旋转练习题
中考数学《旋转》专题练习含答案解析
![中考数学《旋转》专题练习含答案解析](https://img.taocdn.com/s3/m/abc1379a6429647d27284b73f242336c1eb9308a.png)
旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
中考数学专题 旋转练习题(8套)含答案
![中考数学专题 旋转练习题(8套)含答案](https://img.taocdn.com/s3/m/791acc092e3f5727a5e96277.png)
旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=21AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转 旋转中心 旋转角 2.A 45° 3.点A 60° 等边 三、1.(1)通过旋转,即以点A 为旋转中心,将△ABE 逆时针旋转90°.(2)BE=DF ,BE ⊥DF2.翻滚一次滚120° 翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC 绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于( ) A .50° B .210° C .50°或210° D .130° 2.在图形旋转中,下列说法错误的是( )A .在图形上的每一点到旋转中心的距离相等B .图形上每一点转动的角度相同C .图形上可能存在不动的点D .图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A3.D二、1.相等2.△ACE 图形全等= 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=21. 3.重合:证明:∵EG ⊥AF ∴∠2+∠3=90° ∵∠3+∠1+90°=180° ∵∠1+∠3=90° ∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC ∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB ∴△OBE 绕O 点旋转90°便可和△OAF 重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( ) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围 成的,如图是看到的万花筒的一个图案,图中所有三角形均 是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以 A 为中心( )A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是 ( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:21085(1)以顶点A 为对称中心,(2)以BC 边的中点K 为对称中心.2.如图,已知一个圆和点O ,画一个圆,使它与已知圆关于点O 成中心对称.3.如图,A 、B 、C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M ,现计划修建居民小区D ,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D 的位置.答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.FG DECA B1A 1B 1C 1D3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB 又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , ∴∠EFB=90°-21∠C 1FB ,∠FBG=90°-21∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG ∴四边形BEFG 是平行四边形. (2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG 同理可得:∠B 1BF=∠FB 1B . ∴∠B 1BG=90°,∴△B 1BG 是直角三角形 3.解:(1)如右图所示(2)由题意知A 、A 1、B 1三点的坐标分别是(-1,0),(0,1),(2,0)∴⎩=++⎪⎨=⎪⎧=-+a b cc a b c 04210 解这个方程组得⎩⎪⎪=⎪⎨=⎪⎪⎪=-⎧c b a 12121∴所求五数解析式为y=-21x 2+21x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是( ) A .y=x1B .y=2x+1C .y=-2x+1D .以上三种都不可能2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( )A .8cmB .22cmC .24cmD .11cm 二、填空题1.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P′的坐标是P′_______. 2.写出函数y=-x 3与y=x3具有的一个共同性质________(用对称的观点写). DCAB O三、解答题1.