华东师大版八年级上册数学学案:第11章.数的开方 单元复习(2)
爱民区六月上旬八年级数学上册第11章数的开方本章复习教案新版华东师大版2
本章复习【基本目标】1.了解平方根、算术平方根、立方根的概念,会用根号表示.2.了解平方与开平方,立方与开立方互为逆运算,会用平方与立方的运算求某些数的平方根与立方根.3.了解无理数的概念,知道实数与数轴上的点一一对应.4.能进行实数的运算,会估算无理数的大小.【教学重点】平方根与立方根,实数及运算.【教学难点】实数的估算,平方根的性质.一、知识框图,整体建构二、知识梳理,快乐晋级本章通过问题的形式来梳理知识,以加深学生对基础知识的理解.问题1:平方根与立方根的定义是什么?它们有什么性质?问题2:有理数与实数的定义是什么?问题3:数轴上的点与实数有什么关系?你是怎么理解的?问题4:实数的相反数、绝对值、倒数与有理数相同吗?问题5:实数运算法则、运算律与有理数相同吗?【教学说明】教师提出问题以小组竞赛的形式回答,教师根据回答的情况,进行必要的讲解与说明,做到切中要害、言简意赅.三、典例精析,升华旧知例1(1)(-2)2的平方根是()A.-2B.2C.±2D.±4(2)下列说法中,正确的是()A.正数的立方根是正数B.负数的平方根是负数C.无理数是开方开不尽的数D.数轴上的点只能表示有理数(3)-61164的立方根是 .(4)81的算术平方根是 .(5)实数a、b+(b-2)2=0,则ab= .【答案】(1)C (2)A (3)-5/4 (4)3 (5)-2.【教学说明】这四道小题学生小组内自评自改.教师指出(4)中应转化为9的算术平方根,应将间接条件直接化.例的小数部分为a,整数部分为b,求a-b的值.【分析】∵34,4<5,的整数部分b=4,小数部分,∴a-b=)-的整数部分b的值.特别估算能力数学课程标准较重视.例3已知实数a、b、c在数轴上的位置如图所示.【分析】由数轴知道b<0,c-a<0,a+c>表示b2的算术平方根,故原式=-b+(c-a)+(a+c)=2c-b.【教学说明】利用数形结合,判断绝对值里面的数的正负性,其中b2的意义是解题的关键.四、师生互动,课堂小结这节课你有什么收获?有何疑惑?复习了哪些数学思想方法?与同伴交流.在学生交流发言的基础上,教师归纳总结.完成练习册中本课时对应的课后作业部分.本节复习课从知识构建到知识梳理应让学生积极自主的完成,在完成知识构建(梳理)过程中寻找薄弱环节,从而抓住复习的针对性.典例精析部分,教师应注意根据教学的实际动态进行及时归纳,点评,让知识类化,形成能力.在复习的过程中,学生难免有遗漏的地方,教师应以激励为主.4.2 不等式的基本性质★不等式的基本性质1.不等式的基本性质1:如果a>b,那么 a+c____b+c, a-c____b-c.不等式的基本性质2:如果a>b,并且c>0,那么ac_____bc.不等式的基本性质3:如果a>b,并且c<0,那么ac_____bc.2.设a<b,用“<”或“>”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b;(4)-2a_____-2b;(5)-a2_____-b2;(6)a2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a-1>b-1,则a____b;(2)若a+3>b+3,则a____b;(3)若2a>2b,则a____b;(4)若-2a>-2b,则a___b.4.若a>b,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m;(2)a+n___b+n;(3)m-a___m-b;(4)an____bn;(5)am____bm;(6)an _____bn;5.下列说法不正确的是()A.若a>b,则ac2>bc2(c 0)B.若a>b,则b<aC.若a>b,则-a>-bD.若a>b,b>c,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a或x>a的形式:(1)x-3>1;(2)-23x>-1;(3)3x<1+2x;(4)2x>4.[学科综合]7.已知实数a、b、c在数轴上对应的点如图13-2-1所示,则下列式子中正确的是()A.bc>abB.ac>abC.bc<abD.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3aB.a+2b<p<2a+bC.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0B.a<0C.a=0D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1B.由5x>3,得x>3 5C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9B.-m>-nC.11 > n mD.m n>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>bB.ab>0C.a b>0D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1B.a<-1C.-1<a<0D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A8.负9.D10.B11.B12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k .3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1⨯0.85)≈28(本).30>28,故小明最多哥买30本.18.解:(1)a,b是有理数,若a>b>0,则22a>b(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C23.D24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246a<a<a<0…,则这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.16.3 可化为一元一次方程的分式方程(2)教学目标:①、进一步熟练地解可化为一元一次方程的分式方程.②、通过分式方程的应用教学,培养学生数学应用意识.教学重点:让学生学习审明题意设未知数,列分式方程.教学难点:在不同的实际问题中,设元列分式方程.(一)复习并问题导入1、复习练习解下列方程:(1)34211x x x x -+=-++ (2)6272332+=++x x 2、列方程解应用题的一般步骤?[概括]这些解题方法与步骤,对于学习分式方程应用题也适用.这节课,我们将学习列分式方程解应用题.讨论后回答.(二)实践与探索1:列分式方程解应用题 [例1] 用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致. 两人各输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少个数据?[分析](1)如何设元(2)题目中有几个相等关系?(3)怎样列方程解 设乙每分钟能输入x 个数据,则甲每分能输入2x 个数据,根据题意得x 22640=6022640⨯-x .解得x =11.经检验,x =11是原方程的解.并且x =11,2x =2×11=22,符合题意.答:甲每分钟能输入22个数据,乙每分钟能输入11个数据.强调:既要检验所求的解是否是原分式方程的解,还要检验是否符合题意;读题、审题、设元、找相等关系列方程.本题有两个相等关系:(1)甲速=2乙速(2)甲时+120=乙时其中(1)用来设,(2)用来列方程注意如何检验.2、概括列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位).练习:求解本章导图中的问题.(三)实践与探索2: 例2 A ,B 两地相距135千米,两辆汽车从A 开往B ,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度.解析:设大车的速度为2x 千米/时,小车的速度为5x 千米/时,根据题意得 21551352135-=-x x 解之得x=9 经检验x=9是原方程的解 当x=9时,2x=18,5x=45答:大车的速度为18千米/时,小车的速度为45千米/时练习:(1)甲乙两人同时从地出发,骑自行车到 地,已知 两地的距离为 ,甲每小时比乙多走,并且比乙先到40分钟.设乙每小时走,则可列方程为( )A .;B .;C .;D . (2)我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度. 读题、审题、设元、找相等关系列方程(四)实践与探索3:自编一道可列方程为的应用题52010+=x x (五)小结与作业本课小结:列分式方程与列一元一次方程解应用题的差别是什么?你能总结一下列分式方程应用题的步骤吗?(六)板书设计列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位).(七)教学后记。
