最新三角形中位线课件教学讲义PPT

合集下载

三角形中位线公开课课件

三角形中位线公开课课件
总结词
中位线定理在求线段长度中的应用
详细描述
中位线定理还可以用来求线段的长度。具体来说,如果知道三角形的一边和它所对应的中位线的长度 ,就可以利用中位线定理来求出其他边的长度。这个定理在解决几何问题时非常有用,可以帮助我们 找到一些未知的长度。
03 三角形中位线的实际应用
在几何图形中的应用
三角形中位线定理
答案解析
基础练习题1解析
首先根据中位线的性质,我们知道DE平行 于BC且DE=0.5BC。由于DE平行于BC,根 据相似三角形的性质,我们可以得出△DEF 相似于△BCF。根据给定的BF:FC=1:3,我 们可以计算出DE:BC=1:6。因此,AC与CF 的长度比为6:1。
基础练习题2解析
同理于基础练习题1,我们可以根据中位线 的性质和相似三角形的性质得出DE:BC=1:4。 因此,AC与CF的长度比为4:1。
三角形中位线的其他性质
总结词
三角形中位线具有一些重要的性质,包括中位线与第三边的关系、中位线与三角形的高 的关系以及中位线与三角形的角平分线的关系等。
详细描述
三角形中位线具有许多重要的性质。其中,中位线与第三边的关系表明,中位线的长度 是第三边的一半。此外,中位线与三角形的高的关系表明,中位线平行于三角形的高, 并且等于高的一半。最后,中位线与三角形的角平分线的关系表明,中位线平行于角平
利用三角形中位线定理解决实际问题
在解决实际问题时,可以利用三角形中位线定理来找到解决问题的关键点,如测量、计算 等。
三角形中位线定理在实际问题中的应用举例
在测量河宽、计算建筑物的高度等实际问题中,可以利用三角形中位线定理来简化计算过 程。
三角形中位线定理在实际问题中的应用注意事项
在实际应用中,需要注意实际情况的限制条件,如测量角度、距离等误差的影响。

三角形中位线定理课件

三角形中位线定理课件
三角形中位线定理的应用
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录

三角形的中位线课件(共22张PPT)

三角形的中位线课件(共22张PPT)
D
A E F
C
DF//BC DE// 1 BC
2
已知:如图,DE是△ABC的中位线.
1 DE // BC 求证: 2
证法三:延长DE到点F,使EF=DE,
A
D E
连结AF、CF、CD
∵AE=EC∴DE=EF F ∴四边形ADCF是平行四边形 ∴AD∥=FC
C 又D为AB中点,∴DB∥=FC 所以,四边形BCFD是平行四边形
菱形
A
什么叫三 角形的中位 线呢?
D B
E C
三角形的中位线
连接三角形两边中点的线段叫做 三角形的中位线。 画出△ABC中所有的中位线
画出三角形的所有中线并说 出中位线和中线的区别.
D B A F C
E
结论:三角形的中位线平行于第三边, 并且等于它的一半.A
D E
B
C
三角形的中位线与第三边有什么关系?
正方形
(4)顺次连结梯形各边 中点所得的四边形是什 么?
平行四边形
(5)顺次连结等腰梯形 各边中点所得的四边形 是什么?
菱形
平行四边形
平行四边形
于但得 什它到 么是的 顺 呢否四 次 ?特边 连 殊形接 的一四 平定边 行是形 四平各 边行边 形四中 取边点 决形所 ,
菱形
菱形
矩形
正方形
( 6 )顺次连结对角线相 等的四边形各边中点所得 的四边形是什么? ( 7 ) 顺次连结对角线垂 直的四边形各边中点所得 的四边形是什么? (8)顺次连结对角线相等 且垂直的四边形各边中点 所得的四边形是什么?
例1、如图,在四边形中,E、F、G、H 分 别 是 AB 、 BC 、 CD 、 DA 的 中 点 。 四 边 形 EFGH是平行四边形吗?为什么?

