于一阶线性常微分方程解法的一个注
第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)
第四讲 常系数线性微分方程组的解法(4课时)一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法.三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程:1 新课引入由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组dYAY dx= (3.20) 其中A 是n n ⨯实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观.由线性代数知识可知,对于任一n n ⨯矩阵A ,恒存在非奇异的n n ⨯矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换Y TZ = (3.21)其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为1dZT ATZ dx-= (3.22) 我们知道,约当标准型1T AT -的形式与矩阵A 的特征方程111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-2的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.下面分两种情况讨论.(一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ这时12100n T AT λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦方程组(3.20)变为11122200n n n dz dx z dz z dx z dz dx λλλ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(3.23)易见方程组(3.23)有n 个解1110(),00xZ x e λ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 220010(),,()0001n x x n Z x e Z x e λλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解12()i i i i x x i i ni t t Y x e e T t λλ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(1,2,,)i n =陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军3这里i T 是矩阵T 第i 列向量,它恰好是矩阵A 关于特征根i λ的特征向量,并且由线性方程组()0i i A E T λ-=所确定. 容易看出,12(),(),,()n Y x Y x Y x 构成(3.20)的一个基本解组,因为它们的朗斯基行列式()W x 在0x =时为(0)det 0W T =≠. 于是我们得到定理3.11 如果方程组(3.20)的系数阵A 的n 个特征根12,,,,n λλλ彼此互异,且12,,,n T T T 分别是它们所对应的特征向量,则121122(),(),,()n x xxn n Y x e T Y x e T Y x e T λλλ===是方程组(3.20)的一个基本解组. 例1 试求方程组353dxx y z dt dyx y z dt dzx y z dt ⎧=-+⎪⎪⎪=-+-⎨⎪⎪=-+⎪⎩的通解.解 它的系数矩阵是311151313A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦特征方程是311det()1510313A E λλλλ---=---=--4即 321136360λλλ-+-=所以矩阵A 的特征根为1232,3,6λλλ===.先求12λ=对应的特征向量1a T b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,,a b c 满足方程1111()1310111a a A E b b c c λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦即0300a b c a b c a b c -+=⎧⎪-+-=⎨⎪-+=⎩可得,0a c b =-=. 取一组非零解,例如令1c =-,就有1,0,1a b c ===-. 同样,可求出另两个特征根所对应的特征向量,这样,这三个特征根所对应的特征向量分别是110,1T ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ 211,1T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 3121T ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦故方程组的通解是236123()111()012()111t t t x t y t C e C e C e z t ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦(二) 常系数线性微分方程组的解法复特征根 从上一讲我们已经知道,求解方程组dYAY dx= (3.20) 归结为求矩阵A 的特征根和对应的特征向量问题.现在考虑复根情形.因为A 是实的矩阵,所以复特征根是共轭出现的,设1,2i λαβ=±是一对共轭根,由定理3.11,对应解是陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军5111(),x Y x e T λ= 222()x Y x e T λ=其中12,T T 是特征向量,这是实变量的复值解,通常我们希望求出方程组(3.20)的实值解,这可由下述方法实现.定理3.12 如果实系数线性齐次方程组()dYA x Y dx= 有复值解()()()Y x U x iV x =+其中()U x 与()V x 都是实向量函数,则其实部和虚部12()()(),()n u x u x U x u x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 12()()()()n v x v x V x v x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦证明 因为()()()Y x U x iV x =+是方程组(3.8)的解,所以[]()()()()d dU x dV x U x iV x i dx dx dx+≡+ ()[()()]()()()()A x U x iV x A x U x iA x V x ≡+≡+由于两个复数表达式恒等相当于实部及虚部恒等,所以上述恒等式表明:()()()dU x A x U x dx = , ()()()dV x A x V x dx= 即()U x ,()V x 都是方程组(3.8)的解.证毕.定理3.13 如果12(),(),,()n Y x Y x Y x 是区间(,)a b 上的n 个线性无关的向量函数,12,b b 是两个不等于零的常数,则向量函数组112[()()],b Y x Y x + 212[()()],b Y x Y x - 3(),,()n Y x Y x (3.24)在区间(a, b )上仍是线性无关的.6证明 (反证法) 如果(3.24)线性相关,那么依定义3.1存在n 个不全为零的常数12,,,n C C C ,使得对区间(,)a b 上的所有x 皆有1112221233[()()][()()]()()0n n C b Y x Y x C b Y x Y x C Y x C Y x ++-+++≡所以112211122233()()()()()()0n n C b C b Y x C b C b Y x C Y x C Y x ++-+++≡因为12(),(),,()n Y x Y x Y x 线性无关,从而11220,C b C b += 11220,C b C b -= 30,,0n C C ==从上式可知,11220C b C b ==, 因为12,0b b ≠, 故120C C ==. 即所有常数12,,,n C C C 都等于零,矛盾. 证毕.由代数知识知, 实矩阵A 的复特征根一定共轭成对地出现.即,如果a ib λ=+是特征根,则其共轭a ib λ=-也是特征根. 由定理3.11,方程组(3.20)对应于a ib λ=+的复值解形式是1111222122()()()112()a ib x a ib x a ib x n n n t t it t t it x e T e e t t it ++++⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦1Y1112212212(cos sin )axn n t it t it e bx i bx t it +⎡⎤⎢⎥+⎢⎥=+⎢⎥⎢⎥+⎣⎦11121211212222211221cos sin cos sin cos sin cos sin cos sin cos sin ax ax n n n n t bx t bx t bx t bx t bx t bx t bx t bx eie t bx t bx t bx t bx -+⎡⎤⎡⎤⎢⎥⎢⎥-+⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军7这里1T 是对应于a ib λ=+的特征向量.由于矩阵A 是实的,所以上述向量的共轭向量是方程组(3.20)对应于特征根a ib λ=-的解,记作()2(),a ib x x e -=2Y T =21T T . 现将上述两个复值解,按下述方法分别取其实部和虚部为1112212212cos sin cos sin 1[()()]2cos sin ax n n t bx t bx t bx t bx x x e t bx t bx -⎡⎤⎢⎥-⎢⎥+=⎢⎥⎢⎥-⎣⎦12YY 1211222121cos sin cos sin 1[()()]2cos sin ax n n t bx t bx t bx t bx x x e it bx t bx +⎡⎤⎢⎥+⎢⎥-=⎢⎥⎢⎥+⎣⎦12YY由定理3.12和定理3.13,它们分别是方程组(3.20)的解, 并且由此得到的n 个解仍组成基本解组.