2017年秋季新版华东师大版八年级数学上学期第11章、数的开方单元复习学案
第11章小结与复习【学习目标】1.理解平方根、算术平方根、立方根的概念和性质,会求一个数的平方根、算术平方根和立方根;2.理解无理数的意义,知道实数分为有理数和无理数,会求一个实数的相反数和绝对值,知道实数与数轴上的点是一一对应的关系;3.会比较简单的无理数的大小,并能掌握无理数的运算.【学习重点】理解并掌握平方根和算术平方根、立方根的意义,熟练掌握无理数的运算.【学习难点】用估算法来比较两个数的大小,会估算无理数的数值范围.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学法指导:一定要从性质出发.知识链接:任何实数的立方根只有一个,其开方后数的符号不会发生改变.情景导入 生成问题知识结构我能建自学互研 生成能力知识模块一 平方根1.定义:如果x 2=a ,那么这个数x 叫做a 的平方根,则x典例1:求下列各数的平方根:(1)100;(2)0.49;(3)1916;(4)(-6)2. 解:(1)±10;(2)±0.7;(3)±54;(4)±6. 2.平方根的性质:(1)一个正数有两个平方根,它们互为相反数;(2)0的平方根只有一个,就是它本身;(3)负数没有平方根.典例2:(1)要使±a -2有意义,则a 的取值范围为a≥2;(2)平方根是它本身的数有0.3.算术平方根:正数a 的正的平方根,叫做a 的算术平方根,记作 a.典例3:下列各式中,正确的是( C )A .16=±4B .±16=4C .3-27=-3 D .(-2)2=-2典例4:(1)若|x +2|+y -3=0,则xy =-6;(2)算术平方根是它本身的数是0、1;(3)若一个正数的平方根是2a -1和-a +2,则a =-1,这个正数是9.学法指导:必须自己动手才有切身体会.知识链接:1.三类非负数:(1)|a|≥0;(2)a 2≥0;(3)a ≥0(a≥0).2.非负数有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍然是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.知识模块二 立方根定义:如果x 3=a ,那么这个数x 叫做a 的立方根,则x典例5:求下列各数的立方根:(1)0.125;(2)64;(3)-278;(4)-64. 解:(1)0.5;(2)4;(3)-32;(4)-2. 知识模块三 实数 1.无理数:无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.即实数与数轴上的点一一对应.典例6:在实数3.14,227,8,0,364,π2,0.123456…,0.3· 中无理数的个数为( B ) A .2个 B .3个 C .4个 D .5个知识模块四 非负数性质的应用1.a 2=|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0). 2.几个非负数的和为0,则每个非负数都等于0.典例7:如果(3x -5)2=5-3x ,则x 的取值范围为x ≤53. 典例8:(a +2)2+|b -1|+3-c =0,则a +b +c =2.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 平方根知识模块二 立方根知识模块三 实数知识模块四 非负数性质的应用检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:_______________________________________________________________________。
第11章数的开方-华东师大版八年级数学上册复习讲义
八年级上数的开方重难点复习一、知识点归纳1.平方根和立方根2.实数1.实数的分类2.实数与数轴上的点一一对应.3.实数的三个非负性及性质:4.实数的运算:5.实数的大小的比较:二、经典例题板块一、平方根、立方根的定义与性质例1、下列正确的是( C );A、任何数都有平方根;B、-9的立方根是-3 ;C、0的算术平方根是0 ;D、8的立方根是±3。
例2、填空:4-(1)是 16 的负平方根.(2表示 161的算术平方根,41 .(3的算术平方根为.(4,则 9,若,则 ±3 .(5)64-的立方根 -2 ;3729的平方根__±3___;例3、如果一个数的平方根是a+3和2a-15,那么这个数是( A ) A 、49 B 、441 C、7或21 D 、49或441解:由题意得:a+3+(2a-15)=0 解得a=4 把a=4带入上式中得:a+3=4+3=7 所以这个数是7²=49例4、的取值范围是≥例5、若互为相反数,试求x y +的值解:∵互为相反数, ∴3-7+3+4=0 ∴3(x y +)=3,x y +=1.例6、已知a 的整数部分,b 是它的小数部分,求的值 解:∵a 的整数部分,b 是它的小数部分,∴ ∴.对应练习:1、如果正数x 的平方根为a+2与3a-6,求a 和这个正数。
解:∵因为一个正数x 的平方根为a+2和3a-6,所以x 的两个平方根互为相反数. 即a+2+3a-6=0 解得a=1 a+2=3=133=x =3=x =x x1-373-x 373-x x y ()()323a b -++34<<3,3a b ==()()())23233333271017a b -++=-++=-+=-∴ x=(a+2)²=3²=9板块二、实数的分类例1、指出下列各数中的有理数和无理数:222,,0,,10.1010010001......73π-有理数有:(222,0,,73-)无理数有:,10.1010010001π……)对应练习:在,38,0.5,34-,14159.3,16,227 ,2π3 2.121121112中,无理数的个数为 4 个板块三、实数的运算例1、(1)12-的相反数是 1 π-3的绝对值是 3-π ;12181-的倒数是 119- ; (2)322312518171691008.0-⨯--⨯解:原式=⎪⎭⎫ ⎝⎛-⨯-⨯51154551=341+=413对应练习:(1 (2)(3+ (4)|12|(1)解:原式=5-2=3 (2)解:原式=-3+5+2=4(3)解:原式=-1+1+1=133233)2()5()3(+-+-(4) 解:原式=|12|121=+=.板块四、非负数(式)的性质运用 例1、设x 、y 为实数,且554-+-+=x x y ,则yx -的值是( A )A 、1B 、9C 、4D 、 例2、已知2(16)|3|0x y +++=解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.12=.例3、67++x 的最小值是 6 ,此时x= -7 . 对应练习:1、已知,求的算术平方根 解:根据题意,得则,所以=2,∴,∴2、若+(3x+y ﹣1)2=0,求5x+y 2的平方根 解:∵+(3x+y ﹣1)2=0,∴,解得,,∴5x+y 2=5×1+(﹣2)2=9, ∴5x+y 2的平方根为±=±3.2b =11a b+320,230.a a -≥⎧⎨-≥⎩23a =b 1131222a b +=+=11a b+=。
华东师大版八年级数学上册 第11章数的开方 章末复习学案
华东师大版八年级数学上册 第11章数的开方 章末复习学案学习目标:1.了解本章的知识结构。
2.了解开平方、开立方、实数的意义及实数的分类。
3.理解实数与数轴上的点成一一对应关系。
4.会用估算的方法比较实数的大小。
