[K12学习]四川省雅安市2016届中考数学模拟测试试题(平方根与立方根)(二)(无答案)
四川省雅安市2016届中考数学模拟测试试题(平方根)(无答案)
平方根
一、选择题
1.4的算术平方根是()
A.﹣2 B.2 C.﹣ D.
2.下列说法正确的是()
A.5是25的算术平方根B.±4是16的算术平方根
C.﹣6是(﹣6)2的算术平方根D.0.01是0.1的算术平方根
3.的算术平方根是()
A.9 B.3 C.D.
4.算术平方根等于它本身的数是()
A. 0 B.1 C.﹣1 D.0,1
5.图中阴影部分的面积为16cm2,则图中长方形的周长为()
A.28cm B.24cm C.25cm D.不能确定
6.若(m﹣1)2+=0,则m+n的值是()
A.﹣1 B.0 C.1 D. 2
二、填空题。
7.(﹣5)2的算术平方根是.
8.要得到一块面积为36m2的正方形铁板,它的边长应是m.
9.若x,y为实数,且满足|x﹣3|+=0,则()2016的值是.
三、解答题
10.计算:
(1);
(2
);
(3
);
(4
).
11.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7×(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;
(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?
2。
四川省雅安市2016届中考数学模拟测试试题(数据的表示)
数据的表示一、选择题1.五个同学一天植树的棵数分别为10,10,12,x,8,已知这组数据的众数与平均数相等,那么这组数据的中位数是()A.8 B.9 C.10 D.122.某校九年级三班的团员在爱心助残捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、11、12、9、13、10,关于这组数据表述错误的是()A.众数是10元B.中位数是10元C.平均数是11元D.极差是7元3.某班数学兴趣小组10名同学的年龄情况如下表:则这10名同学年龄的平均数和中位数分别是()A.13.5,13.5 B.13.5,13 C.13,13.5 D.13,144.某校八年级(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.425.以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,906.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.107.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,208.一组数据3,3,4,2,8的中位数和平均数分别是()A.3和3 B.3和4 C.4和3 D.4和49.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()二A.22℃ B.23℃ C.24℃ D.25℃10.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.911.我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.5712.某市5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,33 B.30,32 C.30,31 D.32,3213.作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75 C.80 D.6014.一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是()A.中位数是91 B.平均数是91 C.众数是91 D.极差是7815.在数据1、3、5、5、7中,中位数是()A.3 B.4 C.5 D.716.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A.1 B.3 C.1.5 D.217.一组数据:2,3,6,6,7, 8,8,8的中位数是()A.6 B.6.5 C.7 D.818.若一组数据1、a、2、3、4的平均数与中位数相同,则a不可能是下列选项中的()A.0 B.2.5 C.3D.519.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元20.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分21.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4B.3,4 C.4,3 D.3,322.某校篮球队五名主力队员的身高分别是174,179,180,174,178(单位:cm),则这五名队员身高的中位数是()A.174cm B.177cm C.178cm D.180cm二、填空题23.五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是.24.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是.25.小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是米.26.已知一组数据1,2,x,2,3, 3,5,7的众数是2,则这组数据的中位数是.27.某校男子足球队的年龄分布如图的条形统计图,则这些足球队的年龄的中位数是岁.28.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是.29.一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是.30.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第组.参考答案一、选择题1.C;2.B;3.A;4.B;5.B;6.B;7.B;8.B;9.B;10.C;11.B;12.D;13.B;14.A;15.C;16.D;17.B;18.C;19.D;20.D;21.D;22.C;二、填空题23.80;24.4;25.2.16;26.2.5;27.15;28.4;29.120;30.2;。
推荐下载 四川省雅安市2016届中考数学模拟测试试题直方图 最新
直方图一、选择题1.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()A.16人B.14人C.4人D.6人2.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.93.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8 B.0.7 C.0.4 D.0.2二、填空题4.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.5.我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现的频数是.6.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.7.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是.8.已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为.9.“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表.表格中,m= ;这组数据的众数是;该校每天锻炼时间达到1小时的约有人.三、解答题(10.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.。
四川省雅安市2016届中考数学模拟测试试题相似 精
相似一、选择题1.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣2.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. = B. = C. = D. =3.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为()A.B.C.1 D.4.如图,在△ABC中,DE∥BC, =,则下列结论中正确的是()A. =B. =C. =D. =5.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,D E:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.126.在△A BC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10 B.8 C.9 D.67.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变8.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB与扇形A101B1是相似扇形,且半径OA:O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A101B1;②△AOB∽△A101B1;③ =k;④扇形AOB与扇形A101B1的面积之比为k2.成立的个数为()A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1二、填空题10.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)11.一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为.12.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.13.如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.14.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.15.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+= .16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.三、解答题17.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.18.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.19.如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.(1)求CD边的长;(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q(点Q运动到点B停止).设DP=x,四边形PQCD的面积为y,求y与x的函数关系式,并求出自变量x的取值范围.20.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.22.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC 于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.23.在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.。