例2 求解方程组3dxx y z dt dyx y dt dzx z dt ⎧=--⎪⎪⎪=+⎨⎪⎪=+⎪⎩解 它的系数矩阵为111110301--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A特征方程是8111det()110301λλλλ----=--A E 即2(1)(25)0λλλ--+=特征根为11,λ= 2,312i λ=±先求11λ=对应的特征向量为1011⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦T再求212i λ=+所对应的特征向量2T . 它应满足方程组2211((12))120302i a i i b i c ---⎡⎤⎡⎤⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A E T 0即2020320ia b c a bi a ci ⎧---=⎪⎪-=⎨⎪-=⎪⎩ 用2i 乘上述第一个方程两端,得422020320a bi ci a bi a ci ⎧--=⎪⎪-=⎨⎪-=⎪⎩陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军9显见,第一个方程等于第二与第三个方程之和. 故上述方程组中仅有两个方程是独立的,即20320a bi a ci -=⎧⎨-=⎩求它的一个非零解.不妨令2,a i = 则1,3b c ==. 于是212i λ=+对应的解是(12)222sin 22cos 21(cos 2sin 2)1cos 2sin 2333cos 23sin 2i t t t t i i t t e e t i t e t ie t t t +-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故原方程组的通解为123()02sin 22cos 2()1cos 2sin 2()13cos 23sin 2t t t x t t t y x C e C e t C e t z x t t -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦(三) 矩阵A 的特征根有重根的情形由定理3.11,我们已经知道,当方程组(3.20)的系数矩阵A 的特征根均是单根时,其基本解组的求解问题,归结到求这些特征根所对应的特征向量. 然而,当矩阵A 的特征方程有重根时,定理3.11不一定完全适用,这是因为,若i λ是A 的i k 重特征根,则由齐次线性方程组()i i λ-=A E T 0所决定的线性无关特征向量的个数i γ, 一般将小于或等于特征根i λ的重数i k . 若i γ=i k ,那么矩阵A 对应的约当标准型将呈现对角阵,其求解方法与3.5.1情形相同.若i γ<i k ,由线性代数的知识,此时也可以求出i k 个线性无关的特征向量,通常称为广义特征向量,以这些特征向量作为满秩矩阵T 的列向量,可将矩阵A 化成若当标准型10121m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-J J T AT J 其中未标出符号的部分均为零无素,而1010i ii i λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J (1,2,,)i m =是i k 阶约当块,12,m k k k n +++= 12,,,m λλλ是(3.20)的特征根,它们当中可能有的彼此相同.于是,在变换(3.21)下方程组(3.20)化成12m d dx ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J J Z Z J (3.25) 根据(3.25)的形式,它可以分解成为m 个可以求解的小方程组.为了说清楚这个问题,我们通过一个具体重根的例子,说明在重根情形下方程组(3.20)的基本解组所应具有的结构.对于一般情形,其推导是相似的.设方程组d Dx=YAY (3.26) 中A 是5.5矩阵,经非奇异线性变换=Y TZ 其中()(,1,2,,5)ij t i j ==T 且det 0≠T ,将方程组(3.26)化为d dx=ZJZ (3.27) 我们假定陇东学院数学系常微分方程精品课程教案1112210000100000000010000λλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦J 这时,方程组(3.27)可以分裂为两个独立的小方程组 1112212313dz z z dx dz z dxdz z dx λλλ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(3.28)4245525dz z z dx dz z dxλλ⎧=+⎪⎪⎨⎪=⎪⎩ (3.29) 在(3.28)中自下而上逐次用初等积分法可解得11123121232332!()xxxC z x C x C e z C x C e z C e λλλ⎛⎫=++ ⎪⎝⎭=+= 同样对(3.29)可解得2245455()xx z C x C e z C eλλ=+= 这里125,,,C C C 是任意常数.由于在方程(3.28)中不出现45,,z z 在(3.29)中不出现123,,z z z .我们依次取12345123451234512345123451,00,1,00,1,00,1,00,1C C C C C C C C C C C C C C C C C C C C C C C C C =========================可以得到方程组(3.27)的五个解如下11111121232!0,,00000000x xx x x x x e xe e e xe e λλλλλλ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Z Z Z , 222450000,000x x x e xe e λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Z Z 从而1111112222002!000()00000000000x x x x x x x x x x exe e e xe x e e xe e λλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Z (3.31) 是方程组(3.27)的一个解矩阵. 又det (0)10=≠Z ,所以(3.31)是方程组(3.27)的一个基本解矩阵.而(3.30)是(3.27)的一个基本解组.现在把(3.30)的每个解分别代入到线性变换Y =TZ 中可得原方程组(3.26)的五个解,1111111211314151,x x x x x t e t e t e t e t e λλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦Y 11111111221222313241425152()(),()()()x x x x x t x t e t x te t x t e t x te t x t e λλλλλ⎡⎤+⎢⎥+⎢⎥⎢⎥=+⎢⎥+⎢⎥⎢⎥+⎣⎦Y陇东学院数学系常微分方程精品课程教案11111211121322122232313323324142432515253()2!()2!()2!()2!()2!x x x x x t x t x t e t x t x t e t x t x t e t x t x t e t x t x t e λλλλλ⎡⎤++⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥++⎢⎥⎣⎦Y ,222222222214141524242545343435444445545455()(),()()()x x x x x x x x x x t e t x t e t e t x t e t e t x t e t e t x t e t e t x t e λλλλλλλλλλ⎡⎤⎡⎤+⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦Y Y而且这五个解构成方程组的一个基本解组.这是因为,若把上面五个解写成矩阵形式12345()[(),(),(),(),()]x x x x x x =Y Y Y Y Y Y 则显然有det (0)0=≠Y T .至此我们已清楚地看到,若J 中有一个三阶若当块,1λ是(3.26)的三重特证根,则(3.26)有三个如下形式的线性无关解,12345()()()(),1,2,3()()i i i x i i i i p x p x x p x e i p x p x λ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Y (3.32) 其中每个()(1,2,3,1,2,3,4,5)ki p x i k ==是x 的至多二次多项式.因此(3.32)也可以写成如下形式12012()x x x e λ++R R R其中012,,R R R 都是五维常向量.而对于J 中的二阶若当块,2λ是(3.26)的二重根,它 所对应的(3.26)的两个线性无关解应是如下形式234()x x e λ+R R其中34,R R 也都是五维常向量.最后,我们还应指出,对于方程组(3.20),若i λ是A 的一个i k 重特征根,则i λ所对应的若当块可能不是一块而是几块,但是它们每一块的阶数都小于或等于i k ,而且这些阶数的和恰好等于i k . 这样,由以上分析我们得到定理3.14 设12,,,m λλλ是矩阵A 的m 个不同的特征根,它们的重数分别为12,,,m k k k . 那么,对于每一个i λ,方程组(3.20)有i k 个形如1122()(),()(),,()()i i i i i x x x k k x x e x x e x x e λλλ===Y P Y P Y P 的线性无关解,这里向量()(1,2,,)i i x i k =P 的每一个分量为x 的次数不高于1i k -的多项式. 