角的比较与运算”教学设计
《角的比较与运算》 教学设计

《角的比较与运算》教学设计一、教学目标1、知识与技能目标理解角的大小比较的方法,会用度量法和叠合法比较角的大小。
掌握角的平分线的概念,会进行角的度数的运算。
2、过程与方法目标通过观察、操作、类比、推理等活动,培养学生的观察能力、动手操作能力和逻辑思维能力。
经历角的比较和运算的过程,体会类比的数学思想方法。
3、情感态度与价值观目标在合作交流中,培养学生的合作意识和团队精神。
让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。
二、教学重难点1、教学重点角的大小比较方法。
角的平分线的概念及应用。
2、教学难点角的度数的运算。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示一些角的图片,如三角板的角、五角星的角等,引导学生观察并思考:如何比较这些角的大小?2、讲授新课(1)角的大小比较度量法:用量角器测量角的度数,度数大的角大。
教师示范用量角器测量角的度数,并让学生练习。
叠合法:将两个角的顶点及一边重合,另一边在重合边的同侧,通过观察另一边的位置来比较角的大小。
教师通过演示,让学生直观地理解叠合法。
(2)角的和差展示两个角,让学生通过观察和思考,得出角的和与差的概念。
进行练习,让学生通过画图和计算,求出两个角的和与差。
(3)角的平分线展示一个角,将其对折,使角的两边重合,折痕所在的射线就是角的平分线。
给出角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
引导学生通过几何语言表示角平分线,并进行相关的计算练习。
3、课堂练习安排适量的练习题,包括角的大小比较、角的和差、角平分线的应用等,让学生巩固所学知识。
4、课堂小结引导学生回顾本节课所学的主要内容,包括角的大小比较方法、角的和差、角的平分线的概念及应用。
5、布置作业布置书面作业,让学生完成课本上的相关习题。
布置拓展作业,让学生思考生活中哪些地方用到了角的比较和运算。
五、教学反思在教学过程中,要注重引导学生通过观察、操作、思考等活动,自主探索角的比较和运算的方法,培养学生的自主学习能力和创新思维能力。
最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。
角的比较与运算教学设计

角的比较与运算教学设计教学设计:角的比较与运算一、教学目标1.知识与技能:学生能够理解角的比较与运算的概念,并能运用角的比较与运算进行问题的解决。
2.过程与方法:通过引导学生进行观察实验、讨论与练习等学习活动,培养学生的观察、分析和判断能力,激发学生的学习兴趣和创造力。
3.情感态度与价值观:培养学生的数学思维、数学兴趣、数学求知欲,提高学生的学习自信心和独立思考能力。
二、教学内容三、教学重难点四、教学过程及设计1.激发兴趣(5分钟)通过引入问题的方式激发学生对角的比较与运算的兴趣,并提出具体问题:如何比较两个角的大小?2.观察实验(15分钟)让学生自由选取两根杆和一个角规进行实验,观察并记录两个角的大小。
引导学生总结发现,让学生猜想两个角的大小与杆的长度、角度的大小是否相关。
3.探究规律(20分钟)引导学生进行角度的比较,比较两种角度的大小时,可先比较角度的大小,再比较两根杆的长度;或者比较两根杆的长度,再比较角度的大小。
通过实验和探究,学生会发现角的大小不仅与角度的大小有关,还与角的位置有关。
4.角度运算(20分钟)介绍角度的运算:角的相加、角的相减和角的相等。
引导学生进行角度的运算练习,通过实际问题进行讨论和解答。
如:两个角度相加后的度数是多少?两个角度相减后的度数是多少?5.运用与拓展(15分钟)通过多个实际问题的运用,让学生掌握角度的比较与运算的方法和技巧。
并进行拓展,例如:三个角度相加后的度数是多少?6.小结与反思(10分钟)对本节课进行小结,总结本节课所学的内容。
并请学生进行反思,提出关于角的比较与运算方面的问题或疑惑。