重点、难点:掌握平方根和算术平方根、立方根的意义和概念,会进行实数的分类、大小比较预习探究 一、自学 1、复习:2.整理出本章的知识框架图;3.熟记本章知识点:二、自学提问:通过本章的学习,你学到了哪些知识?获得了哪些经验? 三、知识回顾,应用知识要点:1.平方根、立方根、算术平方根意义1)如果一个数的平方等于a ,那么这个数叫做a 的 ; 正数a 的正的平方根,叫做a 的 ; 如果一个数的立方等于a ,那么这个数叫做a 的 ; 2) 本身:平方根等于本身的数是 ; 算术平方根等于本身的数是 ; 立方根等于本身的数是 ; 3) 性质:①平方根:正数有 个平方根,它们互为 ;0有 个平方根; 负数 平方根. ②③ 正数有 个 的立方根,0的立方根是 ,负数有 个 的立方根. 任意数都有唯一的立方根.2.实数 无理数无理数: ;. 注意: 无理数不都是带根号的数. 带根号的数也不都是无理数. 2) 和 统称实数.3) 数轴上的点与实数是 的关系.巩固提高 1.定义的应用:① 25的平方根是______, 0.64的 算术平方根是______, 的立方根是________. ② 的平方根是_______, 的算术平方根是_______, 的立方根是_______.③ 64的平方根的立方根是______; 27的立方根的平 方根是______.④ -27的立方根和16的平方根的和是_____. ⑤ 一个数的算术平方根是13,则它的立方根是____.⑥32)8(-的平方根是_____,3512的立方根是_____. 2. 性质的应用:①② 已知2a+1的平方根是±3,那么a 的平方根是_____.⑧ 3.根据条件化简1)⑤③ .______,23)23( ______;,32)23( _______;,3)3( 2233要满足那么成立要使要满足那么成立要使满足则成立要使a a a a a a x x x -=--=--=-.______,,11,0533===-=-+x a x a x a 那么而且已知.,2a x a x ±==.,33a x a x ==0,)(., .0 , 022≥==≥≥a a a a a a a a 其中为任意数其中其中.0,033=+=+b a b a 那么125343-92)7(-364.________14________;533的取值范围是有意义,那么若的取值范围是有意义,那么若y y x x -+.,_____;,____;1,____;2,_____,95它有立方根时当它没有平方根时当个平方根它有时当个平方根它有时当对于x x x x x +④ .___,222292334的立方根是则的立方根是的算术平方根,是已知B A b b B a a A b a b a +--=++=-+--⑥⑦ .________,3,0)3(43,2==-=-++a y x axy y x y x 则若为实数,且已知______0332=---+≤a a a a ,化简当.____,0)1(322的立方根是则若yx z z y x ⋅=++-++.,21244,22的平方根求满足若x y x x x y y x -+-+-=4实数知识应用:.1) 下列说法中,正确的是( ) A.实数包括有理数,0和无理数 B.无理数就是无限小数C.有理数是有限小数D.数轴上的点表示实数. 2) 下列说法中,正确的有( )①绝对值最小的是0 ②带根号的数是无理数 ③无理数包括正无理数和负无理数 ④无理数就是开方开不尽的数A.1个B.2个C.3个D.4个5.比较大小 1) 比较下列数的大小.6.解方程7.计算题)(,)422a b a b a -+--化简在数轴上对应点如图,._____,0)5绝对值等于的差的的平方的算术平方根与a a a <._____________,_______,)14.3(,23233.3,722,3,1621,43.3,343,1,101001.0)303整数是无理数是中,有理数有-ππ .______23_____,23___,3_____,7)4的绝对值是的相反数是的整数是绝对值小于的数是绝对值是--23___32;3___8;7___6;7.1___33----.225__103;1327___135;861___571)2++----.____1734)3的平方根是的整数部分,则是的整数部分,是若b a b a --.)(mcd,,)4)36(1226)3)64211691(2332)223的值求:的倒数等于它本身,试倒数,互为互为相反数,已知:m m b a m d c b a -++-+-+---++-.____)78(____;)23(___;)31(___;815___;1613)1232222=-=+=-=+±=-.245102,064.0)1(,121)7)(3332的值求y y x x y x +++--=+=-0343125 100)2( 45)1322=+=+=-x x x .,,,,53,53,53,53)6的大小比较已知d c b a d c b a ----=-+-=---=--=周长求这个三角形的腰长和,和别为等腰三角形的两边长分3553)5.______63)4的整数的和是所有满足<<-x 2)22,42+--<x x (化简)当.)4(3)32-+-ππ感悟(收获与疑惑):。
2020八年级数学上册 第11章 数的开方教案2 (新版)华东师大版
数的开方
教学目标
知识与技能使学生在熟练掌握所学知识的基础上进一步运用知识灵活
的解答问题
过程与方法了解学生的练习课后情况,发现问题解决问题提高能力。
情感态度与价值观完善自我,建立学生的自信心。
教学重点数的开方知识
教学难点了解学生的不足,建立完整的知识体系。
教学内容与过程教法学法设计
一. 复习提问,回顾知识,请看下面的问题:
1.平方根的知识
(1)定义
(2)数的平方根的意义
(3)相关的问题
2.实数的知识。
二. 导入课题,研究知识:
本节课我们来研究解答问题
面向全体学生提出相关的问题。
明确要研究,探索的问题是什么,怎样去研究和讨论。
.
留给学生一定的思考和回顾知识的时间。
为学生创设表现才华的
平台。
三.归纳知识,培养能力:
见回顾
四.运用知识,分析解题:
请见印发的题
五.课堂练习:
训练问题请见教材练习册和印发的题
六.课后小结:
数的开方知识
七.课后作业:.
复习本单元知识
带领学生核对基础知识练习的答案,鼓励学生总结每题所用的知识,并说出知识是怎样利用的。
鼓励学生总结每题所用的知识。
引导学生分组讨论做出较难的练习,并鼓励学生在做题时能从多个侧面、多个出发点考虑问题。
从而开阔学生的思路。
建立学生的自信心,引导学生做部分练习,做到进一步的巩固。
教学反思。
新华东师大版八年级数学上册:第11章数的开方复习学案
精品 Word 可修改 欢迎下载新华师大版八年级数学上册第11章 数的开方复习学案复习课一 基础知识学习目标1.进一步理解一个数的平方根、算术平方根及立方根的意义;2.理解无理数和实数的意义;3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;4.会对实数分类以及进行实数的近似计算. 重点:平方根、算术平方根、实数的概念及其计算.难点:算术平方根、实数的综合运算和代数与几何的综合运用一、知识归纳1、平方根(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
a 的平方根记作: 或 。
求一个数a 的平方根的运算叫做开平方.(2)平方根的性质①一个正数有 个平方根,它们互为相反数 ②0有 个平方根,它是 。
③负数 平方根。
(3)平方和开平方互为逆运算; 2、算术平方根(1)算术平方根的定义: 。
一个非负数a 的平方根用符号表示为:“ ”,读作:“ ”,其中 叫做被开方数 (2)算术平方根的性质①正数a 的算术平方根是 ; ②0的算术平方根是 ; ③负数 算术平方根(3)重要性质:3、立方根(1)立方根的定义如果一个数的立方等于a ,那么这个数叫做a 的 (也叫 )。
如果x 3=a ,则 叫做 的立方根。
记作: ,读作“ ” 。
求一个数的立方根的运算叫做 。
(2)立方根的性质①一个正数的立方根是 ; ②一个负数的立方根是 ; ③0的立方根是 。
(3)重要性质:4、实数基础知识 (1).无理数的定义: 叫做无理数(2).有理数与无理数的区别: 有理数总可以用 或 表示;反过来,任何 或 也都是有理数。
而无理数是 小数,有理数和无理数区别之根本是有限及无限循环和无限不循环。
(3).常见的无理数类型○1一般的无限不循环小数,如:1.41421356¨···○2看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
华东师大版八年级上册 第11章 数的开方复习 课件(共17张PPT)
4、实数与数轴:
知 识
无限不循环小数叫做无理数。
如:2, 3, 5, , 32, 33,2.030030003……等。
要5.有理数与无理数统称为实数。
点 (1)按定义分类有理:数正0 有理数有限小数或无限循环小数
实数
负有理数
无理数负正无无理理数数无限不循环小数
例题精选
例1、若一个正数m的平方根是3x-10 和 2x-5, 求这个正数m。
解:根据题意得 3x﹣10+2x﹣5=0 解得:x=3 则3x﹣10=﹣1 m=(- 1)2=1
例题精选
例2、若y= a 9 + 9 a +7
求 a + y 的平方根及立方根
解:由题意得 a - 9≥0 9 - a≥0
当堂检测
选择题
1.下列说法中正确的是(C).
(A) 4是8的算术平方根 (B)16的平方根是4
(C) 6 是6的平方根 (D)- a 没有平方根
2.下列各式中错误的是(D).