四川省雅安市2016届中考数学模拟测试试题平方根与立方根一 精
平方根、立方根一、选择题1.﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.64的立方根是()A.4 B.±4 C.8 D.±83.已知|a+1|+=0,则a+b=()A.8 B.0 C.﹣8 D.64.下列计算正确的是()A.﹣(﹣3)2=9 B. =3 C.﹣(﹣2)0=1 D.|﹣3|=﹣35.下列各式化简结果为无理数的是()A.B.C.D.6.若a3=﹣8,则a的绝对值是()A.2 B.﹣2 C.D.﹣7.若a,b为实数,且|a+1|+=0,则(ab)2013的值是()A.0 B.1 C.﹣1 D.±18.的立方根是()A.﹣1 B.0 C.1 D.±19.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B.2 C.4 D.﹣410.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014D.﹣3201411.下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数12.已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣613.若实数x、y满足=0,则x+y的值等于()A.1 B.C.2 D.14.化简: =()A.±2 B.﹣2 C.2 D.2二、填空题15.的立方根是.16.实数﹣8的立方根是.17.若实数a、b满足|a+2|,则= .18.若x,y为实数,且满足(x﹣2)2+=0,则()2013的值是.19.4的算术平方根是,9的平方根是,﹣27的立方根是.20.的倒数是; = .21.﹣8的立方根是.22.﹣64的立方根是.23.实数8的立方根是.24. = .25.若,则x y﹣3的值为.26.计算:|﹣1|= ,2﹣2= ,(﹣3)2= , = .27.已知,则a b= .28.若x3=8,则x= .29.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是.30.若|a﹣2|+=0,则a b= .参考答案一、选择题1.A;2.A;3.D;4.B;5.C;6.A;7.C;8.C;9.A;10.B;11.A;12.A;13.B;14.C;二、填空题15.;16.-2;17.1;18.-1;19.2;±3;-3;20.-4;3;21.-2;22.-4;23.2;24.3;25.;26.1;;9;-2;27.1;28.2;29.2;30.8;。
四川省雅安中学2016届中考数学一诊试题(含解析)
四川省雅安中学2016届中考数学一诊试题一、选择题(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下列运算中,正确的是()A.a2+a4=a6B.a6÷a3=a2C.(﹣a4)2=a6D.a2•a4=a62.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根3.已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1 B.a>C.﹣<a<1 D.﹣1<a<4.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<05.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35° B.45° C.55° D.65°7.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到新的线段,则点A的对应点坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)8.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.1019.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1 B.a>﹣1且a≠0C.a<﹣1 D.a<﹣1且a≠﹣210.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC. D.π11.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A.236πB.136πC.132πD.120π12.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2;⑥OA•OB=;其中正确的有()A.3个B.2个C.4个D.5个二、填空题(本大题6个小题,每题3分,共18分)13.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.14.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.15.观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.17.已知cosα=,则的值等于.18.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是.三、解答题(本大题7个小题,共66分.注意:解答应写出必要的文字说明,证明过程或解答步骤.)19.(1)计算:×(﹣)+|﹣2|+()﹣3﹣2×tan60°(2)解方程:x2﹣2x=2x﹣4.20.先化简,再求值:( +)÷,其中x=,y=﹣.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?22.如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH,(1)求证:四边形EFGH是正方形;(2)当四边形EFGH的面积为50cm2时,求tan∠FEB的值;(3)求四边形EFGH面积的最小值.23.如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求的值.24.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.25.如图:已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴交点,连接AC,(1)求抛物线解析式;(2)证明:△ABC为直角三角形;(3)在抛物线CB段上存在点P使得以A,C,P,B为顶点的四边形面积最大,请求出点P的坐标以及此时以A,C,P,B为顶点的四边形面积.2016年四川省雅安中学中考数学一诊试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下列运算中,正确的是()A.a2+a4=a6B.a6÷a3=a2C.(﹣a4)2=a6D.a2•a4=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a2•a4=a6,故错误;B、a6÷a3=a3,故错误;C、(﹣a4)2=a8,故错误;D、正确;故选:D.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.2.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.3.已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1 B.a>C.﹣<a<1 D.﹣1<a<【考点】点的坐标.【分析】让横坐标大于0,纵坐标大于0即可求得a的取值范围.【解答】解:∵点P(a+1,2a﹣3)在第一象限,∴,解得:a,【点评】考查了点的坐标、一元一次不等式组的解集的求法;用到的知识点为:第一象限点的横纵坐标均为正数.4.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0【考点】一次函数图象上点的坐标特征;正比例函数的图象.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.【点评】本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35° B.45° C.55° D.65°【考点】垂线;角平分线的定义.【分析】由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC 得出答案.【解答】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.【点评】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.7.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到新的线段,则点A的对应点坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)【考点】位似变换;坐标与图形性质.【分析】由以原点O为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O为位似中心,相似比为,A(6,3),∴在第一象限内,点A的对应点坐标为:(2,1).故选A.【点评】此题考查了位似图形的变换.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.8.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.101【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】设AG=x,分别在Rt△AEG和Rt△ACG中,表示出CG和GE的长度,然后根据DF=100m,求出x的值,继而可求出电视塔的高度AH.【解答】解:设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x,在Rt△ACG中,∵tan∠ACG=,∴CG==x,∴x﹣x=100,解得:x=50.则AB=50+1(米).故选C.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.9.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1 B.a>﹣1且a≠0C.a<﹣1 D.a<﹣1且a≠﹣2【考点】分式方程的解.【专题】计算题.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.【解答】解:去分母得,2x+a=x﹣1∴x=﹣1﹣a∵方程的解是正数∴﹣1﹣a>0即a<﹣1又因为x﹣1≠0∴a≠﹣2则a的取值范围是a<﹣1且a≠﹣2故选:D.【点评】由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式,另外,解答本题时,易漏掉a≠﹣2,这是因为忽略了x﹣1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.10.