五、教学手段与资源1.教学手段:讲授、讨论、实验、练习、问题解决等。
2.教学资源:黑板、板书、杆、角规等。
六、教学评价与反馈1.教师在课堂上观察学生的学习情况,及时给予肯定和鼓励,同时指导学生进行角的比较与运算的练习和解答。
2.可以设计学生进行课后作业,巩固所学知识,并对学生的作业进行评价和反馈。
角的比较与运算教案

角的比较与运算教案一、教学目标:知识与技能:1. 能够识别和比较不同类型的角(锐角、直角、钝角、周角)。
2. 学会使用量角器测量角的大小。
3. 掌握角的加减运算方法。
过程与方法:1. 通过观察、操作、交流等活动,培养学生的观察能力和动手能力。
2. 学会用图形软件绘制不同类型的角,并进行运算。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的团队合作意识和动手操作能力。
二、教学重点与难点:重点:1. 识别和比较不同类型的角。
2. 使用量角器测量角的大小。
3. 掌握角的加减运算方法。
难点:1. 理解角的大小比较方法。
2. 熟练使用量角器。
3. 解决角的运算问题。
三、教学准备:教师准备:1. 教学PPT或黑板。
2. 量角器。
3. 各种类型的角模型或图片。
学生准备:1. 笔记本。
2. 彩笔。
四、教学过程:1. 导入:教师通过展示各种生活中的角,引导学生观察和思考,引出本课的主题。
2. 基本概念:介绍锐角、直角、钝角、周角的定义,让学生通过观察和比较,理解它们的特点。
3. 测量角的大小:讲解如何使用量角器测量角的大小,并进行示范。
学生分组合作,互相测量角的大小,并记录结果。
4. 角的加减运算:讲解角的加减运算方法,引导学生通过画图或使用数学软件,进行角的运算练习。
5. 总结与拓展:总结本节课所学内容,强调重点和难点。
布置课后作业,让学生巩固所学知识。
五、课后作业:1. 练习识别和比较不同类型的角。
2. 使用量角器测量一些角的大小,并记录结果。
3. 进行角的加减运算练习。
六、教学策略:1. 采用问题驱动的教学方法,引导学生通过观察、思考、操作、交流等活动,自主探索角的大小比较和运算方法。
2. 利用多媒体技术与实物模型相结合,提高学生的直观感受和动手能力。
3. 分组合作学习,培养学生的团队合作精神和沟通能力。
4. 注重个体差异,给予学生个性化的指导和关爱,使每个学生都能在课堂上得到锻炼和提高。
角的比较与运算 优秀教学设计(教案)

角的比较与运算一、素质教育目标(一)知识教学点1.理解两个角的和、差、倍、分的意义.2.掌握角平分线的概念3.会比较角的大小,会用量角器画一个角等于已知角.(二)能力训练点1.通过让学生亲自动手演示比较角的大小,画一个角等于已知角等,培养训练学生的动手操作能力.2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练学生几何语言的表达能力及几何识图能力,培养其空间观念.(三)德育渗透点通过具体实物演示,对角的大小进行比较这一由感性认识上升到理性认识的过程,培养学生严谨的科学态度,对学生进行辩证唯物主义思想教育.(四)美育渗透点通过对角的大小比较,提高学生的鉴赏力,通过学生自己作角及角平分线,使学生进一步体会几何图形的形象直观美.二、学法引导1.教师教法:直观演示、尝试、指导相结合.2.学生学法:主动参与、积极思维、动手实践相结合.三、重点·难点·疑点及解决办法(一)重点角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.(二)难点空间观念,几何识图能力的培养.(三)疑点角的和、差、倍、分的意义.(四)解决办法通过学生主动参与,在自觉与不自觉中掌握知识点,再经过练习,解决难点和疑点.四、课时安排1课时五、教具学具准备投影仪或电脑、一副三角板、自制胶片(软盘)、量角器.六、师生互动活动设计七、教学步骤(一)明确目标通过教学,使学生在角的比较中掌握方法,理解相应概念,并掌握角平分线的概念.(二)整体感知通过现代化教学手段与学生的画图相结合,完成本节教学任务.