
准确度低 精密度高
准确度高 精密度差
准确度高 精密度高
准确度低 精密度差
测量点
第二章 定量分析中的误差与数据处理
平均偏差( 平均偏差(average deviation)又称算术平均偏差: )又称算术平均偏差:
d=
∑d
i=1
n
i
n
=
∑x
i =1
n
i
−x
n
相对平均偏差: 相对平均偏差:
d ×100% x
例:测定合金中铜含量的两组结果如下
d dr 测定数据/ 测定数据/% X 第一 10.3,9.8,9.4,10.2,10.1, 10.0 0.24% 2.4% 组 10.4,10.0,9.7,10.2,9.7 第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9
特点 单向性。 ① 单向性。对分析结果的影响 比较固定, 比较固定,即误差的正或负固 定。 重现性。平行测定时, ② 重现性。平行测定时,重复 出现。 出现。 可测性。可以被检测出来, ③ 可测性。可以被检测出来, 因而也是可以被校正的。 因而也是可以被校正的。
偶然误差(随机误差)—由偶然因素引起的误差
10kg
±1 Ea % = ×100% = 10% 10
±1 Ea % = × 100% = ±0.1% 1000
1000kg
1.相对误差衡量分析结果的准确度更加客观; 1.相对误差衡量分析结果的准确度更加客观; 相对误差衡量分析结果的准确度更加客观 2.当绝对误差相同时,被测定的量越大, 2.当绝对误差相同时,被测定的量越大,相对误 当绝对误差相同时 差越小,测定的准确程度越高。 差越小,测定的准确程度越高。
*
1.64 1.65 1.62 1.70 1.60 1.61 1.66 1.61 1.59
第二章_误差和分析数据处理讲解
化学分析
第二章 误差和分析数据处理
30
• 例 设天平称量时的标准偏差S=0.1mg,求称量试
样时的标准偏差Sm。
• 解:试样量是两次称量所得m1与m2的差值,即
•
m=m1-m2 或 m=m2-m1
• 读取称量m1与m2时平衡点的偏差,要反映到m中 去,因此
化学分析
第二章 误差和分析数据处理
7
3. 真值与标准值
• 某一物理量本身具有的客观存在的真实数值,即 为该量的真值。一般来说,真值是未知的,但下 列情况的真值可以认为是已知的。
• (1)理论真值:如某化合物的理论组成等。
• (2)约定真值:由国际计量大会定义的单位(国 际单位)及我国的法定计量单位。如长度、质量、 时间、电流强度、热力学温度、发光强度及物质 的量。元素的原子量也为约定真值。
• ②比例误差(proportional error):如果系统误差 的绝对值随试样量的增大而成比例的增大,但相 对值保持不变则称为比例误差。例如,试样中存 在的干扰成分引起的误差,误差绝对值随试样量 的增大而成比例的增大,而其相对值保持不变。
化学分析
第二章 误差和分析数据处理
22
• (二)偶然误差(accidental error) • 1. 定义:又称为随机误差。它是由一些无法控制
23
• 系统误差和偶然误差来源不同,处理方法也不 同。但二者经常同时存在,有时很难分清,从 而将认识不到的系统误差归为偶然误差。
• 除了系统误差和偶然误差外,在分析过程中往 往会遇到由于疏忽或差错引起的所谓“过失”, 其实质是一种错误,不能称为误差。这种错误 主要是由于操作者主观上责任心不强,粗枝大 叶或工作差错(如加错试剂、记录错误等)造 成的。
第二章《误差理论与数据处理》
n
i2
i 1
n
n
实际上真值一般情况下是 未知,在有限次测量下,用残 余误差代替随机误差可得到标 准差的估计值:
ˆ
v
i 1
n
2 i
n 1
该证明如下:
(一)构建残余误差与随机误差之间的关系:
i li L0
x
n
结论
在n次测量的等精度测量中,算术平均值 1 n 的标准差是单次测量标准差 n , , x 。但 也不是n越大越好,因为 n 要出较大的劳动, 而且 难保证测量条件的恒定,从而引入新 n 的误差。一般情况下去n=10为宜。
标准差的计算还有别捷尔斯法,极差法, 最大误差法等。
(4)别捷尔斯(Peters)法
1.253
v
i 1 n
ห้องสมุดไป่ตู้
n
i
n n 1
x 1.253
v
i 1
i
n