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC 关于x 轴对称的△A′B′C′,再画出△A′B′C′关于y 轴对称的△A″B″C″,那么△A″B″C″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1中点的反比例函数解析式; (3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B 二、1.(3,-1) 2.答案不唯一 参考答案:关于原点的中心对称图形. 三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称. 2.(1)如右图所示,连结A 1B 1; (2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=x k ,则y=-x2.25.(3)A 1B 1:设y=k 1x+b 1 ⎩=-⎨⎧=-k b 033311⎩=-⎨⎧=b k 3111∴y=x+3∵与A 1B 1直线平行且与y=x2.25相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-x2.25相切, ⎩⎪=-⎨⎪⎧=+x y y x 2.253 ⇒x 2+3x+2.25=0,b 2-4ac=9-4×1×2.25=0,∴y=x+3与y=-x2.25相切.旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )2.将三角形绕直线L 旋转一周,可以得到如图所示的立体图形的是( )二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题 1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?答案:一、1.D 2.B二、1.形状大小2.旋转三、1.(1)用同一块模块设计出的两个图案之间可能是由平移、旋转、•轴对称变化得到的,或者是由这三种变化的组合而成的;(2)略2.略。
23.1图形的旋转练习卷
![23.1图形的旋转练习卷](https://img.taocdn.com/s3/m/652fa63dde80d4d8d15a4fbb.png)
学校:___________姓名:___________班级:___________考号:___________一、选择题1.以下实际现象中,属于旋转的是( )A.钟表指针运动B.站在电梯上的人的运动C.在火车上睡觉的旅客D.地下水位逐年下降【答案】A【解析】试题分析:根据旋转的定义进行判断.解:根据旋转的定义可得:A选项:钟表指针运动是旋转;B选项:站在电梯上的人的运动是平移;C选项:在火车上睡觉的旅客是平移;D选项:地下水位逐年下降是平移.故选A.考点:图形的旋转的定义2.如下图所示,将△ABC旋转到△AB′C′,下列说法正确的个数是( )①AC=AB′②BC=B′C′③∠BAC=∠B′AC′④∠CAC′=∠BAB′A.1B.2C.3D.4【答案】C【解析】试题分析:根据在平面内,一个图形旋转后得到的图形与原来的图形之间对应线段相等;对应角相等;对应点到旋转中心的距离相等;每对对应点与旋转中心连线所成的角都是相等的角,它们都等于旋转角进行判断.解:①:因为点C与点B′不是对应点,所以AC与AB′不一定相等;②:因为BC与BC′是对应线段,所以BC=BC′;③:因为∠BAC与∠B′AC′是对应角,所以∠BAC=∠B′AC′;④:因为∠CAC′与∠BAB′是对应角,所以∠CAC′=∠BAB′.所以正确的有三个,故应选C.考点:图形的旋转的性质3.如图所示,△ACB和△DCE都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述错误的是( )A.旋转中心是点CB.旋转角度是90°C.既可以是逆时针旋转也可以是顺时针旋转D.旋转中心是点B,旋转角是∠ABC【答案】D【解析】试题分析:根据旋转的定义进行判断.解:A选项:因为△ACB和△DCE都是直角三角形,可得:点A的对应点是点D,点B的对应点是点E,所以旋转中心是点C,故A选项正确;B选项:根据旋转的定义可得:旋转角是∠ACD,因为∠ACD=∠ACB=90°,所以旋转角是90°,故B选项正确;C选项:△DCE可以看作是由△ACB顺时针旋转90°得到的,也可以看作是逆时针旋转270°得到的,故C选项正确;D选项:根据旋转的定义可得:旋转中心是点C,旋转角是∠ACD,故D选项错误.故应选D考点:图形的旋转的定义4.将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=40°,∠B′=100°,则∠BCA′的度数是( )A.110°B. 80°C.40°D.90°【答案】D【解析】试题分析:根据旋转的性质可得:△ABC≌△A′B′C,因为∠B′=100°,所以∠B=100°,根据三角形内角和定理可以求出∠BCA=40°,因为旋转角是50°,所以∠ACA′=50°,所以∠BCA′=50°+40°=90°.解:根据旋转的性质可得:△ABC≌△A′B′C,∴∠B=∠B′∵∠B′=100°,∴∠B=100°,∴∠BCA=40°,∵旋转角是50°,∴∠ACA′=50°,∴∠BCA′=50°+40°=90°.考点:旋转角;旋转的性质5.中午12点15分时,钟表上的时针和分针的夹角的度数( )A.90°B. 75°C. 82.5°D.60°答案:C试题分析:在钟面上,时针每个小时旋转30°,分针每分钟旋转6°,用15分钟分针旋转的度数减去时针旋转的度数,得到时针与分针的夹角的度数.