(三)教学过程创设情境,引出课题师:请同学们拿出你的一副三角板,你能说出这几个角的大小吗?学生基本知道一副三角板各角的度数,他们可能利用度数比较,也可能通过观察,也会有同学用叠合法.这里可以让学生讨论,说出采用的比较方法,但叙述可能不规范.教师既不给予肯定也不否定,只是再提出新问题.投影显示:两个度数相差1度以内的角,不标明度数,只凭眼观察不能确定两个角的大小.师:对于这两个角你能说出它们哪一个大?哪一个小吗?(学生困惑时教师点出课题.)这节课我们就学习角的比较.同学们提出的比较一副三角板各角的方法有些很好,但不规范.希望同学们认真学习本节内容,掌握角的比较等知识,为以后的学习打好基础.(板书课题)[板书]角的比较【教法说明】由学生熟知的三角板各角的比较入手,把学生带入比较角的大小的意境.但问题一转,出现了不标度数,观察又不能确定大小的角,当学生束手无策时,教师提出这就是我们要学习的新内容,调动学生的积极性,吸引其注意力.探究新知1.角的比较(1)叠合法教师通过活动投影演示:两个角设计成不同颜色,三种情况:,,,如图1所示.ABC DEF ∠=∠ABC DEF ∠<∠ABC DEF ∠>∠图1演示:移动,使其顶点与的顶点重合,一边和重合,出DEF ∠E ABC ∠B ED BA 现以下三种情况,如图2所示.图2师:请同学们观察的另一边的位置情况,你能确定出两个角的大小关系DEF ∠EF 吗?学生活动:观察教师演示后,同桌也可以利用两副三角板演示以上过程,帮助理解比较两角的大小,回答教师提出的问题.教师根据学生回答整理板书.[板书]①与重合,等于,记作.EF BC DEF ∠ABC ∠ABC DEF ∠=∠②落在的内部,小于,记作.EF ABC ∠DEF ∠ABC ∠ABC DEF ∠<∠③落在的外部,大于,记作.EF ABC ∠DEF ∠ABC ∠ABC DEF ∠>∠【教法说明】通过直观的实物演示和投影(电脑)显示,既加强了角的比较的直观性,又可提高学生的兴趣.注意再次强调角的大小只与开口大小有关,与边的长短无关,以及角的符号与小于号、大于号书写时的区别.(2)测量法师:小学我们学过用量角器测量一个角,角的大小也可以按其度数比较.度数大的角则大,度数小的则小.反之,角大度数大,角小度数小.学生活动:请同桌分别画两个角,然后交换用量角器测量其度数,比较它们的大小.【教法说明】测量前教师可提问使用量角器应注意的问题.即三点:对中;重合;读数.让学生动手操作,培养他们动手能力.反馈练习:课本习题,用量角器测量、、的大小,同桌交换结果看是否α∠β∠γ∠2.角的和、差、倍、分投影显示:如图1,、.1∠2∠提出问题:如图1,,把移到上,使它们的顶点重合,一边重合,会21∠>∠2∠1∠有几种情况?请同学们在练习本上画出.你如何把移到上,才能保证的大小不变呢?2∠1∠2∠学生活动:讨论如何移到上,移动2∠1∠后有几种情况,在练习本上画出图形.(有小学测量的基础,学生不会感到困难,可放手让学生自己动手操作.) 图1教师根据学生回答小结:量角器可起移角的作用,先测量的度数,然后以的顶2∠1∠点为顶点,其中一边为作作一个角等于,出现两种情况.如图2及图3所示:2∠(1)在内部时,如图2,是与的差,记作:2∠1∠ABC ∠1∠2∠.21∠-∠=∠ABC (2)在外部时,如图3,是与的和,记作:2∠1∠DEF ∠1∠2∠.21∠+∠=∠DEF 【教法说明】在以上教学过程中,一定要注意训练学生的看图能力和几何语句表达能力,如与的和差所得到的两个图形中,还可让学生观察得到图2中是与1∠2∠2∠1∠的差,记作:,或与的和等于,记作:ABC ∠ABC ∠-∠=∠12ABC ∠2∠1∠,图3中是与的差,记作:等进行12∠=∠+∠ABC 1∠DEF ∠2∠21∠-∠=∠DEF 看图能力的训练.图2图3反馈练习:学生在练习本上完成画图.已知如图4,,画,使.1∠2∠112∠+∠=∠师:两个的和是,那么是的2倍,记作,或是的1∠2∠2∠1∠122∠=∠1∠2∠21,记作:.同样,有角的3倍和等等.角的和、差、倍、分的度数等于它们2211∠=∠31的度数的和、差、倍、分.