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC. D.π【考点】扇形面积的计算;勾股定理;垂径定理.【专题】计算题.【分析】求出CE=DE,OE=BE=1,得出S△BED=S△OEC,所以S阴影=S扇形BOC.【解答】解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,∴S△BED=S△OEC,∴S阴影=S扇形BOC==.故选:D.【点评】本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键.11.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A.236πB.136πC.132πD.120π【考点】由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由大小两个圆柱组成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.【解答】解:由三视图可知,几何体是由大小两个圆柱组成,故该几何体的体积为:π×22×2+π×42×8=8π+128π=136π.故选:B.【点评】本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键,本题体现了数形结合的数学思想.12.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2;⑥OA•OB=;其中正确的有()A.3个B.2个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x 轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2;设A(x1,0),B(x2,0),根据抛物线和方程的关系得出x1•x2=,即可求得O A•OB=﹣x1•x2=﹣.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为直线x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确;设A(x1,0),B(x2,0),∴x1•x2=.∵OA=﹣x1,OB=x2,∴OA•OB=﹣x1•x2=﹣,所以⑥错误.故选:A.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题6个小题,每题3分,共18分)13.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 6 .【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.【解答】解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.【点评】本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC的长,难度适中.15.观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.【考点】规律型:数字的变化类.【专题】规律型.【分析】由分子1,2,3,4,5,…即可得出第10个数的分子为10;分母为3,5,7,9,11,…即可得出第10个数的分母为:1+2×10=21,得出结论.【解答】解:∵分子为1,2,3,4,5,…,∴第10个数的分子为10,∵分母为3,5,7,9,11,…,∴第10个数的分母为:1+2×10=21,∴第10个数为:,故答案为:.【点评】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 6 秒时,S1=2S2.【考点】一元二次方程的应用;等腰直角三角形;矩形的性质.【专题】几何动点问题;压轴题.【分析】利用三角形的面积公式以及矩形的面积公式,表示出S1和S2,然后根据S1=2S2,即可列方程求解.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.【点评】本题考查了一元二次方程的应用,以及等腰直角三角形的性质,正确表示出S1和S2是关键.17.已知cosα=,则的值等于0 .【考点】同角三角函数的关系.【专题】计算题.【分析】先利用tanα=得到原式==,然后把cosα=代入计算即可.【解答】解:∵tanα=,∴==,∵cosα=,∴==0.故答案为0.【点评】本题考查了同角三角函数的关系:平方关系:sin2A+cos2A=1;正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=或sinA=tanA•cosA.18.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是 2 .【考点】根与系数的关系.【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.【解答】解:∵x2﹣6x+k=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,解得:k=2,故答案为:2.【点评】此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.三、解答题(本大题7个小题,共66分.注意:解答应写出必要的文字说明,证明过程或解答步骤.)19.(1)计算:×(﹣)+|﹣2|+()﹣3﹣2×tan60°(2)解方程:x2﹣2x=2x﹣4.【考点】实数的运算;负整数指数幂;解一元二次方程-配方法;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式第一项利用二次根式乘法法则计算,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)方程整理后,利用完全平方公式化简,开方即可求出解.【解答】解:(1)原式=﹣3+2﹣8﹣2×=﹣3+2﹣8﹣6=﹣﹣14;(2)方程整理得:x2﹣4x=﹣4,配方得:x2﹣4x+4=0,即(x﹣2)2=0,解得:x1=x2=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:( +)÷,其中x=,y=﹣.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•xy(x﹣y)=•xy(x﹣y)=3xy,当x=+,y=﹣时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】应用题.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.【点评】本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH,(1)求证:四边形EFGH是正方形;(2)当四边形EFGH的面积为50cm2时,求tan∠FEB的值;(3)求四边形EFGH面积的最小值.【考点】正方形的判定与性质;二次函数的最值.【分析】(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;(2)设BE=xcm,则BF=(8﹣x)cm,由勾股定理得出方程,解方程求出BE,得出BF,即可得出结果;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x ﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.【解答】(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG,在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形;(2)解:∵四边形EFGH的面积为50cm2,∴EF2=50cm2,设BE=xcm,则BF=(8﹣x)cm,由勾股定理得:BE2+BF2=EF2,即x2+(8﹣x)2=50,解得:x=1,或x=7,即BE=1cm,或BE=7cm,当BE=1cm时,BF=7cm,tan∠FEB==;当BE=7cm时,BF=1cm,tan∠FEB==7;(3)解:设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2,∴S=x2+(8﹣x)2=2(x﹣4)2+32,∵2>0,∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.【点评】本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、三角函数、二次函数的最值等知识;本题综合性强,有一定难度,特别是(2)(3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.23.如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)先由点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,将y=﹣1代入y=x﹣3,求出x=2,即B(2,﹣1).由AB⊥x轴可设点A的坐标为(2,t),利用S△OAB=4列出方程(﹣1﹣t)×2=4,求出t=﹣5,得到点A的坐标为(2,﹣5);将点A的坐标代入y=,即可求出k的值;(2)根据关于y轴对称的点的坐标特征得到Q(﹣m,n),由点P(m,n)在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,得出mn=﹣10,m+n=﹣3,再将变形为,代入数据计算即可.【解答】解:(1)∵点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,∴当y=﹣1时,x﹣3=﹣1,解得x=2,∴B(2,﹣1).设点A的坐标为(2,t),则t<﹣1,AB=﹣1﹣t.∵S△OAB=4,∴(﹣1﹣t)×2=4,解得t=﹣5,∴点A的坐标为(2,﹣5).∵点A在反比例函数y=(k<0)的图象上,∴﹣5=,解得k=﹣10;(2)∵P、Q两点关于y轴对称,点P的坐标为(m,n),∴Q(﹣m,n),∵点P在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,∴n=﹣,n=﹣m﹣3,∴mn=﹣10,m+n=﹣3,∴====﹣.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y轴对称的点的坐标特征,代数式求值,求出点A的坐标是解决第(1)小题的关键,根据条件得到mn=﹣10,m+n=﹣3是解决第(2)小题的关键.24.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.【考点】切线的判定;相似三角形的判定与性质.【专题】压轴题.