取遍所有的(1,2,,)i i m λ=就得到(3.20)的基本解组.上面的定理既告诉了我们当A 的特征根有重根时,线性方程组(3.20)的基本解组的形式,同时也告诉了我们一种求解方法,但这种求解方法是很繁的.在实际求解时,常用下面的待定系数法求解. 为此,我们需要线性代数中的一个重要结论.引理3.1 设n 阶矩阵互不相同的特征根为(1,2,,)i i m λ=,其重数分别是,1212,,,()m m k k k k k k n +++=, 记n 维常数列向量所组成的线性空间为V ,则(1) V 的子集合 {()0,}j kj j λ=-=∈V R A E R R V 是矩阵A 的(1,2,,)j k j m =维不变子空间,并且(2) V 有直和分解 12m =⊕⊕⊕V V V V ;现在,在定理3.14相同的假设下,我们可以按下述方法求其基本解组.陇东学院数学系常微分方程精品课程教案定理3.15 如果j λ是(3.20)的j k 重特征根,则方程组(3.20)有个j k 形如1011()()j j j k x k x x x e λ--=+++Y R R R (3.33) 的线性无关解,其中向量011,,,j k -R R R 由矩阵方程0112210()()2()(1)()0j j j j j j k j k k j k λλλλ--⎧-=⎪⎪-=⎪⎨⎪-=-⎪⎪-=⎩A E R R A E R R A E R R A ER (3.34)所确定.取遍所有的(1,2,,)j j m λ=,则得到(3.20)的一个基本解组.证明 由定理3.14知,若j λ是(3.20)的j k 重特征根,则对应解有(3.30)的形式.将(3.33)代入方程组(3.20)有21121011[2(1)]()j j j j j j k x k x j k j k x k xe x x e λλλ----+++-++++R R R R R R 1011()j j j k x k A x x e λ--=+++R R R消去j x e λ,比较等式两端x 的同次幂的系数(向量),有0112211()()2()(1)()0j j j j j j k j k j k k λλλλ---⎧-=⎪⎪-=⎪⎨⎪-=-⎪⎪-=⎩A E R R A E R R A E R R A ER (3.35)注意到方程组(3.35)与(3.34)是等价的.事实上,两个方程组只有最后一个方程不同,其余都相同.(3.35)与(3.34)同解的证明请见教材.这样,在方程组(3.31)中,首先由最下面的方程解出0R ,再依次利用矩阵乘法求出121,,,j k -R R R . 由引理3.1得知,线性空间V 可分解成相应不变子空间的直和,取遍所有的(1,2,,)j j m λ=,就可以由(3.34)最下面的方程求出n 个线性无关常向量,再由(3.31)逐次求出其余常向量,就得到(3.20)的n 个解. 记这n 个解构成的解矩阵为()x Y ,显然,(0)Y 是由(3.34)最下面的方程求出的n 个线性无关常向量构成,由引理3.1的2)矩阵(0)Y 中的各列构成了n 维线性空间V 的一组基,因此det (0)0≠Y ,于是()x Y 是方程组(3.20)的一个基本解组.例3 求解方程组123213312dy y y dx dy y y dxdy y y dx ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩解 系数矩阵为011101110⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 特征方程为2(2)(1)0λλ-+=特征根为 1232, 1.λλλ===-其中12λ=对应的解是211()11x x e ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 下面求231λλ==-所对应的两个线性无关解.由定理3.15,其解形如陇东学院数学系常微分方程精品课程教案01()()x x x e -=+Y R R并且01,R R 满足0120()()0=⎧⎨=⎩A +E R R A +E R 由于111()111,111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A +E 2333()333333⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A +E 那么由20()0=A +E R 可解出两个线性无关向量11,0-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 101-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦将上述两个向量分别代入01()=A +E R R 中,均得到1R 为零向量.于是231λλ==-对应的两个线性无关解是21()1,0x x e --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 31()01x x e --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 最后得到通解2123111()110101x x x x C e C e C e ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Y 例4 求解方程组11232123312332dy y y y dx dy y y y dxdy y y y dx⎧=+-⎪⎪⎪=-++⎨⎪⎪=++⎪⎩ 解 系数矩阵是311121111-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦A特征方程为3(2)0λ-= , 有三重特征根1,2,32λ=由定理3.15,可设其解形如22012()()xx x x e =++Y R R R012,,R R R 满足方程组0121230(2)(2)(2)-=⎧⎪-=⎨⎪-=⎩A E R R A E RR A E R 0由于23111101000(2)101,(2)000,(2)000111101000--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A E A E A E 故0R 可分别取10,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 01,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦陇东学院数学系常微分方程精品课程教案再将它们依次代入上面的方程,相应地求得1R 为11,1⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 10,1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 111-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦2R 为120,12⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ 00,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 12012⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦于是,可得原方程组三个线性无关解 22212111012()010,()10,011012x x Y x x x e Y x x e ⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦⎣⎦2231012()0101112xY x x x e ⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦最后方程的通解可写成22112222233111()22()1()11122x x x x x x y x C y x e x x C y x C x x x x x ⎡⎤+--+⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--+⎢⎥⎣⎦本讲要点:1 . 常系数线性微分方程组的解法归结为求出系数阵A的特征根和特征向量。
一阶常微分方程的解法
一阶常微分方程的解法摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。
本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可别离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。
关键词:变量别离;积分因子;非齐次微分方程;常数变易法Solution of first-order differential equationAbstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate.Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method1. 引言一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量别离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解.2. 一般变量别离 2.1 变量可别离方程形如()()dyf xg y dx= 〔1.1〕 或 1122()()()()M x N y dx M x N y dy = 〔1.2〕 的方程,称为变量可别离方程。
常微分方程的常见解法
# 定义网格密度
arrows=LINE,
# 定义线段类型
axes=NORMAL);
# 定义坐标系类型
在MATLAB的向量场命令为 quiver(x,y,px,py)
回车后Maple就在1 1 的网格点上画出了向量场
44
的图形,并给出了过点(-2, 2) (-2 ,1) (-2,2) 的三
条积分曲线,见下图
M (x,y)co x s2xye , y
N (x,y)co x s2xye x
M(x,y)N(x,y)