解:115630907.582.54⨯︒-⨯︒=︒-︒=︒.故应选C二、填空题6.写出三个旋转180°后可以与自身重合的英文字母______________.【答案】H、I、X(答案不唯一).【解析】试题分析:根据旋转的性质可得:旋转180°后可以与自身重合的英文字母有:H、I、X、O、S、Z,写出其中的三个即可..解:H、I、X.7.如图E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将△BCE绕着正方形的中心O,按逆时针旋转到△CDF的位置,则旋转角是________.【答案】90°.【解析】试题分析:连接线段OC、OB,则线段OC、OB的夹角就是旋转角,根据正方形的性质可得:∠BOC=90°.解:如下图所示,连接OB、OC,根据正方形的性质可得:∠BOC=90°,所以旋转角是90°.故答案是90°.8.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OCD,则∠COB=_______.【答案】70°.【解析】试题分析:首先根据旋转角是100°,可以求出∠AOC=100°,又因为∠AOB=30°,所以∠COB=∠AOC-∠AOB=100°.解:∵旋转角是100°,∴∠AOC=100°,又∵∠AOB=30°,∴∠COB=∠AOC-∠AOB=70°.故答案是70°.9.在钟面上,时针旋转1小时的旋转角是_______;分针旋转1分钟的旋转角是______.【答案】30°;6°.【解析】试题分析:根据时针旋转360°时所用的时间是12个小时,求出时针旋转1小时的旋转角;根据分针旋转360°时所用的时间是60分钟,求出分针旋转1分钟的旋转角.解:时针旋转1小时的旋转角是360°÷12=30°,分针旋转1分钟的旋转角是360°÷60=6°.故答案是30°;6°.10.如图,在△ABC中,∠BAC=90°,AB=AC=5cm,△ABC按逆时针旋转一个角度后成为△ACD,则旋转中心是点____;旋转角是_____.【答案】A;90°.【解析】试题分析:因为图形旋转前后,只有点A的位置没有改变,所以旋转中心是点A,根据旋转前后∠BAC与∠DAC重合,所以可以求出∠BAC=∠DAC=90°,所以可以得到旋转角是90°.解:因为旋转后△ABC与△ACD中,点C与点D是对应点,点B与点C是对应点,点A与点A是对应点,所以旋转中心是点A;因为点C、D是对应点,所以∠DAC是旋转角,根据旋转前后∠BAC与∠DAC重合,所以∠BAC=∠DAC=90°,所以旋转角是90°.三、解答题11.已知△ABC绕点O旋转,点D是点A的对应点,试作出旋转后的△DEF.【答案】作图见解析.【解析】试题分析:首连接AO、DO;再连接OB、OC,分别作∠BOE=∠COF=∠AOD;在射线OE、OF上截取OE=OF,OF=OC,连接DE、EF、FD,则△DEF就是旋转后的图形.解:作图如下,12.从12时整开始计时到几时几分时,分针和时针的旋转角第一次相差90°【答案】12时18011分.【解析】试题分析:设经过x分钟时分针和时针的旋转角第一次相差90°,可以列出关于x的方程,解方程求出经过的时间.解:设经过x分钟时分针和时针的旋转角第一次相差90°根据题意可得:6309060x x -⨯=, 解得:18011x =. 答:12时18011分时,时针和分针的旋转角第一次相差90°.。
小学数学旋转问题练习题
![小学数学旋转问题练习题](https://img.taocdn.com/s3/m/52e8765cb6360b4c2e3f5727a5e9856a56122631.png)
小学数学旋转问题练习题旋转问题是小学数学中的一个重要内容,它不仅能够培养学生的观察力和逻辑思维能力,还能提高他们的几何想象能力。
下面是一些有关旋转问题的练习题,希望能够帮助同学们更好地理解和掌握这一知识点。
题目一:旋转图形的坐标变化已知点A(-2, 3),要求绕原点逆时针旋转90°,求旋转后点的坐标。
解析:根据旋转的特点,逆时针旋转90°后,点A的横坐标变为原来的纵坐标的相反数,纵坐标变为原来的横坐标。
所以,旋转后的点的坐标为(3, 2)。
题目二:矩形绕顶点旋转已知长方形ABCD的顶点A(2, 4),要求将该矩形绕顶点A逆时针旋转180°,求旋转后矩形的顶点坐标。
解析:绕顶点A逆时针旋转180°后,矩形的顶点D变为A,顶点C变为B,顶点B变为C,顶点A变为D。
因此,旋转后矩形的顶点坐标为A(2, 4),B(-2, 4),C(-2, -4),D(2, -4)。
题目三:正方形绕中心点旋转已知正方形EFGH的中心点为O(0, 0),边长为4个单位,要求将该正方形逆时针旋转270°,求旋转后正方形的顶点坐标。
解析:绕中心点O逆时针旋转270°后,正方形的顶点顺序依次变为G、H、E、F。
利用正方形的对称性可知,旋转后正方形的顶点坐标分别为G(2, -2),H(2, 2),E(-2, 2),F(-2, -2)。
题目四:三角形绕中心点旋转已知三角形IJK的中心点为P(0, 0),顶点分别为I(1, 1),J(1, -1),K(-1, -1),要求将该三角形逆时针旋转120°,求旋转后三角形的顶点坐标。
解析:绕中心点P逆时针旋转120°后,三角形的顶点顺序变为J、K、I。
利用旋转的性质可知,旋转后三角形的顶点坐标分别为J(0, -2),K(1.732, -0.366),I(-1.732, -0.366)(保留小数点后有效数字)。
通过以上练习题的解析,我们可以发现,旋转问题的解答关键在于观察和运用几何知识。