最新三角形中位线公开课教学讲义ppt

最新三角形中位线公开课教学讲义ppt
强弱、感邪的轻重、邪留的部位有关。
发病的基本原理
正气不足是疾病发生的内在因素 邪气是发病的重要条件 邪正相搏的胜负决定发病与不发病
正气的基本概念
正气——是一身之气相对邪气时的称谓,是指 人体内具有抗病、祛邪、调节、修复等作用的 一类细微物质。
一身之气——又称人气,是构成人体和维持人 体生命活动的细微物质,其在体内的运行分布, 既有推动和调节人体生长发育和脏腑机能的作 用,又有抗邪、祛邪、调节、修复等能力。
D B
由旋转可知,CF=AD,∠A=∠FCE.
E
F ∵∠A= ∠FCE,
∴AB∥FC
又∵DB=AD
∴ DB=FC.
C
∴四边形DBCF是平行四边形.
1、DE与BC有怎样的位置关系? 2、DE与EF相等吗? 3、DE与BC有怎样的数量关系?为什么?
已知:如图,DE是△ABC的中位线
求证:DE∥BC, DE 1 BC
C1
B
B1
C
3、已知:三角形的各边分别为6cm,8cm, 12cm,则连接各
边中点所成三角形的周长为 13 cm.
A
4、如果△ABC的周长为a
则△A1B1C1的周长为
1 2
a;
A1
A2
A3 C3
C1
B2 B3 C2
B
B1
C
5、A2、B2、C2分别为△A1B1C1各边中点,△A2B2C2的周长为
像这样下去,第3个三角形的周长为
则∠1的度数是

E
C
2
D
1
A
B
作 业:
1、习题3.3 2、新课堂相关练习
课后延伸
在四边形ABCD中,AD=BC,E、F、G分别是AB,CD,AC 的中点,若∠DAC=20°,∠ACB=60°,则∠EFG= 。

三角形的中位线ppt课件

三角形的中位线ppt课件
∴AB= + = + =13.
∵点 D,E 分别是直角边 BC,AC 的中点,
∴DE 是 Rt△ABC 的中位线.

∴DE= AB=6.5.

三角形中位线的两个作用
位置关系: ∵ ,分别为,

的中点, ∴ ∥ .
数量关系: ∵ ,分别为,

的中点, ∴ = .

新知应用
1.如图所示,在△ABC中,点D,E分别为AB,AC的中点,若DE=2,则BC的长
为( D
)
A.1
B.2
C.3
D.4
2.如图所示,在Rt△ABC中,∠A=90°,AB=3,AC=4,D,E,F分别是边
AB,BC,AC的中点,连接DE,DF,EF,∠ADF的度数为53°.求:
A.1
B.2
C.3
D.4
4.如图所示,在四边形ABCD中,AC⊥BD,AC=6,BD=8,点E,F分别是边AD,BC
5
的中点,连接EF,则EF的长是
.
5.如图所示,在△ABC中,AB=AC,点D是边AB上一点,DE∥BC交AC于点E,连
接BE,点F,G,H分别为BE,DE,BC的中点.求证:FG=FH.
点D,E,F,G依次连接,得到四边形DEFG.求证:四边形DEFG是平行四边形.
证明:∵AB,OB,OC,AC 的中点分别为 D,E,F,G,
∴DG 是△ABC 的中位线,EF 是△OBC 的中位线.




∴DG∥BC,DG= BC,EF∥BC,EF= BC.∴DG∥EF,DG=EF.
∴四边形 DEFG 是平行四边形.
到点D,使AB=2AD,连接DE,DF,AE,EF,AF与DE交于点O.试说明AF与DE互相

(完整版)三角形中位线课件.ppt

(完整版)三角形中位线课件.ppt
CD、EF的长短相等吗?为什么?
EC
A
l
1
l2
FD
B
夹在两平行线间的平行线段相等。
2.如图,在四边形ABCD中, AB∥CD, 且 CD等于AB的一半。E是BC的中点,DE交 AC于点F , 求证 : DE被AC平分.
A
没有任何测量工具的情况下,小明
M
通过学习,估测出了A,B两地之间
的距离:先在AB外选一点C,然后步 C 测出AC,BC的中点M,N,并测出
N
B
MN的长,由此他就知道了A,B间的
距离.你能说出其中的道理吗?
其中的道理是:
连结A、B, ∵MN是△ABC的的中位线,∴AB=2MN.
中位线定理应用
已知:在四边形ABCD中,AD=BC, P是对角线BD的中点,M是DC的中点,
如图,有一块三角形的蛋糕,准备平均 分给四个小朋友,要求四人所分的形状大小 相同,请设计合理的解决方案。
三角形的中位线
获取新知
连结三角形两边中点的线段叫三角形的中位线
A 你还能画出几条三角形的中位线?
D
E
B
F
C
温馨提示
三角形有三条中位线
三角形的中位线和三角形的中线不同
A 概念对比 A
D
E
D 中线DC
1 2
BC
D
E
B
C
A
D
E F
B
C
三角形的中位线平行且等于第三边的一半.
A
几何语言:
D E ∵DE是△ABC的中位线
(或AD=BD,AE=CE)
B
C
D E/
/
1 2
B
C
用 ① 证明平行问题