n 1
(4)极差法
等精度多次测量被测值 x1 ,x2 ,x3 ,......,xn 服从正态分布,在其中选取最大值 xmax 与最小 值 xmin,则两者之差称为极差:n xmax xmin 标准差的无偏估计: n
n1 n2
x1
i 1
1i
n1
n1
, x2
n2
i 1
2i
n2
,..., xm
m
l
i 1
nm
mi
nm
x ( l1i l2i ... lmi ) / ni
i 1 i 1 i 1 i 1
分析化学第二章误差与分析数据处理
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
第二章_误差及数据分析的统计处理--分析化学-检验
一、误差的种类、性质、产生的原因及减免
系统误差也叫可测误差,它是定量分析误差的主要 来源,对测定结果的准确度有较大影响。
(1) 特点
a.对分析结果的影响比较恒定; b. 在 同 一 条 件 下 , 重 复 测 定 , 重复出现; c.影响准确度,不影响精密度;
d.可以减小或消除。
产生的原因?
产生的原因
b.滴定管读数
0.4 0.3 0.2 0.1
u xm
y: 概率密度 x: 测量值 μ: 总体平均值 x-μ: 随机误差 σ : 总体标准差
0 -4 -3 -2 -1 0
s
1
2
3
4
-3s -2s -s m-3s m-2s m-s
m
68.3% 95.5% 99.7%
0
s 2s 3s m+s m+2s m+3s
x-m x
u
图3-1标准正态分布曲线
随机误差分布服从正态分布—无限多次测定
特点:
1. 极大值在 x = μ 处. 2. 拐点在 x = μ ± σ 处. 3. 于x = μ 对称. 4. x 轴为渐近线.
随机误差分布的性质: 1.对称性 2.单峰性 3.有界性 4.抵偿性
表1.
称为置信区间:真 实值在指定概率下 出现的区间 随机误差的区间概率
第二章:误差及数据分析的统 计处理
主要内容
3.1 定性分析误差 3.2 有效数字及其应用 3.3 分析数据处理与分析结果的表示方法
在任何测量中误差都是客观存在的
§ 3-1 定量分析中的误差
1.误差及其产生的原因
分析结果与真实值之间的差值称为误差。分析结果 大于真实值,误差为正;分析结果小于真实值,误差为 负。 根据误差的性质与产生的原因,可将误差分为系 统误差和偶然误差两类。
第二章 误差和分析数据处理-分析化学
第二章 误差和分析数据处理
第一节 概述
xie 分 析 化 学
产生测定误差的原因:
抽样的代表性; 测定方法的可靠性; 仪器的准确性; 测定方法的复杂性;
测定者的主观性;
操作者的熟练性
xie 分 析 化 学 一、绝对误差和相对误差
第二节 测量误差
绝对误差(absolute error)
减小测量误差
取样量大于0.2g;
滴定液消耗的体积大于20ml;
紫外吸收度在0.2~0.7之间。
xie 分 析 化 学
相对误差=δw/W<1‰
W>δw/1‰=0.0002/1‰=0.2g 相对误差=δv/V<1‰ V>δv/1‰=0.02/1‰=20 ml
增加平行测定次数
xie 分 析 化 学
2 i
n
相对标准偏差(relative standarddeviation;RSD) 或称变异系数(coefficient of variation;CV)
2 ( x x ) i n i 1
S RSD 100% x
n 1 x
100%
例题 :四次标定某溶液的浓度,结果为0.2041、
标准偏差法:
R=x+y-z
R=xy/z
2 2 2 2 SR Sx Sy Sz
Sy 2 Sx 2 SR 2 Sz 2 ( ) ( ) ( ) ( ) R x y z
五、提高分析准确度的方法
xie 分 析 化 学
选择恰当的分析方法
被测组分的含量; 被测组分共存的其它物质的干扰。
0.00022 0.00062 0.00042 0.00002 标准偏差 S 0.0004 (mol/ L) 4 1
第二章 误差和分析数据处理
2位
2位
2位
(6) 数据的第一位数大于等于 8, 有效数字可多算一 位: 9.55 4位 ; 8.2 3位
37
1.0008 0.1000 0.0382
43181 10.98%
五 位有效数字 四 位有效数字 二 位有效数字 一 位有效数字 位数模糊