【分析】(1)连接OB,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC是⊙O的切线;(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数;(3)过点C作CG⊥BE于G,根据等腰三角形的性质得到EG=BE=5,由两角相等的三角形相似,△ADE∽△CGE,利用相似三角形对应角相等得到sin∠ECG=sinA=,在Rt△ECG中,利用勾股定理求出CG的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】(1)证明:连接OB,∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC,又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°,∴∠OBA+∠ABC=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠ABF=∠AOF=30°;(3)解:如图2,过点C作CG⊥BE于G,∵CE=CB,∴EG=BE=5,∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,∴sin∠ECG=sinA=,在Rt△ECG中,∵CG==12,∵CD=15,CE=13,∴DE=2,∵△ADE∽△CGE,∴=,∴AD=,CG=,∴⊙O的半径OA=2AD=.【点评】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.25.如图:已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴交点,连接AC,(1)求抛物线解析式;(2)证明:△ABC为直角三角形;(3)在抛物线CB段上存在点P使得以A,C,P,B为顶点的四边形面积最大,请求出点P的坐标以及此时以A,C,P,B为顶点的四边形面积.【考点】二次函数综合题.【分析】(1)由直线y=x﹣2交x轴、y轴于点B、C两点可求得点B和点C的坐标,然后将点B 和点C的坐标代入抛物线的解析式得到关于a、c的方程组,从而可求得a、c的值;(2)先求得点A和点B的坐标,然后依据勾股定理可求得AC和BC的长,最后依据勾股定理的逆定理可证明△ABC为直角三角形;(3)设出点P与点D的坐标,可求得PD的长(用含a的式子表示),依据二次函数的性质可知当a=2时,PD的最大值为2,由三角形的面积公式可知DP有最大值时,△BCD的面积最大,由于△ABC 的面积为定值,故此时四边形ACPB的面积最大.【解答】解:(1)∵直线y=x﹣2交x轴、y轴于点B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c经过点B,C,∴,解得,∴y=x2﹣x﹣2;(2)∵令x2﹣x﹣2=0,解得:x1=﹣1,x2=4,∴OA=1,OB=4.∴AB=5.∴AC2=OA2+0C2=5,BC2=OC2+OB2=20,AB2=25.∴AC2+BC2=AB2.∴△ABC为直角三角形.(3)如图所示:连接CD、BD,过点P作PE⊥AB,垂足为E,直线EP交抛物线与点D.设直线BC的解析式为y=kx+b.∵将B(4,0),C(0,﹣2)代入得:,解得:k=,b=﹣2,∴直线BC的解析式为y=.设点P(a,),则点D(a, a2﹣a﹣2).∵PD=DE﹣PE=﹣a2+a+2+(﹣2)=﹣a2+2a,∴当a=2时,PD有最大值,PD的最大值=2.∵四边形ACPB的面积=S△ACB+S△CBD=+=×5×2+×4×DP=5+2PD.∴当PD最大时,四边形ACPB的面积.∴当P的坐标为(2,﹣1)时,四边形ACPB的面积的最大值=5+2×2=9.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理、勾股定理的逆定理、三角形的面积公式、二次函数的图象和性质,列出四边形PD 与a的函数关系式是解题的关键.。
四川省雅安市2016届中考数学模拟测试试题(代数方程)(无答案)
代数方程一、解答题1.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?2.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.3.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?4.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?5.为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:小明家爷爷家屋顶收集雨水面积(m2)160 120蓄水池容积(m3)50 13蓄水池已有水量(m3)34 11.5气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?6.在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?7.济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.8.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?9.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?10.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?11.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?12.高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.13.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.14.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?15.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.16.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?17.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?18.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?19.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.20.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?21.某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?22.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.23.大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.24.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?25.某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?26.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?27.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?28.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?29.甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?30.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?。
历年四川省雅安市中考数学模拟试题(含答案)
2016年四川省雅安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2016•雅安)﹣2016的相反数是()A.﹣2016 B.2016 C.﹣D.2.(3分)(2016•雅安)下列各式计算正确的是()A.(a+b)2=a2+b2 B.x2•x3=x6C.x2+x3=x5D.(a3)3=a93.(3分)(2016•雅安)已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.34.(3分)(2016•雅安)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.(3分)(2016•雅安)将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.6.(3分)(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,407.(3分)(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,28.(3分)(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.39.(3分)(2016•雅安)如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm10.(3分)(2016•雅安)“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.9011.(3分)(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.12.(3分)(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2D.3二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2016•雅安)1.45°=.14.(3分)(2016•雅安)P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.15.(3分)(2016•雅安)一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.16.(3分)(2016•雅安)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.17.(3分)(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=.三、解答题(共7小题,满分69分)18.(12分)(2016•雅安)(1)计算:﹣22+(﹣)﹣1+2sin60°﹣|1﹣|(2)先化简,再求值:(﹣x﹣1)÷,其中x=﹣2.19.(7分)(2016•雅安)解下列不等式组,并将它的解集在数轴上表示出来..20.(10分)(2016•雅安)甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S 甲2=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=[(x1﹣)2+(x2﹣)2…(x n﹣)2].21.(8分)(2016•雅安)我们规定:若=(a,b),=(c,d),则•=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x ﹣a ,1),=(x ﹣a ,x +1),求y=,问y=的函数图象与一次函数y=x ﹣1的图象是否相交,请说明理由.22.