(A)± 0.36 ±0 .6 (B) 0 .36 0 .6 (C) 1 .44 1 .2 (D) 1 .44 ±1 .2
6、下列说法中,正确的是: ( D )
(A)无限小数都是无理数
(B)带根号的数都是无理数
(C)循环小数是无理数
(D)无限不循环小数是无理数
7、与数轴上的点具有一一对应关系的是:( B )
(A)无理数
(B)实数
(C)整数
(D)有理数
8、下列说法中,不正确的是: ( D )
(A)绝对值最小的实数是0
(B)平方最小的实数是0
则a - 9=0 即a = 9 当a = 9时,y = 7 则a + y =16
【最新】华师大版八年级数学上册复习学案:《第11章 数的开方》
新华师大版八年级数学上册复习学案:《第11章 数的开方》设计一、知识点归纳: 1、平方根(1)平方根的意义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
a 的平方根记作:a2±±或a 。
求一个数a 的平方根的运算叫做开平方.(2)平方根的性质 ①一个正数有两个平方根,它们互为相反数②0有一个平方根,它是0本身; ③负数没有平方根。
(3)平方和开平方互为逆运算; 练习:(1)0.25的平方根是 ;16的平方根是 ;81的平方根是_____,16的算术平方根是_____ 。
=81 ,2516±= ,2)3(-= 。
变式:(1)2-的相反数是 ,3的倒数是 ,13-的绝对值是 ;(2)下列各式中错误的是( ). A 、6.036.0±=±B 、6.036.0= C 、2.144.1-=-D 、2.144.1±=例题:当x 时, 12-x 有意义;若xx -+有意义,则x ;练习:当______m时,m-3有意义;当______m时,33-m 有意义2、算术平方根(1)算术平方根的意义:非负数a 的正的平方根。
一个非负数a 的平方根用符号表示为:“a”,读作:“根号a ”,其中a 叫做被开方数(2)算术平方根的性质 ①正数a 的算术平方根是一个正数;②0的算术平方根是0; ③负数没有算术平方根。
重要性质:aa=2,())0(2≥=a a a练习:若()227.0-=x ,则=x( )(A )-0.7 (B )±0.7 (C )0.7 (D )0.49例:92的算术平方根是 ,4的算术平方根是______,3、立方根(1)立方根的意义如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫三次方根)。
如果x3=a ,则x 叫做a 的立方根。
记作:3ax =,读作“三次根号a ” 求一个数的立方根的运算叫做开立方。
(2)立方根的性质 ①一个正数有一个正的立方根,即若a>0,则 03>a②一个负数有一个负的立方根,即若a<0,则03<a③0的立方根是 0,即若a=0,则3=a 。
华东师大版数学八年级上册第11章《数的开方》单元复习重点题型训练课件
第11章 《数的开方》单元复习 重点题型
考点一 实数的相关概念及性质 1.下列说法:
①实数与数轴上的点是一一对应的;
②无理数是开方开不尽的数;
③负数没有立方根;
④16 的平方根是±4,用式子表示是 16=±4;
⑤某数的绝对值、相反数、算术平方根都是它本身,则这个数是 0.
其中错误的有( D )
6
=
5-7
6.
又∵(3 5)2=45,72=49,
∴3
56-7<0,∴
5+1 2
<
5 3.
(3)比较 2-a与 3 a-3的大小. 解:由根式的定义可知 2-a≥0,
∴a≤2,∴a-3<0,∴ 3 a-3<0. 又∵ 2-a ≥0,
∴ 2-a > 3 a-3.
谢谢您的观看
(3)已知 x、y 为实数,且满足 1+x-(y-1) 1-y =0,求 x2 023-
y2 023 的值.
解:∵ 1+x-(y-1) 1-y=0, ∴ 1+x+(1-y) 1-y=0, ∴1+x=0,1-y=0, ∴x=-1,y=1, ∴x2 023-y2 023=(-1)2 023-12 023=(-1)-1=-2.
∴x=9,其平方根为±3.
6.已知 2a-1 的立方根是 3,3a+b+6 的算术平方根是 7,求 a+2b 的
平方根.
解:由题意可得23aa-+b1+=62=749,解得ab==114.
∴± a+2b =± 14+2 =±4.
考点三 估算
7.设 a= 21-1,a 在两个相邻整数之间,则这两个整数是( C )
八年级数学上册第11章数的开方复习教案2新版华东师大版word版本
2、计算:(1) ;(2) .
六.课后小结:
数的开方知识
七.课后作业:.
复印给学生
从习题中了解学生对知识的掌握程度,完善学生的不足。
1.带领学生核对基础知识练习的答案,鼓励学生总结每题所用的知识,并说出知识是怎样利用的。
2.引导学生做中等难度的练习,鼓励 学生总结每题所用的知识。
3.引导学生分组讨论做出较难的练习,并鼓励学生在做题时能从多个侧面、多个出发点考虑问题,从而开阔学生的思路。建立学生的自信心。
数的开方
教学目标
知识与技能
处理习题,巩固学生的基础知识,培养学生综合复习问题的能力。
过程与方法
核对答案,复习疑难问题,归纳总结知识。
情感态度与 价值观
完善自我, 建立 学生的自信心。
教学重点
巩固基础知识,提高学生综合应用知识的能力。
教学难点
了解学生的不足,建立完整的知识体系。
教学内容与过程
教法学法设计
为学生创设表现 才华的平台。
三.归纳知识,培养能力:
实数的系统表:
四.运用知识,分析解题 :
请看下面的问题:
问题3:你能在数轴上找到表 示 的点吗?
问题4:无理数与数轴上的点一一对应吗?
问题5:有理数与数轴上的点一一对应吗?
问题6: 实数与数 轴上的点一一 对应吗?
五.课堂练习:
1、比较下列各对数的大小:
4.引导学生做部分练习,做到进一步的巩固。
教学反思
必须手写,是检查备课的重要依据。
一.复习提问,回顾知识,请看下面的问都掌握了哪些?
3.实数的系统怎样?
二.导入课题,研究知识:
本解课我们来利用知识解决问题
华师大八年级数学上《第11章数的开方》单元测试含答案解析
第11章数的开方(kāi fāng)一、选择题1.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.2.下列(xiàliè)实数中,最小的数是()A.﹣3 B.3 C.D.03.在实数(shìshù)1、0、﹣1、﹣2中,最小的实数是()A.﹣2 B.﹣1 C.1 D.04.实数(shìshù)1,﹣1,﹣,0,四个数中,最小的数是()A.0 B.1 C.﹣1 D.﹣5.在实数(shìshù)﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.36.a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,87.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间8.在已知实数:﹣1,0,,﹣2中,最小的一个实数是()A.﹣1 B.0 C.D.﹣29.下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.410.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0 C.3 D.11.在1,﹣2,4,这四个数中,比0小的数是()A.﹣2 B.1 C. D.412.四个实数﹣2,0,﹣,1中,最大的实数是()A.﹣2 B.0 C.﹣D.113.与无理数最接近(jiējìn)的整数是()A.4 B.5 C.6 D.714.如图,已知数轴上的点A、B、C、D分别(fēnbié)表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段(xiànduàn)()A.AO上B.OB上C.BC上D.CD上15.估计(gūjì)介于(jiè yú)()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间16.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣217.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C18.与1+最接近的整数是()A.4 B.3 C.2 D.119.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④20.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a21.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.922.估计×+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和923.估计(gūjì)的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24.把7的平方根和立方根按从小到大的顺序排列为.25.若a<<b,且a、b是两个连续(liánxù)的整数,则a b=.26.若两个连续(liánxù)整数x、y满足x<+1<y,则x+y的值是.27.黄金(huánɡ jīn jīn)比(用“>”、“<”“=”填空(tiánkòng))28.请将2、、这三个数用“>”连结起来.29.的整数部分是.30.实数﹣2的整数部分是.第11章数的开方参考答案与试题解析一、选择题1.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在﹣3,0,4,这四个数中,﹣3<0<<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2.下列实数中,最小的数是()A.﹣3 B.3 C.D.0【考点(kǎo diǎn)】实数大小比较.【分析】在数轴(shùzhóu)上表示出各数,再根据数轴的特点即可得出结论.【解答(jiědá)】解:如图所示:故选A.【点评(diǎn pínɡ)】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3.