五年级旋转题型练习题
![五年级旋转题型练习题](https://img.taocdn.com/s3/m/63023608e55c3b3567ec102de2bd960590c6d9e1.png)
五年级旋转题型练习题一、选择题1. 下图中,哪一个是旋转图形?A. B.2. 以下哪个选项是图形 A 经过旋转后得到的结果?A. B. C.3. 下列选项中,哪一个图形与原图形经过旋转后得到的结果相同?A. B. C.4. 下图中,哪一个图形经过旋转后与原图形相同?A. B. C.5. 这两个图形之间的变化是什么?A. 平移B. 旋转C. 缩放二、填空题1. 将图形 A 顺时针旋转 90°,得到的结果是 ________________。
2. 将图形 B 逆时针旋转 270°,得到的结果是 ________________。
3. 将图形 C 顺时针旋转 180°,得到的结果是 ________________。
4. 将图形 D 逆时针旋转 360°,得到的结果是 ________________。
5. 将图形 E 顺时针旋转 270°,得到的结果是 ________________。
三、应用题小明正在玩一个旋转游戏。
以下是他的游戏规则:1. 他首先画出一个图形,然后对它进行旋转。
2. 他将旋转后的图形分成 4 个部分,每个部分都要填上数字。
3. 每个部分的数字要满足以下条件:- 两个相邻部分的数字之和为 10。
- 每个部分的数字都是不大于 5 的正整数。
- 每个部分的数字都不同。
以下是小明画的图形和其中一个解法的示例:__ __| || 5 |-- --| 3 || 4 |-- --请你帮助小明完成以下旋转题目:1. 请根据上述规则,完成以下图形:a)__ __ | | | ? | -- -- | 2 | | ? | -- --b)__ __ | | | ? | -- -- | ? | | ? | -- --c)__ __ | |-- --| ? || 1 |-- --d)__ __| || ? |-- --| 5 || ? |-- --2. 请你根据自己的创意,画一个满足上述规则的图形,并写出解法。
旋转的练习题
![旋转的练习题](https://img.taocdn.com/s3/m/e422ece1998fcc22bcd10d0e.png)
旋转的练习题(一)1、如图所示,图①沿逆时针方向旋转90°可得到图________;图①按顺时针方向至少旋转______________度可得图③.2、如图,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,若AF=0.5AB,则可通过 (填“平移”、“旋转”、“轴对称”)变换,使三角形ABE 变换到三角形ADF 的位置;且线段BE 、DF 的数量关系是 .3、如图,以点为为旋转中心,将∠1按顺时针方向旋转100°,得到∠2.若∠1=40°,则∠2= 度.4、如图,将左边的矩形绕点B 旋转一定角度后,位置如右边的矩形,则∠ABC= .5、如图,四边形ABCD 是正方形,△ADE 旋转后能与△ABF 重合.则旋转中心是 ,旋转角等于 度,如果连接EF ,那么△AEF 是 三角形。
6、下列图形中,绕某个点旋转180°后能与自身重合的有( )①正方形;②矩形;③等边三角形;④线段;⑤角;⑥平行四边形.A .5个B .2个C .3个D .4个 7、如图所示的各图中可看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 ( )8、如图,P 是正△ABC 内一点,若将△PBC 绕点B 旋转到△P′BA ,则∠PBP′的度数是( ) A .45° B .60° C .90° D .120°第一题第二题 第三题 第四题AB C D A . B . C . D .第八题旋转的练习题(二)1、如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段O A 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是 .2、如图,一块等边三角形木板ABC 的边长为1,现将木板沿水平线翻转(绕一个点旋转), 那么A 点从开始到结束所走的路径长度为 .3、将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )4、已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转︒180得1OA ,则点1A 的坐标为( )A .()a b -,B .()a b -,C .()b a --,D .()b a -,5、点A的坐标是(-6,8),则点A关于X轴对称的点的坐标是_________,点A关于Y轴对称的点的坐标是___________,点A关于原点对称的点的坐标是__________。
旋转图形练习题五年级
![旋转图形练习题五年级](https://img.taocdn.com/s3/m/dae49a59fbd6195f312b3169a45177232f60e409.png)
旋转图形练习题五年级
1. 圆的旋转
旋转是一种常见的图形变换方法,我们可以通过旋转来改变图形的位置和方向。
在这个练习题中,我们将探索圆的旋转。
首先,我们需要了解圆的特点。
圆是一个闭合的曲线,由一组与中心距离相等的点组成。
圆上的任意两点之间的弧长相等。
考虑一个半径为3厘米的圆,将该圆顺时针旋转90度。
请你描述旋转后的圆的位置和形状。
2. 正方形的旋转
接下来,我们来研究正方形的旋转。
