高考数学考点突破——导数及其应用与定积分:变化率与导数、导数的计算
高二数学变化率与导数知识点总结
高二数学变化率与导数知识点总结在高二数学学习中,变化率和导数是非常重要的概念。
它们是微积分的基础,也是我们理解函数变化规律和求解问题的重要工具。
下面是关于高二数学中变化率和导数的知识点总结。
1. 变化率的概念变化率是描述一个量相对于另一个量的变化程度的指标。
在数学中,我们通常用函数的导数来表示变化率。
对于函数y = f(x),它的变化率可以用以下两种方式表示:- 平均变化率:平均变化率是函数在某个区间上的变化量与该区间长度的比值。
如果x的取值从a到b,对应的y的取值从f(a)到f(b),则该区间上的平均变化率为:平均变化率 = (f(b) - f(a)) / (b - a)- 瞬时变化率:瞬时变化率是指在某一点上的瞬时变化速度。
如果函数在x点的导数存在,则该点的瞬时变化率为导数值,即:瞬时变化率 = f'(x)2. 导数的定义和性质导数是描述函数变化率的工具,它的定义如下:- 对于函数y = f(x),如果函数在某一点x上的导数存在,那么导数表示函数在该点的瞬时变化率。
导数的定义如下: f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f'(x)表示函数f(x)在点x处的导数。
导数具有以下几个重要的性质:- 导数存在的条件:函数在某一点x处的导数存在的充分必要条件是函数在该点的左导数和右导数存在且相等。
- 导数的几何意义:函数在某一点的导数等于函数曲线在该点切线的斜率。
切线的斜率可以用导数来表示。
- 导数与函数单调性的关系:如果函数在某区间内的导数大于0,则函数在该区间内单调递增;如果函数在某区间内的导数小于0,则函数在该区间内单调递减。
- 导数与函数极值的关系:如果函数在某一点的导数存在且为0,那么该点可能是函数的极值点。
3. 常见函数的导数- 幂函数导数:对于幂函数y = x^n,其中n为常数,它的导数为:dy/dx = n*x^(n-1)- 指数函数导数:对于指数函数y = a^x,其中a为常数且大于0且不等于1,它的导数为:dy/dx = a^x * ln(a)- 对数函数导数:对于对数函数y = log_a(x),其中a为常数且大于0且不等于1,它的导数为:dy/dx = 1 / (x * ln(a))- 三角函数导数:对于三角函数sin(x),cos(x),tan(x)等,它们的导数可以通过基本导数公式来求解。
高考数学专题通必关备知识点整合专题二函数导数及其应用第十一节变化率与导数导数的计算-PPT精品文档
2.(2011江西)若f(x)=x2-2x-4ln ________.
x,则f′(x)>0的解集为
考 点 自 主 整 合 热 点 考 向 聚 集 高 效 课 时 作 业
Evaluation only. x-.NET 2x+1 3.5 Client Profile 5.2 ed with Aspose.Slides for 4 2 解析:f′(x)=2x-2-x= >0 x Copyright 2019-2019 Aspose Pty Ltd.
fx0+Δx-fx0 Δf lim = lim . Δ x Δ x → → Δx 0 Δx 0
2.导数的概念 (1)f(x)在 x=x0 处的导数就是 f(x)在 x=x0 处的 瞬时变化率.记
考 点 自 主 整 合 热 点 考 向 聚 集 高 效 课 时 作 业
Evaluation only. 作: ed with Aspose.Slides for .NET 3.5 Client Profile 5.2 y′|x= x0 或 f′(x0),即 Copyright 2019-2019 Aspose Pty Ltd. fx +Δx-fx
考 点 自 主 整 合 热 点 考 向 聚 集 高 效 课 时 作 业
Evaluation only. ed with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
1.平均变化率及瞬时变化率 (1)f(x)从x1到x2的平均变化率是 Δfx fx2-fx1 Evaluation = . Δx x2-x1
考 点 自 主 整 合 热 点 考 向 聚 集 高 效 课 时 作 业
(完整版)变化率与导数、导数的计算知识点与题型归纳
(完整版)变化率与导数、导数的计算知识点与题型归纳1●⾼考明⽅向1.了解导数概念的实际背景.2.理解导数的⼏何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x 的导数. 4.能利⽤基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.★备考知考情由近⼏年⾼考试题统计分析可知,单独考查导数运算的题⽬很少出现,主要是以导数运算为⼯具,考查导数的⼏何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、⽅程、斜率与倾斜⾓的关系,以平⾏或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014⼴东理科10、⽂科11. 2014⼴东理科10 曲线52-=+xy e在点()0,3处的切线⽅程为;2014⼴东⽂科11曲线53=-+xy e 在点()0,2-处的切线⽅程为;⼀、知识梳理《名师⼀号》P39知识点⼀导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0.(2)称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.注意:《名师⼀号》P40 问题探究问题1f′(x)与f′(x0)有什么区别?f′(x)是⼀个函数,f′(x0)是常数,f′(x0)是函数f′(x)在点x0处的函数值.例.《名师⼀号》P39 对点⾃测11.判⼀判(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)f′(x0)与[f(x0)]′表⽰的意义相同.()(3)f′(x0)是导函数f′(x)在x=x0处的函数值.()答案(1)×(2)×(3)√23知识点⼆导数的运算公式及法则 1.基本初等函数的导数公式注意:(补充)常量函数的导数为零11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();17.()log ,'()(0,1);ln 8.nn x xx x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x ==则42.导数的运算法则注意:(补充)复合函数的导数(())y f u x =,'''(())()y f u x u x =g注意:《名师⼀号》P40 问题探究问题3对函数求导时,其基本原则是什么?求函数的导数时,要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利⽤运算法则求导数.对于不具备求导法则结构形式的要适当恒等变形;对于⽐较复杂的函数,如果直接套⽤求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进⾏合'221.(()())''()'()2.(()())''()()()'()()'()()()()'3.()()4.(())''()1'()5.[]'()()f x g x f x g x f x g x f x g x f x g x f x f x g x f x g x g x g x cf x cf x g x g x g x ±=±?=?+-= ==-理变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误., 称为曲线在点P处的切线的斜率.即:'0000()()()lim lim→?→+?-===x xf x x f xyk f xx x切线5导数的⼏何意义函数在x=x0处的导数——曲线y=f(x)在点(x0,f(x0))处切线的斜率.导数的物理意义——瞬时速度例.周练13-1⼀个物体的运动⽅程为s=1-t+t2,其中s的单位是⽶,t的单位是秒,那么物体在3秒末的瞬时速度是() A.7⽶/秒B.5⽶/秒C.6⽶/秒D.4⽶/秒注意:《名师⼀号》P40 问题探究问题2过点P的切线与在点P处的切线有什么区别?在点P处的切线,P是切点,⽽过点P的切线,P不⼀定是切点,后者包括前者.注意:《名师⼀号》P40 问题探究问题2过点P的切线与在点P处的切线有什么区别?在点P处的切线,P是切点,⽽过点P的切线,P不⼀定是切点,后者包括前者.67⼆、例题分析: (⼀) 导数的计算例1.(补充)⽤导数定义求函数1()f x x=的导数。
超实用高考数学专题复习(北师大版):第二章函数导数及其应用 导数的概念及运算定积分与微积分基本定理
挖掘2 根据导数的几何意义求解析式中的参数/ 互动探究
[例2] (1)(2019·高考全国卷Ⅲ)已知曲线y=aex+xln x在点(1,ae)处的切线方程为
y=2x+b,则( )
A.a=e,b=-1
B.a=e,b=1
C.a=e-1,b=1
D.a=e-1,b=-1
[解析] y′=aex+ln x+1,k=y′|x=1=ae+1, ∴切线方程为y-ae=(ae+1)(x-1), 即y=(ae+1)x-1. 又∵切线方程为y=2x+b, ∴abe=+-1=1,2,即a=e-1,b=-1.故选D. [答案] D
[四基自测]
1.(基础点:求导数值)若f(x)=x·ex,则f′(1)等于( )
A.0
B.e
C.2e
D.e2
答案:C
2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=( )
mx A. x
B.x+1
C.1x+x 答案:D
D.ln x+1
3.(基础点:求切线)函数f(x)=x3在(0,0)处的切线为( )
A.不存在
B.x=0
C.y=0 答案:C
D.y=x
4.(易错点:求切点)曲线y=ex过点(0,0)的切线的斜率为________.
