数学7上教案
最新人教版数学七年级上册教案(5篇)
最新人教版数学七年级上册教案(5篇)为大家准备的最新人教版数学七年级上册教案,欢迎大家前来参阅。
最新人教版数学七年级上册教案(篇1)教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。
【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点【教学重点】数轴的意义及作用。
【教学难点】数轴上的点与有理数的直观对应关系。
课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
七年级数学上册教案(优秀7篇)
七年级数学上册教案(优秀7篇)篇一:人教版七年级上数学教案篇一我们七年级数学备课组认真做好各项工作,现根据学校和上级有关部门工作计划,特制定本学期的备课组工作计划如下:一。
指导思想:基于学习任务及小组合作学习的课堂,落实新课改,体现新理念,培养学生自主学习。
以“面向全体学生,共同提高教学质量”为指导思想,同时在教学中渗透情感教育。
树立本组团队合作意识。
加强教学常规建设和课题研究,积极开展校本研究,进一步提高我们组数学整体的教学水平。
二。
工作要点1.切实加强教学常规管理,积极开展小组合作学习的课堂,提高课堂教学效率。
2.认真开展集体备课和课题研究活动,加强备课组团队合作意识,充分发挥学科骨干教师的示范作用。
3.深化数学教学研究,提升数学教师科研素养,积极撰写教学论文。
4.立足课堂,在有效教学策略上深入实践与研究。
三。
具体措施1.加强理论学习,提升教师素质。
进一步认真学习《课程标准》,领会教材编写意图的特点,认真分析教学内容,目标,重难点,严格执行新课程标准的指导思想,提出具体可行的教学方法,继续开展教科研活动,积极参与校本课程的研发工作,提高教科研能力。
2.加大课堂教学改革力度,做到“有效教学”。
探索适合学生实践的教学方式,把“基于学习任务及小组合作学习的课堂,”的教学模式作为本学期课堂教学研究,实现课堂教学理念的更新,做到课堂教学的有效性。
3.加强备课组教研活动,强化教研功能。
由备课组长负责继续实行集体备课制,备出优质课,特色课,全力打造实用课,共同探索新的教学模式,同事注重发挥每位教师各自的教学特色。
4.加强质量监测,及时反馈,提高教学质量。
认真完成各单元的练习卷,检测卷,由专人负责,他人审核,严把质量关。
在平时教学中,及时反馈教学情况,认真分析原因,并及时调查和整改措施,努力提高教学质量。
篇二:人教版七年级数学上册教案篇二1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系。
七年级上册数学教案(共12篇)
七年级上册数学教案〔共12篇〕篇1:七年级上册数学教案教学目的(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进展一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,可以比拟纯熟地进展口算.教学重点和难点重点:在理解的根底上,掌握用一位数乘的口算过程.难点:理解并掌握满十向前一位进“1”的算理.教学过程设计(一)复习准备投影出示口算题:老师提问:14×2请你说一说口算过程.(学生答复10×2=20,4×2=8,20+8=28)老师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学答复(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)老师提醒课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出例如1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)根据14×3的意义,用小棒摆出来.想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比拟14×3与14×2两道口算的异同:(同桌或四人小组的同学互相启发进展讨论)然后请同学答复:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16×2=26×3=25×2=要求同学在练习本上直接写出结果.再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体订正.分别请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分别请同学互相说,集体说,个人说.反复表达口算过程.出例如2:板书:口算:140×3=请同学想一想应该怎样做,然后试做.(老师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的.集中起来说出不同的想法:因为14×3=42,那么140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励.做一做投影出示:130×5=150×6=每人在自己本上直接写出结果.四人小组进展讨论,能用几种方法说出口算过程.小结今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”.(三)稳固反应1.根本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说.最后集体订正.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程.3.找朋友游戏.15×318×212×514×435×2240×325×4310×332×326×2160×612×416×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友.45366056708807201009109652960489072424809004805204.文字表达题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计说明本节课教学内容口算“一位数乘两位数、乘整百整十数”.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备.讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比拟,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,表达以学生为主体.使学生真正悟出新旧知识的内在联络.通过形式多样的练习,到达能准确、迅速地口算的目的.板书设计篇2:七年级上册数学教案一、目的1.用它们拼成各种形状不同的四边形,并计算它们的周长。