y
x
所以方程为全微分方程。
由公式F (x ,y ) 0M (s ,y )d s 0N (0 ,s )d s
x(yc o ss 2 se y)d sy2 d s
0
0
ysinxx2ey2y
或
x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
dx
令 zy1n,则 dz(1n)yndy
dx
dx
d z (1 n )P (x )z (1 n )Q (x )
d x
求出此方程通解后, 换回原变量即得伯努利方程的通解。
例 湖泊的污染
设一个化工厂每立方米的废水中含有3.08kg盐酸, 这些废水流入一个湖泊中,废水流入的速率20 立方米每小时. 开始湖中有水400000立方米. 河水 中流入不含盐酸的水是1000立方米每小时, 湖泊 中混合均匀的水的流出的速率是1000立方米每小 时,求该厂排污1年时, 湖泊水中盐酸的含量。 解: 设t时刻湖泊中所含盐酸的数量为 x ( t )
一阶常微分方程解法总结
第 一 章 一阶微分方程的解法的小结⑴、可分离变量的方程: ①、形如)()(y g x f dxdy= 当0)(≠y g 时,得到dx x f y g dy)()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。
例1.1、xy dxdy= 解:当0≠y 时,有xdx ydy=,两边积分得到)(2ln 2为常数C Cx y +=所以)(11212C x e C C eC y ±==为非零常数且0=y 显然是原方程的解;综上所述,原方程的解为)(1212为常数C eC y x =②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M )()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=)x P 时,0x x =为原方程的解。
例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有dx x xdy y y 1122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C Cy x ,所以有)0()1)(1(22≠=--C Cy x ;当0)1)(1(22=--y x 时,也是原方程的解;综上所述,原方程的解为)()1)(1(22为常数C C y x =--。
⑵可化为变量可分离方程的方程:①、形如)(xy g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dxdux =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x xyf =。
②、形如)0(),(≠+=ab by ax G dxdy解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G badx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。
高等数学第十二章第四讲 一阶线性微分方程
第十二章
常数变易法 把齐次方程通解中的常数变易为待定函数的方法. 实质: 未知函数的变量代换.
新未知函数 u( x ) 原未知函数 y( x ),
作变换
y u( x )e
P ( x ) dx
P ( x ) dx
y u ( x )e
P ( x ) dx u( x )[ P ( x )]e ,
即
其通解为
再积分
1 2 y ln(1 x ) c1 arctan x c2 2
即为原二阶方程的通解
x c1 y 2 1 x
x c1 z 1 x2
例6. 设降落伞从跳伞塔下落后所受空气阻力与速度 成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求 降落伞下落速度与时间的函数关系.
也是经常可以考虑的
第十二章
三、小结
y 1.齐次方程 y f ( ) x
令 y xu;
P ( x ) dx
2.线性非齐次方程 令 y u( x )e
;
思考题
cos y 求微分方程y 的通解. cos y sin 2 y x sin y
第十二章 思考题解答
dx cos y sin 2 y x sin y sin 2 y x tan y , dy cos y dx tan y x sin 2 y , dy
1
第十二章
五、1、( x y ) 2 2 x C ; 1 2、 y 1 sin x ; xC 3、2 xy sin( 2 xy) 4 x C . 2(1 e x ) , 0 x 1 六、 y y( x ) . x 2(e 1)e , x 1
一阶微分方程解法
解法概述
01
一阶微分方程的解法主要包括分离变量法、常数变易法、积分因子法 等。
02
分离变量法适用于可以将方程改写为$frac{dy}{dx} = f(x)g(y)$形式的 方程。
03
常数变易法适用于形如$frac{dy}{dx} + P(x)y = Q(x)$的线性方程, 通过设定一个合适的常数变易,将方程转化为易于求解的形式。
06
可降阶的高阶微分方程解法
可降阶的高阶微分方程的概念
定义
可降阶的高阶微分方程是指可以通过适当的变换,将其化为较低阶的微分方程进行求解的一类高阶微 分方程。
分类
可降阶的高阶微分方程主要包括y''=f(x)型、y''=f(x,y')型和y''=f(y,y')型三种类型。
可降阶的高阶微分方程的解法
01
y''=f(x)型的解法
通过积分将二阶微分方程化为一阶微分方程进行求解。
02
y''=f(x,y')型的解法
通过适当的变量代换,将原方程化为关于新变量的一阶微分方程进行求
解。
03
y''=f(y,y')型的解法
令y'=p,将原方程化为关于y和p的一阶微分方程组进行求解。
可降阶的高阶微分方程的应用举例
常数变易法的步骤
第一步
观察原方程,确定需要变易的常数及其形式。
第二步
引入新的变量,将原方程中的常数替换为相应的函数,得到新方程。
第三步
求解新方程,得到通解或特解。
第四步
将通解或特解中的新变量还原为原方程的常数,得到原方程的解。
一阶微分方程的常见类型及解法
一阶微分方程的解法多样,包括分离变量法、常数变易法、 积分因子法等,灵活运用这些方法可以求解各种类型的一 阶微分方程。
02 一阶线性微分方程
一阶线性微分方程的标准形式
一阶线性微分方程的一般形式为:$y' + p(x)y = q(x)$,其中$p(x)$和 $q(x)$是已知函数,且$p(x)$在所考虑的区间上连续。
应用领域
物理学、化学、工程学等领域中的实际问题,如放射性衰变、化学反应速率、电路分析等。
04 一阶常系数线性微分方程 组
一阶常系数线性微分方程组的标准形式
一阶常系数线性微分方程组的一般形式为
$y' + p(x)y = q(x)$,其中$p(x)$和$q(x)$是已知函数,且$p(x)$和$q(x)$的系数是常数。
03
积分因子法:通过构造一个积分因子,将原方程转化为全微分方程,从而简化 求解过程。具体步骤包括:根据方程形式构造积分因子,将原方程两边同乘以 积分因子,得到全微分方程,求解全微分方程得到原方程的通解。
举例与应用
举例
求解一阶常系数线性微分方程组 $y' + 2y = x$。首先写出对应的齐次方程 $y' + 2y = 0$,求出齐次方程的 通解 $y = C_1e^{-2x}$。然后用常数变易法求出非齐次方程的特解 $y = frac{1}{2}x - frac{1}{4}$。最后将
通解和特解相加得到原方程的通解 $y = C_1e^{-2x} + frac{1}{2}x - frac{1}{4}$。
应用
一阶常系数线性微分方程组在物理学、工程学、经济学等领域有广泛应用。例如,在电 路分析中,一阶常系数线性微分方程组可以用来描述电路中电压和电流的关系;在经济 学中,一阶常系数线性微分方程组可以用来描述商品价格与供求关系之间的动态变化。
一阶线性微分方程及其解法
故 代入得:
dy u x du
dx
dx
u x du u2 dx u 1
这是关于变量u与x的可分离变量方程, 进行分离变量整理,并两边积分,
得:
1
1 u
du
1 dx x
u ln|u| ln|x| ln|c
故所求通解为: y ln|y| c x
书上还有一个例子,自己可以练习练习
求微分方程 (x2 y2 )dx 2xydy,满足初始条件 y x1 0
解: 方程可化为:
它是齐次方程。令
dy
x2
y2
1 ( y)2 x
dx 2xy
u y
2( y ) x
x
代入整理后,有 du 1 u2
dx 2xu
分离变量,则有
u
1
1 u2 du 2x dx
形如
dy dx
f
y x
的一阶微分方程称为齐次方程
或
dx dy
f
x y
解法:
针对齐次方程
dy dx
y x
,作变量代换
u
y x
即
y
xu
,则
dy dx
u
x
du dx
将其代入原式,得:
u
du dx
u
,即
du u u
应用: 衰变问题: 放射性元素铀不断地放射出微粒子而变成其
它元素,铀的含量不断减少,由物理学知识,铀的衰变速度与未衰变 的原子的含量M成正比,已知t=0时,铀的含量为M0,求衰变过程中 铀含量M(t)随t的变化规律
一阶常微分方程的解法
一阶常微分方程的解法微积分理论中,微分方程是一个非常重要的分支,它们通常用来描述一些变化或进化过程中的物理现象、生物现象或经济现象等等。
其中,一阶常微分方程是微分方程中最简单的一类。
在这篇文章中,我们将介绍一阶常微分方程的求解方法。
一、分离变量法分离变量法是求解一阶常微分方程最简单也是最常用的方法。
这个方法的基本思想是将微分方程中的变量分开,并将每个变量移到不同的方程两侧,最终得到可以分别积分的两个方程。
具体来说,如果给定一个一阶常微分方程$$\frac{dy}{dx}=f(x,y)$$我们可以将它改写为$$dy=f(x,y)dx$$然后对两边同时积分,得到$$\int dy=\int f(x,y)dx+C$$其中C为常数。
这个方法的局限性在于只适用于一些特定的微分方程,例如y'=ky这类的方程就可以很容易地用这个方法求解。
举个例子,考虑方程$$\frac{dy}{dx}=x^2y$$我们将它改写为$$\frac{dy}{y}=x^2dx$$然后对两边同时积分,得到$$\ln|y|=\frac{1}{3}x^3+C$$最终解为$$y=Ce^{\frac{1}{3}x^3}$$其中C为常数。