答案:e
考点一 导数的计算 挖掘1 求导函数值/ 自主练透 [例1] (1)设函数f(x)=1-ex的图像与x轴交于P点(x0,y0),则f′(x0)=________. [解析] 令1-ex0=0,∴x0=0, 而f′(x)=-ex,∴f′(x0)=f′(0)=-e0=-1. [答案] -1
[解析] 对于①,由y=x3,得y′=3x2,则y′|x=0=0,直线y=0是过点P(0,0)的曲 线C的切线,又当x>0时,y>0,当x<0时,y<0,满足曲线C在P(0,0)附近位 于直线y=0两侧,∴命题①正确;对于②,由y=(x+1)2,得y′=2(x+1),则y′|x= -1=0,而直线l:x=-1斜率不存在,在点P(-1,0)处不与曲线C相切,
高考数学复习讲义:导数的概念及运算、定积分
返回
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)曲线的切线与曲线不一定只有一个公共点. ( ) (2)求曲线过点 P 的切线时 P 点一定是切点. ( ) 答案:(1)√ (2)×
返回
看成常数,再求导 复合函数 确定复合关系,由外向内逐层求导
返回
[针对训练]
1.设 f(x)=x(2 019+ln x),若 f′(x0)=2 020,则 x0 等于( )
A.e2
B.1
C.ln 2
D.e
解析:f′(x)=2 019+ln x+1=2 020+ln x,由 f′(x0)= 2 020,得 2 020+ln x0=2 020,则 ln x0=0,解得 x0=1. 答案:B
返回
2.曲线 y=log2x 在点(1,0)处的切线与坐标轴所围成三角形的 面积等于________. 解析:∵y′=xln1 2,∴切线的斜率 k=ln12,∴切线方程为 y=ln12(x-1),∴所求三角形的面积 S=12×1×ln12=2ln1 2= 1 2log2e. 答案:12log2e
二、填空题 1.已知函数 f(x)=axln x+b(a,b∈R),若 f(x)的图象在 x=1
处的切线方程为 2x-y=0,则 a+b=________. 解析:由题意,得 f′(x)=aln x+a,所以 f′(1)=a,因为函 数 f(x)的图象在 x=1 处的切线方程为 2x-y=0,所以 a=2, 又 f(1)=b,则 2×1-b=0,所以 b=2,故 a+b=4. 答案:4
答案:-xsin x 2.已知 f(x)=13-8x+2x2,f′(x0)=4,则 x0=________.
高考数学一轮复习 第三章 导数及其应用 第一节 变化率与导数、导数的计算课件 文
3.函数f(x)的导函数
称函数f
'(x)=
l
i
x
m
0
f (xx)f (x)
为f(x)的x 导函数,导函数有时也记作y'.
12/11/2021
4.基本初等函数的导数公式
12/11/2021
5.导数的运算法则
(1)[f(x)±g(x)]'= f '(x)±g'(x) ; (2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ;
2
sin
x 2
cos
x 2
=cos x sinx -coxs2
22
2
= 1 sin x1- (1+cos x)
2
2
= 1 (sin x-cos x)1- ,
2
2
∴y'= 1
2
(cos x+sin x)= 2
2
sin x
.
4
(2)y'=ex·ln x+ex·1
x
=e xln
x
.
1 x
12/11/2021
12/11/2021
1-1 已知f(x)= 1 x2+2xf '(2 016)+2 016ln x,则f '(2 016)= -2 017 .
2
答案 -2 017 解析 由题意得f '(x)=x+2f '(2 016)+ 2 0,1 6
x
所以 f '(2 016)=2 016+2f '(2 016)+ 2 0,1即6 f '(2 016)=-(2 016+1)=-2 017.
高考数学考点突破——导数及其应用与定积分:导数与函数的单调性(1)
高考数学考点突破——导数及其应用与定积分:导数与函数的单调性(1)【考点梳理】函数的导数与单调性的关系函数y=f(x)在某个区间内可导,则(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.【考点突破】考点一、判断或证明函数的单调性【例1】已知函数已知函数f(x)=ln x+a(1-x),讨论f(x)的单调性.[解析] f(x)的定义域为(0,+∞),f′(x)=-a.若a≤0,则f′(x)>0恒成立,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈时,f′(x)>0;x∈时,f′(x)<0,所以f(x)在上单调递增,在上单调递减.【类题通法】用导数判断或证明函数f(x)在(a,b)内的单调性的步骤(1)一求.求f′(x);(2)二定.确认f′(x)在(a,b)内的符号;(3)三结论.作出结论:f′(x)>0时为增函数;f′(x)<0时为减函数.【对点训练】已知函数f(x)=x3+ax2+b(a,b∈R),试讨论f(x)的单调性.[解析] f′(x)=3x2+2ax,令f′(x)=0,解得x1=0,x2=-.当a=0时,因为f′(x)=3x2≥0,所以函数f(x)在(-∞,+∞)上单调递增;当a>0时,x∈∪(0,+∞)时,f′(x)>0,x∈时,f′(x)<0,所以函数f(x)在,(0,+∞)上单调递增,在上单调递减;当a<0时,x∈(-∞,0)∪时,f′(x)>0,x∈时,f′(x)<0,所以函数f(x)在(-∞,0),上单调递增,在上单调递减.考点二、求函数的单调区间【例2】已知函数f(x)=-aln x,a∈R,求f(x)的单调区间.[解析] 因为f(x)=-aln x,所以x∈(0,+∞),f′(x)=x-=.。
高考数学基础突破 导数与积分 第1讲 变化率与导数
2017年高考数学基础突破——导数与积分第1讲 变化率与导数【知识梳理】1.函数()y f x =在x =x 0处的导数 (1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()limlim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 考点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s 1+Δt -s 1 Δt ,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【例3】某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒C .8米/秒 D .674米/秒考点3.定义法求函数的导数【例4】.求函数y =x +1x在x =1处的导数【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法.变式训练1.用定义求函数f (x )=x 2在x =1处的导数.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A. )(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f '【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s t 0+Δt -s t 0Δt 叫做这段时间内物体的平均速度C .Δs Δt 不一定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度 2.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min ) ( )A. 03.0B. 03.0-C.003.0D. 003.0-4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-35.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-37.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是8.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.9.某物体按照s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开始到4 s 时物体运动的平均速度和4 s 时的瞬时速度.10.求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.11.若2)1()(-=x x f ,求(2)f '.12.)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.2017年高考数学基础突破——导数与积分第1讲 变化率与导数(教师版)【知识梳理】1.