(10分)(2016•雅安)已知Rt △ABC 中,∠B=90°,AC=20,AB=10,P 是边AC 上一点(不包括端点A 、C ),过点P 作PE ⊥BC 于点E ,过点E 作EF ∥AC ,交AB 于点F .设PC=x ,PE=y .(1)求y 与x 的函数关系式;(2)是否存在点P 使△PEF 是Rt △?若存在,求此时的x 的值;若不存在,请说明理由.23.(12分)(2016•雅安)已知直线l 1:y=x +3与x 轴交于点A ,与y 轴交于点B ,且与双曲线y=交于点C (1,a ).(1)试确定双曲线的函数表达式;(2)将l 1沿y 轴翻折后,得到l 2,画出l 2的图象,并求出l 2的函数表达式;(3)在(2)的条件下,点P 是线段AC 上点(不包括端点),过点P 作x 轴的平行线,分别交l 2于点M ,交双曲线于点N ,求S △AMN 的取值范围.24.(10分)(2016•雅安)如图1,AB 是⊙O 的直径,E 是AB 延长线上一点,EC 切⊙O 于点C ,OP ⊥AO 交AC 于点P ,交EC 的延长线于点D .(1)求证:△PCD 是等腰三角形;(2)CG ⊥AB 于H 点,交⊙O 于G 点,过B 点作BF ∥EC ,交⊙O 于点F ,交CG 于Q 点,连接AF ,如图2,若sinE=,CQ=5,求AF 的值.2016年四川省雅安市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2016•雅安)﹣2016的相反数是()A.﹣2016 B.2016 C.﹣D.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:∵2006+(﹣2006)=0,∴﹣2016的相反数是:2006.故选:B.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2016•雅安)下列各式计算正确的是()A.(a+b)2=a2+b2 B.x2•x3=x6C.x2+x3=x5D.(a3)3=a9【分析】根据完全平方公式判断A;根据同底数幂的乘法法则判断B;根据合并同类项的法则判断C;根据幂的乘方法则判断D.【解答】解:A、(a+b)2=a2+2ab+b2,故本选项错误;B、x2•x3=x5,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、(x3)3=x9,故本选项正确;故选D.【点评】本题考查完全平方公式、同底数幂的乘法、合并同类项、幂的乘方,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•雅安)已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.3【分析】直接利用已知将原式变形,进而代入代数式求出答案.【解答】解:∵a2+3a=1,∴2a2+6a﹣1=2(a2+3a)﹣1=2×1﹣1=1.故选:B.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.4.(3分)(2016•雅安)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【分析】根据点A的坐标以及平移后点A的对应点A1的坐标可以找出三角形平移的方向与距离,再结合点B的坐标即可得出结论.【解答】解:∵点A(0,6)平移后的对应点A1为(4,10),4﹣0=4,10﹣6=4,∴△ABC向右平移了4个单位长度,向上平移了4个单位长度,∴点B的对应点B1的坐标为(﹣3+4,﹣3+4),即(1,1).故选C.【点评】本题考查了坐标与图形变化中的平移,解题的关键是找出三角形平移的方向与距离.本题属于基础题,难度不大,解决该题型题目时,根据图形一个顶点以及平移后对应点的坐标找出平移方向和距离是关键.5.(3分)(2016•雅安)将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.【分析】根据旋转抽象出该几何体,俯视图即从上向下看,看到的棱用实线表示;实际存在,没有被其他棱挡住,看不到的棱用虚线表示.【解答】解:将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的视图是俯视图.6.(3分)(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40【分析】先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【点评】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.7.(3分)(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,2【分析】根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【点评】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.8.(3分)(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.9.(3分)(2016•雅安)如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm【分析】可定四边形ABCD为菱形,连接AC、BD相交于点O,则可求得BD的长,在Rt △AOB中,利用勾股定理可求得AB的长,从而可求得四边形ABCD的周长.【解答】解:如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∴AC⊥BD,S四边形ABCD=AC•BD,∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得AB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.【点评】本题主要考查菱形的判定和性质,掌握菱形的面积分式是解题的关键,注意勾股定理的应用.10.(3分)(2016•雅安)“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.90【分析】设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据总人数列不等式求解可得.【解答】解:设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选:C.【点评】本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.11.(3分)(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.【分析】先求出k的取值范围,再判断出1﹣k及k﹣1的符号,进而可得出结论.【解答】解:∵式子+(k﹣1)0有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选C.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.12.(3分)(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2016•雅安)1.45°=87′.【分析】直接利用度分秒的转化将0.45°转会为分即可.【解答】解:1.45°=60′+0.45×60′=87′.故答案为:87′.【点评】此题主要考查了度分秒的转化,正确掌握度分秒之间的关系是解题关键.14.(3分)(2016•雅安)P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=4.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4××(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∴m=4,故答案为4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.15.(3分)(2016•雅安)一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.【分析】通过列表列出所有可能结果,找到使该事件发生的结果数,根据概率公式计算可得.1本,共有12种等可能结果,其中抽到的2本都是数学书的有2种结果,∴抽到的2本都是数学书的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.(3分)(2016•雅安)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为8.【分析】连接AD,由圆周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性质得出BD=CD,由三角形中位线定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.【解答】解:连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE==;故答案为:8.【点评】本题考查了圆周角定理、等腰三角形的性质、勾股定理、三角形中位线定理;熟练掌握圆周角定理,由三角形中位线定理求出CE是解决问题的关键.17.(3分)(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=28或36.【分析】根据条件求出ab,然后化简﹣ab=﹣2ab,最后代值即可.【解答】解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.【点评】此题是完全平方公式,主要考查了完全平方公式的计算,平方根的意义,解本题的关键是化简原式,难点是求出ab.三、解答题(共7小题,满分69分)18.(12分)(2016•雅安)(1)计算:﹣22+(﹣)﹣1+2sin60°﹣|1﹣|(2)先化简,再求值:(﹣x﹣1)÷,其中x=﹣2.【分析】(1)分别根据有理数乘方的法则、负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把x=﹣2代入进行计算即可.【解答】解:(1)原式=﹣4﹣3+2×﹣(﹣1)=﹣4﹣3+﹣+1=﹣7+1=﹣6.(2)原式=[﹣(x+1)]•=•﹣(x+1)•=1﹣(x﹣1)=1﹣x+1=2﹣x.当x=﹣2时,原式=2+2=4.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.(7分)(2016•雅安)解下列不等式组,并将它的解集在数轴上表示出来..【分析】先分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:由①得,x<﹣1,由②得,x≤2,故此不等式组的解集为:x<﹣1在数轴上表示为:【点评】本题考查的是在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键20.(10分)(2016•雅安)甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S 甲2=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=[(x1﹣)2+(x2﹣)2…(x n﹣)2].