1.98×10-10 三 位有效数字
54
0.05
0.0040
度)是精密度常见的别名。
一般例行分析精密度用相对平均偏差表示就
够了,但在科研中要用标准偏差或相对标准偏差
来表示。
18
3、准确度和精密度的关系
x1
x2
x3
x4
19
一般情况下,精密度高,准确度不 一定高。 精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度 好,准确度就高。 精密度高是保证准确度好的前提 精密度好不一定准确度高
答:不可以。 3、系统误差和偶然误差在起因及出现规律方面,有什 么不同? 答:系统误差是由确定原因引起的,可重复出现,偶然 误差是由不确定原因引起的,遵循一定的统计规律。
7
4、分析测定中系统误差的特点是: A、由一些原因引起的 B、重复测定会重复出现 C、增加测定次数可减小系统误差 D、系统误差无法消除
☆移液管:25.00mL(4);
☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
34
有效数字的位数与计算相对误差有关
0.5180g
相对误差=± 0.0001/ 0.5180 ×100%=±0.02%
0.518g
相对误差=± 0.001/0.518 ×100%=±0.2%
35
判断有效数字的位数:
第二章
第二章误差和数据处理
第二节 有效数字及其运算法则
一、有效数字 二、数字的修约规则 三、有效数字的运算规则
一、有效数字 (significant figure)
定义:是指在分析工作中实际上能测量到的数字, 有效数字位数包括所有准确数字和一位欠准数字。
解:R= 4.10 0.0050 / 1.97 =0.0104 R/R=-0.02/4.10+0.0001/0.00500–(-0.04)/1.97
=0.035 = 3.5% R =R 0.035 = 0.035 0.0104 = 0.00036 = R - R = 0.0104 - 0.00036 =0.01004
系统误差的来源
•方法误差:方法不恰当或不完善 •仪器误差:仪器不准或未校正 •试剂误差:试剂不纯 •操作误差:个人操作问题
(主观误差)
系统误差的表现方式
•恒量误差:多次测定中系统误差的 绝对值保持不变 •比例误差:系统误差的绝对值随样 品量的增大而成比例增大,相对值不 变。
偶然误差
又称随机误差或不可定误差,是由某些偶 然因素引起的误差。
偶然误差特点
a.方向不确定(误差时正时负) b.大小不确定(误差时大时小) c.符合统计规律
绝对值相等的正负误差出现概率基本相等 小误差出现的概率大,大误差出现的概率小
d.可增加平行测定次数消除
过失误差
在正常情况下不会发生过失误差,是仪器失灵、 试剂被污染、试样的意外损失等原因造成的。 一旦察觉到过失误差的发生,应停止正在进行 的步骤,重新开始实验。
•平均偏差:各个偏差绝对值的平均值。
分析化学:第二章 误差和数据处理
两组数据:
1. 20.40,20.41,20.42,20.44,20.45
_
_
x1=20.43 d1= 0.017 s1=0.020
2. 20.40,20.42,20.42,20.44,20.47
_
_
x2=20.43 d2= 0.017 s2=0.024
小结
• 准确度(accuracy),测量值和真值符合的
s CV= x ×1000‰
s能更好地评价一组数据的精密度
• 总体与样本
总体-某一分析对象(样品)
或分析这一样品所包含的无限多分析数据
样本-从总体中随机取出的一组数据
样本容量-数据的个数,n
• 总体平均值 µ与样本平均值 x
µ= lim
n→∞
1n n i1 xi
• 由于总体平均值是无限多个数据的平均值, 因此,没有系统误差时, µ即为真值。
代入上式中,得到:sx
s n
• 即多个样本平均值的精密度优于单次测量 的精密度,n增大,精密度相应提高。
Sx/S
n
二、t分布曲线
当测量次数无限多时,测量值和测量误 差符合正态分布。实际工作测定次数有限, 总体标准偏差σ无法得到。当使用样本标准 偏差s代替总体标准偏差σ处理数据时,必 然引起数据分布对正态分布的偏差。
• 为了强调大偏差的影响,引入另一个在分 析化学中非常重要的量:标准偏差