二、齐次方程如果方程中的所有项均能够写成y和x的某个函数的乘积,那么这个方程就是齐次方程。
对于这类方程,我们可以利用变量替换来把它转化为分离变量的形式。
具体来说,如果给定一个一阶常微分方程$$\frac{dy}{dx}=f(\frac{y}{x})$$我们可以进行变量替换,令y=ux,其中u是关于x的未知函数。
因此,$$\frac{dy}{dx}=u+x\frac{du}{dx}$$将其带入原方程,得到$$u+x\frac{du}{dx}=f(u)$$将u视为自变量,x视为函数,可转化为$$\frac{dx}{du}=\frac{1}{f(u)-u}$$然后对两边同时积分,得到$$x=\int \frac{1}{f(u)-u}du+C$$最后将u替换成y/x即可。
常微分方程考研讲义第二章一阶微分方程的初等解法
常微分⽅程考研讲义第⼆章⼀阶微分⽅程的初等解法第⼆章、⼀阶微分⽅程的初等解法[教学⽬标]1. 理解变量分离⽅程以及可化为变量分离⽅程的类型(齐次⽅程),熟练掌握变量分离⽅程的解法。
2. 理解⼀阶线性微分⽅程的类型,熟练掌握常数变易法及伯努⼒⽅程的求解。
3. 理解恰当⽅程的类型,掌握恰当⽅程的解法及简单积分因⼦的求法。
4. 理解⼀阶隐式⽅程的可积类型,掌握隐式⽅程的参数解法。
[教学重难点] 重点是⼀阶微分⽅程的各类初等解法,难点是积分因⼦的求法以及隐式⽅程的解法。
[教学⽅法] 讲授,实践。
[教学时间] 14学时[教学内容] 变量分离⽅程,齐次⽅程以及可化为变量分离⽅程类型,⼀阶线性微分⽅程及其常数变易法,伯努利⽅程,恰当⽅程及其积分因⼦法,隐式⽅程。
[考核⽬标]1.⼀阶微分⽅程的初等解法:变量分离法、⼀阶线性微分⽅程的常数变易法、恰当⽅程与积分因⼦法、⼀阶隐⽅程的参数解法。
2.会建⽴⼀阶微分⽅程并能求解。
§1 变量分离⽅程与变量变换1、变量分离⽅程1) 变量分离⽅程形如()()dyf xg y dx= (或1122()()()()0M x N y dx M x N y dy +=) (2.1)的⽅程,称为变量分离⽅程,其中函数()f x 和()g y 分别是,x y 的连续函数. 2) 求解⽅法如果()0g y ≠,⽅程(2.1)可化为,()()dyf x dxg y = 这样变量就分离开了,两边积分,得到()()dyf x dx cg y =+??(2.2)把,()()dy f x dx g y ??分别理解为1,()()f x y ?的某⼀个原函数. 容易验证由(2.2)所确定的隐函数(,)y x c ?=满⾜⽅程(2.1).因⽽(2.2)是如果存在0y 使0()0g y =,可知0y y =也是(2.1)的解.可能它不包含在⽅程的通解(2.2)中,必须予以补上.3) 例题例1 求解⽅程dy x dx y=- 解将变量分离,得到ydy xdx =- 两边积分,即得22222y x c=-+ 因⽽,通解为22x y c += 这⾥的c 是任意的正常数. 或解出显式形式y =例2 解⽅程2cos dyy x dx= 并求满⾜初始条件:当0x =时.1y =的特解.解将变量分离,得到 2cos dyxdx y= 两边积分,即得1sin x c y-=+因⽽,通解为1sin y x c=-+这⾥的c 是任意的常数.此外,⽅程还有解0y =.为确定所求的特解,以0x =.1y =代⼊通解中确定常数c ,得到 1c =- 因⽽,所求的特解为11sin y x=-例3 求⽅程 ()dyP x y dx的通解,其中()P x 是x 的连续函数.解将变量分离,得到 ()dyP x dx y= 两边积分,即得ln ()y P x dx c =+?这⾥的c 是任意常数.由对数的定义,即有 ()P x dx cy e +?=即()P x dxc y e e ?=±令ce c ±=,得到()P x dxy ce ?=(2.4)此外,0y =也是(2.3)的解.如果在(2.4)中允许0c =,则0y =也就包括在(2.4)中,因⽽,(2.3)的通解为(2.4),其中c 是任意常数. 注: 1.常数c 的选取保证(2.2)式有意义.2.⽅程的通解不⼀定是⽅程的全部解,有些通解包含了⽅程的所有解,有些通解不能包含⽅程的所有解.此时,还应求出不含在通解中的其它解, 即将遗漏的解要弥补上.3.微分⽅程的通解表⽰的是⼀族曲线,⽽特解表⽰的是满⾜特定条件00()y x y =的⼀个解,表⽰的是⼀条过点00(,)x y 的曲线.2、可化为变量分离⽅程的类型1).形如 dy y g dx x ??=(2.5)的⽅程,称为齐次⽅程,这⾥的()g u 是u 的连续函数. 另外,ⅰ)对于⽅程(,)(,)dy M x y dx N x y = 其中函数(,)M x y 和(,)N x y 都是x 和y 的m 次齐次函数,即对0t >有(,)(,)m M tx ty t M x y ≡ (,)(,)m N tx ty t N x y ≡事实上,取1t x=,则⽅程可改写成形如(2.5)的⽅程. (1,)(1,)(1,)(1,)m m y y== ⅱ)对⽅程(,)dyf x y dx= 其中右端函数(,)f x y 是x 和y 的零次齐次函数,即对0t >有(,)(,)f tx ty f x y =则⽅程也可改写成形如(2.5)的⽅程(1,)dy y f dx x= 对齐次⽅程(2.5)利⽤变量替换可化为变量分离⽅程再求解. 令yu x= (2.6)即y ux =,于是dy du x u dx dx=+ (2.7)将(2.6)、(2.7)代⼊(2.5),则原⽅程变为 ()dux u g u dx+= 整理后,得到()du g u udx x-=(2.8)⽅程(2.8)是⼀个可分离变量⽅程,按照变量分离法求解,然后将所求的解代回原变量,所得的解便是原⽅程(2.5)的解.例4 求解⽅程dy y y tg dx x x=+ 解这是齐次⽅程,以,y dy duu x u x dx dx==+代⼊,则原⽅程变为 dux u u tgu dx+=+ 即du tgudx x=(2.9)分离变量,即有dx= 两边积分,得到ln sin ln u x c =+ 这⾥的c 是任意的常数,整理后,得到sin u cx = (2.10)此外,⽅程(2.9)还有解0tgu =,即sin 0u =. 如果(2.10)中允许0c =,则sin 0u =就包含在(2.10)中,这就是说,⽅程(2.9)的通解为(2.10).代回原来的变量,得到原⽅程的通解为sinycx x =例5 求解⽅程(0).dyxy x dx+=<解将⽅程改写为(0)dy y x dx x=<这是齐次⽅程,以,y dy du u x u x dx dx==+代⼊,则原⽅程变为dux dx=(2.11)分离变量,得到dxx = 两边积分,得到(2.11)的通解ln()x c =-+ 即2[ln()](ln()0)u x c x c =-+-+>(2.12)这⾥的c 是任意常数.此外,(2.11)还有解0u = 注意,此解不包括在通解(2.12)中.原⽅程的通解还可表为2[ln()],ln()0,0,x x c x c y ?-+-+>=?它定义于整个负半轴上.注:1.对于齐次⽅程dy y g dx x ??=的求解⽅法关键的⼀步是令y u x =后,解出y ux =,再对两边求关于x 的导数得dy duu x dx dx=+,再将其代⼊齐次⽅程使⽅程变为关于,u x 的可分离⽅程.2.齐次⽅程也可以通过变换xv y=⽽化为变量分离⽅程.这时x vy =,再对两边求关于y 的导数得dx dv v y dy dy =+,将其代⼊齐次⽅程dxx f dy y ??=使⽅程变为,v y 的可分离⽅程⼩结:这⼀讲我们主要讲解了⼀阶微分⽅程的可分离变量法和齐次⽅程的dy y g dx x ??=形状的解法.⽽这⼀齐次⽅程通过变量替换任然可化为可分离⽅程,因⽽,⼀定要熟练掌握可分离⽅程的解法. 2)形如111222a xb yc dy dx a x b y c ++=++ (2.13)的⽅程经变量变换化为变量分离⽅程,这⾥的121212,,,,,a a b b c c 均为常数.分三种情况来讨论(1)120c c ==情形. 这时⽅程(2.13)属齐次⽅程,有1122a x b y dy y g dx a x b y x +??== ?+??此时,令yu x=,即可化为变量可分离⽅程. (2)0a b a b =,即1122a b a b =的情形. 设1122a b k a b ==,则⽅程可写成22122222()()()k a x b y c dy f a x b y dx a x b y c ++==+++ 令22a x b y u +=,则⽅程化为22()dua b f u dx=+ 这是⼀变量分离⽅程.(3)1112220,a b c c a b ≠及不全为零的情形. 这时⽅程(2.13)右端的分⼦、分母都是,x y 的⼀次式,因此 1112220a xb yc a x b y c ++=??++=?(2.14)代表xy 平⾯上两条相交的直线,设交点为(,)αβ.显然,0α≠或0β≠,否则必有120c c ==,这正是情形(1)(只需进⾏坐标平移,将坐标原点(0,0)移⾄(,)αβ就⾏了,若令X x Y y αβ=-??=-?(2.15)则(2.14)化为11220a X bY a X b y +=??+=?从⽽(2.13)变为 1122a X bY dY Y g dX a X b Y X +??== ?+??(2.16)因此,得到这种情形求解的⼀般步骤如下:(1)解联⽴代数⽅程(2.14),设其解为,x y αβ==; (2)作变换(2.15)将⽅程化为齐次⽅程(2.16); (3)再经变换Y将(2.16)化为变量分离⽅程; (4)求解上述变量分离⽅程,最后代回原变量可得原⽅程(2.13)的解. 上述解题的⽅法和步骤也适⽤于⽐⽅程(2.13)更⼀般的⽅程类型111222a x b y c dyf dx a x b y c ??+== ?++??()dyf ax by c dx++ ()()0y xy dx xg xy dy += 2()dyx f xy dx= 2dy y xf dx x= ?以及(,)()(,)()0M x y xdx ydy N x y xdy ydx ++-=(其中,M N 为,x y 的齐次函数,次数可以不相同)等⼀些⽅程类型,均可通过适当的变量变换化为变量分离⽅程.例6 求解⽅程13dy x y dx x y -+=+- (2.17)解解⽅程组 1030x y x y -+=??+-=? 得1, 2.x y ==令12x X y Y =+??