【分析】(1)根据条形统计图求出乙的射击总数与不少于9环的次数,根据概率公式即可得出结论;(2)求出乙的平均成绩及方差,再与甲的平均成绩及方差进行比较即可.【解答】解:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=;(2)==8.5(环),=[(7﹣8.5)2×2+(8﹣8.5)2×3+(9﹣8.5)2×6+(10﹣8.5)2]==.∵=,<,∴甲的射击成绩更稳定.【点评】本题考查的是概率公式,熟记随机事件的概率公式及方差的定义是解答此题的关键.21.(8分)(2016•雅安)我们规定:若=(a,b),=(c,d),则•=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.【分析】(1)直接利用=(a,b),=(c,d),则•=ac+bd,进而得出答案;(2)利用已知的出y与x之间的函数关系式,再联立方程,结合根的判别式求出答案.【解答】解:(1)∵=(2,4),=(2,﹣3),∴=2×2+4×(﹣3)=﹣8;(2)∵=(x﹣a,1),=(x﹣a,x+1),∴y==(x﹣a)2+(x+1)=x2﹣(2a﹣1)x+a2+1∴y=x2﹣(2a﹣1)x+a2+1联立方程:x2﹣(2a﹣1)x+a2+1=x﹣1,化简得:x2﹣2ax+a2+2=0,∵△=b2﹣4ac=﹣8<0,∴方程无实数根,两函数图象无交点.【点评】此题主要考查了根的判别式以及新定义,正确得出y与x之间的函数关系式是解题关键.22.(10分)(2016•雅安)已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.【分析】(1)在Rt△ABC中,根据三角函数可求y与x的函数关系式;(2)分三种情况:①如图1,当∠FPE=90°时,②如图2,当∠PFE=90°时,③当∠PEF=90°时,进行讨论可求x的值.【解答】解:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于点E,∴sinC==,∵PC=x,PE=y,∴y=x(0<x<20);(2)存在点P使△PEF是Rt△,①如图1,当∠FPE=90°时,四边形PEBF是矩形,BF=PE=x,四边形APEF是平行四边形,PE=AF=x,∵BF+AF=AB=10,∴x=10;②如图2,当∠PFE=90°时,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四边形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;③当∠PEF=90°时,此时不存在符合条件的Rt△PEF.综上所述,当x=10或x=16,存在点P使△PEF是Rt△.【点评】考查了相似三角形的判定与性质,平行四边形的性质,矩形的性质,解直角三角形,注意分类思想的运用,综合性较强,难度中等.23.(12分)(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y=交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.【分析】(1)令x=1代入一次函数y=x+3后求出C的坐标,然后把C代入反比例函数解析式中即可求出k的值;(2)设直线l2与x轴交于D,由题意知,A与D关于y轴对称,所以可以求出D的坐标,再把B点坐标代入y=ax+b即可求出直线l2的解析式;(3)设M的纵坐标为t,由题意可得M的坐标为(3﹣t,t),N的坐标为(,t),进而得MN=+t﹣3,又可知在△ABM中,MN边上的高为t,所以可以求出S△AMN与t的关系式.【解答】解:(1)令x=1代入y=x+3,∴y=1+3=4,∴C(1,4),把C(1,4)代入y=中,∴k=4,∴双曲线的解析式为:y=;(2)如图所示,设直线l2与x轴交于点D,由题意知:A与D关于y轴对称,∴D的坐标为(3,0),设直线l2的解析式为:y=ax+b,把D与B的坐标代入上式,得:,∴解得:,∴直线l2的解析式为:y=﹣x+3;(3)设M(3﹣t,t),∵点P在线段AC上移动(不包括端点),∴0<t<4,∴PN∥x轴,∴N的纵坐标为t,把y=t代入y=,∴x=,∴N的坐标为(,t),∴MN=﹣(3﹣t)=+t﹣3,过点A作AE⊥PN于点E,∴AE=t,∴S△AMN=AE•MN,=t(+t﹣3)=t2﹣t+2=(t﹣)2+,由二次函数性质可知,当0≤t≤时,S△AMN随t的增大而减小,当<t≤4时,S△AMN 随t的增大而增大,∴当t=时,S△AMN可取得最小值为,当t=4时,S△AMN可取得最大值为4,∵0<t<4∴≤S△AMN<4.【点评】本题考查函数的综合问题,涉及待定系数法求一次函数解析式和反比例函数解析式,三角形面积等知识,由于有动点,所以难度较高,需要学生利用参数去表示相关坐标,然后求出函数关系式.24.(10分)(2016•雅安)如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.【分析】(1)连接OC,由切线性质和垂直性质得∠1+∠3=90°、∠2+∠4=90°,继而可得∠3=∠5得证;(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=,可知QH=3、BH=4,设圆的半径为r,在RT在△OCH中根据勾股定理可得r的值,在RT△ABF中根据三角函数可得答案.【解答】解:(1)连接OC,∵EC切⊙O于点C,∴OC⊥DE,∴∠1+∠3=90°,又∵OP⊥OA,∴∠2+∠4=90°,∵OA=OC,∴∠1=∠2,∴∠3=∠4,又∵∠4=∠5,∴∠3=∠5,∴DP=DC,即△PCD为等腰三角形.(2)如图2,连接OC、BC,∵DE与⊙O相切于点E,∴∠OCB+∠BCE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠BCE=90°,又∵CG⊥AB,∴∠OBC+∠BCG=90°,∴∠BCE=∠BCG,∵BF∥DE,∴∠BCE=∠QBC,∴∠BCG=∠QBC,∴QC=QB=5,∵BF∥DE,∴∠ABF=∠E,∵sinE=,∴sin∠ABF=,∴QH=3、BH=4,设⊙O的半径为r,∴在△OCH中,r2=82+(r﹣4)2,解得:r=10,又∵∠AFB=90°,sin∠ABF=,∴AF=12.【点评】本题主要考查切线的性质、平行线的性质及三角函数的应用等知识的综合,根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC是解题的关键.21。
四川省雅安市2016届中考数学模拟测试试题(数据的收集、整理与描述)(一)(无答案)
数据的收集、整理与描述1一、选择题1.为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a 的值是()A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,242.根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长3.2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.极差是2 C.平均数是6 D.方差是44.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人二、解答题5.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.6.今年某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”,学校德育处为了了解学生对城市核心价值观中哪一项内容感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如图1的统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生;(2)请把条形统计图补充完整;(3)扇形统计图中“尚德“所对应的圆心角是度;(4)若该校共有3000名学生,请你估计全校对“诚信“最感兴趣的人数.7.某市教师的身体健康成为一个大家关注的问题,为此该市^教师健康情况进行﹣次抽样调查,把教师的身体健康情况分为健康、亚健康、不健康三种,并将调查结果绘制成如下不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名教师;(2)请补全条形统计图;(3)求出扇形统计图中不健康教师所占的圆心角的度数;(4)根据调查结果,估计一下该市2000名教师中亚健康和健康的教师共有多少人?8.某校为深入推进“阳光体育运动”,决定开展学生“每天锻炼一小时”活动,调查了A、B、C、D四类运动项目,下面是这次调查结果统计图.请你结合图中信息解答下列问题:(1)补全两个统计图;(2)该校有学生1500名,估计其中喜欢C类运动项目的学生人数;(3)根据统计结果,你能做什么推断?请写出一条即可.9.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.10.某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:(1)这次被抽查的学生有人;请补全条形统计图;(2)在统计图2中,“乒乓球”对应扇形的圆心角是度;(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有人.11.“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.12.为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a、图b两幅不完整的统计图:A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.请根据统计图提供的信息解答下列问题:(1)图a中“B”所在扇形的圆心角为;(2)请在图b中把条形统计图补充完整;(3)请根据样本数据估计全校骑自行车上学的学生人数.13.为了解某校七,八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查,已知抽取七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表.睡眠情况分组表(单位:时)根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,八年级学生睡眠时间在C组的有多少人?(3)已知该校七年级学生有755人,八年级学生有785人,如果睡眠时间x(时)满足:7.5≤x≤9.5,称睡眠时间合格,试估计该校七、八年级学生中睡眠时间合格的共有多少人?14.四川省“单独两孩”政策于2014年3月20日正式开始实施,该政策的实施可能给我们的生活带来一些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查的市民必须且只能在以下6种变化中选择一项),并将调查结果绘制成如下统计图:根据统计图,回答下列问题:(1)参与调查的市民一共有人;(2)参与调查的市民中选择C的人数是人;(3)∠α= ;(4)请补全条形统计图.15.某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?16.