• 标准偏差用来描述一组数据精密度
• 总体标准偏差 µ是总体平均值
(xi )2
n
xi为测量值,n是测定次数
• 对于少量数据,样本标准偏差
s
(xi x)2
n 1
n-1—自由度
标准偏差s可以比平均偏差更好地反应一组 数据的离散程度。 s越小,数据越集中,精 密度越好; s越大,数据越离散,精密度越 差。
第二章 误差及数据处理
第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。
2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。
在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。
真实值是客观存在的,但在实际中却难以测得。
真值一般分为:<1>理论真值:三角形内角和等于1800。
<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。
1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。
思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。
在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。
因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。
实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。
例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。
另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。
<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。
如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。
<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。
分析化学 第二章 定量分中误差和数据处理
例
用沉淀滴定法测定纯NaCl(0.6066)中氯的质量
分数,得到下列结果:0.5982,0.6006,
0.6046,0.5986,0.6024。
则平均结果为_______ 0.6009 ____;
平均结果的绝对误差为_____-_0__._0057 ____;
相对误差为___ -0.94%_____;
(1)系统误差产生的主要原因(或分类) :
a. 方法误差 b. 仪器误差 c. 试剂误差 d. 操作误差
e. 主观误差
a.方法误差
这种误差是由于分析方法本身所造成的。例如: 在重量分析中,沉淀的溶解损失或吸附某些杂质而产 生的误差;在滴定分析中,反应进行不完全,干扰离 子的影响,滴定终点和化学计量点的不符合,以及其 他副反应的发生等,都会系统地影响测定结果。
0.0,+0.1, -0.7,+0.2,-0.1,-0.2, +0.5,-0.2,+0.3,+0.1 两组数据平均偏差均为0.24
(二)标准偏差和相对标准偏差
近年来,在分析化学的教学中,愈来愈广泛地采用数理统 计方法来处理各种测定数据。在数理统计中,我们常把所 研究对象的全体称为总体(或母体);自总体中随机抽出 的一部分样品称为样本(或子样);样本中所含测量值的 数目称为样本大小(或容量)。例如,我们对某一批煤中 硫的含量进行分析,首先是按照有关部门的规定进行取 样、粉碎、缩分,最后制备成一定数量的分析试样,这就 是供分析用的总体。如果我们从中称取10份煤样进行平 行测定,得到10个测定值,则这一组测定结果就是该试 样总体的一个随机样本,样本容量为10。
0.0,+0.1, -0.7,+0.2,-0.1,-0.2, +0.5,-0.2,+0.3,+0.1 S2=0.33
分析化学 第二章 定量分析中的误差和数据处理
s
(x x)
i
2
n 1
相对标准偏差(RSD, sr):
sr
教材p42 例2