七年级数学上册教案优秀3篇
双眼皮的方法
想要拥有双眼皮,有很多种方法可以选择。
以下将介绍几种常见的双眼皮方法,希望能帮助到你。
首先,最常见的双眼皮方法是通过手术来实现。
双眼皮手术是一种常见的整形手术,通过在眼皮上进行切割和缝合,从而形成双眼皮的效果。
这种方法效果明显,一劳永逸,但手术风险较大,需要考虑清楚再进行选择。
其次,双眼皮贴也是一种常见的方法。
这种方法通过使用特制的双眼皮贴,将眼皮贴出双眼皮的效果。
这种方法简单易行,没有手术风险,但需要经常更换双眼皮贴,而且贴出来的双眼皮效果并不自然。
另外,还有一种叫做埋线法的双眼皮方法。
这种方法通过在眼皮内部进行埋线,从而形成双眼皮的效果。
这种方法相对于手术来说风险较小,恢复期较短,但效果可能不如手术明显。
除了以上介绍的方法,还有一些简单的双眼皮操,比如通过化妆来画出双眼皮线条,或者通过眼部按摩来改善眼部肌肤,从而使
双眼皮更加明显。
总的来说,选择双眼皮的方法要根据自己的实际情况来决定,
如果是想要一劳永逸的效果,可以选择手术或者埋线法;如果是暂
时性的需求,可以选择双眼皮贴或者化妆方法。
无论选择哪种方法,都需要在专业医生的指导下进行,确保安全有效。
希望以上介绍的
方法能够帮助到你,祝你早日拥有理想的双眼皮!。
湘教版七年级上册数学教学教案5篇
湘教版七年级上册数学教学教案5篇湘教版七年级数学上册教案1教学目的:掌握坐标变化与图形平移的关系;发展学生的形象思维能力和数形结合意识。
教学重点:掌握图形平移前后的坐标变化规律,教学难点:利用图形平移解决相关问题。
教学过程:复习引入1、什么叫平移?把一个图形整体沿某一方向移动一定的距离,这种移动叫做平移。
2、平移有什么性质?(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是原图形中某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
(3)问:一个点平移后的坐标会发生变化吗?二、新授1、平面直角坐标系内有一点a(-2,-3)1将点a(-2,-3)向右平移5个单位后,得到点 a1的坐标是什么?2将点a(-2,-3)向上平移4个单位后,得到点 a2的坐标是什么?2、归纳:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移 b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)) 。
简称:横移纵不变,纵移横不变。
3、问:线段ab两个端点的坐标分别是a(-5,3),b(-3,0).将线段ab两个端点的横坐标都加上6,纵坐标不变分别得到点a1 、 b1 , 连接a1 、b1 ,所得线段与原线段的大小和位置上有什么关系?4、例题:三角形abc三个顶点的坐标分别是a(4,3)b(3,1)c(1,2)(1)将三角形abc三个顶点的横坐标都减去6,纵坐标不变,分别得到点a1、b1、c1,依次连接各点,所得三角形a1 b1 c1与三角形a b c的大小、形状和位置上有什么关系?(2)将三角形abc三个顶点的纵坐标都减去5,横坐标不变,分别得到点a2 、b2 、c2 ,依次连接各点,所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?5、归纳:在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下 )平移 a个单位长度.6、思考:如果将三角形abc三个顶点的横坐标都减去6,同时纵坐标都减去5,这时图形在哪儿?把它画出来!(有几种平移方法)7、p53t1:图中三架飞机p、q、r保持编队飞行,分别写出它们的坐标。
人教版七年级数学教案
人教版七年级数学教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!人教版七年级数学教案人教版七年级数学教案(集锦7篇)下面是本店铺整理的人教版七年级数学教案(集锦7篇)欢迎参阅。
七年级数学上册《生活数学》教案、教学设计
4.培养学生的创新意识,鼓励学生勇于尝试,善于发现生活中的数学问题,培养学生的探究精神。
二、学情分析
七年级的学生正处于青春期,他们的认知能力、思维品质和情感态度都在不断发展。在此基础上,针对本章节《生活数学》的学情分析如下:
(二)教学设想
1.采用情境教学法,让学生在生活情境中发现数学问题,激发学生的学习兴趣。通过设置有趣的例子和问题,引导学生主动探究,培养其数学思维。
2.创设互动式课堂氛围,鼓励学生提问、讨论,充分调动学生的主观能动性。同时,教师应及时给予反馈,指导学生解决问题,提高学生的自信心。
3.运用差异化教学策略,针对学生的不同需求,设计不同难度的练习题,使每位学生都能在课堂上得到有效提升。
2.学生练习:学生在规定时间内完成练习,教师及时给予反馈,纠正错误。
3.互助交流:学生相互检查练习,讨论解题方法,提高解决问题的能力。
(五)总结归纳
1.教学内容:教师带领学生回顾本节课所学的生活数学知识,总结运算规则和几何图形性质。
2.学生分享:学生分享自己在课堂中学到的知识和解决问题的经验,促进同伴间的相互学习。
2.案例分析:请学生收集身边的购物小票或价目表,运用所学知识计算折扣、优惠等,并将计算过程和结果整理成文档,以便在课堂上与同学分享。
3.课堂练习巩固:完成课本第15页的练习题,包括选择题、填空题和解答题,要求学生在规定时间内独立完成,家长签字确认。
4.小组合作作业:以小组为单位,探讨生活中存在的其他数学问题,如时间管理、路线规划等,总结解决问题的方法,并以PPT或手抄报的形式展示成果。
难点:培养学生将数学知识应用于生活的能力,提高学生的数据分析、整理和表达能力。