《三角形的中位线定理》PPT课件

《三角形的中位线定理》PPT课件
A
D
E
B
C
例3 (1)在△ABC中,BD、CE分别是边AC,AB上的中线, BD、CE相交于点O,H点M、N分别是OB、OC的中点,试
猜想四边形DEMN是什么四边形?请加以证明.
答:四边形DEMN是平行四边形. 理由如下:
∵DE是△ABC的中位线
∴DE//BC,DE=
1 2
BC.
∵MN是△OBC的中位线
∴MN//BC,MN= 1 BC. ∴四边形DEMN是平行四边形. 2
重要发现: A ①中位线DE、EF、DF把△ABC
分成四个全等的三角形;有三
D
E 组共边的平行四边形,它们是
四边形ADFE和BDEF,四边形
B
F
C
BFED和CFDE,四边形ADFE
和DFCE.
②顶点是中点的三角形,我们称之为中点三角形;
分析:要证明线段的倍分关系, A
可将DE加倍后证明与BC相等.从而
转化为证明平行四边形的对边的关
D
E
系, 于是可作辅助线,利用全等三
角形来证明相应的边相等.
B
C
证明:延长DE至F,使EF=DE,连接FC、DC、AF.
∵ AE=CE, A
∴四边形ADCF是平行四边形,
CF//DA,
D
E
F
CF//BD.
∴四边形DBCF是平行四边形. B
DF//BC 又DE= 1 DF, 2
∴DE∥BC,
DE 1 BC. 2
C
有什么发现 呢?
我们把连接三角形两边中点的线段叫做三角形的中
位线.
A
D
E
三角形中位线定理:
B
C
三角形的中位线平行于三角形的第三边,且等

三角形的中位线及性质PPT课件

三角形的中位线及性质PPT课件
在三角形中,中位线通常用两个大写 字母表示,其中一个是起点,另一个 是终点。
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05

《三角形的中位线》课件.ppt

《三角形的中位线》课件.ppt
几何画板动态演示
得出定理
三角形的中位线定理: 三角形的中位线平行于 三角形的 D 第三边,并且等于 第三边的一半 . B
A
E
C
符号语言:
在△ABC中, ∵D、E分别是边AB、AC的中点,
1 ∴ DE∥BC,DE= BC. 2
新知应用
1.如图,△ABC中,D、E分别是AB、AC中点. (1)若DE=3,则BC= 6 . (2)若∠B=65°,则∠ADE= 65 °. (3)若DE+BC=12,则BC= 8 . A
4.线段的倍分问题要转化为相等问题来解决.
布置作业
1.习题18.1 第5题 2.练习册第48-50页 《三角形的中位线》
今 日 作 业
课下思考
有一块三角形的蛋糕,准备平均分给 四个小朋友,要求四人所分的形状大小相 同,请设计合理的解决方案.
谢谢大家!
E C
D
B
2.已知△ABC的各边的长度分别为3cm,4cm,5cm, 则连接各边中点的三角形的周长为( D ) A.2cm B.7cm C.5cm D.6cm
总结:三角形的三条中位线围成的三角形的 周长与原三角形的周长有什么关系?
解决课前问题
D、E分别是AC、BC中点, 量出D、E两点间距离,则 AB=2DE
思考:若D、E两地之间还有障碍物阻 隔,如何测出A、B两地的距离呢?
归纳小结
1.三角形的中位线定义. 2.三角形的中位线定理. 3.三角形的中位线定理不仅给出了中位线与第 三边的位置关系,而且给出了它们的数量关系 . 符号语言: 在△ABC中, A ∵D、E分别是边AB、AC的中点, D E 1 ∴ DE∥BC,DE= BC. C B 2
B
E
C B