在实数(shìshù)1、0、﹣1、﹣2中,最小的实数是()A.﹣2 B.﹣1 C.1 D.0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:∵由数轴上各点的位置可知,﹣2在数轴的最左侧,∴四个数中﹣2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4.实数1,﹣1,﹣,0,四个数中,最小的数是()A.0 B.1 C.﹣1 D.﹣【考点】实数大小比较.【专题】常规题型.【分析】根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1>0>﹣>﹣1,所以(suǒyǐ)在1,﹣1,﹣,0中,最小的数是﹣1.故选:C.【点评】此题主要考查了正、负数(fùshù)、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5.在实数(shìshù)﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数(shìshù)大小比较.【专题(zhuāntí)】常规题型.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.6. a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,8【考点】估算无理数的大小.【分析】根据,可得答案.【解答】解:根据题意,可知,可得a=2,b=3.故选:A.【点评】本题考查了估算无理数的大小,是解题关键.7.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学(shùxué)能力,“夹逼法”是估算的一般方法,也是常用方法.8.在已知实数(shìshù):﹣1,0,,﹣2中,最小的一个(yī ɡè)实数是()A.﹣1 B.0 C.D.﹣2【考点】实数(shìshù)大小比较.【专题(zhuāntí)】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此可得出答案.【解答】解:﹣2、﹣1、0、1中,最小的实数是﹣2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9.下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:|﹣5|=5;|﹣|=,|1|=1,|4|=4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0 C.3 D.【考点】实数大小比较.【专题】常规题型.【分析】根据(gēnjù)正数大于0,0大于负数,可得答案.【解答(jiědá)】解:﹣2<0<<3,故选:C.【点评】本题(běntí)考查了实数比较大小,是解题(jiě tí)关键.11.在1,﹣2,4,这四个数中,比0小的数是()A.﹣2 B.1 C. D.4【考点】实数大小(dàxiǎo)比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:﹣2、1、4、这四个数中比0小的数是﹣2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.四个实数﹣2,0,﹣,1中,最大的实数是()A.﹣2 B.0 C.﹣D.1【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13.与无理数最接近的整数是()A.4 B.5 C.6 D.7【考点(kǎo diǎn)】估算无理数的大小.【分析】根据无理数的意义和二次根式(gēnshì)的性质得出<<,即可求出答案(dá àn).【解答(jiědá)】解:∵<<,∴最接近(jiējìn)的整数是,=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和6之间,题目比较典型.14.如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3﹣<1,进而得出答案.【解答】解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出的取值范围是解题关键.15.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【考点】估算无理数的大小.【分析】先估算的范围,再进一步估算,即可解答.【解答】解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6, =0.65,∴0.6<<0.65.所以(suǒyǐ)介于(jiè yú)0.6与0.7之间.故选:C.【点评】本题考查(kǎochá)了估算有理数的大小,解决本题的关键是估算的大小(dàxiǎo).16.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣2【考点】估算(ɡū suàn)无理数的大小.【分析】先把m化简,再估算大小,即可解答.【解答】解;m=×(﹣2)=,∵,∴,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算的大小.17.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题(jiě tí)关键是确定无理数的整数部分即可解决问题.18.与1+最接近(jiējìn)的整数是()A.4 B.3 C.2 D.1【考点】估算(ɡū suàn)无理数的大小.【分析(fēnxī)】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个(liǎnɡ ɡè)完全平方数,再估算与1+最接近的整数即可求解.【解答】解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列(xiàliè)有关a、b、c的大小关系(guān xì),何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a【考点】实数大小(dàxiǎo)比较.【分析(fēnxī)】分别判断出a﹣b与c﹣b的符号,即可得出答案.【解答(jiědá)】解:∵a﹣b=(﹣3)13﹣(﹣3)14﹣(﹣0.6)12+(﹣0.6)14=﹣313﹣314﹣12+14<0,∴a<b,∵c﹣b=(﹣1.5)11﹣(﹣1.5)13﹣(﹣0.6)12+(﹣0.6)14=(﹣1.5)11+1.513﹣0.612+0.614>0,∴c>b,∴c>b>a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.9【考点】估算无理数的大小.【分析】根据=9, =10,可知9<<10,依此即可得到k的值.【解答】解:∵k<<k+1(k是整数),9<<10,∴k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22.估计×+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和9【考点】估算无理数的大小(dàxiǎo);二次根式的乘除法.【分析】先把各二次根式(gēnshì)化为最简二次根式,再进行计算.【解答(jiědá)】解:×+=2×+3=2+3,∵6<2+3<7,∴×+的运算(yùn suàn)结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合(hùnhé)运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23.估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是<<,从而有3<<4.【解答】解:∵9<11<16,∴<<,∴3<<4.故选C.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24.把7的平方根和立方根按从小到大的顺序排列为.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案(dá àn)为:﹣<<.【点评】本题考查了实数大小比较:正数大于0,负数(fùshù)小于0;负数的绝对值越大,这个数越小.25.若a<<b,且a、b是两个连续(liánxù)的整数,则a b= 8 .【考点】估算(ɡū suàn)无理数的大小.【分析(fēnxī)】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出的范围.26.若两个连续整数x、y满足x<+1<y,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算+1,即可解答.【解答】解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.27.黄金比>(用“>”、“<”“=”填空)【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<<3,从而得出﹣1>1,即可比较大小.【解答】解:∵2<<3,∴1<﹣1<2,∴>,故答案(dá àn)为:>.【点评】本题(běntí)考查了实数的大小比较,解题的关键是熟练掌握在哪两个整数(zhěngshù)之间,再比较大小.28.请将2、、这三个数用“>”连结起来>>2 .【考点(kǎo diǎn)】实数大小比较.【专题(zhuāntí)】存在型.【分析】先估算出的值,再比较出其大小即可.【解答】解:∵≈2.236, =2.5,∴>>2.故答案为:>>2.【点评】本题考查的是实数的大小比较,熟记≈2.236是解答此题的关键.29.的整数部分是 3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定的范围,则整数部分即可求得.【解答】解:∵9<13<16,∴3<<4,∴的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30.实数﹣2的整数部分是 3 .【考点】估算无理数的大小.【分析】首先得出的取值范围,进而得出﹣2的整数部分.【解答(jiědá)】解:∵5<<6,∴﹣2的整数(zhěngshù)部分是:3.故答案(dá àn)为:3.【点评】此题主要考查了估计(gūjì)无理数大小,得出的取值范围(fànwéi)是解题关键.内容总结。