正方形是一个四边相等且内角都为直角的特殊四边形。
考虑一个边长为5厘米的正方形,将该正方形逆时针旋转180度。
请你描述旋转后的正方形的位置和形状。
3. 矩形的旋转
在这一部分,我们将研究矩形的旋转。
矩形是一个拥有四个直角且相邻边长度不一致的四边形。
假设我们有一个宽度为4厘米,长度为6厘米的矩形,将该矩形顺时针旋转270度。
请你描述旋转后的矩形的位置和形状。
4. 三角形的旋转
最后,我们来探索三角形的旋转。
三角形是由三条线段组成的图形,这三条线段可以不等长。
考虑一个底边为8厘米,高度为6厘米的等腰三角形,将该三角形
逆时针旋转120度。
请你描述旋转后的三角形的位置和形状。
结论
通过以上练习题,我们可以发现旋转后的图形在平面上改变了位置
和方向,但仍然保持了原始图形的形状特征。
这种图形变换可以让我
们观察到图形之间的相似性和差异性。
通过不断练习和探索,我们可以加深对旋转图形的理解。
希望这些
练习题对你的学习有所帮助!。
旋转运动练习题
![旋转运动练习题](https://img.taocdn.com/s3/m/63742e94370cba1aa8114431b90d6c85ec3a8816.png)
旋转运动练习题
1. 胸部旋转练
- 站立直立,脚与肩同宽。
双手交叉放在胸前,手肘呈90度弯曲。
- 同时转动上半身,将胸部向左旋转,尽量保持腰部不动。
注意保持呼吸平稳。
- 达到最大旋转角度后,缓慢恢复到起始位置。
- 重复动作,这次向右旋转。
- 进行10次左右旋转,每次保持3-5秒。
2. 双脚旋转练
- 躺在地板上,双腿弯曲,双脚平放在地面上。
- 将双腿一起向左旋转,尽量使脚尖朝向地板的另一侧。
- 达到最大旋转角度后,缓慢恢复到起始位置。
- 重复动作,这次向右旋转。
- 进行10次左右旋转,每次保持3-5秒。
3. 身体旋转练
- 站立直立,双脚并拢。
- 将双手伸直到肩平高度,掌心向下。
- 身体向左旋转,尽量使左手指尖触碰到地板。
- 达到最大旋转角度后,缓慢恢复到起始位置。
重复动作,这次向右旋转。
- 进行10次左右旋转,每次保持3-5秒。
4. 仰卧旋转练
- 躺在地板上,双膝弯曲,双脚平放在地面上。
- 双臂向两侧伸直,与肩同高。
- 向左侧转动臀部和腿,同时使头部转向右侧。
- 达到最大旋转角度后,缓慢恢复到起始位置。
- 重复动作,这次向右转动臀部和腿,同时使头部转向左侧。
- 进行10次左右旋转,每次保持3-5秒。
以上旋转运动练习题可以帮助增强身体灵活性和协调性,适合初学者进行练习。
在进行练习时,请记住保持身体的舒适感,避免过度旋转造成不适。
旋转练习题及答案
![旋转练习题及答案](https://img.taocdn.com/s3/m/4b19068ca48da0116c175f0e7cd184254b351bdd.png)
旋转练习题及答案一、选择题1. 一个图形绕某一点旋转90°后,与原图形相比,位置发生了变化,但形状和大小不变。
这种现象称为:A. 平移B. 对称B. 旋转D. 反射答案:C2. 一个正方形绕其中心点旋转180°后,其形状和位置将如何变化?A. 形状改变,位置不变B. 形状不变,位置改变C. 形状和位置都不变D. 形状和位置都改变答案:C3. 在平面直角坐标系中,点P(3,4)绕原点O(0,0)顺时针旋转90°后,新坐标为:A. (4,-3)B. (-4,3)C. (-3,4)D. (3,4)答案:A二、填空题4. 若一个图形绕某点旋转θ°后,旋转后的图形与原图形关于该点对称,则称该图形为______图形。
答案:中心对称5. 一个图形绕某点旋转180°后,与原图形完全重合,这种现象称为图形的______。
答案:中心对称三、解答题6. 已知点A(1,2),求点A绕原点O(0,0)顺时针旋转90°后的坐标。
解答:设点A旋转后的坐标为(x,y)。
根据旋转公式,我们有:\[ x = 2 \]\[ y = -1 \]因此,点A的新坐标为(2, -1)。
7. 一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3)。
求三角形ABC绕点A顺时针旋转60°后的顶点坐标。
解答:首先,我们需要找到等边三角形的旋转矩阵。
对于顺时针旋转60°,旋转矩阵为:\[ \begin{bmatrix} \cos(60°) & -\sin(60°) \\ \sin(60°) & \cos(60°) \end{bmatrix} = \begin{bmatrix} 1/2 & -√3/2 \\ √3/2 & 1/2 \end{bmatrix} \]应用旋转矩阵到点B和C,我们得到:B' = (1/2 - √3/2, √3/2 + 1/2)C' = (-1/2 + √3/2, √3/2 - 1/2)因此,旋转后的顶点坐标为:B'(1/2 - √3/2, √3/2 + 1/2)C'(-1/2 + √3/2, √3/2 - 1/2)四、应用题8. 一个时钟的时针在12点整时指向上方,若时针以恒定速度旋转,求时针在3小时后的位置。
基本几何形的旋转与对称练习题
![基本几何形的旋转与对称练习题](https://img.taocdn.com/s3/m/2127f5bfaff8941ea76e58fafab069dc50224736.png)
基本几何形的旋转与对称练习题在几何学中,旋转和对称是两个重要的概念。
通过学习基本几何形的旋转和对称,我们可以更好地理解几何形状的性质和特征。
本文将为您提供一些旋转与对称的练习题,帮助您巩固相关知识。
1. 旋转练习题题目1:将一个正方形顺时针旋转90度,求旋转后得到的形状。