s 100% x
2.1.4 误差产生原因和减免方法 根据误差来源和性质的不同,定量分析中 的误差分为系统误差和随机误差。
1. 系统误差(可测误差) 由某种固定的原因引起的误差。
系统误差产生的原因: (1)方法误差
思考题: 下列数据各有几位有效数字? (1)0.0330
(2)10.030
(3)89.6 (6)pH=10.2
(4)3.30×10-2 (5)pKa=4.74
2.2.1 有效数字(significant figure)
1. 有效数字为分析中能实际测量到的数字 有效数字位数=所有准确数字 + 一位可疑数字 例:滴定读数20.30mL,最多可以读准前3位 第4位为估读数(可疑数字), 有±1个单位的误差 2. 数字零在数据中有双重作用: (1)若只起定位作用,不是有效数字。 例: 0.0318 为3位有效数字 (2)若作为普通数字使用,为有效数字。 例: 0.03180 为 4位有效数字 3.单位变换不影响有效数字位数 例:10.00(mL)→0.001000(L) 均为4位有效数字
特点: (1)对分析结果的影响比较恒定(单向性); (2)多次测定时重复出现(重复性); (3)影响准确度,不影响精密度; (4)可以校正消除。
(2)仪器和试剂误差 (3)操作误差 (4)主观误差
(1)方法误差:方法选择不合适 例:重量分析中,沉淀不完全或沉淀溶解损失 指示剂选择不当 (2)仪器和试剂误差: 仪器不符合要求(如,天平砝码质量、仪表 刻度、容量器皿刻度不准确等) 所用试剂纯度不够(去离子水不合格、试剂级 别不合适等 )
分析化学 第二章 定量分析中的误差及数据处理
相对平均偏差:
特点:简单
缺点:大偏差得不到应有反映
2. 标准偏差
标准偏差的计算分两种情况:
(1) 当测定次数趋于无穷大时: 总体标准偏差 :
X
2
/n
μ 为无限多次测定 的平均值(总体平均值), 即 1 n lim xi n n i 1 当消除系统误差时,μ即为真值。
思考题:
1.下列叙述错误的是: A.方法误差属于系统误差 B.系统误差包括操作误差
C.系统误差又称可测误差
D.系统误差呈正态分布 E. 系统误差具有单向性 Ans:D
2.下列论述中正确的是: A.准确度高,一定需要精密度高 B.进行分析时, 过失误差不可避免 C. 精密度高,准确度一定高
D.精密度高,系统误差一定小
3.改变单位不改变有效数字的位数:
例: 19.02 mL, 19.0210-3 L
(二)有效数字的运算规则
1. 加减运算: 结果的位数取决于绝对误差最大的那个数据。
例: 0.0122 25.64 1.051 25.7032
Ans: 25.70
绝对误差:0.0001 0.01 0.001
2. 乘除运算: 结果的有效数字的位数取决于有效数字位数最少 的那个数,即相对误差最大的那个数。 例:(0.0325 5.103 60.0)/139.8 = 0.0711791 0.0325 ±0.0001/0.0325 100%=±0.3%
离群值的 取舍 精密度显著性 检验 准确度或系统误 差显著性检验
五、有效数字及其运算规则
思考题:
下列数据各包括了几位有效数字?
(1)0.0330 (7)3.3×10-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章误差与数据处理§2—1 填充题1.由不定因素引起的误差叫( )误差, 而由固定因素引起的误差叫()。
2.误差是衡量()的指标, 而偏差是衡量()的指标。
3.精密度以()为标准,而准确度以()为标准。
偶然误差为(),而系统误差为()。
4.一学生几次重复实验, 结果很接近, 但老师还说结果偏低或偏高,则该学生实验中存在()。
5.多次分析结果的重现性越(),则分析结果的精密度越()。
6.分析化学中对有效数字进行修约时, 常采用()的规则。
7.系统误差是包括如下几个方面的误差, 即:()、()、()、()。
8.偶然误差的特点是在多次测量中大小方向不定,()误差机率多,()误差机率少,()误差机率相等。
9.误差是指测定值与()之间的差值,而偏差是指单次测定值与()之间的差值。
10.测定值的置信度越高, 则置信区间就越()。
11.12.用减量法称取样品时,始终用了一个磨损的砝码,问对称量结果有无影响()。