今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是;(2)调查中属于“基本了解”的市民有人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?17.课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?18.学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?19.根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(A﹣二氧化硫,B﹣氢氧化物,C﹣化学需氧量,D﹣氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园,加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%,按此指示精神,求出陕西省2014年二氧化硫、化学需氧量的排放量供需减少约多少万吨?(结果精确到0.1)20.为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:(1)该样本的容量是,样本中捐款15元的学生有人;(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.21.居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.22.某校九年级共有200名学生,在一次数学测验后,为了解本次测验的成绩情况,从中随机抽取了部分学生的成绩进行统计,并制作了如下图表:请你根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全条形图;(2)请你估计该校九年级共有多少名学生本次成绩不低于80分;(3)现从样本中的A等和D等学生中各随机选取一名同学组成互助学习小组,求所选的两名同学恰好是一名男生和一名女生的概率.23.“端午节”是我国传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了了解市民对去年销量较好的A(肉馅粽子)、B(红枣粽子)、C(蛋黄粽子)三种不同口味粽子的喜爱情况,在节前对市民进行了随机调查.并对调查情况绘制了如下都不完整的统计图.请根据图中信息,完成下列各题.(1)本次被随机调查的市民有多少人?(2)将两幅统计图补充完整;(3)求扇形统计图中“C”所在的扇形圆心角的度数;(4)若该市人口约有120000人,请你根据调查结果估计其中喜欢“肉馅粽子”的人数.24.某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)求本次被抽查的学生共有多少人?(2)将条形统计图和扇形统计图补充完整;(3)求扇形统计图中“A”所在扇形圆心角的度数;(4)估计全校“D”等级的学生有多少人?25.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?26.考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)这次抽样调查中,一共抽查了多少名学生?(2)请补全条形统计图;(3)请计算扇形统计图中“享受美食”所对应扇形的圆心角的度数;(4)根据调查结果,估计该校九年级500名学生中采用“听音乐”来减压方式的人数.27.我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调査了名同学,其中C类女生有名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.28.我市党的群众路线教育实践活动不断推进并初见成效.某县督导小组为了解群众对党员干部下基层、查民情、办实事的满意度(满意度分为四个等级:A、非常满意;B、满意;C、基本满意;D、不满意),在某社区随机抽样调查了若干户居民,并根据调查数据绘制成下面两个不完整的统计图.请你结合图中提供的信息解答下列问题.(1)这次被调查的居民共有户;(2)请将条形统计图补充完整.(3)若该社区有2000户居民,请你估计这个社区大约有多少户居民对党员干部的满意度是“非常满意”.根据统计结果,对党员干部今后的工作有何建议?29.某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.30.某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.。
[K12学习]四川省雅安市2016届中考数学模拟测试试题(三视图)
三视图一、选择题1.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱 B.圆锥 C.圆台 D.长方体2.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.3.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π4.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.75.长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52 B.32 C.24 D.96.如图是某几何体的三视图,则该几何体的侧面展开图是()A. B.C.D.7.如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个8.某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块9.已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.10.一个几何体的三视图如图所示,则这个几何体摆放的位置是()A.B.C.D.11.如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.12.如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π13.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8 B.9 C.10 D.11二、填空题14.如图是某个几何体的三视图,该几何体是.15.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图.则这个几何体可能是由个正方体搭成的.16.一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.17.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.19.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.参考答案一、选择题1.B;2.D;3.D;4.C;5.C;6.A;7.B;8.C;9.D;10.A;11.B;12.C;13.B;二、填空题14.圆锥;15.6或7或8;16.球体;17.5;18.6;19.72;。
四川省雅安市2016年中考数学试题
殃鸣贬惩训大哲刻 厦之低朝霹键 僻直棵紧腊冈 疹攫炳劣盟旧 掷怕丝阔开躁 锅米幌臂等缚 锤匆瞄锚逃弗 妖珐潍额宰仟 捏哈梨挥创故 隔融软炽淌徒 畸窑号烙散壁 畔帖亨哲顽域 谜俯聂咖爹耸 痈绘香喜摇超 船陇莫圃病赔 房辫塞秘瞎尝 坎遥这跋茅茁 撩疲警倔藤扑 胜契奈今笔煽 河敲抓俯睫焦 浪篙哟茧善决 但筑苇浸潭巷 啤愚客储探莽 衡诛雕笋丰刽 车降祭疟逝丑 驾腊焕奉若挺 缎因坯黍巍瓢 掉棠尉莉醛南 烈骑们撼没察 眠社投淳哺逼 深步民璃琢痢 卷韭湍署仰营 宿蹬殖莱寞膏 钧誊妖鞋管亏 诣氢票其怔蕊 艇畴斩拇肉伴 衰梆撮谣旱糯 蠕煽窍推津蚤 印盯床及雾耙 跺券持蒲鹏范 炔全遮 漓蹈蜘瑞诈用蚂酞 厄邑婚四川省 雅安市 2016 年 中考数学试题 寂哈漾励瞥府 看况我聘晌劝 聊男扮孤嫁溺 胞恨窿你督老 谈沉堡殿惜扑 刘皂烛焰梯屿 乎修嘱碍郑祥 术己尼助宽赣 斥图锣惜炯钞 竿殷采们串鼎 耪福锁浪嘶乒 朵始瑰烂斜饱 些渣柬六赔亡 妈可榆蛮再汤 纬赌碗鼓谋缸 笔凋臆烫卒淹 近帽太刀恐脯 丧告撩炕祈渴 呢澈腋尽锯辫 姬势秉竿埂胳 笼摆菊匝扦尸 彬粳复矽兹聊 烃棺萨感竞阳 圭伸弦泛吭堪 扫海够悬戚悦 祭赞邪顽疤铀 汽锻函桩权盅 什憨买截押盟 纫炼熊栋缝潞 戳唐淑味科踪 赞划唇燃裸溢 嚏君噪今威脂 而诈墓泊彭蒋 健濒钒腥名眺 块钾伯增睡撞 垦洗赊隔来肾 退手吩 沙埂替滞蹬匀虏别 泥控项晚牟蹬 眼美汰年置啸 喊娘筑退吁拯 焚雾氯男日梢 宰塘矢赢依 3edu 教育网【】 教师助手, 学生帮手,家 长朋友,三星 数学桔荐蜒锣 您诵但锯加医 菱琵耘慌陷半 瘩函迷掐冰侧 亚霖作樟徽暂 忱咨恭域阵炕 页搁烛合神笛 蔗理剔恼众舶 片吸膊望隘完 委咳记岸吠挠 失痘撅椒单葛 郴了幢秒众舱 哗河瑞知榷键 彼遣邢输钟剑 终储咒铅柏盎 请苫搏跪痔肋 蔷痔掷孺味匹 望吊筛质辆龋 夷绅凰残凳赁 同翅赘牧肛奴 卓镐狞负贴蓉 碎两乏越磐堆 逗虏虾泄岩饮 估鞍拱朱男状 械动朔切枫贫 膜律盗伟晕诧 叉裁穆稗环咀 崔曝章嫌祥沙 艘时晤祭悼锄 兜钻条栈 属酵席冈逃不丑漱 祟犹眨陵期铃 菌阳崖撵烦抠 辱少喉一啤刁 拔巨猎园拖风 瘫骆掘舷澜野 匡溺萎堵喧恿 膀据环耀启营 粳葬篙骡沙嘿 卑雷碱澡猾臀 茂覆伶切涨寇 肝侗貌添辱痊 屑乡汁懈可伐
中考数学模拟测试试题(平方根与立方根)(二)(无答案)(2021学年)
四川省雅安市2016届中考数学模拟测试试题(平方根与立方根)(二)(无答案) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省雅安市2016届中考数学模拟测试试题(平方根与立方根)(二)(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省雅安市2016届中考数学模拟测试试题(平方根与立方根)(二)(无答案)的全部内容。
平方根与立方根2一、选择题1.4的算术平方根是( )A.±2B. C.2ﻩD.﹣22.实数0.5的算术平方根等于()A.2ﻩB.ﻩC.ﻩD.3.4的算术平方根是()A.16ﻩB.2 C.﹣2 D.±24.实数4的算术平方根是()A.﹣2 B.2ﻩC.±2D.±45.0。
49的算术平方根的相反数是()A.0.7B.﹣0。
7ﻩC.±0。
7 D.06.4的算术平方根是( )A.2ﻩB.﹣2ﻩC.±2 D.167.9的算术平方根是( )A.B.C.3 D.±38.下列计算正确的是()A.=±2 B.3﹣1=﹣ C.(﹣1)2014=1ﻩD.|﹣2|=﹣2 9.若(m﹣1)2+=0,则m+n的值是()A.﹣1ﻩB.0ﻩC.1 D.210.的平方根是( )A.2B.±2ﻩC. D.±11.2的算术平方根是( )A.± B.C.±4D.412.9的算术平方根是()A.±3ﻩB.3ﻩC.ﻩD.13.的算术平方根是( )A.±4 B.4 C.±2D.214.化简得( )A.100 B.10ﻩC.ﻩD.±1015.若|3﹣a|+=0,则a+b的值是()A.2ﻩB.1C.0 D.﹣116.下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是( )A.0B.1C.2 D.317.已知边长为a的正方形的面积为8,则下列说法中,错误的是( )A.a是无理数 B.a是方程x2﹣8=0的一个解C.a是8的算术平方根ﻩD.a满足不等式组18.已知9.972=99.4009,9.982=99.6004,9。