解析:正方形的每一条边长度相等,且相互垂直。
顺时针旋转90度意味着每条边都向右平移,并保持垂直关系。
所以,旋转后得到的形状仍然是一个正方形。
题目2:将一个矩形逆时针旋转180度,求旋转后得到的形状。
解析:矩形的对角线相等,且相互垂直。
逆时针旋转180度意味着每条边都向相反方向平移,并保持垂直关系。
所以,旋转后得到的形状仍然是一个矩形。
题目3:将一个等边三角形顺时针旋转120度,求旋转后得到的形状。
解析:等边三角形的每个角都是60度,且每个边长度相等。
顺时针旋转120度意味着每个角度数减少120度,并保持边长不变。
所以,旋转后得到的形状仍然是一个等边三角形。
2. 对称练习题题目1:选取一个中心对称的多边形,画出其对称轴。
解析:中心对称的多边形是指以某个点为中心,在该点上任取两个对称的顶点,连接这两个顶点和中心点所得的线段就是对称轴。
例如,正方形以中心为对称中心。
题目2:判断以下图形是否具有对称轴:三角形,矩形。
解析:三角形没有对称轴,而矩形具有两条对称轴。
这是因为矩形的对角线相等且相互垂直,所以以对角线的交点为中心,连接交点与矩形的各个顶点所得的线段就是两条对称轴。
题目3:在平面直角坐标系中,对称图形的特点是什么?解析:对称图形在平面直角坐标系中具有以下特点:- 图形中任意一点关于对称轴对称的点仍然在图形中;- 图形中存在至少一条对称轴,对称轴可以是横轴、纵轴或对角线;- 图形上的点到对称轴的距离等于该点关于对称轴对称点到对称轴的距离。
通过这些旋转与对称的练习题,我们可以更好地理解和掌握几何形状的旋转特性和对称性质。
同时,这也有助于培养我们的几何思维和问题解决能力。
《图形的旋转》练习题
![《图形的旋转》练习题](https://img.taocdn.com/s3/m/ca1630cdd1d233d4b14e852458fb770bf78a3b99.png)
《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。
()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。
()3、图形的旋转改变了图形的形状和大小。
()4、图形的旋转不改变图形的形状和大小。
()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。
()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。
()7、旋转对称图形是旋转对称的。
()8、旋转对称的图形是旋转对称的。
()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。
()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。
()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。
2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。
在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。
苏教版三年级旋转练习题
![苏教版三年级旋转练习题](https://img.taocdn.com/s3/m/a411161b68eae009581b6bd97f1922791688be2b.png)
苏教版三年级旋转练习题一、判断题1. 旋转是将一个图形绕着某一点转动一个角度的图形变换。
2. 旋转前后,图形的大小和形状都不会改变。
3. 旋转90度的图形,其对应角的大小不变。
4. 旋转180度的图形,其对应边长度会改变。
5. 旋转和翻转是同一种图形变换。
二、选择题A. 平移B. 翻转C. 旋转D. 放大A. 大小B. 形状C. 方向D. 位置3. 下列哪个图形旋转90度后,能与原图形重合?A. 正方形B. 长方形C. 三角形D. 梯形三、填空题1. 一个图形绕着某点旋转了______度,这个点叫做______。
2. 旋转前后,图形的______和______不会发生改变。
3. 一个正方形绕着其对角线交点旋转______度后,能与原图形重合。
四、作图题1. 请将下列图形绕点O旋转90度,画出旋转后的图形。
(给出一个正方形和一个三角形)2. 请将下列图形绕点O旋转180度,画出旋转后的图形。
(给出一个长方形和一个圆形)五、应用题1. 小明在纸上画了一个箭头,他想知道将箭头绕着一个点旋转180度后,箭头的指向会发生什么变化。
请你帮助小明解答这个问题。
2. 老师在黑板上画了一个等边三角形,要求同学们将这个三角形绕着其中一个顶点旋转120度。
请你画出旋转后的图形,并与原图形进行比较。
六、连线题请将下列图形与其旋转后的图形进行连线:1. 图形A旋转90度后的图形是:A1 || A2 || A3 || A42. 图形B旋转180度后的图形是:B1 || B2 || B3 || B4七、简答题1. 描述一下旋转过程中,图形的哪些部分保持不变。
2. 旋转一个图形时,旋转中心和旋转角度分别对图形的旋转有什么影响?八、综合题1. 下列图形经过旋转后,请写出对应的旋转中心和旋转角度。
(给出四个不同图形的旋转前后的对比图)2. 有一个风车图案,每个叶片是一个等腰三角形。
如果风车旋转了360度,每个叶片会旋转多少度?请画出旋转后的风车图案。
旋转相关练习题
![旋转相关练习题](https://img.taocdn.com/s3/m/f8baa470f011f18583d049649b6648d7c1c7081a.png)