华师大版八年级数学上册第11章《数的开方》复习教案 .docx
第11章《数的开方》复习教案八年级数学组复习目标:通过复习让学生对本章的知识有一个系统的了解和掌握。
教学重点与难点:经历本章知识结构图的认识过程,体会数学知识的前后连贯性,体验综合应用学过的知识解决问题的方法。
教学过程:一、自学提纲:1、看书本14页本章知识结构图,并完成下列填空。
2、若x2=a则----是-----的平方根,a的平方根记作-----,a的算术平方根记作-------3、正数有------个平方根,它们的关系是---------,负数有平方根吗?若没有说明原因。
0的平方根为---------。
-------叫开平方,它与-------互为逆运算。
4、若x3=a 则--------是-------的立方根,记作---------。
正数的立方根是-------数负数的立方根是-------数0的立方根是-------数5、--------叫开立方,开立方与--------互为逆运算。
6、-------是无理数。
-------和------统称为实数,实数与数轴上的点是---------关系。
二、知识应用:1、 填空:(1)254的平方根是-------,81的算术平方根是-------- (2) ------的平方等于169 ,-278 的立方根是------- (3) 平方根等于本身的数-------立方根等于本身的数-------算术平方根等于本身的数-------(4)若︳x ︳=2 ,则 x= -------- -2 的相反数是-------- -2 的绝对值是-------2、 将下列各数按从小到大的顺序排列:3、 3,-2,︳1-3︳,1+24、 一个立方体的体积为285cm 3,求这个立方体的表面积。
(保留三个有效数字)三、课堂小结:四、作业:1、课本25页1、2题2、补充题:已知(2x)2=16,y 是(-5)2的正的平方根,求代数式y z x ++yx x -的值. 教后反思:第12章《整式的乘除》复习教案一八年级数学组一、复习目标:1.掌握正整数幂的运算性质,会用它们进行计算2.掌握整式的乘法法则,并会进行整式的乘法运算二、 知识结构:同底数幂相乘,底数不变,指数相加同底数幂的乘法(),m n m n a a am n +•=为正整数幂的乘方,底数不变,指数相乘幂的乘法幂的乘法(),m n mn a a m n =()为正整数积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘积的乘方()n n n ab a bn =•()为正整数同底数幂相除,底数不变,指数相减幂的除法(,0)m n m n a a an m n a -÷=>≠一般地,为正整数,1、单项式与单项式相乘:单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式。
八年级数学上册第11章数的开方复习(2)教案华东师大版(2021年整理)
重庆市沙坪坝区虎溪镇八年级数学上册第11章数的开方复习(2)教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市沙坪坝区虎溪镇八年级数学上册第11章数的开方复习(2)教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市沙坪坝区虎溪镇八年级数学上册第11章数的开方复习(2)教案(新版)华东师大版的全部内容。
数的开方平方根5、如果 是a+b+3的算术平方根,是a+2b 的立方根,求M -N 的立方根。
学做思三:、数形结合的应用6、 点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A,B 两点的距离为______7、a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.8、已知实数在数轴上的对应点如图所示,化简达标检测1.下列说法中正确的是( ).(A ) 4是8的算术平方根 (B)16的平方根是4 (C) 是6的平方根 (D )—a 没有平方根2.下列各式中错误的是( ). (A ) (B) (C ) (D ) 322+-+=b a b a N 22()a a b c a b c --+-+-66.036.0±=±6.036.0=.21-44.1-=.2144.1±=b a b a M -++=33.若 x 2=(-0。
7)2,则 x =( )(A) -0。
7 (B) ±0。
7 (C ) 0。
7 (D) 0.494. 的平方根是( )(A )6 (B)±6 (C) (D ) 5.下列语句正确的是( )(A)如果一个数的立方根是这个数本身,那么这个数一定是零;(B )一个数的立方根不是正数就是负数;(C )负数没有立方根;(D )一个数的立方根与这个数同号,零的立方根是零.反思总结 1. 知识建构:见导入示标2。
华东师大版八年级数学上册第十一单元《数的开方》教案
第11章数的开方11.1 平方根与立方根1.平方根【基本目标】1.理解并掌握平方根与算术平方根的概念.2.理解平方运算与开平方的互逆关系.3.理解算术平方根的非负性,会用计算器求一个数的算术平方根.【教学重点】理解平方根与算术平方根概念;会求一个正数的平方根.【教学难点】算术平方根的非负性与算术平方根的特征.一、创设情景,导入新课同学们,2013年6月17时38分神十成功发射,其飞行速度大于第一宇宙速度v1,而小于第二宇宙速度v2,v1,v2满足v12=gR,v22=2gR,要求v1与v2就要用到平方根的概念.多媒体展示教科书导图提出的问题,( )2=25.二、师生互动,探究新知1.用平方运算求平方根.【教师活动】自学课本P2到例1止,什么是平方根?我们是根据什么求25的平方根的?【学生活动】小组交流讨论后,代表发言.【教学说明】教师板书平方根概念并强调:弄清楚“谁”是“谁”的平方根,且正数有两个平方根,它们互为相反数,负数没有平方根.在此基础上完成例1,并注意学生利用平方运算求一个数的平方根时语言的规范性.2.算术平方根【教师活动】正数a的正的平方根叫做a,正数a,0的平方根是0,0的算术平方根是0.【学生活动】完成例2.表示平方表示算术平方根.3.利用计算器求算术平方根【学生活动】用计算器操作.【教学说明】教师强调:正确的操作程序与精确度.三、随堂练习,巩固新知完成练习册中本课时对应的课堂练习部分,教师根据完成情况指导小组进行点评,特别是平方根与算术平方根的区别.四、典例精析,拓展新知例三角形的三边长为a、b、c,c为偶数,求△ABC的周长.表示a-2的算术平方根,故a-2≥00,而|b-3|≥0,利用非负数和为0,则分别为0,求出a、b,再由三边关系求解.【答案】△ABC的周长为7或9.【教师点拨】a表示a的算术平方根,具有双重非负性,非负数和为0,则各非负数为0.五、运用新知,深化理解1.3a-2的平方根是它的本身,b+1的算术平方根是它本身,则a= ,b= .2. .3.n为整数,1m=,则m+n= .【答案】1.23-1或0 2.±2 3.3或4【教学说明】从跟踪练习中,查漏补缺、并注意审题准确.4,再求4的平方根.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?并与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课概念较多,从神十飞天入手导入新课,抓住了学生的兴趣点.从正方形的面积为25,求它的边长,进行平方根与算术平方根的教学.整堂课师生互动,以学生为主体,考虑到概念课的特殊性,呈现教师引导、学生表达,教师归纳、学生理解模式.求平方根时,利用平方运算,方根.典例精析对a的双重非负性,学生可能有困难,教师给予适当的关注.2.立方根【基本目标】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3.让学生体会一个数的立方根的惟一性 .4.分清一个数的立方根与平方根的区别,并会用计算器求一个数的立方根.【教学重点】立方根的概念,并会求一个数的立方根.【教学难点】立方根与平方根的区别.一、创设情景,导入新课(出示电热水器图片)问题(1):同学们在家里或者商场里都见过电热水器,像一般家庭常用的是容积50L 的.如果要生产这种容积为50L 的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?(学生小组讨论,并推选代表发言,教师板演.)解:设容积的底面直径为xdm ,则2·()?22=50x x π 可得,x 3=100π ≈31.84问题是什么数的立方会等于31.84呢?学生百思不得其解,教师可在此处设置一个台阶.再设问:要制作一种容积为27m 3的正方体形状的包装箱,这种包装箱的边长应该是多少?二、师生互动,探究新知1.立方根的概念在学生充分讨论的基础上教师给出解决问题的过程:设这种包装箱的边长为xm ,则x 3=27.这就是求一个数,使它的立方等于27.因为33=27,所以x=3.即这种包装箱的边长应为3m.归纳:如果一个数的立方等于a,那么这个数是a的立方根.例1根据立方根的意义,求下列各数的立方根:125/8,-64,-1/27,1,-1.(1)对于23=8,可以进一步追问学生,除了2以外是否有其他的数,它的立方也等于8呢?对于下面几个问题可以类似设问.(2)思考正数、0、负数的立方根各有什么特点?并追问一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?(学生独立探究,再小组合作交流,给出立方根的性质.)即:正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.用数学符号表示立方根例2见教材P6解略.【教学说明】注意立方根定义及用3表示一个数的立方根,教师可设问3a 中a取什么数?a中a取什么数以引起学生对平方根、立方根区别的认识.3.