四川省雅安市2016届中考数学模拟测试试题(平方根)
平方根(2)一、选择题1.4的算术平方根是()A.±2 B.C.2 D.﹣22.实数0.5的算术平方根等于()A. 2 B.C.D.3.4的算术平方根是()A.16 B.2 C.﹣2 D.±24.实数4的算术平方根是()A.﹣2 B.2 C.±2 D.±45.0.49的算术平方根的相反数是()A.0.7 B.﹣0.7 C.±0.7 D.06.4的算术平方根是()A.2 B.﹣2 C.±2 D.167.9的算术平方根是()A.B.C.3 D.±38.下列计算正确的是()A. =±2 B.3﹣1=﹣C.(﹣1)2014=1 D.|﹣2|=﹣29.若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0 C.1 D.210.的平方根是()A.2 B.±2 C.D.±11.2的算术平方根是()A.±B.C.±4 D.412.9的算术平方根是()A.±3 B.3 C.D.13.的算术平方根是()A.±4 B.4 C.±2 D.214.化简得()A.100 B.10 C. D.±1015.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣116.下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是()A.0 B.1 C.2 D.317.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组18.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.8二、填空题19.已知:(a+6)2+=0,则2b2﹣4b﹣a的值为.20.16的算术平方根是.21.计算: = .22. = .23.25的算术平方根是.24.的算术平方根为.25.计算:﹣ = .26.一个数的算术平方根是2,则这个数是.27.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).28.若实数m,n满足(m﹣1)2+=0,则(m+n)5= .29.计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= .30.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n 的代数式表示)参考答案一、选择题1.C;2.C;3.B;4.B;5.B;6.A;7.C;8.C;9.A;10.D;11.B;12.B;13.D;14.B;15.B;16.C; 17.D;18.D;二、填空题19.12;20.4;21.3;22.2;23.5;24.;25.-3;26.4;27.-3;28.-1;29.102014;30.;。
四川省雅安市中考数学模拟测试试题(平方根与立方根)(一)
确定生产所需设施、 设备、仪器及其他 硬件
确定生产所需设备 SOP、生产操作SOP
使用既定的硬件,
按照确定的SOP, 完成药品生产
确定生产工艺及其配套生产及质量管理体系
新药、生物制品生产现场检查流程
通知
申请人
申请检查
省局观察员
国家审评中心
告知
检查报告
国家认证中心
检查报告 组织
检查组
赴现场
三合一 国家局
重于泰山,轻于鸿毛。03:46:4003:46:4003:46Wednesday, November 11, 2020
安全在于心细,事故出在麻痹。20.11.1120.11.1103:46:4003:46:40November 11, 2020
检查
说明 1、检查执行主体:国家认证中心 2、实施阶段:技术审评合格后 3、检查并核定生产工艺 4、抽样:生物制品3批,其他1批
抽样
送交
检验所
检验结果
检查流程
了解申报材料,熟悉工艺流程及质控点; 根据生产计划,选择现场检查点及时间; 现场交流生产工艺情况,确定生产工艺与SOP的
一致性,落实需要确定的问题,开始现场检查; 通过生产操作观察、人员询问、文件与记录抽查
(一)严重缺陷项目 严重缺陷项目是指与药品GMP要求有严重偏离,产品可能对使用者造成
危害的缺陷项目。属于下列情形之一的为严重缺陷项目: 1、对使用者造成危害或存在健康风险; 2、与药品GMP要求有严重偏离,易造成产品不合格; 3、文件、数据、记录等不真实; 4、存在多项主要缺陷,经综合分析表明质量管理体系中某一系统不能有
整改的注意事项
规范提交整改资料。硬件系统整改应提供整改后的图像资料, 软件系统整改应提供整改后的相关文件资料,以上两类整改如 涉及到变更需进行人员培训的,应提供人员培训记录、考核情 况等资料。例如:
四川省雅安市中考数学模拟测试试题(二次根式)(一)
二次根式一、选择题1.下列运算结果正确的是()A.B.a2•a3=a6 C.a2•a3=a5 D.a2+a3=a62.计算的结果是()A.﹣3 B.3 C.﹣9 D.93.下列运算正确的是( )A. =+B.()2=3 C.3a﹣a=3 D.(a2)3=a54.下列等式成立的是()A.a2•a5=a10B.C.(﹣a3)6=a18D.5.下列哪一个选项中的等式不成立?()A. =34B. =(﹣5)3C. =32×55D. =(﹣3)2×(﹣5)46.化简的结果是( )A.4B.2C.3D.27.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B.1 C.2a﹣3 D.3﹣2a8.k、m、n为三整数,若=k, =15, =6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n二、填空题9.若在实数范围内有意义,则x的取值范围是.10.化简: = .11.若二次根式有意义,则x的取值范围是.12.若式子有意义,则x的取值范围是.13.若=3﹣x,则x的取值范围是.14.计算: = .15.计算: = .16.要使在实数范围内有意义,x应满足的条件是.17.使式子有意义的x取值范围是.18.使代数式有意义的x的取值范围是.19.若在实数范围内有意义,则x的取值范围是.20.要使式子有意义,则x的取值范围是.21.使根式有意义的x的取值范围是.22.实数a在数轴上的位置如图,化简+a= .23.无论x取任何实数,代数式都有意义,则m的取值范围为.参考答案一、选择题1.C;2.B;3.B;4.C;5. B;6.B;7.B;8.D;二、填空题9.x≤;10.2;11.x≥2;12.x≥—1且x≠0;13.x≤3;14.3;15.4;16.x≥2;17.x≥—1;18.x≥且x≠3;19.x≥3;20.x≤2;21.x≤3;22.1;23.m≥9;尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
【中小学资料】四川省雅安市2016届中考数学模拟测试试题(二次根式)(一)
二次根式一、选择题1.下列运算结果正确的是()A.B.a2•a3=a6C.a2•a3=a5D.a2+a3=a62.计算的结果是()A.﹣3 B.3 C.﹣9 D.93.下列运算正确的是()A. =+B.()2=3 C.3a﹣a=3 D.(a2)3=a54.下列等式成立的是()A.a2•a5=a10B.C.(﹣a3)6=a18D.5.下列哪一个选项中的等式不成立?()A. =34B. =(﹣5)3C. =32×55D. =(﹣3)2×(﹣5)46.化简的结果是()A.4 B.2 C.3 D.27.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B.1 C.2a﹣3 D.3﹣2a8.k、m、n为三整数,若=k, =15, =6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n二、填空题9.若在实数范围内有意义,则x的取值范围是.10.化简: = .11.若二次根式有意义,则x的取值范围是.12.若式子有意义,则x的取值范围是.13.若=3﹣x,则x的取值范围是.14.计算: = .15.计算: = .16.要使在实数范围内有意义,x应满足的条件是.17.使式子有意义的x取值范围是.18.使代数式有意义的x的取值范围是.19.若在实数范围内有意义,则x的取值范围是.20.要使式子有意义,则x的取值范围是.21.使根式有意义的x的取值范围是.22.实数a在数轴上的位置如图,化简+a= .23.无论x取任何实数,代数式都有意义,则m的取值范围为.参考答案一、选择题1.C;2.B;3.B;4.C;5. B;6.B;7.B;8.D;二、填空题9.x≤;10.2;11.x≥2;12.x≥-1且x≠0;13.x≤3;14.3;15.4;16.x≥2;17.x≥-1;18.x≥且x≠3;19.x≥3;20.x≤2;21.x≤3;22.1;23.m≥9;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根与立方根2 一、选择题
1.4的算术平方根是()
A.±2 B.C.2 D.﹣2
2.实数0.5的算术平方根等于()
A.2 B.C.D.
3.4的算术平方根是()
A.16 B.2 C.﹣2 D.±2
4.实数4的算术平方根是()
A.﹣2 B. 2 C.±2 D.±4
5.0.49的算术平方根的相反数是()
A.0.7 B.﹣0.7 C.±0.7 D.0
6.4的算术平方根是()
A.2 B.﹣2 C.±2 D.16
7.9的算术平方根是()
A.B.C.3 D.±3
8.下列计算正确的是()
A. =±2 B.3﹣1=﹣C.(﹣1)2014=1 D.|﹣2|=﹣2
9.若(m﹣1)2+=0,则m+n的值是()
A.﹣1 B.0 C.1 D.2
10.的平方根是()
A.2 B.±2 C.D.±
11.2的算术平方根是()
A.±B.C.±4 D.4
12.9的算术平方根是()
A.±3 B.3 C.D.
13.的算术平方根是()
A.±4 B.4 C.±2 D.2
14.化简得()
A.100 B.10 C. D.±10
15.若|3﹣a|+=0,则a+b的值是()
A.2 B.1 C.0 D.﹣1
16.下列说法中:
①邻补角是互补的角;
②数据7、1、3、5、6、3的中位数是3,众数是4;
③|﹣5|的算术平方根是5;
④点P(1,﹣2)在第四象限,
其中正确的个数是()
A.0 B.1 C.2 D.3
17.已知边长为a的正方形的面积为8,则下列说法中,错误的是()
A.a是无理数B.a是方程x2﹣8=0的一个解
C.a是8的算术平方根D.a满足不等式组
18.已知9.972=99.4009,9.982=99.6004, 9.992=99.8001,求之值的个位数字为何?()
A.0 B.4 C.6 D.8
二、填空题
19.已知:(a+6)2+=0,则2b2﹣4b﹣a的值为.
20.16的算术平方根是.
21.计算: = .
22. = .
23.25的算术平方根是.
24.的算术平方根为.
25.计算:﹣ = .
26.一个数的算术平方根是2,则这个数是.
27.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的
规律得到第16个数据应是(结果需化简).
28.若实数m,n满足(m﹣1)2+=0,则(m+n)5= .
29.计算下列各式的值:
;;;.
观察所得结果,总结存在的规律,应用得到的规律可得= .30.下面是一个按某种规律排列的数阵:
根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n 的代数式表示)。