13.影响精密度的因素为()。
14.从统计学观点看,测定值X在μ±1σ的概率是68.3%,我们将μ±1σ、μ±2σ和μ±3σ等称为();真值属于()的概率称为()。
15.偶然误差的分布规律可用标准()分布曲线描述。
16.增加平行测定次数,可以减小的误差是()。
17.在未作系统误差校正的情况下,某分析人员多次测定结果的重现性很好,则他的分析结果的准确度()。
18.所用试剂中含有少量待测物质,应做()试验加以消除。
19.只有在()的前提下,精密度高,准确度也高。
20.一架天平砝码未经校准,用它准确称取药品时,应采取()法称量。
答案1.偶然误差;系统误差。
2.准确度;精密度。
3.平均值;真实值;不可测;可测。
4.系统误差。
5.好(或差);高(或低)。
6.四舍六入,过五进位,恰五留双。
7.方法误差;仪器误差;试剂误差;个人误差。
8.小;大;大小相等的正、负。
9.真实值;算术平均值。
10.宽。
11. 4;3;2;1;3;2。
12.无影响。
13.偶然误差。
14.置信区间;置信区间;置信度。
15.正态。
16.偶然误差。
17.不能确定或不定高。
18.空白。
19.消除系统误差。
20.减量。
§2—2 选择题1.在下列因素而引起的误差中偶然误差为()。
a. 使用没校正的砝码;b. 天平零点稍有变动;c. 试剂中含有微量被测组分d. 称量时试样吸收了空气中的水分;e. 滴定管刻度不均匀。
2.系统误差的特点是()。
a. 具有单向性;b. 测量结果误差大小不定;c. 具有单峰性;d. 服从正态分布;e. 多次测量中反复出现。
3.数据10-2. 56的有效数字位数为( )。
a. 2位;b. 3位;c. 4位;d. 不定。
4.数据0.02020 的有效数字位数为():a. 1位;b. 2位;c. 3位;d. 4位;e. 5位。
5.偶然误差的特点是():a. 数值服从一定的函数规律;b. 数值可变;c.大小误差出现的机率相等;d. 大小相等的正负误差出现的机率相等;e. 对分析结果的影响偏大或偏小。
6.对某试样进行多次平行测定,获得硫的平均含量为 3.25%, 则其中某个测定值(如3.15%)与此平均值之差为该次测定的()。
a. 标准偏差;b. 相对偏差;c. 平均偏差;d. (绝对)偏差;e. 相对误差。
7.在下列数据中具有三位有效数字的是()。
a. 0 .0560;b. 5.060;c. 5.60×10-4;d. 0.056;e. 0.5×10-38.计算lg x =1.111时, 用计算器算得的x值为12.912193,问应保留几位有效数字?()a. 2位;b. 3位;c. 4位;d. 5位;e. 任意报出9.下列式用电子计算器计算的结果如下:17.5936-3.475×1.65+0.4593-0.23 = 12.08915 ;根据有效数字计算规则修约上述计算结果时, 正确答案应为:()a. 12.0;b. 12.1;c. 12.09;d. 12.0892;e. 12.0891510.减量法称重时, 始终用一个缺损的砝码,其称量结果()。
a. 不影响b. 偏低c. 偏高11.将百分含量在1~10%的分析结果, 按照有效数字正确表示时, 通常以几位有效数字报出?()a. 2位;b. 3位;c. 4位。
12.可采用下列哪些方法, 能减免分析测试中的偶然误差?()a. 进行对照试验;b. 进行仪器校准;c. 增加测定次数;d. 进行空白试验13.在偏差中符号s表示()。
a. 偶然误差b. 总体标准偏c. 样本标准偏差;d. 相对标准偏差e. 平均偏差14.为了配制标准溶液, 称取K2Cr2O7时,因天平零点稍有变动而产生的误差属于():a. 仪器误差b. 方法误差c. 系统误差d. 偶然误差e. 过失15.对某试样进行三次平行测定, 得CaO 平均含量为30.6%, 而真实含量为30.3%, 问30.6%-30.3%= 0.3%为属于什么误差?()a. 相对误差;b. 相对偏差;c. 绝对误差;d. 系统误差;e. 绝对偏差16.某人根据置信度为95%对某项分析结果计算后, 写出了如下四种报告, 问哪些是合理的?()a. (25.48±0.1)%;b. (25.48±0.13)%;c. (25.48±0.135)%;d. (25.48±0.1348)%17.有一化验员称取0.503g 铵盐试样, 用甲醛法测定其中氮的含量, 滴定时消耗了1.30mL0.2800mol·L-1 NaOH 溶液, 她写出了如下五种计算结果, 其中正确的为():a. 17%b. 17.4%c. 17.44%d.17.442%e. 17.4417%18.定量分析工作要求测定结果的误差()a. 愈小愈好;b. 等于零;c. 没有要求;d. 略大于允许误差;e. 在允许范围之内。