《三角形的中位线》PPT教学课件

《三角形的中位线》PPT教学课件

知识点 1 三角形的中位线性质
知1-导
什么叫三角形的中位线? 连结三角形两边中点的线段叫三角形的中位线. 如图:点 D、E分别是AB、AC边的中点,线段DE就 是△ABC的中位线。 一个三角形共有几条中位线? 答:三条知1-导A源自思考:三角形的中位线与三角形的
中线有什么区别与联系?
D
E
区别:中位线:中点--------中点
1 2
BD,
∴EH=FG,同理可得EF=HG,
∴四边形EFGH是平行四边形.
(来自教材)
知1-练
5 【中考·宜昌】如图,要测定被池塘隔开的A,B两
点的距离,可以在AB外选一点C,连接AC,BC,
并分别找出它们的中点D,E,连接ED.现测得AC
=30 m,BC=40 m,DE=24 m,则AB=( B )
知1-导
2. 如图,DE是△ABC的中位线,将△ADE以点E为中 心顺时针旋转180°,使点A和点C重合.四边形 DBCF是平行四边形吗?由此发现DE与BC的位置关 系和数量关系与上面的发现是否相同?
知1-导
通过探究,我们发现:三角形的中位线平行于第三边,
且等于第三边的一半.
现在,我们来证明这个结论.
∴AE=
1 2
AD,BF=
1 2
BC,∴AE
=∥BF.
∴四边形ABFE是平行四边形,∴MB=ME.
同理,四边形EFCD是平行四边形,∴NC=NE.
∴MN是△EBC的中位线.∴MN =∥
1 2
BC.
(来自《点拨》)
知2-讲
总结
(1)证明两直线平行的常用方法: ①利用同平行(垂直)于第三条直线;②利用同位角、 内错角相等,同旁内角互补;③利用平行四边形 的性质;④利用三角形的中位线定理.

《三角形的中位线》PPT课件

《三角形的中位线》PPT课件
A
D
E
F
B
.
C
7
思考:
A
D
EF
B
C
❖ 四边形DBCF是什么特殊的四边形?为什么?
答:四边形DBCF是平行四边形。
由操作可知:ΔADE与ΔCFE关于点E成中心对称
则CF=AD,∠F=∠ADE 由∠F=∠ADE可得:AB∥CF
又由CF=AD,AD=DB可得:DB=CF
所以四边形BCFD是平行四边形 理由:一组对边平行且相等的四边形是平行四边形
·
C
F
动画演示,验证结论
A
D
EBC来自概念:连接三角形两边中点的线段 叫做三角形的中位线.
.
5
想一想:
三角形的中位线与三角形的中线的区别是什么? 答:三角形的中位线的两端都是中点 三角形的中线一端是中点,另一端是顶点
猜想,三角形中位线有什么性质?
.
6
交流讨论,问题探究(二)
将ΔADE绕着点E按顺时针方向旋转180°到ΔCFE的位置,这 样得到四边形DBCF。
已知:如图,D,E,F分别是△ABC各边的中点. 求证: △ADE≌△DBF≌△EFC≌△FED.
A
D
E
B
F
C
分析:利用三角形中位线性质,可 转化用(SSS)来证明三角形全等.
证明: ∵ D,E,F分别是△ABC各边的中点.
D EB FF.C EF AD D.B FD C EE.A
(三角形的中位线平行于第三边,且等于第三边的一半). ∴△ADE≌△DBF≌△EFC≌△FED(SSS).
课堂小结
1.三角形中位线的概念。
2.性质定理:三角形的中位线平行于第 三边,且等于第三边的一半.

《三角形的中位线》ppt课件

《三角形的中位线》ppt课件

∵点E,F分别是边AB,BC的中点,
H A
∴EF//AC,EF 1 AC.
2
同理,GH//AC,GH
1
AC.
2
E B
∴EF//GH,且EFGH.
F
∴四边形EFGH是平行四边形.
D G C
结论:顺次连接四边形四边中点所得的四边形是平行四边形.
2. △ABC中,点D、E、F分别为边BC、AB、CA的中点,则
求证:A1B1=B1C1
分析:证明“线段相等” 常利用全等 添加辅助线构造全等
证明:过点B1作EF∥AC,分别交直线
l1 、 l3于点EF.
A
A1 E
l1
∴四边形ABB1E,BCFB1都是平行四边形.
B
∴EB1=AB,B1F=BC.
C
B1
l2
F
C1
l3
∵AB=BC,
∴EB1=B1F.
探究
已知,直线l1 、 l2 、 l3互相平行,直线AC与直线A1C1分别交 直线l1 、 l2 、 l3于点A , B , C,和点A1 , B1 , C1,且AB=BC.
布置作业
教科书第85页习题19.2 第12题、第15题.
课程结束
拓展
【中点三角形】 顶点是中点的三角形,我们称之为中点三角形.
A
D
E
B
F
C
中点三角形的周长是原三角 形的周长的一半.
中点三角形的面积是原三角形 的面积的四分之一
随堂练习
1. 如图,点E,F,G,H分别是四边形ABCD的边AB,BC,CD, DA的中点.求证:四边形EFGH是平行四边形.
证明:连接AC.在△ABC中,
中位线是连接三角形两边中点的线段.