七年级数学上册教案精选12篇
七年级数学上册教案精选12篇课时篇一三维目标七年级上册数学教案篇二一、知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解。
教具准备投影仪。
教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。
人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”, 测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2 页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%, 它们与负数具有相反的意义,我们把这样的数(即以前学过的0 以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0 ,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。
七年级上册数学教案
七年级上册数学教案第一篇:人教版七年级上册数学教案人教版七年级上册数学教案第二章、一元一次方程:2.1 从算式到方程教学目标:1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
教学重点:1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程:一、游戏激趣同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;。
现在,我们就来“比一比,说儿歌” (屏幕出示)。
要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。
规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。
(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“某只青蛙某张嘴,2某只眼睛4某条腿,某声扑通跳下水” )(屏幕出示)这样,我们用字母某代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。
二、创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。
此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。
人教版数学七年级上册教案(精选14篇)
人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。
同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。
)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
初一数学上册教案【最新8篇】
初一数学上册教案【最新8篇】初一数学教案篇一教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.�下面我从:教材的分析、教法与学法及教学手段、教学过程、板书设计四部分来说这一节课,其中,教学过程分为:创设情境导入新课、新课讲解、小结作业三部分;整个过程是先由实际问题引入新课,让学生自然走入文本。
合作交流去感受知识获取的过程,并且运用所学的知识解决相关的问题。
教材分析1、教材地位与作用。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的互逆关系。
它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。
这一思想实质贯穿后继学习的各种因式分解方法。
通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。
因此,它起到了承上启下作用。
2、教学目标。
根据单项式这一节课的内容,对于掌握各种单项式的系数和次数方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:(一)知识目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
(二)能力目标:3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
(三)情感目标:1、通过参与对单项式概念的探究活动,提高学习数学的兴趣。
2、培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。
七年级数学上册教案【优秀10篇】
在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,这次漂亮的小编为您带来了七年级数学上册教案【优秀10篇】,如果能帮助到您,小编的一切努力都是值得的。
人教版七年级上册数学教案篇一教学目标1 知识与技能:使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点1 教学重点:掌握用整十数除的口算方法。
2 教学难点:理解用整十数除的口算算理。
教学工具多媒体设备教学过程1 复习引入口算。
20×3= 7×50= 6×3=20×5= 4×9= 8×60=24÷6= 8÷2= 12÷3=42÷6= 90÷3= 3000÷5=2 新知探究1、教学例1有80面彩旗,每班分20面,可以分给几个班?(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?师:怎样解决这个问题?(2)列式 80÷20(3)学生独立探索口算的方法师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:预设学生可能会有以下两种口算方法:A.因为20×4=80,所以80÷20=4 这是想乘算除B.因为8÷2=4,所以80÷20=4 这是根据计数单位的组成为什么可以不看这个“0”?( 80÷20可以想“8个十里面有几个二十?”)这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?把你喜欢的方法说给同桌听。