函数()y f x =在x =x 0处的导数 (1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()limlim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1解析:v =Δs Δt =(8+2.12)-(8+22)2.1-2=2.12-220.1=4.1,故应选B.【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 知识点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s 1+Δt -s 1 Δt ,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度 【解析】 由平均速度的概念知:v =s 1+Δt -s 1Δt=5Δt +10.故应选D.【例3】某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒C .8米/秒 D .674米/秒【解析】∵ΔsΔt = 4+Δt 2+34+Δt -16-34Δt =Δt 2+8Δt +-3Δt 4 4+Δt Δt =Δt +8-316+4Δt,∴lim Δt →0Δs Δt =8-316=12516. 故选B.考点3.定义法求函数的导数【例4】.求函数y =x +1x在x =1处的导数【解析】法一 ∵Δy =(1+Δx )+11+Δx -(1+11)=Δx -1+11+Δx = Δx 21+Δx ,∴ΔyΔx =Δx1+Δx. ∴y ′|x =1=limΔx →0Δy Δx =lim Δx →0Δx 1+Δx=0. 法二 ∵Δy =(x +Δx )+1x +Δx -(x +1x )=Δx -1x +1x +Δx=Δx x 2+x ·Δx -1 x x +Δx,∴y ′=lim Δx →0Δy Δx =lim Δx →0x 2+x ·Δx -1x x +Δx =x 2-1x 2=1-1x2.∴y ′|x =1=1-1=0.【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法. 变式训练1.用定义求函数f (x )=x 2在x =1处的导数.解析:法一 Δy =f (1+Δx )-f (1)=(1+Δx )2-1=2Δx +(Δx )2,∴ f ′(1)=lim Δx →0Δy Δx =lim Δx →02Δx + Δx 2Δx=lim Δx →0 (2+Δx )=2,即f (x )=x 2在x =1处的导数f ′(1)=2.法二 Δy =f (x +Δx )-f (x )=(x +Δx )2-x 2=2Δx ·x +(Δx )2,∴ ΔyΔx=2Δx ·x + Δx2Δx=2x +Δx .∴0()lim (2)2x f x x x x ∆→'=+∆=,∴ (1)2f '=,即f (x )=x 2在x =1处的导数f ′(1)=2.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A.)(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f ' 【解析】00000x 0x 000()()()()limlim =()2()()f x x f x x f x x f x x f x x x x x x ∆→∆→+∆--∆+∆--∆'=∆+∆--∆,故选B.【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s t 0+Δt -s t 0Δt 叫做这段时间内物体的平均速度C .Δs Δt 不一定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度 【解析】D 错误,应为t =t 0时的瞬时速度,选D2.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 2. 解析】D.3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min ) ( )A. 03.0B. 03.0-C.003.0D. 003.0-【解析】B4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-3 【答案】C【解析】Δy Δx = x +Δx 3-x 3Δx =3Δx ·x 2+3 Δx 2·x + Δx 3Δx =3x 2+3Δx ·x +(Δx )2,∴limΔx →0Δy Δx=3x 2,∴y ′|x =1=3. 5.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)【答案】 B【解析】 Δy =3(x 0+Δx )2+6(x 0+Δx )-3x 20-6x 0=6x 0·Δx +3Δx 2+6Δx , ∴limΔx →0ΔyΔx=lim Δx →0(6x 0+3Δx +6)=6x 0+6=0.,∴x 0=-1,y 0=-2. 6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-3【解析】A7.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是3.【答案】 17.58.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.【答案】 10米/秒 【解析】v ′(5)=limΔt →0s 5+Δt -s 5Δt=lim Δt →0(10+Δt )=10.9.某物体按照s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开始到4 s 时物体运动的平均速度和4 s 时的瞬时速度.【解析】自运动开始到t s 时,物体运动的平均速度v (t )=s t t =3t +2+4t,故前4 s 物体的平均速度为v (4)=3×4+2+44=15(m/s).由于Δs =3(t +Δt )2+2(t +Δt )+4-(3t 2+2t +4)=(2+6t )Δt +3(Δt )2.limΔt →0ΔsΔt=lim Δt →0(2+6t +3·Δt )=2+6t , ∴4 s 时物体的瞬时速度为2+6×4=26(m/s).10.求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.解析:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2, 200(1)(1)2(1)lim lim(3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆.11.若2)1()(-=x x f ,求)2('f .解析:xx f x x f x y o o ∆-∆+=∆∆)()(xx x f x f ∆---∆+=∆-∆+=22)12()12()2()2(=x xx x ∆+=∆∆+∆222所以:f ’(2)= 2)2(lim 0=∆+→∆x x12.设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.解析:设2)()(m x a x f -=,则2222)(2)(+=-=-='x am ax m x a x f 解得1,1==m a ,所以12)1x ()(22++=-=x x x f 。
高考数学一轮复习 第三篇 导数及其应用第1讲 变化率与导数、导数的运算课件 理
求解切线问题的关键是切点坐标,无论是已知切线 斜率还是切线经过某一点,切点坐标都是化解难点的关键所 在.
单击此处进入 活页限时训练
即 y=3x20x-2x30,由yy= =x33x,20x-2x30, 得(x-x0)2(x+2x0)=0,解得 x=x0,x=-2x0. 若 x0≠0,则交点坐标为(x0,x30),(-2x0,-8x30); 若 x0=0,则交点坐标为(0,0).
利用定义求导数的一般过程是:(1)求函数的增量 Δy; (2)求平均变化率ΔΔyx;(3)求极限
5.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标
分别为(0,4),(2,0),(6,4),则f(f(0))=______;li
Δxm→0
f1+ΔΔxx-f1=________(用数字作答).
答案 2 -2
考向一 导数的定义 【例1】►利用导数的定义求函数f(x)=x3在x=x0处的导数,并 求曲线f(x)=x3在x=x0处切线与曲线f(x)=x3的交点. [审题视点] 正确理解导数的定义是求解的关键.
【示例】►(本题满分12分)(2010·山东)已知函数f(x)=ln x-ax+ 1-x a-1(a∈R). (1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a≤12时,讨论f(x)的单调性.
(1)求出在点(2,f(2))处的斜率及f(2),由点斜式写出 切线方程; (2)求f′(x),再对a分类讨论.