=+?代⼊⽅程(2.17),则有 dY X YdX X Y-=+ (2.18)再令Yu X= 即 Y uX = 则(2.18)化为2112dX u22ln ln 21X u u c=-+-+22(21)c X u u e +-=± 记1,c e c ±=并代回原变量,就得2212Y XY X c +-= 221(2)2(1)(2)(1)y x y x c -+----= 此外,易验证2210u u +-= 即2220Y XY X +-= 也就是(2.18)的解.因此⽅程(2.17)的通解为22262y xy x y x c +---= 其中c 为任意的常数.3、应⽤举例例7 电容器的充电和放电如图(2.1)所⽰的R C -电路,开始时电容C 上没有电荷,电容两端的电压为零.把开关K 合上“1”后,电池E 就对电容C 充电,电容C 两端的电压C u 逐渐升⾼,经过相当时间后,电容充电完毕,再把开关K 合上“2”,这时电容就开始放电过程,现在要求找出充、放电过程中,电容C 两端的电压C u 随时间t 的变化规律.解对于充电过程,由闭合回路的基尔霍夫第⼆定理,c u RI E += (2.19)对于电容C 充电时,电容上的电量Q 逐渐增多,根据C Q Cu =,得到 ()C C du dQ dI Cu C dt dt dt=== (2.20)将(2.20)代⼊(2.19),得到c u 满⾜的微分⽅程 cc du RC u E dt+= (2.21)这⾥R 、C 、E 都是常数.⽅程(2.21)属于变量分离⽅程.将(2.21)分离变量,得到C C du dtu E RC=-- 两边积分,得到11ln C u E t c RC-=-+ 即1112t t c RCRCC u E e e c e---=±=这⾥12c c e =±为任意常数.将初始条件:0t =时,0C u =代⼊,得到2c E =-. 所以 1(1)t RC C u E e -=-这就是R C -电路充电过程中电容C 两端的电压的变化规律.由(2.22)知道,电压C u 从零开始逐渐增⼤,且当t →+∞时,C u E →,在电⼯学中,通常称RC τ=为时间常数,当3t τ=时,0.95C u E =,就是说,经过3τ的时间后,电容C 上的电压已达到外加电压的95%.实⽤上,通常认为这时电容C 的充电过程已基本结束.易见充电结果C u E =.对于放电过程的讨论,可以类似地进⾏.例8 探照灯反射镜⾯的形状在制造探照灯的反射镜⾯时,总是要求将点光源射出的光线平⾏地射出去,以保证照灯有良好的⽅向性,试求反射镜⾯的⼏何形状.解取光源所在处为坐标原点,⽽x 轴平⾏于光的反射⽅向,设所求曲⾯由曲线()y f x z =??=?(2.23)绕x 轴旋转⽽成,则求反射镜⾯的问题归结为求xy 平⾯上的曲线()y f x =的问题,仅考虑0y >的部分,过曲线()y f x =上任⼀点(,)M x y 作切线NT ,则由光的反射定律:⼊射⾓等于反射⾓,容易推知12αα= 从⽽OM ON = 注意到2dy MP tg dx NPα==及,,OP x MP y OM ===就得到函数()y f x =所应满⾜的微分⽅程式dy dx =(2.24)这是齐次⽅程.由2.12知引⼊新变量xu y=可将它化为变量分离⽅程.再经直接积分即可求得⽅程的解.对于⽅齐次⽅程(2.24)也可以通过变换xv y=⽽化为变量分离⽅程也可由x yv =得dx dvv y dy dy=+代⼊(2.24)得到sgn dvv y v y dysgn dy y y =(2.25)积分(2.25)并代回原来变量,经化简整理,最后得2(2)y c c x =+(2.26)其中c 为任意常数.(2.26)就是所求的平⾯曲线,它是抛物线,因此,反射镜⾯的形状为旋转抛物⾯22(2)y z c c x +=+ (2.27)⼩结: 本节我们主要讨论了⼀阶可分离微分⽅程和齐次微分⽅程的求解问题.将各种类型的求解步骤记清楚的同时要注意对解的讨论.§2 线性⽅程与常数变易法1、⼀阶线性微分⽅程()()()0dya xb x yc x dx++= 在()0a x ≠的区间上可以写成()()dyP x y Q x dx=+ (2.28)对于()a x 有零点的情形分别在()0a x ≠的相应区间上讨论.这⾥假设(),()P x Q x 在考虑的区间上是x 的连续函数.若()0Q x ≡,(2.28)变为 ()dyP x y dx= (2.3)称为⼀阶齐线性⽅程.若()0Q x ≠,(2.28)称为⼀阶⾮齐线性⽅程.2、常数变易法(2.3)是变量分离⽅程,已在例3中求得它的通解为 ()P x dxy ce ?=(2.4)这⾥c 是任意的常数.下⾯讨论⼀阶⾮齐线性⽅程(2.28)的求解⽅法.⽅程(2.3)与⽅程(2.28)两者既有联系⼜有区别,设想它们的解也有⼀定的联系,在(2.4)中c 恒为常数时,它不可能是(2.28)的解,要使(2.28)具有形如(2.4)的解, c 不再是常数,将是x 的待定函数()c x ,为此令 ()()P x dx(2.29)两边微分,得到()()()()()P x dxP x dx dy dc x e c x P x e dx dx=+ (2.30)将(2.29)、(2.30)代⼊(2.28),得到()()()()()()()()()P x dxP x dx P x dx dc x e c x P x e P x c x e Q x dx+=+ 即()()()P x dx dc x Q x e dx-?= 积分后得到()()()P x dxc x Q x e dx c -?=+?(2.31)这⾥c 是任意的常数..将(2.31)代⼊(2.29),得到()()()()()() =()P x dxP x dx P x dx P x dx P x dxy e Q x e dx c ce e Q x e dx--=+ +(2.32)这就是⽅程(2.28)的通解.这种将常数变易为待定函数的⽅法,通常称为常数变易法.实际上常数变易法也是⼀种变量变换的⽅法.通过变换(2.29)可将⽅程(2.28)化为变量分离⽅程.注: ⾮齐线性⽅程的通解是它对应的齐线性⽅程的通解与它的某个特解之和. 例1 求⽅程1(1)(1)x n dy x ny e x dx++-=+的通解,这⾥的n 为常数. 解将⽅程改写为 (1)1x n dy n y e x dx x -=++ (2.33)先求对应的齐次⽅程01dy n y dx x -=+ 的通解,得令 ()(1)n y c x x =+ (2.34)微分之,得到()(1)(1)()n dy dc x x n x c x dx dx=+++ (2.35)以(2.34)、(2.35)代⼊(2.33),再积分,得 ()x c x e c =+ 将其代⼊公式(2.34),即得原⽅程的通解 (1)()n x y x e c =++ 这⾥c 是任意的常数. 例2 求⽅程22dy ydx x y=-的通解. 解原⽅程改写为2dx x y dy y=- (2.36)把x 看作未知函数,y 看作⾃变量,这样,对于x 及dxdy来说,⽅程(2.36)就是⼀个线性⽅程了.先求齐线性⽅程2dx x dy y= 的通解为2x cy = (2.37)令2()x c y y =,于是 2()2()dx dc y y c y y dy dy=+ 代⼊(2.36),得到()ln c y y c =-+ 从⽽,原⽅程的通解为2(ln )x y c y =-这⾥c 是任意的常数,另外0y =也是⽅程的解. 特别的,初值问题00()()()dyP x y Q x dxy x y ?=+=? 的解为00()()()=()xxsx x x P d P d P d xx y ceeQ s eds ττττττ-+?例3 试证(1)⼀阶⾮齐线性⽅程(2.28)的任两解之差必为相应的齐线性⽅程(2.3)之解;(2)若()y y x =是(2.3)的⾮零解,⽽()y y x =是(2.28)的解,则(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.(3)⽅程(2.3)任⼀解的常数倍或两解之和(或差)仍是⽅程(2.3)的解. 证(1)设12,y y 是⾮齐线性⽅程的两个不同的解,则应满⾜⽅程使1122()(1)()(2)dy py Q x dxdy py Q x dx=+=+(1)—(2)有1212()()d y y p y y dx-=-说明⾮齐线性⽅程任意两个解的差12y y -是对应的齐次线性⽅程的解.(2)因为(()())()()(()()()()d cy x y x dy x d y x c p cy p y Q x p cy y Q x dx dx dx+=+=++=++故结论成⽴.(3)因为12121212()()()(),(),()d y y d y y d cy p cy p y y p y y dx dx dx+-==+=- 故结论成⽴.3、Bernoulli ⽅程。
三种形式的一阶线性微分方程
三种形式的一阶线性微分方程一阶线性微分方程是一种常见的微分方程,它可以在统计学、物理学、工程学和化学中发现并被广泛运用。
它的形式可以分为三种:一阶常系数微分方程、一阶非常系数微分方程和变系数微分方程。
一阶常系数微分方程是指具有一阶微分项的微分方程满足常系数。
它的基本形式是:y=ay+b其中,a和b是常数,y是未知函数,y表示y的一阶导数。
此外,如果a不等于0,则常系数微分方程也可以把y的导数写作: y=by/a一阶非常系数微分方程是指具有一阶微分项的微分方程满足非常系数的一阶线性微分方程。
它的形式是:y=f(t,y)其中,t是时间变量,y是未知函数,f(t,y)是一个任意的函数,y表示y的一阶导数。
变系数微分方程是指具有一阶微分项的微分方程满足变系数的一阶线性微分方程。
它的形式是:y=p(t)y+q(t)其中,t是时间变量,y是未知函数,p(t)和q(t)是变系数函数,y是y的一阶导数。
解决一阶线性微分方程的一般方法是通过变换来得到其解。
如果固定系数不变,可以将该微分方程转换成一般形式,再将其转换为常系数微分方程,使用常系数微分方程的解法来解决。
若不固定系数,直接将微分方程转换为常系数形式,再进行求解。
常系数微分方程的解法有多种,如分部积分法、特解法、逐步积分法和参数法。
首先,在求解前,需要将原方程拆分成通解和特解,通解用分部积分法求解,特解通过特解法求解。
其次,根据微分方程的系数分别选择对应的积分函数,然后进行解算。
一阶非常系数微分方程的求解方法有多种,如初值问题、逐步积分法和参数法。