三角形中位线课件.ppt(1)PPT课件

三角形中位线课件.ppt(1)PPT课件

得CF=AD , CF//ABFra bibliotekA E
又可得CF=BD,CF//BD
所以四边形BCFD是平行四边形
则有DE//BC,DE=
1 2
1
DF= 2
BC
F
C 第7页/共19页
解题分析 3.
A
证明:延长DE到F,使EF=DE,连接FC、DC、AF
∵AE=EC ∴四边形ADCF是平行四边形 ∴ CF∥DA,CF=DA
⑤ 图中有__3___个平行四边形 ⑥ 若△ABC的面积为24,△DEF的面积是___6__
C
探究活动
1、 三角形三条中位线围成的三角 形的周长与原三角形的周长有什么 关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?第10页/共19页
设 计 方 案:
A
(中点)D
E(中点)
第17页/共19页
第18页/共19页
谢谢您的观看!
第19页/共19页
D
E
D 中线DC
中位线DE
B
C
B
C
(1)相同之处——都和边的中点有关; (2)不同之处:
三角形中位线的两个端点都是边的中点;
三角形中线只有一个第端4页/点共19是页 边的中点,另一端点 是三角形的顶点。
想一想
问题1:△ABC中,若D是AB的中点时,E也是AC
的中点,则DE与BC存在何种关系?
A
D
E
已知:如图,在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.
猜想四边形EFGH的形状并证明。
A
H
E
B
F
答: 四边形EFGH为平行四边形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求证:AE与DF互相平分.
证明:连接DE、EF,因为
A
AD=DB,BE=EC,
所以DE ∥AC(三角形的中位线平
行于第三边并且等于第三边的一
半)。
D
F 同理EF ∥AB。
所以四边形ADEF是平行四边形。
B
E
C因边此形A的E对、角D线F互互相相平平分分。)(平行四
定理应用
已知:如图,A,B两地被池塘隔开,
E,F是AB,BC的中点,你联想到什么?
要使EF成为一个三角形的中位线应怎样添加辅助线?
巩固练习
1.如图,点D、E、F分别是△ABC的边AB、 BC、CA的中点,以这些点为顶点,你能在 图中画出多少个平行四边形?
A
D
F
B
E
C
2.如图, A 、B两点被池塘隔开,在AB外选 一点C,连接AC和BC,怎样测出A、B两点 的实际距离?根据是什么?
1
∴DE∥BC且DE= 2 BC
D
E
B
C
A
D
E F
B
C
三角形的中位线平行且等于第三边的一半.
A
几何语言:
D E ∵DE是△ABC的中位线
(或AD=BD,AE=CE)
B
C DE//1 BC
2
途 用 ① 证明平行问题
② 证明一条线段是另一条线段的两倍或一半
初试身手
A
练习1.如图,在△ABC中,D、E分、别F分是别 A是BA、BA、CA的C中、点BC的中点
三角形中位线课件
三角形的中位线
获取新知
连结三角形两边中点的线段叫三角形的中位线
A 你还能画出几条三角形的中位线?
D
E
B
F
C
温馨提示
三角形有三条中位线
三角形的中位线和三角形的中线不同
D B
解题分析2:
延长DE到F,使EF=DE , 连接CF
易证△ADE≌△CFE,
得CF=AD , CF//AB
C
探究活动
1、 三角形三条中位线围成的三角 形的周长与原三角形的周长有什么
关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
设 计 方 案:
A
(中点)D
E(中点)
B
F
C
(中点)
例 求证三角形的一条中位线与第三边上的中线 互相平分.
已知:△ABC中,AD=DB,BE=EC,AF=FC.
AEF
D
B
MN
C
小结
1、三角形中位线的定义
连接三角形两边中点的线段叫做三角形的中位线
2、三角形中位线定理
三角形的中位线平行于三角形的第三边,且等于 第三边的一半
3、两条平行线间的距离 一条直线上的任一点到另一条直线的距离, 叫做这两条平行线间的距离
平行线间的距离处处相等
四、气象要素与人体舒适度及健康
EC
A
l
1
l2
FD
B
夹在两平行线间的平行线段相等。
2.如图,在四边形ABCD中, AB∥CD, 且 CD等于AB的一半。E是BC的中点,DE交 AC于点F , 求证 : DE被AC平分.
一条直线上的任一点到另一条直线的 距离,叫做这两条平行线间的距离。
EC
A
l
1
它与点与点的距离、
点到直线的距离的
(一)人体舒适度及其影响因子
1、人体舒适度 人体在不同的外界环境条件下, 皮
肤、眼、神经等器官因受环境刺激而产 生不同的感觉,经过大脑神经系统整合 后形成的总体感觉的适宜或不适程度, 就是人体舒适度。
舒适与否是一种感觉和状态,具有主观和客观 双重特性和标准。
从感觉的角度来讲,舒适度是人的主观认知和 感受,标准因人而异,具有较强的主观性;
D
B
F
①③若A∠CA=D4cEm=,6B5C°=,6c则m,∠ABB==685c度m,,为什么? E ②④④若若△则BCA△=BDC8E的cFm的周,周长长为则9=2Dc_4m_,E_=4△__D_EFc的m周,长为是什_1_么2__?_
⑤ 图中有__3___个平行四边形 ⑥ 若△ABC的面积为24,△DEF的面积是__6___
典例示范
已知:如图,在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.
猜想四边形EFGH的形状并证明。
A
H
E
B
F
答: 四边形EFGH为平行四边形。
D
证明:如图,连接AC
G
同∵理EEF得F是/:△/12AGABHC/C/的12 A中C位线
C
G H/ /E F
∴四边形EFGH是平行四边形
A
C
B
课堂检测:
1.如图,在△ABC中, BC>AC,点D在BC边上, 且DC=AC, ∠ACB的平分线CF交AD于F ,点E是 AB的中点,连接EF,求证:EF是△ABD的中位线.
如图,l1 // l2 , 线段AB//CD//EF, 且 点A、C、E在l1上,B、D、F在l2上,则AB、
CD、EF的长短相等吗?为什么?
∟∟
FD