19.用台称称取35.8g 食盐, 又用分析天平称取 4.5162g 食盐,合并溶于水中, 定溶于1000mL 该溶液浓度用电子计算器算得为0.6898733744, 根据有效数字计算规则将计算结果应记录为()。
a. 0.68987;b. 0.690;c. 0.69;d. 0.7;e. 0.6899。
20.系统误差具有()a. 单峰性和对称性;b. 单向和性对称性;c. 单向性和重复性;d. 单向性和单峰性。
21.当置信度为0.95时,测得Al2O3的μ置信区间为(35.21±0.10)%,其意义是()a. 在所测定的数据中有95%在此区间内;b. 若再进行测定,将有95%的数据落入此区间;c. 总体平均值μ落入此区间的概率为95%;d. 在此区间内包含μ值的概率为0.95;22.衡量样本平均值的离散程度时,应采用()a.标准偏差;b.相对标准偏差;c.极差;d.平均值的标准偏差答案1.b 2.a,e 3.a 4.d 5.b 6.d 7.a,c 8.b9.c 10. a 11. b 12. c 13. c 14. d 15. c 16. b17. b 18. e 19. b 20. c 21. d 22. d§2—3 判断题1.一组数据偏差小, 则准确度高。
()2.在有效数字的乘除运算中,积和商的有效数字位数,以各数据中有效数字位数最少的为准。
()3.使用Q检验法,如果Q计算>Q表, 则可疑值应舍弃。
()4.从滴定管读出了24.60mL, 其中的"0" 是欠准数字, 故不属于有效数字。
()5.在分析操作中“过失”也象偶然误差一样不可避免的, 其测定值应当参加平均值的计算之中。
()6.精密度高, 不一定准确度高。
但准确度高,一定要精密度高。
( )7.系统误差是固有误差, 是无法消除的。
()8.增加测定次数可以减小系统误差。
()9.定量分析结果一般要求准确到四位有效数字, 因此填报告时, 无论被测成份百分含量多都应写出四位有效数字。
()10.对分析结果的表示形式, 应严格遵守统一规格。
()11.等臂天平称量时产生的不等臂误差, 属于偶然误差。
()12.放、取砝码及物体时, 天平粱应要托起的目的在于使指针稳定下来, 以便于读数。
()13.可疑值的取舍问题, 实质上是区分偶然误差和过失的问题。
( )14.在计算测定结果时, 保留的数字位数越多, 表示越准确。
( )15.滴定分析法主要用来测定组分含量在1%以上的样品,不适用于微量组分的测定。
()答案1.×2.∨3.∨4.×5.×6.∨7.×8.×9.×10. ×11. ×12. ×13. ∨14. ×15. ∨§2—4 思考题1.指出在下列情况下,各会引起哪种误差?如果是系统误差,应该采用什么方法减免?(1)砝码被腐蚀;(2)天平的两臂不等长;(3)容量瓶和移液管不配套;(4)试剂中含有微量的被测组分;(5)天平的零点有微小变动;(6)读取滴定体积时最后一位数字估计不准;(7)滴定时不慎从锥形瓶中溅出一滴溶液;(8)标定HCl溶液用的NaOH标准溶液中吸收了CO2。
答案1.(1)系统误差中的仪器误差。
减免的方法:校准仪器或更换仪器。
(2)系统误差中的仪器误差。
减免的方法:校准仪器或更换仪器。
(3)系统误差中的仪器误差。
减免的方法:校准仪器或更换仪器。
(4)系统误差中的试剂误差。
减免的方法:做空白实验。
(5)随机误差。
(6)系统误差中的操作误差。
减免的方法:多读几次取平均值。
(7)过失误差。
(8)系统误差中的试剂误差。
减免的方法:做空白实验。
2.准确度与精密度有何区别?有何联系?精密度表示测定的重复性,由偶然误差决定的;而准确度表示测量的正确性,由系统误差决定。
准确度高,则精密度一定高;但精密度高,则准确度度不一定高。
因此,对于一个理想的测定,既要求精密度高,又要求准确度高。