用计算器求一个数的立方根.【教学说明】教师提醒学生注意操作的程序与精确度的要求.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师及时点评.四、典例精析,拓展新知例3求下列各式的值:【教学说明】通过以上求值让学生能熟练运用与3求平方根与立方根,进一步区分平方根与立方根.五、运用新知,深化理解1.-64的立方根是.2.3355-=-成立吗?.3.(x+1)3=-64的解是.4.立方根是本身的数有.5.38的立方根是.6.一个正方体的体积是0.512m3,则它的边长是m.【答案】1.-4; 2.成立; 3.x=-5; 4.0、±1;5.32;6.0.8六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何疑问,与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课的教学设计是以课程标准为依据,在教学上体现了创设情景——提出问题——建立模型——解决问题思路,在教学中体现了自主学习思路.在导入新课时,创设了一个学生生活实际中常常见到的热水器制造问题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣.“平方根”“立方根”在内容安排上也有很多类似的地方,因此在教学中利用类比方法,让学生通过类比旧知识学习新知识.教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握.通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中充分发挥了他们的主观能动性,感受了立方运算与开立方运算之间的互逆关系,并学会了从立方根与立方的互逆运算中寻找解题途径.11.2 实数第1课时 实数的有关概念【基本目标】1.理解无理数与实数的概念.2.知道实数与数轴上的点的一一对应关系,进一步培养数形结合的思想.3.会比较两个实数的大小.【教学重点】实数的概念.【教学难点】实数与数轴上的点一一对应的关系.一、创设情景,导入新课如图,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.容易知道,这个大正方形的面积是2,所以大正方形的边长为2.通过观察教材P8的计算你发现了什么?它是一个什么数?二、师生互动,探究新知1.无理数与实数的概念教师启发归纳,任何一个有理数都可以写成有限小数,或无限循环小数,而2是无限不循环小数,是无理数.无理数与有理数统称实数.(1)概念反馈:33228,497π,,, 中是无理数的是39π、它们全部都属于实数.(2)判断:无限小数是无理数.(×)无理数是无限小数.(√)【教学说明】无理数、实数的概念由2引出用无限不循环小数进行定义,进而辨析无理数时不能只看形式,还要看结果,即带根号的数不一定是无理数.2.实数与数轴上的点一一对应利用边长为1的正方形的对角线为2,进而在数轴上画出表示2的点,-2的点.教师在学生操作的基础上归纳:实数与数轴上的点一一对应.【教学说明】无理数在数轴上表示目前较为困难,利用课前操作方法作出2.让学生亲身经历数轴上表示2的点的方法,进而建立实数与数轴一一对应的关系.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知【教学说明】在完成上述例题中,引导学生掌握有理数比较大小的方法,有理数运算法则,进而让学生很自然的迁移实数的大小比较与运算,并体会到一种重要的数学思想“类比”.五、运用新知,深化理解1.在数221.442333.14817-、、、、、)个.A.1B.2C.3D.42.与数轴上的点一一对应的数是()A.有理数B.无理数C.实数D.整数3.实数a在数轴上的位置如图:化简:|a-1|+(a-2)2=【答案】1.B 2.C 3.1【教学说明】跟踪练习中暴露的问题及时分析原因.六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何疑问,与同伴交流,在学生交流发言的基础上,教师归纳总结.完成练习册中本课时对应的课后作业部分.波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”、“学东西最好的途径是亲自去发现它”、“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生教学的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,从而得出数轴上的点与实数是一一对应的关系.注意类比思考,以旧迎新.第2课时实数的性质及运算【基本目标】1.了解有理数的相反数、绝对值等概念、运算法则、运算律在实数范围内仍然适用.2.能对实数进行大小比较和四则混合运算.【教学重点】实数的性质、实数的大小比较及运算.【教学难点】实数的大小比较.一、复习回顾1.用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2.用字母表示有理数的加法交换律和结合律.3.平方差公式、完全平方公式.4.有理数的相反数是什么?不为0的数的倒数是什么?有理数的绝对值等于什么?二、师生互动,探究新知1.填空32与互为相反数,5与互为倒数,33|= .2.概括在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较、运算法则及运算律仍然适用.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师及时点评.四、典例精析,拓展新知例32解:用计算器求得3+2≈3.14626437,而π≈3.141592654,因此3+2>π.五、运用新知,深化理解1.请你试着计算下列各题.2.比较下列各组数中两个实数的大小:3.试解答下列问题:(1)指出5在数轴上位于哪两个整数之间;(2)写出绝对值小于4的所有整数.【答案】1.(1)1 (2)22(3)0 2.(1)<(2)>3.(1)2和3 (2)0,1,2,3,-1,-2,-3【教学说明】跟踪练习中暴露的问题及时分析原因.六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何疑问,与同伴交流,在学生交流发言的基础上,教师归纳总结.完成练习册中本课时对应的课后作业部分.1.比较两个实数的大小的方法:(1)比较被开方数的大小;(2)平方法;(3)近似取值法.2.实数的运算包括加减、乘除、乘方、开方三级(6种)运算,以前的运算法则、运算律仍然适用.本章复习【基本目标】1.了解平方根、算术平方根、立方根的概念,会用根号表示.2.了解平方与开平方,立方与开立方互为逆运算,会用平方与立方的运算求某些数的平方根与立方根.3.了解无理数的概念,知道实数与数轴上的点一一对应.4.能进行实数的运算,会估算无理数的大小.【教学重点】平方根与立方根,实数及运算.【教学难点】实数的估算,平方根的性质.一、知识框图,整体建构二、知识梳理,快乐晋级本章通过问题的形式来梳理知识,以加深学生对基础知识的理解.问题1:平方根与立方根的定义是什么?它们有什么性质?问题2:有理数与实数的定义是什么?问题3:数轴上的点与实数有什么关系?你是怎么理解的?问题4:实数的相反数、绝对值、倒数与有理数相同吗?问题5:实数运算法则、运算律与有理数相同吗?【教学说明】教师提出问题以小组竞赛的形式回答,教师根据回答的情况,进行必要的讲解与说明,做到切中要害、言简意赅.三、典例精析,升华旧知例1(1)(-2)2的平方根是()A.-2B.2C.±2D.±4(2)下列说法中,正确的是()A.正数的立方根是正数B.负数的平方根是负数C.无理数是开方开不尽的数D.数轴上的点只能表示有理数(3)-61164的立方根是.(4)81的算术平方根是.(5)实数a、b满足+(b-2)2=0,则ab= .【答案】(1)C (2)A (3)-5/4 (4)3 (5)-2.【教学说明】这四道小题学生小组内自评自改.教师指出(4)中应转化为9的算术平方根,应将间接条件直接化.例2 的小数部分为a,整数部分为b,求a-b的值.【分析】∵34,4<5,的整数部分b=4,小数部分,∴a-b=)的整数部分b的值.特别估算能力数学课程标准较重视.例3已知实数a、b、c在数轴上的位置如图所示.-|c-a|+|a+c|.【分析】由数轴知道b<0,c-a<0,a+c>0, b2的算术平方根,故原式=-b+(c-a)+(a+c)=2c-b.【教学说明】利用数形结合,判断绝对值里面的数的正负性,其中b2的意义是解题的关键.四、师生互动,课堂小结这节课你有什么收获?有何疑惑?复习了哪些数学思想方法?与同伴交流.在学生交流发言的基础上,教师归纳总结.完成练习册中本课时对应的课后作业部分.本节复习课从知识构建到知识梳理应让学生积极自主的完成,在完成知识构建(梳理)过程中寻找薄弱环节,从而抓住复习的针对性.典例精析部分,教师应注意根据教学的实际动态进行及时归纳,点评,让知识类化,形成能力.在复习的过程中,学生难免有遗漏的地方,教师应以激励为主.。
第11章 数的开方 华师大版数学八年级上册复习课教案