(5)检查正误师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)(6)用刚学会的方法再次口算,并与同桌交流你的想法40÷20 20÷10 60÷30 90÷30(7)探究估算的方法出示:83÷20≈ 80÷19≈师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
七上数学教案带教学反思8篇
七上数学教案带教学反思8篇七上数学教案带教学反思篇1本课开始先通过一段视频让学生了解分类的概念,这样设计可以使学生对“分类”这一抽象概念有了形象的认识,有利于学生顺利进入新知的学习。
然后让学生采取小组合作学习参与气球的分类与整理过程,体现了学生的主体地位。
实际教学中,可能有的学生会提出还可以按颜色对气球分类,教师要给予以表扬,提出将在下节课探讨。
分类整理第二课时教学是在学生仔细观察,理解题意的基础上进行的。
通过引导学生观察情境图,理解题目要求,使学生在分类时做到心中有数。
再引导学生经历简单的统计表的生成过程,使学生感受到分类标准不同,分类的结果多样,虽然结果不同,但是每一种分类标准下分的结果数据加起来总数是一样的。
在分类整理的练习知道上应该注意以下几点:1.加强对技术方法的指导。
在分类计数时,教师适时地给学生方法上的指导,如数1个划1个;每数一类中的一个,作上相同的标记等,保证收集到的数据正确。
2.在学生分类、整理信息的基础上,注意发现、提出问题能力的培养。
学生能根据整理的结果推出新的信息,从而使学生逐步感受数据中蕴含的信息。
3.注意把所学知识和学生生活有机结合。
让学生体会到数学知识在生活中的应用,感受数学的价值。
七上数学教案带教学反思篇2活动目标:1、能熟练运用互补、互换的方法进行10的分合操作,知道10有种分合法。
2、学习书写数字10,掌握10的正确书写方法。
活动准备:1、小木偶图片;1—10的数字卡片;雪花片2、幼儿用书第3册第33页活动过程:一、开始部分教师出示木偶图片,今天老师带了一个小木偶要和小朋友一起游戏,他想先和小朋友玩一个"碰球"的游戏,要求小木偶手里的球和小朋友手里的球合起来是9。
"嘿嘿,我的1球碰几球""嘿嘿,我的1球碰8球"。
用此形式来复习9的分合式。
二、基本部分教师以小木偶寻宝的游戏口吻,引导幼儿观察并发现分合式的互换、互补规律,启发幼儿熟练运用互换、互补规律得出10的分合式并做好记录,教师在旁边观察并指导。
人教版七年级上册数学教案6篇
人教版七年级上册数学教案6篇人教版七年级上册数学教案(精选篇1)一、内容特点在知识与方法上类似于数系的第一次扩张,也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路整体设计思路:无理数的引入——无理数的表示——实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象——实数概念及其运算;学习过程——通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式——操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的`相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长它的值到底是多少并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
七年级数学上册教案(优秀3篇)
七年级数学上册教案(优秀3篇)2023最新人教版数学七年级上册教案篇一一、教学目标1、理解一个数平方根和算术平方根的意义;2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;3、通过本节的训练,提高学生的逻辑思维能力;4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法讲练结合。
四、教学手段多媒体五、教学过程(一)提问1、已知一正方形面积为50平方米,那么它的边长应为多少?2、已知一个数的平方等于1000,那么这个数是多少?3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。
下面作一个小练习:填空1、()2=9; 2.()2 =0.25;5、()2=0.0081.学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;±0.5是0.25的平方根;0的平方根是0;±0.09是0.0081的平方根。
由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=-4学生思考后,得到结论此题无答案。
反问学生为什么?因为正数、0、负数的平方为非负数。
由此我们可以得到结论,负数是没有平方根的。
下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质1、一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方求一个数a的平方根的运算,叫做开平方的运算。
七年级数学教案(优秀6篇)
七年级数学教案(优秀6篇)七年级数学教案篇1教学目标1.使学生正确理解的意义,掌握的三要素;2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.难点:正确理解有理数与上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——.二、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个,并在上画出表示下列各数的点:例2 指出上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};课堂教学设计说明从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.教学中,的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等.七年级数学教案篇2教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