图43.角平分线学生观察以上反馈练习中的图形,,也就是把122∠=∠1∠=∠=∠COB AOC OC 分成了两个相等的角,这条射线叫的平分线.AOB ∠AOB ∠[板书]定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分几何语言表示:是的平分线,(或OC AOB ∠COB AOC AOB ∠=∠=∠22).AOB COB AOC ∠=∠=∠21说明:若,则是的平分线,同样有两条三等分线,三条AOC COB ∠=∠OC AOB ∠四等分线,等等.变式训练,培养能力投影显示:1.如图1填空:①____∠+∠=∠ABD ABC ②____∠-∠=∠ADC ADB 2.是的平分线,那么,图1BD ABC ∠①_____∠=∠ABD ②DBC∠=∠2_____3.如图2:是的平分线,OB AOC ∠是的平分线OD COE ∠①若,则图2 50=∠AOC ______=∠BOC ②,,则度 50=∠AOC 80=∠COE ____=∠BOD 【教法说明】练习中的第1、2题可口答,第3题在教师引导下写出过程,初步渗透推理过程,培养学生的逻辑推理能力,推理过程由已知入手,联想得出结论.(四)总结、扩展找学生回答:今天学习了哪些内容?教师归纳得出以下知识结构:八、布置作业课本.作业答案1.解:,若BOC AOB AOC ∠+∠=∠COD BOC BOD ∠+∠=∠,那么,COD AOB ∠=∠BODAOC ∠=∠2.解:∵是的平分线,∴.BD ABC ∠DBC ABC ∠=∠2又∵是的平分线,∴.CE ACB ∠ECB ACB ∠=∠2角的比较1.角的比(1)叠合(2)测量法2.角的和差倍(1)图形的关(2)数量关注意:几何图形的识图角的和、差、倍、分的度数等于它们的度数的和、差、倍、分3.角的平分线(1)定(2)几何符号语言表示又∵,∴.ECB DBC ∠=∠ACB ABC ∠=∠说明:学生作业或回答问题,尽量要求用“∵ ∴”的形式,为以后解证明题打好基础.九、板书设计同七、(四)的格式.。
人教版数学七年级上册3.2《角的比较与运算》教学设计

人教版数学七年级上册3.2《角的比较与运算》教学设计一. 教材分析《角的比较与运算》是人教版数学七年级上册第三章第二节的内容,本节课主要让学生了解并掌握角的比较方法和角的运算规则。
通过本节课的学习,学生能够理解角的大小比较方法,会运用角的大小比较方法解决实际问题,并掌握角的加减运算和乘除运算。
二. 学情分析学生在学习本节课之前,已经掌握了角的定义和基本性质,具备了一定的观察和操作能力。
但部分学生在角的比较和运算方面可能还存在困难,因此,在教学过程中,需要针对这部分学生进行重点辅导。
三. 教学目标1.知识与技能目标:让学生掌握角的比较方法,能够运用角的比较方法解决实际问题;让学生掌握角的加减运算和乘除运算,能够运用角的运算规则解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的动手能力和合作意识。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的耐心和毅力。
四. 教学重难点1.教学重点:角的比较方法,角的加减运算和乘除运算。
2.教学难点:角的运算规则的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解角的大小比较和运算在实际生活中的应用。
2.动手操作法:让学生通过实际操作,加深对角的大小比较和运算的理解。
3.小组合作法:引导学生进行小组讨论,培养学生的合作意识和团队精神。
4.问答法:教师提问,学生回答,激发学生的思维,提高学生的表达能力。
六. 教学准备1.教具准备:三角板、量角器、直尺等。
2.课件准备:角的比较和运算的课件。
3.作业准备:与本节课内容相关的练习题。
七. 教学过程1.导入(5分钟)教师通过生活实例,如门的形状、钟表的指针等,引导学生了解角的大小比较和运算在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件呈现角的比较和运算的定义和规则,让学生初步了解角的大小比较和运算的方法。