总的来说,要求解一阶非常系数微分方程,首先要将该方程转化为常系数微分方程,然后求解它。
另外,如果方程中出现某些特定函数,那么就可以使用特殊方法。
变系数微分方程的求解方法也有多种,如拉普拉斯变换、特殊变换和特解法。
拉普拉斯变换是一种常用的方法,它的基本思想是将变系数的微分方程转换成常系数形式,再使用常系数微分方程的解法求解。
一阶微分方程解法
一阶微分方程解法微分方程(differential equation)是数学中的重要概念,广泛应用于自然科学、工程技术和社会科学等领域。
它是描述物理、化学、生物、经济等问题的数学模型,对于研究和解决实际问题有着重要意义。
一阶微分方程(first-order differential equation)是指方程中最高阶导数为一阶的微分方程。
本文将介绍一些一阶微分方程的常见解法方法。
一、可分离变量法(Separable Variables Method)可分离变量法是一种常见的解一阶微分方程的方法。
对于形如dy/dx = f(x)g(y)的分离变量方程,我们可以将其重新排列为g(y)dy =f(x)dx,并进行变量分离的积分求解。
具体步骤如下:1. 将方程重新排列为g(y)dy = f(x)dx;2. 对两边同时积分,得到∫g(y)dy = ∫f(x)dx;3. 对左右两边的积分进行求解,得到方程的通解。
二、线性微分方程的求解方法线性微分方程(linear differential equation)是指未知函数和其导数出现在线性组合中的微分方程。
对于形如dy/dx + p(x)y = q(x)的一阶线性微分方程,我们可以利用常数变易法(Method of Variation of Parameters)解得其通解。
具体步骤如下:1. 假设原方程的通解为y = u(x)y1(x),其中y1(x)为已知的齐次方程的解,u(x)为待定的函数;2. 根据常数变易法,将u(x)代入方程中,并得到u(x)满足的方程;3. 求解u(x)满足的方程,并代入通解表达式中,得到方程的通解。
三、恰当微分方程的求解方法恰当微分方程(exact differential equation)是指存在一个原函数F(x, y),使得该方程可以写成dF(x, y) = 0的形式。
对于形如M(x, y)dx +N(x, y)dy = 0的一阶微分方程,我们可以利用其恰当条件进行求解。
一阶线性微分方程
一阶线性微分方程在数学的领域中,微分方程是一种描述函数关系的方程。
一阶线性微分方程是其中一种常见的微分方程类型,其具有如下的一般形式:dy/dx + P(x)y = Q(x)在这个方程中,y是未知函数,x是自变量。
P(x)和Q(x)是已知函数。
解决一阶线性微分方程的方法之一是使用积分因子的方法。
通过适当选择一个积分因子来将方程转化为可积的形式,从而得到其解。
具体地,我们可以按照以下步骤来解决一阶线性微分方程:步骤1:将方程转化为标准形式需要将一阶线性微分方程转化为以下形式:dy/dx + P(x)y = Q(x)通过移项,得到:dy/dx = -P(x)y + Q(x)步骤2:确定积分因子确定积分因子μ(x)的一种常用方法是将方程乘以一个因子,并使乘积的系数等于∂(μ(x)y)/∂x。
因此,我们可以通过以下公式来确定积分因子:μ(x) = e^∫P(x)dx步骤3:将方程乘以积分因子将方程乘以积分因子μ(x):μ(x)dy/dx + μ(x)P(x)y = μ(x)Q(x)得到:d[μ(x)y]/dx = μ(x)Q(x)步骤4:对方程进行积分对上述方程两边进行积分,得到:∫d[μ(x)y]/dx dx= ∫μ(x)Q(x) dx化简后得到:μ(x)y = ∫μ(x)Q(x) dx + C其中,C是常数。
步骤5:解出未知函数y解方程μ(x)y = ∫μ(x)Q(x) dx + C,求出未知函数y的表达式。
以上就是解决一阶线性微分方程的步骤。
通过选取适当的积分因子,将方程转化为可积的形式,并通过积分求解得到未知函数的表达式。
总结起来,一阶线性微分方程的求解过程可以分为五个步骤:将方程转化为标准形式、确定积分因子、将方程乘以积分因子、对方程进行积分、解出未知函数y。
这些步骤能够帮助我们解决一阶线性微分方程的问题。
通过学习和掌握一阶线性微分方程的方法,我们可以应用它们解决各种实际问题,如物理学、生物学、经济学等领域中的相关问题。
关于一阶常微分方程积分因子的求法
关于一阶常微分方程积分因子的求法摘要目前关于一阶常微分方程积分因子的求解方法介绍比较零散,一般的教科书中大都局限在一些简单的情况,如公式法一般只给出含有x或y的一元函数的积分因子的情形,很少涉及到二元的情况,对积分因子的求法并没有一个系统全面的总结,故积分因子的求法有广阔的研究空间.一阶常微分方程灵活多变,有多种不同的方程类型,因而可针对不同类型的方程,研究与其适应的求解方法. 本课题将根据积分因子的定义及性质,通过不同的分类方法,在原有求积分因子方法的基础上,对多种求法进行加深和扩充,系统地总结出一些较为规律的求解方法:观察法、公式法和分组法,给出这些方法的使用条件,并对方法的可行性进行证明,结合具体问题进行分析讨论,通过对这三种方法的研究,解决了某些一阶常微分方程的求解问题.关键词一阶,积分因子,全微分方程,观察,公式,分组,通解The Solution about First Order DifferentialEquation of Intergral FactorABSTRACTAt present about first order differential equations solving method of integral factor is introduced, the comparison scattered in general mostly confined to a textbook, such as some simple formula general give only contain x or y unary function of integral factor of the situation, rarely involve the condition of dual integral factor of sapce and no system, so overall summary of integral factor of sapce has broad research space. A flexible and order ordinary differential equations, and there are many different types of the equation, thus the equation of different types, with the solving method to study. This topic will be based on the definition and properties of integral factor, through different classification method andway of integrating factors in original for the foundation, on the various sapce for deepening and expanded, systematically summarizes some relatively regular solution: observation, formula and grouping law, given these methods using conditions, and feasibility of the method is proved that combined with concrete problems are discussed, based on the three methods to study and resolve some of the first order differential equation problem solving.KEYWORDS first-order,Integral factor, observation,formula,grouping,general solution.目录1 引言 (1)2 几种变系数齐次线性方程的求解方法 (1)2.1 降阶法 (1)2.2 常系数化法 (8)2.3 幂级数法 (17)2.4 恰当方程法 (20)3 结束语 (23)4 致谢语 (23)参考文献 (24)1 引 言常微分方程是数学科学联系实际的主要桥梁之一。
常系数一阶线性微分方程的解法
常系数一阶线性微分方程的解法:
常系数一阶线性微分方程的一般形式为:
$$y'+p(t)y=q(t)$$
其中,$y(t)$ 是未知函数,$p(t)$ 和$q(t)$ 是已知的函数。
解决常系数一阶线性微分方程的方法如下:
将$y$ 作为一个未知数,将方程转化为$y'=f(t)y+g(t)$ 的形式,其中$f(t)=-p(t)$,$g(t)=q(t)$。
设$y_0$ 为方程的初始条件,即$y(t_0)=y_0$。
对于$t\in(t_0,t_1)$,则有:
$$y(t)=y_0+\int_{t_0}^t f(s)y(s)+g(s)ds$$对于$t\in(t_1,t_2)$,则有:
$$y(t)=y(t_1)+\int_{t_1}^t f(s)y(s)+g(s)ds$$
以此类推,可以通过递推的方法求解常系数一阶线性微分方程。
常系数一阶线性微分方程的解法是基于递推的原理,通过不断地计算当前时刻的未知函数值$y(t)$,来求解整个时间区间内的未知函数值。
注意,在解决常系数一阶线性微分方程时,需要先确定方程的初始条件$y_0$。
此外,在计算过程中,需要注意求解的时间区间的选择,以及如何确定当前时刻的未知函数值$y(t)$。
在解决常系数一阶线性微分方程时,还可以使用其他的方法,比如求解通解、特解、高阶线性微分方程的通解等。
这些方法都是基于常系数一阶线性微分方程的基本性质,并利用数学工具(如积分、微积分、线性代数等)来求解。
一阶线性微分方程 (2)
z
x c1 1 x2
y
1 ln(1 2
x2)
c1
arctan
x
c2
即为原二阶方程的通解
例4 如图所示,平行与 y 轴的动直线被曲
线 y f ( x)与 y x3 ( x 0)截下的线段PQ之
长数值上等于阴影部分的面积, 求曲线 f ( x).