人教版七年级数学上册教案(通用18篇)
人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。
七年级数学上册《有理数的混合运算》教案3篇
七年级数学上册《有理数的混合运算》教案3篇教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力;教学重点和难点重点:有理数的混合运算;难点:准确地掌握有理数的运算顺序和运算中的符号问题;课堂教学过程设计一、从学生原有认知结构提出问题;1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101;(16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5);2.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac;二、讲授新课我们学习了有理数的加减乘除运算。
如果在一个表达式中有上述混合操作,那么这些操作应该按什么顺序执行?1、在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果;带分数分成整数部分和分数部分时的符号与原带分数的符号相同;七年级数学上册《有理数的混合运算》教案2教学目的:1、要求学生理解加减混合运算**为加法运算的意义。
2、能初步掌握有关有理数的加减混合运算。
教学分析:重点:如何更准确地把加减混合运算**成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
教学过程:一、知识导向:本节是对前面学过的有理数的加法运算和减法运算的综合应用,所以一定要对相关规律有更深的理解,并能在运算中灵活运用。
二、新课:1、知识基础:其一:有理数的加法法则;其二:有理数的减法法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.1有理数乘方(1)(自学路线图)七年级班姓名主编:宋宇松时间:09.9月 8日学习重点:有理数乘方的意义学习难点:幂、底数、指数的概念极其表示学习方法:观察、归纳、练习学习流程:一、自读预习:1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。
他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包. 2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.二、合作探究1、分小组合作学习P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子an中,a叫做,n叫做.2)式子an表示的意义是3)从运算上看式子an,可以读作,从结果上看式子an,可以读作.三、新知学习:1、将下列各式写成乘方(即幂)的形式:1)(—2.3)×(—2.3)×(—2.3)×(—2.3)×(—2.3)=.2)、(—14)×(—14)×(—14)×(—14)=.3)x•x•x•……•x(2008个)=2、例题,P41例1师生共同探究完成:从例题1 可以知道:正数的任何次幂都是数,负数的奇次幂是数,负数的偶次幂是数,0的任何正整数次幂都是 .3、思考:(—2)4和—24意义一样吗?为什么?四、新知应用:完成P42页第一题五、小结: 1、请你对本节课所学知识作个小结:1)底数是-1,指数是91的幂写做_________,结果是_________.2)(-3)3的意义是_________,-33的意义是___________.3)5个13相乘写成__________,13的5次幂写成_________.2、用乘方的意义计算下列各式:(1)(-2)4;(2)42-;(3)323⎛⎫-⎪⎝⎭;(4)223-;3、观察下列各等式: 1=21; 1+3=22; 1+3+5=23; 1+3+5+7=24……①通过上述观察,你能猜想出反映这种规律的一般结论吗?②你能运用上述规律求1+3+5+7+…+2003的值吗?七、作业1、P47第一题 2.计算:(根据自己的情况选做)(1)2221(2)2(10)4----⨯-; (2) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯-⎪⎝⎭通过学习这节课谈谈你的收获:教师课后反思:有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。
所以教师在教这一节课的教学中要从有理数乘方的意义,乘方是一种运算。
相当于“+、-、×、÷”。
教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。
强调幂的意义,幂的意义与“和、差、积、商”一样。
如的结果是8。
所以说的幂是8。
与2×4一样,2×4=8.所以不能说8是幂,说成23的幂是8。
同时强调具有两种意义,它既表示n个a相乘。
又表示乘方的运算结果。
1.5.1有理数的乘方(2)(自学路线图)主编:宋宇松学习重点:运算顺序的确定和性质符号的处理学习难点:有理数的混合运算学习方法:合作交流、讨论、练习学习流程:一、自读预习:1、在2+23×(-6)这个式子中,存在着种运算.2、请你们以4人一个小组讨论、交流,上面这个式子应该先算、再算、最后算 .二、交流反馈1、由上可以知道,在有理数的混合运算中,运算顺序是:1)、先算乘方,再算,最后算;2)、同级运算,从到右进行;3)、如有括号,先做括号内的运算,按小括号、、依次进行。
三、巩固练习1、P43例题3,请你试练2、师生共同探讨P43例题43、练习 : 计算()225 3[]39⎛⎫-⨯-+-⎪⎝⎭四、回顾、思考1、以后遇到有理数的混合运算,应该按怎样的顺序计算?2、对于你来说,学习中遇到的问题是什么?五、自我检测:计算: 1、(—1)10×2+(—2)3÷42、(—5)3—3×41()2- 3、111135()532114⨯-⨯÷4、(—10)4+[(—4)2—(3+32)×2]5、3342293⎛⎫-÷⨯-⎪⎝⎭六、作业: P47第三题通过学习这节课谈谈你的收获:课后反思:在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。