联系与区别
l2 B
如图,l1 // l2 ,点A、C、E在l1上,线段AB、 CD、EF都垂直与l2 ,垂足分别为B、D、F,则
AB、CD、EF的长短相等吗?为什么?
平行线间的距离处处相等
如图,在平行四边形ABCD的一组对边AD、 BC上截取EF=MN,连接EM、FN,EM和 FN有怎样的关系?为什么?
A
在没有任何测量工具的情况下,小
M
明通过学习,估测出了A,B两地之
间的距离:先在AB外选一点C,然后 C 步测出AC,BC的中点M,N,并测出MN
N
B
的长,由此他就知道了A,B间的距
离.你能说出其中的道理吗?
其中的道理是:
连结A、B, ∵MN是△ABC的的中位线,∴AB=2MN.
中位线定理应用
已知:在四边形ABCD中,AD=BC, P是对角线BD的中点,M是DC的中点, N是AB的中点.求证∠1=∠2.
从生理学角度分析,舒适度是人体机能在一定 环境条件下保持正常运转时的一种状态, 伴 随着一系列的生物物理和化学过程。舒适或不 适所伴随的生物过程是客观存在的,并以一定 的生物指标或生物过程特征为判别标准,所以 说舒适度又具有客观性。
在自然环境中,气象因素是影响人体舒 适度的主要因子,温度、湿度、风、太 阳辐射、气压等气象要素及其变化过程 会影响人体的生理适应程度和感觉。环 境对人体的影响有一个舒适或适宜的范 围或区域,超出该范围则感觉不舒适, 偏离舒适范围越远则舒适感越差。
A E
又可得CF=BD,CF//BD
所以四边形BCFD是平行四边形
则有DE//BC,DE=
1 2

1
DF= 2
BC
F
C
解题分析 3.
A
证明:延长DE到F,使EF=DE,连接FC、DC、AF
∵AE=EC ∴四边形ADCF是平行四边形 ∴ CF∥DA,CF=DA
∴CF∥BD,CF=BD
∴四边形DBCF是平行四边形 ∴又DDFE∥=B12 CD,FDF=BC
相关文档
最新文档