规范解答6——如何求曲线上某一点的切线方程
【问题研究】 利用导数的几何意义求函数在某一点的坐标或 某一点处的切线方程是高考常常涉及的问题.这类问题最容易 出现的错误就是分不清楚所求切线所过的点是不是切点而导致 错误. 【解决方案】 解这类问题的关键就是抓住切点.看准题目所求 的是“在曲线上某点处的切线方程”还是“过某点的切线方 程”,然后求某点处的斜率,用点斜式写出切线方程.
新高考数学一轮复习考点知识归类讲义 第16讲 变化率与导数、导数的计算
新高考数学一轮复习考点知识归类讲义第16讲 变化率与导数、导数的计算1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率limΔx →0f (x 0+Δx )-f (x 0)Δx=错误!未指定书签。
lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=错误!未指定书签。
limΔx →0ΔyΔx =错误!未指定书签。
lim Δx →f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=错误!未指定书签。
limΔx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin xf ′(x )=cos__xf (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln af (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).➢考点1 导数的运算[名师点睛]对解析式中含有导数值的函数,即解析式类似f (x )=f ′(x 0)g (x )+h (x )(x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求导数值. 1.(2022·浙江·高三专题练习)请用函数求导法则求出下列函数的导数. (1)sin x y e =;(2)32x y x +=+; (3)()ln 23y x =+;(4)()()2221y x x =+-;(5)cos 23y x π⎛⎫=+ ⎪⎝⎭.【解】(1)因为sin x y e =,则()sin sin sin cos x x y e x e x ''=⋅=;(2)因为32x y x +=+,则()()()()()()223223122x x x x y x x ''++-++'==-++; (3)因为()ln 23y x =+,则()22213233y x x x ''=⋅+=++; (4)因为()()2221y x x =+-,则()()()()''22221221y x x x x =+++-'-()()2222122624x x x x x =-++=-+;(5)因为cos 23y x π⎛⎫=+ ⎪⎝⎭,故2sin 22sin 2333y x x x πππ'⎛⎫⎛⎫⎛⎫'=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(2022·全国·高三专题练习)已知函数()f x 的导数为()f x ',且()2(e)ln f x xf x +'=,则()e f =( )A .1e-B .1-C .1D .e 【答案】B 【解析】由()2(e)ln f x xf x +'=得1()2(e)f x f x ''=+,当e x =时,1(e)2(e)e f f ''=+,解得()1e ef '=-,所以2()ln e x f x x -=+,2e(e)ln e 1ef -=+=-. 故选:B [举一反三]1.(2021·江苏省阜宁中学高三阶段练习)下列求导运算不正确的是( ) A .()22x x '=B .()sin cos x x '= C .()33ln 3x x '=D .()1e ln 3e 3x x '+=+【答案】D 【解析】对于A :()22x x '=,故选项A 正确; 对于B :()sin cos x x '=,故选项B 正确; 对于C :()33ln 3x x '=,故选项C 正确;对于D :()()()e ln 3e l 0n 3e e x x x x '''=++=+=,故选项D 不正确; 所以求导运算不正确的是选项D , 故选:D.2.(2022·全国·高三专题练习)若函数()f x ,()g x 满足()()21,f x xg x x +=-且()11f =,则()()11f g ''+=( ) A .1B .2C .3D .4 【答案】C【解析】取1x =,则有()()110f g +=,即(1)(1)1g f =-=-,又因为()()21,f x xg x x +=-所以()()()2f x g x xg x x ''++=,所以()()1(1)12f g g ''++=,所以()()112(1)213f g g ''+=-=+=.故选:C3.(2022·全国·河源市河源中学模拟预测)已知实数x 满足()()()222cos 22cos sin f x xf x x x x x '+=++,0x >,π52f ⎛⎫= ⎪⎝⎭,那么()πf 的值为( )A .0B .1C .2D .π 【答案】C【解析】由()()()222cos 22cos sin f x xf x x x x x '+=++两边同时乘x 可得: ()()()22222cos 22sin 22xf x x f x x x x x x x f x ''⎡⎤+=++=⎣⎦,又()222sin 22cos 22sin 22x x x x x x x x +++'=,因此()222sin 2x f x x x x c =++.由π52f ⎛⎫= ⎪⎝⎭,即222πππ5sin π444c ⨯=++,可得2πc =, ∴()22πsin 21f x x x =++,∴()22sin 21π2πππf =++=.故选:C ﹒4.(2022·江苏·高三专题练习)下列求导数运算正确的有( )A .(sin )cos x x '=B .211()x x '=C .31(log )3ln x x'=D .1(ln )x x '=【答案】AD【解析】A :(sin )cos x x '=,故正确; B :211()x x'=-,故错误;C :31(log )ln 3x x '=,故错误; D :1(ln )x x'=,故正确. 故选:AD5.(2022·全国·高三专题练习)求下列函数的导数:(1)y =x (x 2311x x ++);(2)y =1)1); (3)y =x tan x ; (4)y =x ﹣sin 2x cos 2x;(5)y =3ln x +ax (a >0,且a ≠1).【解】解:(1)y =x (x 2311x x++)=x 3+121x +;则函数的导数y ′=3x 232x -.(2)y =1)1)=11=y ′= (3)y =x tan x sin cos x xx =, 则y ′()()()222sin 'cos sin cos 'sin cos cos sin cos cos x x x x x x x x x x x x xx-++==2222sin sin cos cos xcosx xcos x xsin x x x xx cos x+++==;(4)y =x ﹣sin 1cos 222x x x =-sinx ;则y ′=112-cosx.(5)y ′3x=+ax ln a .➢考点2 导数的几何意义1.(2022·广东茂名·模拟预测)曲线()sin 2cos 1f x x x =--在点π,02⎛⎫ ⎪⎝⎭处的切线方程为______.【答案】2π0x y --=【解析】()cos 2sin f x x x '=+,则曲线()y f x =在π,02⎛⎫⎪⎝⎭处的切线斜率ππcos 2sin 222k =+=,∴切线方程为π22y x ⎛⎫=- ⎪⎝⎭,即2π0x y --=.故答案为:2π0x y --=.2.(2022·全国·高三专题练习)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为__________【答案】0y =或440x y ++=【解析】点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,20x ),由f (x )=x 2可得()'2f x x =,∴切线的斜率()'002k f x x ==.