《数的开方》复习课教案教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备课件、计算器.教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解)1.求下列各数的平方根:(1);(2);(3).师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根.生:(1)是求的平方根;(2)是求5的平方根;(3)是求的平方根.由学生独立完成.2.x取何值时,下列各式有意义.(1);(2).师:在什么情况下有意义?生:对于,必须满足a≥0,它才有意义,所以被开方数必须是非负数.(1)2-x≥0;(2)x2+1≥0.师:如何求出x的范围呢?生:我们讨论后,得出如下结论:(1)x≤2;(2)不论x取什么实数,x2≥0,x2+1>0,即x的取值范围是:x为全体实数.3.求下列各数的值:(1);(2)(x≥1).师:如何化简呢?生:我们认为首先应考虑中a的范围.(1)当a≥0时,=a;(2)当a<0时,=-a.师:求下列各数的值,必须先确定a的范围.生:因为3-π<0,所以=-(3-π)=π-3.师:如何化简呢?生:将化为的形式,即再考虑x-1的范围,由学生独立完成.4.已知:|x-2|+=0,求:x+y的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x-2|和都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0.由学生独立完成.师:哪些数为非负数呢?生:实数a的绝对值,表示为|a|,|a|是非负数;实数a的平方,表示为a2,a2是非负数;非负实数a的算术平方根表示为,是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:(精确到0.01).师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、,1.732代替.由学生独立完成.6.在实数、、、、0.80108中,无理数的个数为_______个.师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环.7.|x|<2π,x为整数,求x师:|x|=2π,x的值是多少?生:当x=2π,x=-2π时,|x|=2π,所以|x|<2π时,x=±2π.师:|x|=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第15页复习题A组五、板书设计第11章数的开方1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷一、填一填:1.16的平方根记作_______,等于________.2.的值为________.3.计算+=________.4.-的倒数是_______.5.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x2-25│+=0,则x=_______,y=_______.7.已知x的平方根是±8,则x的立方根是________.二、选一选:8.4的平方根是()A.2B.-2C.±2D.±9.下列各式中,无意义的是()A.-B.C.D.10.下列各组数中,互为相反数的一组是()A.-2与B.-2与C.-2与-D.│-2│与211. 下列说法正确的是()A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1三、做一做:12. 求下列各数的平方根:(1)81;(2);(3)1.44;(4)2; (5).13. 求下列各式中的x:①x2=1.21; ②27(x+1)3+64=0.14. a≥0时,才有意义——表示a的算术平方根.由此你会求下列各式有意义时x的取值范围吗?试试看:(1); (2); (3); (4)+。
新华师大版八年级上册数学《第11章 数的开方》学案2
新华师大版八年级数学上册《第11章 复习》学案姓名: 班级:【学习目标】:1.熟练掌握数的平方根,立方根与其相关性质。
2.能进行实数的计算。
【学习重点】:实数的概念及其相关运算。
【学习难点】:实数大小的比较。
【学习过程】一、单元导入,明确目标二、回顾复习,合作探究复习课本,总结平方根,立方根与其相关性质,综合运用,并能进行无理数的计算。
[自学指导一]平方根、立方根及其相关性质(8分钟)例1、已知2a-1的算术平方根是3,3a+b-1的平方根是 4±,求a+2b 的平方根。
例2、若x 、y 都是实数,且 233+-+-=x x y ,求y x 3+的平方根。
第11章 复习达标检测姓名: 小组: 评价:==x x 则)若、(,3112的立方根是)(6422、比较大小:21-3 213、12的整数部分是 ,小数部分是4、解下列方程:()()()()812201-1132-=-=+x x 、、5、已知实数满足 0)21(2212=-+-+-c c b b a 求 )(c b a + 的值 。
作业: 1、232-16-125)(+ 2、98--363+ 3、13-3-2+2、解方程(1)15142=-x (2)32)1(22=-y[自学指导二]实数的有关运算(5分钟) 例3、计算下列各式: 332327102-1-33-2-91287-11613-125.01+⎪⎭⎫ ⎝⎛+、、[自学指导三]知识的综合运用(5分钟) 例4、已知实数在数轴上的对应点如图所示,化简。
华师版八年级上学期第11章《数的开方》知识点整理及针对性训练
A、不循环小数是无理数B、分数不是有理数
C、有理数都是有限小数D、3.1415926是有理数
3、下列语句正确的是( )
A、3.78788788878888是无理数B、无理数分正无理数、零、负无理数
C、无限小数不能化成分数D、无限不循环小数是无理数
4、在直角△ABC中,∠C=90°,AC= ,BC=2,则AB为( )
④ 。其中正确的有( )
A、1个B、2个C、3个D、4个
知识点五、【无理数】:
1、无限不循环小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。
在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率 以及含有 的一些数,如:2- ,3 等;(2)开方开不尽的数,如: 等;(3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如: 等;无理数也不一定带根号,如: .
华师版八年级上学期第11章《数的开方》
知识点整理及针对训练
知识点一、【平方根】
如果一个数x的平方等于a,那么这个数x就叫做a的平方根;
即:当 时,我们称x是a的平方根,记做: 。
因此:
1、当a=0时,它的平方根只有一个,也就是0本身;
2、当a>0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常
3 , , , .
(6)将 用“<”连接起来:___________________________。
(7)若 ,且 ,则 =。
(8)计算:
① ②
③
(9)已知 ,求代数式 的值。
(10)若等腰三角形ABC的三边长分别为a、b、c,且a、b满足 ,
华东师大版数学八年级上册第11章 单元综合复习《数的开方》知识点
《数的开方》知识点
1.平方根和算术平方根的概念及其性质:
(1)概念:如果2x a =,那么x 是a 的平方根,
记作:;
a 的算术平方根;
(2)性质:①当a ≥0
;当a <0
②2=a
a =。
(3)开平方:求一个数a 的平方根的运算,叫做开平方,期中a 叫做被开方数.
2.立方根的概念及其性质:
(1)概念:若3x a =,那么x 是a
(2
a =;
②3a =;
(3)开立方:求一个数a 的立方根的运算,叫做开立方,期中a 叫做被开方数.
3.有理数、无理数概念:
有理数:任何有限小数和无限循环小数都是有理数;
无理数:无限不循环小数叫做无理数.
4.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:
a 按定义分
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数负整数负有理数零正分数正整数正有理数有理数实数
b 按大小分:
实数
⎪⎩⎪⎨⎧负实数零正实数
在数轴上表示的两个实数,右边的数总比左边的数大.
5.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的.。
华东师大初中数学八上《第11章 数的开方小结与复习教案 (新版)华东师大版
第11章数的开方
教学目标
1、进一步巩固实数的开方的有关概念。
2、进一步巩固实数的运算法则和运算定律。
3.进一步巩固用估算方法来比较两数的大小,利用结算方法求无理数的范围。
教学过程
2.用计算器求下列各式的值:
-56169 0.0006705 3
-4839
3
418.9
3.一个圆柱的体积是10m3,且底面圆的直径与圆柱的高相等,求这个圆柱的底面半径(∏取3.14,结果保留2个有效数字)。
二、复习估算法
问题l:你在生活中使用过估算的方法吗?举例说明。
问题2:你能比较下列各组里两个实数的大小吗?
(1)-∏,-3.1415926 (2)29 ,54
13
问题3:你能计算:∏+10 -1-2 3 (结果精确到0.01)吗?
三、复习实数的有关概念
问题l:什么叫做无理数?什么叫做实数?
(无限不循环小数叫无理数;有理数和无理数统称为实数) 问题2:实数可以怎样分类?
1.按正负数分类,实数可以分为正实数、负实数、0;
2.按有理数、无理数分类。
问题3:你能在数轴上找到表示 2 的点吗?
问题4:无理数与数轴上的点一一对应吗?
问题5:有理数与数轴上的点一一对应吗? 问题6:实数与数轴上的点一一对应吗? 练习:P22页复习题5、6。
五、知识结构图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、定义的应用
4、已知x-2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根
5、如果 是a+b+3的算术平方根, 是a+2b 的立方
根,求M -N 的立方根。
五、数形结合的应用
6、 点A 在数轴上表示的数为
,点B 在数轴上表示的数为,则A ,B
两点的距离为______
7、a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.
8、已知实数在数轴上的对应点如图所示,化简
b a b a M -++=3322+-+=b a b a N 22
()a a b c a b c --+-+-
六.实数绝对值的应用
9.化简下列各式:
(1) |-1.4|(2) |π-3.14| (3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+1|
七、实数应用题
10.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
八.引申提高
11.已知的整数部分为a,小数部分为b,求(a+b)(a-b)的值.
归纳反思:
1、
2、。