3.操练(10分钟)教师引导学生利用三角板、量角器等教具,进行角的比较和运算的实践操作,让学生在实际操作中加深对角的大小比较和运算的理解。
角的比较与运算教案

角的比较与运算教案教学目标•了解角的比较与运算的基本概念•掌握角的大小比较和角度的四则运算•能够灵活运用所学知识解决与角度大小、运算相关的问题教学重点•角的比较与大小•角的四则运算教学难点•能够灵活运用所学知识解决实际问题教学过程1. 角的基本概念回顾•恢复学生对角的概念的理解,包括角的定义、顶点、边、度数等。
2. 角的比较与大小•从涉及角大小的实例出发,让学生探究角的大小的比较方法。
自己找寻或者提供材料,让学生辨认出哪一个角是锐角,哪一个是直角等,并判断它们之间的大小关系。
3. 角的四则运算1.加法:将相邻的角分别以其顶点为原点,共线边为X轴,分别标记刻度,然后相加。
–举例说明:•60度 + 30度 = 90度2.减法:将被减角和减角以其顶点为原点,共线边为X轴,分别标记刻度,然后相减。
其实,可翻折角进行建模,然后应用加法原则进行运算。
–举例说明:•180度 - 60度 = 120度3.乘法:不同角度之间的乘法,能够应用余弦公式进行计算。
–举例说明:•cos(60度) * cos(30度) = (1/2) * √(3)/24.除法:只能应用余弦公式进行计算,即除以某一角的余弦值来使角度相除。
–举例说明:•cos(60度) / cos(30度) = 1/√(3)4. 实际应用•联系实际应用场景,例如使用角的比较与运算解决一个三角形问题;或者试着去解决以下问题:–一段铁棒,一端是x度,另一端是y度,在中间钳制一把夹子,勾出了z度,问夹子的大小是多少度?教学总结•总结角的比较与运算的基本概念与方法•强调实际应用,让学生掌握角的比较与运算的解决实践问题的方法参考资料•《初中数学》•《初中数学知识同步课程》。
教案角的比较和运算

角的比较和运算一、教学目标1. 让学生理解角的概念,能够识别和比较不同类型的角。
2. 培养学生运用角的性质和运算方法解决实际问题的能力。
3. 提高学生对几何图形的认识,培养学生的观察能力和空间想象力。
二、教学内容1. 角的概念和分类:锐角、直角、钝角、平角、周角。
2. 角的度量:度、分、秒的换算。
3. 角的比较:大于、小于、等于。
4. 角的运算:加法、减法、乘法、除法。
5. 实际问题:运用角的运算解决生活中的几何问题。
三、教学重点与难点1. 重点:角的分类、度的换算、角的比较和运算。
2. 难点:角的运算方法和实际问题的解决。
四、教学方法1. 采用直观演示法,通过实物和图形引导学生认识角的概念。
2. 采用讲授法,讲解角的分类、度的换算、角的比较和运算方法。
3. 运用案例分析法,让学生通过实际问题学会运用角的运算解决几何问题。
4. 采用小组讨论法,培养学生的合作能力和解决问题的能力。
五、教学准备1. 教具:角模型、度量工具、几何图形。
2. 教学素材:PPT、案例分析题。
3. 学具:学生角模型、度量工具、练习本。
六、教学步骤1. 导入新课:通过一个几何图形,引导学生认识角的概念。
2. 讲解角的分类:介绍锐角、直角、钝角、平角、周角的定义和特点。
3. 讲解角的度量:介绍度、分、秒的换算方法。
4. 角的比较:引导学生通过观察和操作,学会比较不同角的大小。
5. 角的运算:讲解角的加法、减法、乘法、除法运算方法。
七、课堂练习1. 完成PPT上的练习题,巩固角的分类和度量的知识。
2. 进行小组讨论,探讨角的比较和运算的方法。
八、案例分析1. 出示一个实际问题,要求学生运用角的运算方法解决。
2. 分组讨论,引导学生学会分析问题、解决问题。
九、课堂小结1. 回顾本节课所学内容,总结角的分类、度的换算、角的比较和运算的方法。
2. 强调角的运算在实际生活中的应用。