解
x
f ( x)dx
令z y1n , 则 dz (1 n) yn dy ,
dx
dx
代入上式 dz (1 n)P( x)z (1 n)Q( x), dx
求出通解后,将 z y1n 代入即得
y1n z
e ( (1n)P( x)dx
Q(
x)(1
n)e
(1n) P
dx
sin x
x
e
1 x
dx
dx
C
e
ln
x
sin x
x
eln
xdx
C
1 x
sin
xdx
C
1 cos x C .
x
例2
解方程
dy
2y
5
( x 1)2
dx x 1
解
相应齐方程
dy 2 y dx x 1
cos
y
2
sin y cos cos y
y
dy
C
cos
一阶线性微分方程及其解法[2]
重复是学习之母——弗莱格
世界上最快而又最慢,最长而又最短,最平凡而又最 珍贵,最容易被人忽视,而又最令人后悔的就是时间 ----高尔基
谢谢大家对我的支持! !
祝大家考试取得好成绩!
因此方程满足初始条件的特解为
二、一阶线性微分方程的应用
应用微分方程解决实际问题的步骤: 1. 分析问题,设出所求未知函数,确定初始条件。 2. 建立微分方程。 3. 确定方程类型,求其通解. 4. 代入初始条件求特解.
解 (1) = 0 = f (0,0)
(2)
(3)
xy
则
lim
r 0
w r
=
lim
r 0
x2 + y2
r
( y=x)
( y=x)
?
例2
证令 则
故函数在点 (0, 0) 处连续 ; 同理
下面证明: 令
可微 . 则
注 此题表明, 偏导数连续只是可微的充分条件. 而非必要条件.
例1. 求函数 解: 第一步 求驻点.
解方程组
得驻点: (1, 0) , (1, 2) , (–3, 0) , (–3, 2) . 第二步 判别. 求二阶偏导数
的极值.
在点(1,0) 处
为极小值;
机动 目录 上页 下页 返回 结束
在点(1,2) 处 在点(3,0) 处 在点(3,2) 处
不是极值; 不是极值;
为极大值.
机动 目录 上页 下页 返回 结束
例
解 画草图如右 两曲线的交点 选 为积分变量 面积元素
y
o
x
注:
,即动点P以任意方式即沿任意曲线趋向定
点P0时,都有f(P) A
求二重极限方法类似一元函数的一些方法:等价无穷小替换; 重要极限公式;无穷小的性质;(恒等变形;利用连续性;夹 逼准则;换元;利用公式和运算法则)
关于一阶线性微分方程解法的一个注记
关于一阶线性微分方程解法的一个注记孔亮【摘要】Constant variation is an effective method for linear differential equation of the iirst-order. However, in order to simplify the solving process,a new solution for a linear differential equations y' +p (x)y=q (x) is presented. That is, take y=C(x)e-fP(x)dx by y=e-fP(x)dx(u(x)+C), where u(x) satisfies and C is arbitrary constant.%常数变易法是求解一阶线性微分方程的有效方法,但在求解某些微分方程时其过程比较繁琐。
为了简化求解运算过程,给出了解一阶线性微分方程y’+p(x)y=q(x)的一种新思路,即将常数变易法公式y=C(x)e-fP(x)dx设为y=e-fP(x)dx(u(x)+C),这里配u(x)是满足u'(x)efP(x)dx=q(x)的待定函数,C为任意常数。
【期刊名称】《商洛学院学报》【年(卷),期】2012(026)006【总页数】2页(P7-8)【关键词】一阶线性微分方程;常数变易法;通解【作者】孔亮【作者单位】商洛学院数学与计算科学系,陕西商洛726000【正文语种】中文【中图分类】O175.11 引言与定理常微分方程在科技理论中具有非常广泛的应用,是高等数学的重要内容之一,一阶线性微分方程是其中重要的一类方程。
通常解一阶线性微分方程的方法有常数变易法和积分因子法[1-3]。
此外,一阶线性微分方程还有其他一些解法[4-6]。
本文给出解一阶线性微分方程的一种思路,简化了求解运算过程。
文献[1-3]给出了一阶线性微分方程求通解的常数变易法,具体而言,对于微分方程先利用分离变量法求出(1)式所对应的齐次方程y′+p(x)y=0的通解y=Ce-p(x)dx∫,然后将其中的任意常数C变成待定函数C(x),再设y=C(x)e-p(x)dx∫为微分方程(1)的解,带入(1)式求出 C(x)就可以求出(1)的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
万方数据
关于一阶线性常微分方程解法的一个注
作者:朱长青, ZHU Chang-qing
作者单位:湖北工业大学工程技术学院,湖北,武汉,430068
刊名:
湖北工业大学学报
英文刊名:JOURNAL OF HUBEI UNIVERSITY OF TECHNOLOGY
年,卷(期):2009,24(4)
被引用次数:0次
1.同济大学应用数学系高等数学 2002
2.王高熊.周之铭.朱思铭常微分方程 1983
3.鲜大权一阶线性常微分方程解法及教学[期刊论文]-高等数学研究 2007(03)
4.张永明.张二艳.王丹关于二阶常系数线性齐次常微分方程的通解的一个注记[期刊论文]-大学数学 2006(02)
5.潘少荣.边淑荣待定函数法在常微分方程中的应用[期刊论文]-哈尔滨师范大学自然科学学报 2008(03)
1.期刊论文郑丰杰论一阶线性微分方程中的常数变易法-广西质量监督导报2007,""(5)
常数变易法是解常微分方程的重要工具.本文以一阶线性非齐式微分方程为例,从常数变易法的定义数学原理和本质上分析,认为常数变易法是解一阶线性非齐式微分方程的简捷方法的形象名称.
2.期刊论文左振钊.王静海一阶线性微分方程的解法分析-张家口农专学报2003,19(2)
对一阶线性微分方程给出了一种综合分析性的定解,着重指导教学中学生认知的难疑点.
3.期刊论文孙晓琳.程立倩.施乐军"高等数学"教学注重数学思想方法渗透的尝试-烟台教育学院学报2003,9(1) 以"一阶线性微分方程"教学过程的设计为主线,阐述了高等数学教学中注重教学思想方法的渗透对于培养和发展学生思维能力的积极价值.
4.期刊论文冯变英.张春枝试论Bernoulli方程的几种解法-太原师范学院学报(自然科学版)2003,2(3)
文章系统总结了Bernoulli方程的三种解法.1)普遍采用的变替换法;2)提出了用常数变易法求解的新观点;3)针对特殊的Bernoulli方程的分离变量法.
5.期刊论文常秀芳.李高.CHANG Xiu-fang.LI Gao关于伯努利方程的几种新解法-雁北师范学院学报2007,23(2) 从一阶微分方程求解人手,归纳、总结出伯努利方程的三种新解法,这些新解法在学习和应用微分方程时给出解决问题的思维方式和思路,令人深思
,它打破了沿用至今的伯努利方程的传统解法.
6.期刊论文胡劲松.李先富.郑克龙.HU Jin-song.LI Xian-fu.ZENG Ke-long一种二阶变系数线性微分方程的求解方法-重庆工商大学学报(自然科学版)2005,22(3)
在知道二阶变系数线性齐次微分方程一个特解的情况下,通过常数变易法,将二阶变系数线性非齐次微分方程转化为一阶线性微分方程,从而给出运算量较小的二阶变系数线性非齐次微分方程通解的一般公式,也给出了用刘维尔定理求解二阶变系数线性齐次微分方程的一个理论依据.
7.期刊论文农丽娟.王五生.NONG Li-juan.WANG Wu-sheng用二次常数变易法解几类非线性微分方程-河池学院学报2008,28(5)
非线性微分方程没有一般的求解方法,而常数变易法是求解一阶线性微分方程的主要方法,文献[1-3]研究了解非线性微分方程的常数变易法,其中文献[2]提出了用二次常数变易法求解非线性微分方程的一些具体例子.作者在此基础上构造了可用二次常数变易法求解的一阶非线性微分方程的类型,并给出相应的例子来说明二次常数变易法的重要性.
8.期刊论文王春草.WANG Chun-cao常数变易法在求解微分方程中的应用-杨凌职业技术学院学报2007,6(4)
常数变易法是求解微分方程的一种很重要的方法,常应用于一阶线性微分方程的求解.本文通过对几种微分方程研究分析,总结了常数变易法在求解线性微分方程中的几点新的应用.
9.会议论文朱长青关于一阶线性常微分方程解法的一个注2009
从一阶线性微分方程结构特点入手,给出了求其通解的常数变易法的数学原理,并简化了积分因子法.
本文链接:/Periodical_hubeigxyxb200904030.aspx
授权使用:中共汕尾市委党校(zgsw),授权号:2f517d19-fd3a-4771-adf4-9dcf0159a05c
下载时间:2010年8月11日。