切线方程为()021y x x =+.∵切线过点P (-1,0),∴k =2001x x +=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0. 故答案为:0y =或440x y ++=3.(2022·河南·三模)曲线()30y x m x =+<在点A 处的切线方程为322y x m =+-,则切点A 的坐标为______. 【答案】()1,3-【解析】由233y x '==,得1x =±,因为0x <,所以1x =-, 则切点A 的横坐标为-1,所以()31322m m -+=-+-, 解得4m =,所以A 的坐标为()1,3-. 故答案为:()1,3-.4.(2022·湖南湘潭·三模)已知直线l 是曲线e 1x y =-与ln 1y x =+的公共切线,则l 的方程为___________.【答案】e 1y x =-或y x =【解析】设l 与曲线e 1x y =-相切于点(),e 1aP a -,与曲线ln 1y x =+相切于点(,ln Q b b +1),则1ln e 2e a ab b b a-+==-,整理得()()1e 10aa --=,解得1a =或0a =,当1a =时,l 的方程为e 1y x =-;当0a =时,l 的方程为y x =. 故答案为:e 1y x =-或y x =. [举一反三]1.(2022·山东枣庄·三模)曲线32y x bx c =++在点()1,0M 处的切线与直线20x y --=垂直,则c 的值为( ) A .1-B .0C .1D .2【答案】C 【解析】设()32f x x bx c =++,则()232f x x bx '=+,直线20x y --=的斜率为1,由题意可得()()1321110f b f b c ⎧=+=-⎪⎨=++='⎪⎩,解得21b c =-⎧⎨=⎩. 故选:C.2.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为( ) A .3-B .3C .5-D .5 【答案】A【解析】当0x >时,()()21f x x f ''=-,()()121f f ''∴=-,解得:()11f '=,∴当0x >时,()22f x x x =-+;当0x <时,0x ->,()22f x x x ∴-=++,又()f x 为偶函数,()()22f x f x x x ∴=-=++,即0x <时,()22f x x x =++,则()21f x x '=+,()2413f '∴-=-+=-. 故选:A.3.(2022·湖北·宜城市第一中学高三阶段练习)若过点(),a b 可以作曲线()10y x x x=->的两条切线,则( ) A .0b a >>B .10a b a a-<<< C .10a b a a <-<<D .1a b a a>>-且0a > 【答案】D 【解析】作出()10y x x x=->的图象,由图可知, 若过点(),a b 可以作曲线()10y x x x=->的两条切线,点(),a b 应在曲线外, 设切点为()()000,0>x y x ,所以0001y x x =-,21-'=+y x ,所以切线斜率为0002000111---=+==--x b y b x k x x ax a, 整理得()20020--+=a b x x a ,即方程在00x >上有两个不同的解,所以()()4402020a a b a b a ⎧-->⎪-⎪->⎨-⎪⎪>⎩,100⎧-<⎪⎪->⎨⎪>⎪⎩a ba ab a , 所以1a b a a>>-且0a >. 故选:D .4.(2022·山东潍坊·二模)已知函数()ln f x x x t =-+,直线1:ln 222l y x =-++,点()()00,P x f x 在函数()y f x =图像上,则以下说法正确的是( )A .若直线l 是曲线()y f x =的切线,则3t =-B .若直线l 与曲线()y f x =无公共点,则3t >-C .若2t =-,则点P 到直线l 5D .若2t =-,当点P 到直线l 的距离最短时,02x = 【答案】D【解析】f (x )定义域为(0,+∞),()11f x x'=-, 若直线l 是曲线()y f x =的切线,则()1111222f x x x =-⇒-=-⇒=',代入1ln222y x =-++得1ln2y =+,()21ln2ln221ln23f t t ∴=+⇒-+=+⇒=,故A 错误;当t =-2时,当在点P 处的切线平行于直线l 时,P 到切线直线l 的最短距离,则()0001111222f x x x =-⇒'-=-⇒=,故D 正确; 此时()2ln24f =-,故P 为()2,ln24-,P 到l :22ln240x y +--=的距离为=C 错误;设1ln ln 22ln ln 2222xx x t x t x -+=-++⇒=-++,令()ln ln 222x g x x =-++,则()11222x g x x x-'=-=, 当()0,2x ∈时,()0g x '<,()g x 单调递减,当()2,x ∈+∞,()0g x '>,()g x 单调递增, ∴()()min 23g x g ==,又0x →时,()g x ∞→+;x →+∞时,()g x ∞→+, ∴若直线l 与曲线()y f x =无公共点,则t <3,故B 错误. 故选:D .5.(2022·全国·高三专题练习)已知直线:20(0)l x ty t --=≠与函数()(0)xe f x x x=>的图象相切,则切点的横坐标为A.2.2+C .2D .1【答案】A【解析】由()(0)xe x x x =>可得()()21x e x f'x x -=,设切点坐标为()(),0m n m >,则()22011m m m tn en m e m m t ⎧⎪--=⎪⎪=⎨⎪⎪-=⎪⎩,解得2m = A.6.(2022·福建泉州·模拟预测)若直线()111f k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e 【答案】B【解析】设直线()111f k x =+-与曲线e x y =相切于点()11,e xx ,直线()211y k x =+-与曲线ln y x =相切于点()22,ln x x ,则11e x k =,且111e 11x k x +=+,所以11e 1xx =,221k x =,且222ln 11x k x +=+,所以22ln 1x x =,令()ln f x x x =,()1ln f x x '=+,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<,()f x 单调递减,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增,且()10f =,()0lim 0x f x →=,所以当()0,1x ∈时,()0f x <, 因为()222ln 1f x x x ==,()111e e 1x x f x ==,即()()12e 10xf x f ==>,所以()()121,,e 1,xx ∞∞∈+∈+,所以12=e xx ,故11221e 1x k k x =⋅= 故选:B7.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( )A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞【答案】B【解析】设公切线与曲线ln 1y x =-和2y ax =的交点分别为()11,ln 1x x -,()222,x ax ,其中1>0x ,对于ln 1y x =-有1y x'=,则ln 1y x =-上的切线方程为()()1111ln 1y x x x x --=-,即()11ln 2xy x x =+-, 对于2y ax =有2y ax '=,则2y ax =上的切线方程为()22222y ax ax x x -=-,即2222y ax x ax =-,所以2121212ln 2ax x x ax ⎧=⎪⎨⎪-=-⎩,有1211ln 24x ax -=-,即()22111112ln 04x x x x a =->, 令()222ln g x x x x =-,()()32ln 32ln g x x x x x x '=-=-,令0g x,得32e x =,当320,e x ⎛⎫∈ ⎪⎝⎭时,0g x,()g x 单调递增,当32,e x ⎛⎫⎪⎝∈+⎭∞时,0g x,()g x 单调递减,所以()332max 1e e 2g x g ⎛⎫== ⎪⎝⎭,故3110e 42a <≤,即31e 2a -≥.