十、作业布置1. 完成练习本上的相关练习题,巩固角的比较和运算的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的比较与运算”教学设计(第一课时)一、内容及其解析1.内容角的比较,角的和差,角平分线.2.内容解析角的比较,角的和差,角平分线是本章重要的几何基础知识,也是后续学习图形与几何必备的知识基础.角的大小比较方法有两种:①度量法;②叠合法.其中,叠合法是重要的方法.叠合时使两个角的顶点及一边重合,另一边落在第一条边的同旁,保证了可比性;对于角的移动,具有角的位置改变了,但角的大小保持不变的性质.度量法中量角器起到了一个移角的作用,其实质是将两个角叠合在一起.比较两角的大小是本节知识产生、发展的起点,不论是图形还是数量关系(教材图4.3—6),除角的大小关系外,自然会产生角的和差问题,再将角的和差问题特殊化,自然又会产生等分问题.与线段的比较、和差、中点一样,对于角的比较、和差、角平分线也是“数”“形”地说明它的意义的.其认知思维过程反映在两个方面:一是“数”与“形”结合.把几何意义与度数的数量关系结合起来,这是几何学习的特点之一,也是学习几何必须建立的一种思想意识.二是类比学习。
按知识内容,线段的比较、和差、中点与角的比较、和差、角平分线是类比性知识;按叙述方式,均采用“图形语言”“文字语言”和“符号语言”综合描述所研究的对象;按学习过程,都特别注重从“有形”到“无形”(模型→图形→文字→符号)的抽象过程,同时也重视相反的化“无形”为“有形”(符号→文字→图形)的训练过程。
类比学习是一种重要的学习方法,它既能揭示知识间的联系,在类比中加深理解,也体现了教材内容编排同类知识的同构现象,同时,也明确了研究一类问题的“基本套路”。
基于以上分析,可以确定本课的教学重点是:角的大小、和差、角平分线的几何意义及数量关系;感受学习过程中的类比思想.二、目标及其解析1.目标(1)理解角的大小、和差、角平分线的几何意义及数量关系,并会用文字语言、图形语言、符号语言进行综合描述。
(2)经历类比线段的大小、和差、中点学习角的比较、和差、角平分线角过程,体会类比思想。
2.目标解析(1)能从图形和数量关系两个角度认识角的大小,会用度量法和叠合法比较两个角的大小.能从几何图形和数量关系认识角的和差与角平分线,知道两个角的和差,仍然是一个角,知道角的和差或等分的度数,就是它们度数的和差或等分.能结合角的大小、和差、角平分线的直观图形,用文字语言和符号语言描述它们,反之,能将它们用符号语言或文字语言所表述的图形及关系,用图形直观表示出来。
(2)在学习过程中,能在回忆线段的大小、和差、中点内容的同时,想象本节课所要学习的内容,能对学习进程心中有数,建立有意义学习心向;能将研究线段的大小、和差、中点的方式方法和基本套路,迁移运用到角的大小、和差、角平分线的学习之中,不断地提出问题、分析问题、解决问题。
能建立起有关线段和角这两种基本几何图形的完善的认知结构。
三、学生情况分析研究线段的比较大小、和差、中点与研究角的比较大小、和差、角平分线,其内容和方法都很相似,教学时把它们进行对比,学生在学习方法和学习内容的理解上,不会有困难.困难在于用图形语言、文字语言、符号语言综合描述所研究的对象,表现在能结合角的大小、和差、角平分线的直观图形,用文字语言和符号语言描述它们,反之,能将它们用符号语言或文字语言所表述的图形及关系,用图形直观表示出来。
原因:一是语言是思维的产物。
其中,图形是实物和模型第一次抽象,是对研究对象的直观反映;文字语言是对图形的描述、理解和讨论;符号语言则是对文字语言的简化和再次抽象.它们的综合运用,要求学生必须对研究对象从数和形上有着深刻的理解,并具有读图和画图的能力。
二是缺乏培养和训练,图形、文字、符号语言的综合运用,虽然在线段学习中有所接触,但达到融会贯通的程度,还需要经过一段过程.本课的教学难点:用图形语言、文字语言、符号语言综合描述角的大小、和差关系及角平分线.四、教学策略及其分析1.策略教师通过设置“问题串”,利用类比的思想,采用启发式教学,使学生将独立思考与合作交流相结合,从而达成学习目标。