法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师在教学时强调做乘方时先确定符号再计算教有理数综合运算时应该强调运算顺序。
即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。
分清与的区别。
注意–5的平方与1/2的平方的书写方法。
注意讲清有理数乘方中的常见错误。
如,的区别。
前者是表示2的平方的相反数,后记者是表示–2的平方,写法不同计算的结果不同。
同时分清分数的乘方的书写。
与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。
§1.5.2 科学记数法(自学路线图)一、自读预习:p44-45页内容:用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:太阳的半径约696 000千米; 富士山可能爆发, 这将造成至少25 000亿日元的损失;光的速度大约是300 000 000米/秒; 全世界人口数大约是6 100 000 000. 一般地,10的n 次幂,在1的后面有n 个0,这样就可用10的幂表示一些大数,如,6 100 000 000=6.1×1 000 000 000=6.1×910.那么:696 000千米= 25 000亿日元=光的速度大约是象上面这样小组讨论:科学记数法也就是把一个数表示成 a ×10的形式,其中0≤a <10的数,n 的值等于整数部分的位数减1.二、合作探究:例5: 用科学记数法记出下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1 000 000= (2)57 000 000= (3)123 000 000 000= 用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.三、课堂反馈练习: 1.用科学记数法记出下列各数.(1)30060= (2)15 400 000=(3)123000=2.下列用科学记数法记出的数,原来各是什么数?(B 级目标)(1)2×510; (2)7.12×310; (3)8.5×610.3.已知长方形的长为7×105mm ,宽为5×104mm ,求长方形的面积.4.把199 000 000用科学记数法写成1.99×10n-3-的形式,求n 的值. (C 级目标)四、课后作业: 教科书P57习题1.5-4、5课后选作题: 1、用科学记数法表示下列各数:(1)太阳的半径约是696000千米;696000千米= (2)据统计,全球每分钟约有85000吨污水排入江河湖海.解:85000吨=2、地球绕太阳转动每小时通过110000km ,则它一昼夜通过多少千米?(用科学记数法表示)(C 级目标) 解:通过学习这节课谈谈你的收获 :教师课后反思:设计从两方面入手,一是从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动。
为了创设情境,教学设计一开始先抓住学生的好奇心,用一个很常见的实际情境,调动学生学习的积极性,让学生在轻松的学习气氛中去发现问题。
二是在学生的第一次讨论之后,设计了一个动手的机会,让学生在生动具体的情境中理解和认识科学记数法表示大数的意义及方法,使学生在自主探索和合作交流中获得成功的体验。
近似数和有效数字自学路线图学习目标一、1、认真阅读课文第45页到第46页2、预习尝试:【A级】①用四舍五入法求下列数的近似数:(1)将2.953保留整数得________。
(2)将2.953保留一位小数得________(3)将2.953保留两位小数得________。
②关于精确度问题:使用近似数就有一个近似程度的问题,也就是_________问题。
一般的,一个近似数,四舍五入到某一位,就说这个近似数精确到哪一位。
③近似数的有效数字:_____________________________________________叫做这个近似数的有效数字例如,小明的身高为1.70米,1.70这个近似数精确到_______,共有3个有效数字:1、7、0。
近似数0.0102精确到_______,有__个有小数字:________。
④下列各数__________是近似数,__________是准确数?(答序号)A、公共汽车从小宏家到学校只有3站;B、他每天都工作9小时或10小时;C、这个城市有200万人口;D、5月份有31天;E、他身高1.69米;F、吃晚饭的时间是17时.⑤填空(1)由四舍五入得到的近似数0.600的有效数字是________.(2)用四舍五入法取近似值,3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.(3)用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.⑥单独完成课本第46页练习题和第47页第6题(小组长检查、组内统一答案、组长督导成员改错)3、典型例题例一、四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4 (2)0.0572 (3)2.40万(4)3000 (将例题补充完整)解:(1)132.4精确到十分位(精确到0.1),有__个有效数字:____________。
例二,用四舍五入法,按括号中的要求对下列各数取近似数(将例题补充完整)(1)0.34082(精确到千分位)(2)64.8(精确到个位)(3)1.5046(精确到0.001)(4)0.0692 (保留2个有效数字)解:(1)0.34082≈_______ (2)(3)(4)例三、下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)9.03万 (2)70万 (3)1.8亿 (4)6.40×105 (将例题补充完整)分析:较大的数取近似值时,常用×万,×亿等等来表示,而它精确到的位数不一定是“万”或“亿”。