旋转相关练习题旋转是一种常见的运动方式,它在日常生活中存在于各个方面。
无论是体育运动、舞蹈表演还是工程设计,都可以发现旋转的身影。
今天我们就来做一些旋转相关的练习题,通过动手实践来掌握旋转的基本概念和运算方法。
一、简单旋转练习题1. 小明手持一只铅笔,以手腕为轴心做旋转动作,请描述他手腕所绕的轴线是什么形状?2. 以下哪个物体的旋转轴线属于直线?A.风车的转轴B.自行车的轮轴C.田径比赛中铅球的投掷轴线D.棋盘中心的旋转轴3. 时间过得真快,转眼间一年又过去了。
如果我们假设地球的自转轴为直线,则完成一次自转需要多长时间?二、旋转运算练习题1. 物体A绕着直线轴旋转,角速度为ω,物体B以与轴相同的角速度旋转。
若物体A的半径是物体B的2倍,则物体B与物体A的线速度比值为多少?2. 某车轮以角速度ω绕轴心旋转,车轮半径为R,请计算车轮一个完整的旋转周期所对应的线速度。
三、旋转转换练习题1. 小球A以角速度ω1绕轴旋转,半径为R1;小球B以角速度ω2绕轴旋转,半径为R2。
已知R2 = 2R1,若A和B同时开始旋转,则多久后A与B相对位置性质不再改变?2. 某体育馆内有一个固定的旋转平台,上面放置着数个相同质量、相同半径的小球。
当平台加速开始旋转时,小球A和小球B恰好位于平台边缘两侧,A在平台上,B在平台下。
在平台旋转至一定角度后,小球A和小球B的相对位置将会发生变化。
请问这是因为平台的何种旋转?四、思考题1. 物体在旋转过程中,角速度与半径之间存在着怎样的关系?2. 在旋转运动中,物体的哪些性质会发生改变?以上是关于旋转相关练习题的一些内容。
通过这些练习题,我们可以更好地理解旋转的概念和运算方法,提高我们解决旋转问题的能力。
希望这些练习能对你有所帮助!。
旋转的练习题五年级
![旋转的练习题五年级](https://img.taocdn.com/s3/m/19854040cd1755270722192e453610661ed95aee.png)
旋转的练习题五年级旋转是数学几何中的一个重要概念,它涉及到图形在平面上的转动、变形等问题。
在五年级的数学学习中,掌握旋转的基本知识和技巧是必不可少的。
本文将为你介绍一些旋转的练习题,帮助你巩固和提升旋转的理解和应用能力。
练习题一:旋转的基本概念1. 将图形A绕点O逆时针旋转90°,写出旋转后的图形。
2. 将图形B绕点O顺时针旋转180°,写出旋转后的图形。
3. 将图形C绕点O逆时针旋转270°,写出旋转后的图形。
练习题二:旋转的坐标变化1. 图形D的坐标为(2,3),绕原点逆时针旋转90°后,新坐标为______。
2. 图形E的坐标为(-4,5),绕原点顺时针旋转180°后,新坐标为______。
3. 图形F的坐标为(1,-2),绕原点逆时针旋转270°后,新坐标为______。
练习题三:旋转中的图形变化1. 旋转一个正方形,会得到怎样的图形?写出旋转后的图形。
2. 旋转一个长方形,会得到怎样的图形?写出旋转后的图形。
3. 旋转一个三角形,不论是等腰三角形还是直角三角形,会得到怎样的图形?写出旋转后的图形。
练习题四:旋转的性质和应用1. 旋转是否改变图形的大小?请解释你的答案。
2. 旋转是否改变图形的面积?请解释你的答案。
3. 举一个实际生活中旋转的例子,并解释其中的旋转原理。
这些练习题可以帮助你加深对旋转的理解和应用。
通过动手做题,你可以巩固旋转的基本概念,掌握旋转的坐标变化规律,理解旋转对图形的影响,以及思考旋转在实际生活中的应用。
在解答这些练习题时,你可以首先理解旋转的概念和基本规律,然后运用适当的数学方法和技巧,如坐标变换、图形对称性等,进行推导和计算。
最后,将结果逐步整理和展示,注意图形的形状、位置和变化规律,并对结果进行分析和总结。
通过不断练习和思考,相信你能够在旋转的知识和技巧上有所提升,并能够更好地应用于实际问题的解决中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.钟表 2 时 15 分,时针与分针的夹角为( A.30° B.45° C.22. 5°
)
旋转一定的角度,得到图 b, (1)中的结论还成立吗?作出判断 并说明理由. 6、在△ABC 中,∠ACB=90° ,AC=BC,直线 MN 经过点 C, 且 AD⊥MN 于 D,BE⊥MN 于 E, (1)图 1,写出 DE、AD、 BE 具有的数量关系,说明理由; (2)图 2,写出 DE、AD、BE 具有的数量关系,说明理由; (3)图 3,问 DE、AD、BE 具有 怎样的数量关系,说明理由;
11、如图,△ABC 中,点 O 是边 AC 上一个动点,过 O 作直线 MN∥BC,设 MN 交∠BCA 的平分线于点 E,交∠BCA 的外角 平分线于点 F. (1)探究:线段 OE 与 OF 的数量关系并加以证 明; (2) 当点 O 在边 AC 上运动时, 四边形 BCFE 会是菱形吗? 若是,请证明;若不是,则说明理由; (3)当点 O 运动到何处, 且△ABC 满足什么条件时,四边形 AECF 是正方形?
D.15°
、如图,把正方形 ABCD 的对角线 AC 分成 n 段,以每段为对 角线作正方形,设这 n 个小正方形的周长和为 P,正方形 ABCD 的周长为 L,则 P 与 L 的关系是( A.P>L B.P<L C.P=L ) D.P 与 L 无关
A B
7、如图,将直角△ABC 沿 BC 方向平移得直角△DEF,其中 AB=8,BE=10,DM=4,求阴影部分的面积. 12、 于 E,AD=8,AB=4,求 S△BED.