2.策略分析在学习本课内容之前,学生已学习过与“角”相关的“线段”这个基本图形,线段的相关内容和方法为学生学习角的比较与运算搭好了“脚手架”,所以把“复习线段”作为新授内容类比学习的对象。
教师不断用线段的学习内容和方法启发学生,通过设置环环相扣的“问题串”,引导学生达成学习目标。
这样以旧引新,以新强旧,学生更易理解。
在这个过程中,教师为学生的学习搭建自主学习、合作交流的平台,展示学习成果、反馈学习疑难;通过富有针对性的提问、指导,对教学进行及时调控,从而面向全体,为不同层次的学生提供了学习的机会和恰当的帮助,提高课堂实效。
五、教学支持条件分析为了充分利用实物和几何模型进行教学,也可通过几何画板展示图形变换.让学生动手操作和参与,使他们在观察、操作、想象、交流等活动中认识图形,准备透明或半透明纸、三角板、量角器,进行画角、度量、叠合(比较角的大小)、翻折(作角平分线)、拼合(利用三角板画15°、75°等度数的角)等.六、教学过程设计 (一)温故知新,引入课题引入:上节课我们学了角的有关概念,你能回忆一下学了哪些内容吗? 接下来将研究什么,我们可以从研究线段得到启发. 师生活动:学生回忆,回答问题.问题1请同学们回忆一下,前面我们学习了线段的哪些内容? 师生活动:学生回顾在线段中所学内容,教师归纳.教师关注:学生对所学线段内容的整体认识以及“几何模型——图形——文字——符号”的学习过程.【设计意图】 学习伊始,先回忆与本节课内容密切相关的引导性材料——先行组织者.先行组织者能激活认知结构中已具备的相关知识,使学生认识到它们之间的联系;先行组织者为将要学习的材料提供了一个框架或线索,起到了“导游图”的作用,能使学生对学习进程心中有数,帮助学生建立有意义学习的心向,有助于学生掌握研究问题的方法.(二)观察思考,探究新知问题2 类比线段大小的比较,你认为该如何比较两个角的大小?在练习本上画两个角,比较出它们的大小,并说明你是怎么比较的。
师生活动:学生讨论解决问题的方法,学生代表展示交流. 学生展示交流后提问:1.比较角大小的方法有几种?每种方法中应注意的问题什么?师生活动:教师在学生展示交流的基础上,利用课件动画演示用量角器量角、用叠合法比较角的大小过程,归纳操作要点:量角器量角注意对中,重合,读数.叠合两角时要注意:(1)重合(两角的顶点及一边重合),(2)同旁(另一边落在第一条边的同旁).2.两个角的大小关系有几种?你能用图形和符号表示吗?师生活动:画出图形,并用符号表示,如图1;指出两个角的大小关系有且仅有三种情况.O (O ´)´)B (B ´) AOB A O B '''∠=∠O (O ´)BB ´ A (A ´)AOB A O B '''∠<∠ ´)B ´B AOB A O B '''∠>∠图1教师关注:学生运用度量法、叠合法比较角的大小操作的规范性;学生是否体会两个角的大小关系有且仅有三种情况.【设计意图】 采用类比的方法,按照“几何模型——图形——文字——符号”的学习程序,学生动手操作,自主探究.建立线段比较长短与角比较大小之间知识与方法的联系,在对比中加深理解。
指出对于两个角的大小关系和两个实数的大小关系一样,有且仅有三种情况:∠A >∠B ,∠A =∠B ,∠A <∠B ,为以后分类研究一些有关角的问题奠定基础.问题3 如图2,图中共有几个角?它们之间有什么大小关系? 师生活动:学生确定角的个数,明确角间的大小关系. 教师关注:学生是否能发现角的和差关系,若学生仅说出 它们的大小关系,教师可引导学生进一步观察图形,类比线段 的和差,发现角的和差关系。
学生完成上述问题后提问:你能用符号表示这些角间的和差关系吗? 教师关注:学生能否理解角的和差意义.【设计意图】 以角的比较大小图形(如图2)为背景,提出角的和差问题,将知识由角的大小过渡到角的和差,衔接自然流畅。