故选:B.8.(多选)(2022·河北保定·二模)若直线3y x m =+是曲线()30y x x =>与曲线()260y x nx x =-+->的公切线,则( ) A .2m =-B .1m =-C .6n =D .7n = 【答案】AD【解析】解:设直线3y x m =+与曲线()30y x x =>相切于点()3,a a ,与曲线()260y x nx x =-+->相切于点(),3b b m +,对于函数()30y x x =>,23y x '=,则()2330a a =>,解得1a =,所以313m =+,即2m =-.对于函数()260y x nx x =-+->,2'=-+y x n ,则()230b n b -+=>, 又2632b nb b -+-=-,所以()232632b b b b -++-=-,又0b >, 所以2b =,7n =. 故选:AD9.(2022·重庆·三模)曲线()1ln 225y x x =+++在点1,32⎛⎫- ⎪⎝⎭处的切线方程为___________. 【答案】22y x =-+【解析】由()1ln 225y x x =+++,2111y x x '=-++,则切线的斜率为12422x y =-=-+=-'. 所以曲线()1ln 225y x x =+++在点1,32⎛⎫- ⎪⎝⎭处的切线方程为: 1322y x ⎛⎫-=-+ ⎪⎝⎭,即22y x =-+.因此所求切线的方程为22y x =-+. 故答案为:22y x =-+.10.(2022·浙江·高三专题练习)已如函数()e ,()ln x f x g x x ==.若曲线()y f x =在点()()11,x f x 处的切线与曲线()y f x =在点()()22,x g x 处的切线平行,则()12x g x +=___________;若(2)()2()1f x h x x g x x=--+,则()h x 的最大值为___________. 【答案】 0 2n 2e l 2-+ 【解析】由已知()e x f x '=,1()g x x'=,所以121e x x =,即12e xx -=,所以112111()ln e0x x x x g x x -=-+==+.2()2ln e 1xh x x x x=--+,定义域为()0,∞+,2222222e (21)e (12(21)(()221)e )x x x x x x x h x x x x x x x ----'=--=--=,令2e ()x p x x =-,则2()12e x p x '=-,0x >时,()0p x '<,所以()p x 在(0,)+∞上递减, 所以0x >时,()(0)1p x p <=-, 所以102x <<时,()0h x '>,()h x 递增,12x >时,()0h x '<,()h x 递减,所以max 11()()1ln 1221222ee ln 2h x h =-=-+=-+. 故答案为:0;2n 2e l 2-+.11.(2022·河北廊坊·模拟预测)设直线12y x b =+是曲线sin (0,)y x x π=∈,的一条切线,则实数b 的值是_________.6π- 【解析】设切点坐标为00(,)x y ,因为cos y x '=,所以有00000sin 121cos 2y x y x b x ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩因为(0,)x π∈,所以00,3x y π==00126b y x π=-=.6π- 12.(2022·全国·高三专题练习)曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________. 【答案】()0,1【解析】由函数sin 21y x x =++,则cos 2y x '=+,设切点P 的坐标为()00,x y ,则斜率00cos 23x x k y x ==+'==, 所以0cos 1x =,解得02()x k k Z π=∈,当0k =时,切点为()0,1,此时切线方程为310x y -+=; 当0k ≠,切点为(2,41)()k k k Z ππ+∈,不满足题意, 综上可得,切点为()0,1. 故答案为:()0,1.13.(2022·重庆巴蜀中学高三阶段练习)设三次函数()32f x ax bx cx d =+++,若曲线()y f x =在点()0,0处的切线与曲线()()g x xf x =在点1,2处的切线重合,则()2g '=______.【答案】32-【解析】由题知:(0)0f =,∴0d =,2()32f x ax bx c '=++()f x 在(0,0)处的切线为0(0)(0)y f x '-=-,即(0)y f x =',∵()()()g x f x xf x +''=,(1)(1)(1)g f f =+'', ∴()g x 在1,2处的切线方程为:(1)(1)2y g x g =-'+' 又因为两条切线重合,∴(0)(1){(1)20f g g ='-+'=',∴(0)(1)2f g ''==,又∵(1)(1)2g f ==,(1)(1)(1)g f f =+''∴(1)0f '=,∴(0)2{(1)320(1)2f c f a b c f a b c ===++==++'='解得2{22a b c =-==∴()32222f x x x x =-++,2()642f x x x '=-++,∴(2)(2)2(2)32g f f =+=-''. 故答案为:32-.14.(2022·广东·执信中学高三阶段练习)已知()e 1x f x =-(e 为自然对数的底数),()ln 1g x x =+,则()f x 与()g x 的公切线条数为_______.【答案】2【解析】根据题意,设直线l 与()e 1x f x =-相切于点(,e 1)m m -,与()g x 相切于点(,ln 1)n n +, 对于()e 1x f x =-,其导数为()e x f x '=, 则有()e m k f m ='=,则直线l 的方程为1e e ()m m y x m +-=-,即e e (1)1m m y x m =+--, 对于()ln 2g x x =+,其导数为1()g x x'=, 则有1()k g n n='=,则直线l 的方程为1(ln 1)()y n x n n-+=-,即1ln y x n n=+, 直线l 是()f x 与()g x 的公切线,则1e (1)e 1ln m m n m n⎧=⎪⎨⎪--=⎩,可得(1)(e 1)0m m --=, 则0m =或1m =,故直线l 的方程为y x =或e 1y x =-; 则()f x 与()g x 的公切线条数是2条. 故答案为:2。
高考数学一轮复习 第三章 导数及其应用 第一节 变化率与导数、导数的计算课件 理
(1)y=ex·cos x;
xx
(3)y=x-sin 2 cos2
(2)y=x
x2
;
1 x
1 x3
; (4)y=ln1 .x 2
12/11/2021
解析 (1)y'=(ex)'cos x+ex(cos x)'=excos x-exsin x=ex(cos x-sin x).
(2)∵y=x3+1+ 1 ,∴y'=3x2- 2 .
4
当x变化时,F'(x)与F(x)的变化情况如下表所示:
12/11/2021
x
1 2
,1
1
F'(x)
+
0
(1,+∞) -
F(x)
↗
极大值
↘
所以当x=1时,F(x)取得最大值,为F(1)=0, 所以方程⑤有且仅有一个解s=1. 于是t=ln s=0,因此切点P的坐标为(1,0).