E
C
D C
将矩形 ABCD 沿直线 BD 折叠,使点 C 落在 C处,BC交 AD
2、如图 10,△ABC 的∠BAC=120°,以 BC 为边向形外作等边△
13、如图,已知▱ABCD,AC 与 BD 相交于点 E,AF∥BD,FD ∥AC. (1)证明:四边形 AEDF 是平行四边形; (2)当▱ABCD 是菱形时,试判定▱AEDF 是怎样,并证明你结论; (3)▱AEDF 可能是正方形吗?如果可能,指出此时▱ABCD 是怎样,并证明 8、在边长为 2 的菱形 ABCD 中,∠DAB=60°,点 E 为 AB 中点, 点 F 是 AC 上一动点,求 EF+BF 的最小值. 9、已知,BD 是△ABC 的角平分线,AE⊥BD 交 BC 于 E,交 BD 于 F,∠FAG=∠FAD,连接 EG、ED.求证:四边形 AGED 是菱形. 你结论;如果不可能,请说明理由
BCD,把△ABD 绕点 D 按顺时针方向旋转 60°后到△ECD 的位
置.若 AB=3,AC=2,求∠BAD 的度数和 AD 的长. 3、 如图,△ABC 是面积为 36 的等边三角形,将△ABC 沿 直线 BC 向右平移, B 点与 C 点重合, 使 得到△DCE, 连接 BD, 交 AC 于 F. (1)猜想 AC 与 BD 的位置关系,并证明你的结论; (2)求△BCF 的面积 4、如图,已知 P 是等边△ABC 内的一点,连接 AP、BP,将△ ABP 旋转后能与△CBP′重合,根据图形回答: (1)旋转中心是 哪一点?(2)旋转角是几度?(3)连接 PP′后,△BPP′是什么 三角形?(4)连接 cp,若∠BPA=150°,判断△P′PC 的形状 (5)在(4)的前提下,连接 CP,证明 CP =AP +BP
2 2 2
A D GF B E C
10、 如图, △ABC 中, ∠ACB=90° D 为 AB 中点, , 四边形 BCED 为平行四边形,DE、AC 相交于点 F.求证: (1)点 F 为 AC 中 点; (2)试确定四边形 ADCE 的形状,并说明理由; (3)若四 5、如图 a,△ABC 和△CEF 是两个大小不等的等边三角形,且 有一个公共顶点 C,连接 AF 和 BE(1)线段 AF 和 BE 有怎样 的大小关系?请证明你的结论; (2)将图 a 中的△CEF 绕点 C 边形 ADCE 为正方形,△ABC 应添加什么条件?并证明你的结 论
1. 如图①所示,已知 A、B 为直线 l 上两点,点 C 为直线 l 上方一动点, 连接 AC、 BC, 分别以 AC、 为边向△ABC BC 外作正方形 CADF 和正方形 CBEG,过点 D 作 DD1⊥l 于 点 D1,过点 E 作 EE1⊥l 于点 E1.
(2)当 t 为何值时,四边形 PQCD 为等腰梯形? 4. 如图,点 E 是正方形 ABCD 的对角线 AC 上一点,CF⊥ BE,垂足为 F,交 BD 与点 G,四边形 ABGE 是等腰梯形 吗?为什么? 5. 如图(1) ,以梯形 OABC 的顶点 O 为原点,底边 OA 所在 的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别 为:A(14,0) ,B(11,4) ,C(3,4) ,点 E 以每秒 2 个单位的速度从 O 点出发沿射线 OA 向 A 点运动, 同时点 F 以每秒 3 个单位的速度,从 O 点出发沿折线 OCB 向 B 运动,设运动时间为 t. 说明理由.
(1)如图②,当点 E 恰好在直线 l 上时(此时 E1 与 E 重 合) ,试说明 DD1=AB; (2)在图①中,当 D、E 两点都在直线 l 的上方时,试探 求三条线段 DD1、 1、 之间的数量关系, EE AB 并说明理由; (3)如图③,当点 E 在直线 l 的下方时,请直接写出三条 线段 DD1、EE1、AB 之间的数量关系. (不需要证明) 2. 在梯形 ABCD 中,∠B=90° ,AB=14cm,AD=18cm, BC=21cm,点 P 从点 A 开始沿 AD 边向点 D 以 1cm/s 的 速度移动,点 Q 从点 C 开始沿 CB 向点 B 以 2cm/s 的速 度移动,如果点 P、Q 分别从两点同时出发,当其中某一 点到达端点时,另一点也随之停止运动. (1)t 为何值时,梯形 PBQD 是平行四边形? ( 2 ) t 为 何 值 时 , 梯 形 PBQD 是 等 腰 梯 形 ?
(1) t=4 秒时, 当 判断四边形 COEB 是什么样的四边形? (2)当 t 为何值时,四边形 COEF 是直角梯形? (3)在运动过程中,四边形 COEF 能否成为一个菱形? 若能, 请求出 t 的值; 若不能, 请简要说明理由, 并改变 E、 F 两点中任一个点的运动速度,使 E、F 运动到某时刻时, 四边形 COEF 是菱形,并写出改变后的速度及 t 的值
(*) 四 , 边形 ABCD 是正方形, E 是边 BC 的中点, 点 ∠AEF=90° , 且 EF 交正方形外角平分线 CF 于点 F.探究 1:AE=EF 探究 2: 如图 2, 若把条件“点 E 是边 BC 的中点”改为“点 E 是边 BC 上的任意一点”,其余条件不变,AE=EF 仍然成 立,证明这一结论. (3)探究 3:如图 3,若把条件“点 E 是边 BC 的中点”改 为“点 E 是边 BC 延长线上的一点”,其余条件仍不变,那
3. 45. 如图所示, 梯形 ABCD 中, AD∥BC, ∠B=90° AB=14 , 厘米,AD=18 厘米,BC=21 厘米,动点 P 从 A 开始沿 AD 边向点 D 以 1 厘米/秒的速度移动,动点 Q 从点 C 开始沿 CB 边向点 B 以 2 厘米/秒的速度移动,如果 P,Q 分别从 A,C 同时出发,设移动的时间为 t 秒, (1)当 t 为何值时,四边形 ABQP 为矩形?
么结论 AE=EF 是否成立呢?若成立请证明,若不成立请
。