同时,针对同一图形变换审视角度提出问题,可以提高学生的读图能力.用符号表示角的和差关系,仍遵循“几何模型——图形——文字——符号”的学习过程,在图形与等式之间建立一种关系.从角的度数数量上研究角的和差,突出反应角的和差几何意义与度数的数量间的关系,加深对角的和差概念的理解.问题4利用一副三角板,你能画出画出15°,75°的角吗?你还能画出哪些度数的角? 师生活动:学生动手操作,小组合作探究,师生归纳.师生归纳:一副三角尺上的角都是常用的角,它们是30°,45°,60°,90°的角,利用这些角可以很方便的画出与这些角相关的一些特殊角,如:15°,75°,105°,120°,135°,150°,165°等.【设计意图】用一副三角板画出一些特殊角,除让学生巩固角的和差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角大小的估计能力和动手操作能力,加深学生对角的认识.问题5类比线段的中点,在图4中,射线OB 有没有一种特殊位置,若有,此时三个角之间又存在怎样的关系?A OB C图2CααAOB图4图5α α αCDB师生活动:画出图形,如图4,明确角平分线概念. 提出问题:1.你能用符号表示图4中角之间的关系吗?2.类似角的平分线,还有角的三等分线,一个角的三等分线有几条?四等分线呢? 教师关注:在用符号表示图4角之间的关系,理解图5的内容.【设计意图】 从角的和差问题中,将射线OB 的位置特殊化,并类比线段的中点,引出角平分线的概念,不仅知识的产生、发展自然连续,也体现了数学由一般到特殊,由特殊到一般的研究规律,同时,能建立知识间的联系,完善认知结构.问题6 你能作一个角的平分线吗?师生活动:画图展示交流,归纳方法(用量角器、折纸);教师结合学生的展示交流或利用课件动画演示折叠过程中的翻折过程.教师关注:学生操作是否规范.【设计意图】 进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.(三)练习巩固,应用新知 1.课本练习1. 学生操作,展示。
2.如图6所示:(1)∠AOC 是哪两个角的和? (2)∠AOB 是哪两个角的差?(3)如果∠AOB =∠COD ,则∠AOC 与∠BOD 的大小关系如何? 3.如图7,将长方形纸片的一角斜折,使顶点A 落在A ´处,EF 为折痕,若EA '恰好平分∠FEB , (1)判断∠FEA 与∠A EB '的大小关系;(2)你能求出∠FEB 的度数吗?【设计意图】:练习1通过对∠1与∠2大小的估计,培养学生估计角的大小的能力.用适当方法验证,则进一步巩固比较角大小的方法.练习2是通过观察图形,得出角之间的和差关系,提高学生对角的和差几何意义的认识,特别是观察∠AOB 是哪两个角的差,能很好地培养学生的识图能力.利用等式性质发现∠AOC 与∠BOD 相等,使几何与代数建立联系.练习3检测学生对折叠法作角平分线的理解与运用.(四)归纳小结,布置作业教师与学生一起回顾本节课所学主要内容,构建知识与方法框图:图6CD AA’BEF图7【设计意图】:构建知识网络,完善学生认知结构.【布置作业】:课本习题4.3第4,5,6,9题.七、目标检测设计1.如图,比较∠AOB,∠AOC,∠AOD,∠AOE的大小.【设计意图】:检测学生根据叠合法比较角的大小的掌握情况.2.按图填空:(1)∠AOM+∠AON=___________;(2)∠NOB+∠AOB=____________;(3)∠MON-∠NOB=____________;(4)∠BOM-∠AOM=____________.【设计意图】:检测学生对角的和差几何意义、符号语言的掌握情况,以及识图能力.3.如图,OP是∠AOB的平分线,则下列说法错误的是().A. ∠AOB=2∠AOPB. ∠AOP=12∠AOBC. ∠AOB=12∠BOP D. ∠AOP=∠BOPBO(第1题)DECA(第2题)【设计意图】:检测学生对角平分线概念以及符号语言的掌握情况.4.如图,若∠AOB =∠COD ,请判断∠AOC 与∠BOD 的大小关系;若∠AOC =∠BOD ,请判断∠AOB 与∠COD 的大小关系.【设计意图】:检测学生结合图形用等式表示角的和差关系的掌握情况,以及根据等式性质进行变形,利用代数的方法比较角的大小的运用情况.备注:本教学设计参考了人教版《教师教学用书》七年级上册第四章“教学设计案例”(第3题)DBAO(第4题)。