12/11/2021
f(x)=ln x
导数 f '(x)=⑥ 0 f '(x)=⑦ αxα-1 f '(x)=⑧ cos x f '(x)=⑨ -sin x f '(x)=⑩ axln a f '(x)= ex
1 f '(x)= x l n a
1 f '(x)= x
12/11/2021
3.导数的运算法则
(1)[f(x)±g(x)]'= f '(x)±g'(x) ; (2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ;
12/11/2021
高考数学导数和积分知识点
高考数学导数和积分知识点高考数学中的导数和积分是非常重要的概念和知识点。
导数和积分是微积分的基础,掌握了它们,可以帮助我们解决很多实际问题和数学题目。
本文将详细介绍高考数学中的导数和积分的相关知识点,帮助同学们系统地理解和掌握这些概念。
一、导数导数是描述函数变化率的概念。
在数学中,函数的导数可用于衡量函数的变化速率以及切线的斜率。
导数的计算可以基于定义,也可以使用一些常见函数的导数公式进行计算。
1. 导数定义给定函数f(x),如果存在极限lim(x→0)[f(x+h)-f(x)]/h,那么这个极限就是函数f(x)在x点的导数,记作f'(x)或者dy/dx。
其中,h 表示趋近于0的无穷小增量。
2. 导数的求法导数的求法有多种方法,常见的有以下几种:(1)使用基本导数公式,例如常数函数的导数为零,幂函数的导数可以使用幂函数的导数公式来计算。
(2)根据导数的定义,直接计算极限。
(3)利用常用的求导法则,例如和差法则、积法则、商法则等。
3. 导数的应用导数在高考数学中具有广泛的应用。
常见的应用包括函数的极值问题、函数的单调性判断、函数的模型建立等。
同时,导数还与数学中其他分支有关,如相关性、曲率、速度等相关概念。
二、积分积分是导数的逆运算,是衡量函数区间上的累积效应的概念。
积分可以帮助我们计算曲线下的面积、求函数的不定积分等。
1. 不定积分给定函数f(x),它的不定积分F(x)表示对函数f(x)进行积分后得到的一类原函数。
不定积分是积分的一种基本形式,常用的表示方法是∫f(x)dx。
2. 定积分给定函数f(x),在[a, b]区间上的定积分表示曲线f(x)与x轴之间的面积。
定积分的计算可以通过求不定积分再利用区间端点的值进行计算。
3. 积分的应用积分在高考数学中的应用非常广泛。
常见的应用包括求曲线与x轴之间的面积、求函数的平均值、计算物体的质量与重心等。
三、导数与积分的关系导数和积分是微积分的两个基本概念,它们之间有着密切的关系。
高考数学考点突破——导数及其应用与定积分:变化率与导数、导数的计算
变化率与导数、导数的计算【考点梳理】1.导数的概念(1)函数y =f (x )在x =x 0处的导数:①定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f x 0+Δx -f x 0Δx =lim Δx →0ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0即f ′(x 0)=lim Δx →0Δy Δx=lim Δx →0fx 0+Δx -f x 0Δx.②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)函数f (x )的导函数:称函数f ′(x )=lim Δx →0f x +Δx -f xΔx为f (x )的导函数.2.基本初等函数的导数公式3(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x ]2(g (x )≠0).【考点突破】考点一、导数的计算【例1】(1)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.(2)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′⎝ ⎛⎭⎪⎫π3+sin x ,则f ′⎝ ⎛⎭⎪⎫π3=________.(3)已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .eC .ln 22D .ln 2[答案] (1) 3 (2) 36-4π (3) B[解析] (1)因为f (x )=(2x +1)e x, 所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3.(2)因为f (x )=x 2f ′⎝ ⎛⎭⎪⎫π3+sin x ,所以f ′(x )=2x f ′⎝ ⎛⎭⎪⎫π3+cos x . 所以f ′⎝ ⎛⎭⎪⎫π3=2×π3×f ′⎝ ⎛⎭⎪⎫π3+cos π3. 所以f ′⎝ ⎛⎭⎪⎫π3=36-4π.(3) f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e. 【类题通法】熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错. 【对点训练】1.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2 D .0[答案] B[解析] f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.2.f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0等于( )A .e 2B .1C .ln 2D .e[答案] B[解析] f ′(x )=2 017+ln x +x ×1x=2 018+ln x ,故由f ′(x 0)=2 018,得2 018+ln x 0=2 018,则ln x 0=0,解得x 0=1.3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( )A .-eB .-1C .1D .e[答案] B[解析] 由f (x )=2x f ′(1)+ln x ,得f ′(x )=2 f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.考点二、导数的几何意义【例2】已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解析] (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0. 【类题通法】求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.【对点训练】 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.[解析] (1)根据已知得点P (2,4)是切点且y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′| x =2=4, ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′| x =x 0=x 20,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上, ∴4=2x 20-23x 30+43,即x 30-3x 20+4=0, ∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.【例3】(1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.(2)已知曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( ) A .-2 B .2 C .-12D .12(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.[答案] (1) (e ,e) (2) A (3) 8[解析] (1)由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e , 所以n =eln e =e ,即点P 的坐标为(e ,e). (2)由y ′=-2x -2得曲线在点(3,2)处的切线斜率为-12,又切线与直线ax +y +1=0垂直,则a =-2,故选A. (3)法一 ∵y =x +ln x ,∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.【类题通法】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. 【对点训练】1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[答案] C[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.2.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab的值为( ) A .13 B .23 C .-23 D .-13 [答案] D[解析] 由题意,y ′=3x 2,当x =1时,y ′|x =1=3.所以a b ×3=-1,即a b =-13.3.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. [答案] 1[解析] ∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.。
高考数学考点突破——导数及其应用与定积分:导数与函数的极值、最值
导数与函数的极值、最值【考点梳理】1.函数的极值与导数的关系 (1)函数的极小值与极小值点若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.(2)函数的极大值与极大值点若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数的极大值点,f (b )叫做函数的极大值.2.函数的最值与导数的关系(1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 【考点突破】考点一、利用导数研究函数的极值问题【例1】已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数. [解析] (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-axx(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,故函数在x =1a处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a.【例2】(1)若函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫13,4上有极值点,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫2,103B .⎣⎢⎡⎭⎪⎫2,103C .⎝ ⎛⎭⎪⎫103,174D .⎝ ⎛⎭⎪⎫2,174(2)已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为( ) A .-23B .-2C .-2或-23 D .2或-23[答案] (1) D (2) A[解析] (1)因为f (x )=x 33-a2x 2+x +1,所以f ′(x )=x 2-ax +1.函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫13,4上有极值点可化为f ′(x )=x 2-ax +1=0在区间⎝ ⎛⎭⎪⎫13,4上有解,即a =x +1x 在区间⎝ ⎛⎭⎪⎫13,4上有解,设t (x )=x +1x ,则t ′(x )=1-1x2,令t ′(x )>0,得1<x <4,令t ′(x )<0,得13<x <1.所以t (x )在(1,4)上单调递增,在⎝ ⎛⎭⎪⎫13,1上单调递减. 所以t (x )min =t (1)=2,又t ⎝ ⎛⎭⎪⎫13=103,t (4)=174,所以a ∈⎝⎛⎭⎪⎫2,174.(2)由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9,满足题意,故a b =-23. 【例3】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) [答案] D[解析] 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x<2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【类题通法】利用导数研究函数极值的一般流程【对点训练】1.求函数f (x )=x -a ln x (a ∈R)的极值. [解析] 由f ′(x )=1-a x =x -ax,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a lna ,无极大值.2.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞)[答案] B[解析] ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3.3.已知a 为函数f (x )=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4D .2[答案] D[解析] 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f(x)在x=2处取得极小值,∴a=2.4.函数y=f(x)导函数的图象如图所示,则下列说法错误的是( )A.(-1,3)为函数y=f(x)的递增区间B.(3,5)为函数y=f(x)的递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值[答案] C[解析] 由函数y=f(x)的导函数f′(x)的图象知,当x<-1及3<x<5时,f′(x)<0,f(x)单调递减;当-1<x<3及x>5时,f′(x)>0,f(x)单调递增.所以f(x)的单调减区间为(-∞,-1),(3,5);单调增区间为(-1,3),(5,+∞).f(x)在x=-1,5处取得极小值,在x=3处取得极大值,因此C不正确.考点二、利用导数解决函数的最值问题【例4】已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[解析] (1)由f(x)=(x-k)e x,得f′(x)=(x-k+1)e x,令f′(x)=0,得x=k-1.f(x)与f′(x)的变化情况如下:单调递减单调递增(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k , 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上可知,当k ≤1时,f (x )min =-k ; 当1<k <2时,f (x )min =-ek -1;当k ≥2时,f (x )min =(1-k )e. 【类题通法】1.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: 第一步,求函数在(a ,b )内的极值;第二步,求函数在区间端点处的函数值f (a ),f (b );第三步,将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 【对点训练】 已知函数f (x )=x -1x-ln x . (1)求f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数). [解析] (1)f (x )=x -1x -ln x =1-1x -ln x ,f (x )的定义域为(0,+∞). ∴f ′(x )=1x 2-1x=1-xx2,由f ′(x )>0,得0<x <1,由f ′(x )<0,得x >1,∴f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减,∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=1-1-ln 1=0. 又f ⎝ ⎛⎭⎪⎫1e =1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e ,且f ⎝ ⎛⎭⎪⎫1e <f (e). ∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为f ⎝ ⎛⎭⎪⎫1e =2-e.∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为0,最小值为2-e. 考点三、利用导数研究不等式的有关问题【例5】已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0)恒有f (x )>g (x ). [解析] (1)令F (x )=f (x )-x =ln(1+x )-x ,x ∈[0,+∞), 则有F ′(x )=11+x -1=-xx +1.当x ∈(0,+∞)时,F ′(x )<0, 所以F (x )在[0,+∞)上单调递减,故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x . (2)令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈[0,+∞), 则有G ′(x )=1x +1-k =-kx +-kx +1. 当k ≤0时,G ′(x )>0,故G (x )在[0,+∞)上单调递增,G (x )>G (0)=0,故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k-1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在[0,x 0)上单调递增, 所以G (x )>G (0)=0,即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0)恒有f (x )>g (x ). 【类题通法】1.证明不等式的常用方法——构造法(1)证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).(2)证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )上是增函数,同时若F (a )≥0,由增函数的定义可知,x ∈(a ,b )时,有F (x )>0,即证明了f (x )>g (x ).2.不等式成立(恒成立)问题中的常用结论(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b .(3)f (x )>g (x )恒成立 F (x )min >0(F (x )=f (x )-g (x )). (4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max ; ②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min ; ③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min ; ④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【对点训练】已知函数f (x )=e x-1-x -ax 2. (1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围. [解析] (1)当a =0时,f (x )=e x-1-x ,f ′(x )=e x-1. 当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,f (x )min =f (0)=0,∴f (x )≥0.(2)f ′(x )=e x-1-2ax ,令h (x )=e x-1-2ax ,则h ′(x )=e x-2a .①当2a ≤1,即a ≤12时,h ′(x )≥0在[0,+∞)上恒成立,h (x )单调递增,∴h (x )≥h (0),即f ′(x )≥f ′(0)=0, ∴f (x )在[0,+∞)上为增函数, ∴f (x )≥f (0)=0, ∴当a ≤12时满足条件.②当2a >1,即a >12时,令h ′(x )=0,解得x =ln 2a ,当x ∈[0,ln 2a )时,h ′(x )<0,h (x )单调递减,∴当x ∈[0,ln 2a )时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0, ∴f (x )在区间[0,ln 2a )上为减函数, ∴f (x )<f (0)=0,不合题意. 综上,实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,12.。
高考数学一轮复习 第3章 导数及其应用 第1讲 变化率与导数、导数的运算课件 文
12/11/2021
第二十一页,共四十页。
【解析】 (1)设切点坐标为(x0,3x0). 由 y=3x 得 y′=3xln 3, 所以 k=y′|x=x0=3x0ln 3, 切线方程为 y-3x0=3x0ln 3·(x-x0). 由于切线 y=kx 过原点(0,0), 所以-3x0=3x0ln 3·(-x0), 解得 x0=ln13=log3e,即 3x0=e. 所以 k=3x0ln 3=eln 3,故选 C.
12/11/2021
第二十二页,共四十页。
(2)因为 y′=2x-x12,所以在点(1,2)处的切线方程的斜率为 y′|x=1=2×1-112=1,所以切线方程为 y-2=x-1,即 y=x+ 1.
【答案】 (1)C (2)y=x+1
12/11/2021
第二十三页,共四十页。
(1)求曲线切线方程的步骤 ①求出函数 y=f(x)在点 x=x0 处的导数,即曲线 y=f(x)在点 P(x0,f(x0))处切线的斜率. ②由点斜式方程求得切线方程为 y-f(x0)=f′(x0)·(x-x0). (2)求曲线切线方程需注意两点 ①当曲线 y=f(x)在点 P(x0,f(x0))处的切线垂直于 x 轴(此时导 数不存在)时,切线方程为 x=x0.
12/11/2021
第三十一页,共四十页。
由 Δ=a2-8a=0,解得 a=8. 法二:同法一得切线方程为 y=2x-1. 设 y=2x-1 与曲线 y=ax2+(a+2)x+1 相切于点(x0,ax20+(a +2)x0+1).因为 y′=2ax+a+2, 所以 y′|x=x0=2ax0+a+2. 由2aaxx20+0+(a+a+2=2)2,x0+1=2x0-1,解得xa=0=8-. 21, 【答案】 (1)C (2)8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变化率与导数、导数的计算【考点梳理】
1.导数的概念
(1)函数y=f(x)在x=x0处的导数:
①定义:称函数y=f(x)在x=x0处的瞬时变化率
lim Δx→0f x0+Δx-f x0
Δx
=lim
Δx→0
Δy
Δx
为函数y=f(x)在x=x0处的导数,记作f′(x0)或
y′|x=x
即f′(x0)=lim
Δx→0Δy
Δx
=lim
Δx→0
f x0+Δx-f x0
Δx
.
②几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).
(2)函数f(x)的导函数:称函数f′(x)=lim
Δx→0f x+Δx-f x
Δx
为f(x)的导函数.
2.基本初等函数的导数公式
原函数导函数
f(x)=x n(n∈Q*)f′(x)=n·x n-1
f(x)=sin x f′(x)=cos_x
f(x)=cos x f′(x)=-sin_x
f(x)=a x f′(x)=a x ln_a(a>0)
f(x)=e x f′(x)=e x
f(x)=log a x f′(x)=
1
x ln a
f(x)=ln x f′(x)=1 x
3.导数的运算法则
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)f x
g x′=
f x
g x-f x g x
[g x2
(g(x)≠0).
【考点突破】
考点一、导数的计算
【例1】(1)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________.
(2)已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′π
3
+sin x,则f′
π
3
=
________.
(3)已知f(x)=x ln x,若f′(x0)=2,则x0等于( )
A.e2 B.e C.ln 2
2
D.ln 2
[答案] (1) 3 (2)
3
6-4π
(3) B
[解析] (1)因为f(x)=(2x+1)e x,
所以f′(x)=2e x+(2x+1)e x=(2x+3)e x,所以f′(0)=3e0=3.
(2)因为f(x)=x2 f′π
3
+sin x,
所以f′(x)=2x f′π
3
+cos x.
所以f′π
3
=2×
π
3
×f′
π
3
+cos
π
3
.
所以f′π
3
=
3
6-4π
.
(3) f(x)的定义域为(0,+∞),f′(x)=ln x+1,
由f′(x0)=2,即ln x0+1=2,解得x0=e.
【类题通法】
熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.【对点训练】
1.已知函数f(x)=(x2+2)(ax2+b),且f′(1)=2,则f′(-1)=( )
A.-1 B.-2
C.2 D.0
[答案] B
[解析] f(x)=(x2+2)(ax2+b)=ax4+(2a+b)x2+2b,
f′(x)=4ax3+2(2a+b)x为奇函数,
所以f′(-1)=-f′(1)=-2.。