平度市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载

平度市高中2018-2019学年高二上学期第一次月考试卷数学

平度市高中2018-2019学年高二上学期第一次月考试卷数学

平度市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣2. 函数y=的图象大致为( )A .B .C .D .3. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣44. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.5. 等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A .B .C .D .6. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q7. 已知集合 M={x||x|≤2,x ∈R},N={﹣1,0,2,3},则M ∩N=( )A .{﹣1,0,2}B .{﹣1,0,1,2}C .{﹣1,0,2,3}D .{0,1,2,3}8. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2C .﹣D .9. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β10.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人11.在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .12.“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.二、填空题13.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .14.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .15.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .16.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .17.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .18.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .三、解答题19.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x(1)当x<0时,求f(x)的解析式.(2)作出函数f(x)的图象,并指出其单调区间.20.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.(Ⅰ)p的值;(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.21.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.22.已知函数f(x)=log a(1﹣x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为﹣4,求a的值.23.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.24.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.平度市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B2.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.3.【答案】A【解析】解:∵点P(1,3)在α终边上,∴tanα=3,∴====﹣.故选:A.4.【答案】B5.【答案】C【解析】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.6.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.7.【答案】A【解析】解:由M中不等式解得:﹣2≤x≤2,即M=[﹣2,2],∵N={﹣1,0,2,3},∴M∩N={﹣1,0,2},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).9.【答案】D【解析】解:对于A,α∥β,l⊂α,n⊂β,l,n平行或异面,所以错误;对于B,α∥β,l⊂α,l 与β可能相交可能平行,所以错误;对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.故选D.10.【答案】A【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,则这样的样本容量是n==20.故选A.【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键.11.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.12.【答案】A【解析】二、填空题13.【答案】2.【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.14.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C 8r x 8﹣2r 令8﹣2r=0得r=4 则其常数项为C 84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.15.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.16.【答案】 .【解析】解:由题意△ABE 的面积是平行四边形ABCD 的一半, 由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.17.【答案】 4 .【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1 所以f (1)+f ′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).18.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18三、解答题19.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.20.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.21.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.22.【答案】【解析】解:(1)要使函数有意义:则有,解得﹣3<x<1,所以函数f(x)的定义域为(﹣3,1).(2)f(x)=log a(1﹣x)+log a(x+3)=log a(1﹣x)(x+3)==,∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,∵0<a<1,∴≥log a4,即f(x)min=log a4;由log a4=﹣4,得a﹣4=4,∴a==.【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力.23.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …24.【答案】【解析】解(Ⅰ)由点P的坐标和三角函数的定义可得:于是f(θ)===2(Ⅱ)作出平面区域Ω(即△ABC)如图所示,其中A(1,0),B(1,1),C(0,1).因为P∈Ω,所以0≤θ≤,∴f(θ)==,且,故当,即时,f(θ)取得最大值2;当,即θ=0时,f(θ)取得最小值1.【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.。

平度市高级中学2018-2019学年上学期高二数学12月月考试题含解析

平度市高级中学2018-2019学年上学期高二数学12月月考试题含解析

平度市高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对2. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能3. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -4. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=5. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=6. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .7. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 8. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样9. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .1110.已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦11.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)12.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=二、填空题13.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.14.设函数f (x )=,则f (f (﹣2))的值为 .15.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为cm 3.17.(文科)与直线10x -=垂直的直线的倾斜角为___________.18.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为.三、解答题19.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.20.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.21.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.22.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.平度市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 2. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面. 故选D【点评】本题主要考查在空间内两条直线的位置关系.3. 【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 4. 【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确. 故选:C .5. 【答案】C【解析】解:对于A ,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意. 故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.6. 【答案】D【解析】解:∵f (x+2)=﹣f (x ), ∴f (x+4)=﹣f (x+2)=f (x ), 即f (x+4)=f (x ), 即函数的周期是4.∴a 2017=f (2017)=f (504×4+1)=f (1), ∵f (x )为偶函数,当﹣2≤x ≤0时,f (x )=2x , ∴f (1)=f (﹣1)=, ∴a 2017=f (1)=, 故选:D .【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.7. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性.8. 【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样, ②将总体分成均衡的若干部分指的是将总体分段, 在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样, ③个体有了明显了差异,所以选用分层抽样法,分层抽样, 故选A .9. 【答案】A【解析】解:设点P 到双曲线的右焦点的距离是x ,∵双曲线上一点P 到左焦点的距离为5,∴|x ﹣5|=2×4 ∵x >0,∴x=13 故选A .10.【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .11.【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.12.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log 3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线, 故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.二、填空题13.【答案】()0,1【解析】14.【答案】﹣4.【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.15.【答案】x﹣y﹣2=0.【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,故答案为x﹣y﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.16.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A ﹣BB 1D 1D 的体积为V==6.故答案为:6.17.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.18.【答案】 D .【解析】解:根据题意,质点运动的轨迹为: A →B →C →A →D →B →A →C →D →A接着是→B →C →A →D →B →A →C →D →A … 周期为9.∵质点经过2015次运动, 2015=223×9+8, ∴质点到达点D . 故答案为:D .【点评】本题考查了函数的周期性,本题难度不大,属于基础题.三、解答题19.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F 1(﹣c ,0),F 2(c ,0),椭圆的离心率为,即有=,即a=c ,b==c ,以原点为圆心,椭圆的短半轴长为半径的圆方程为x 2+y 2=b 2,直线y=x+与圆相切,则有=1=b ,即有a=,则椭圆C 的方程为+y 2=1;(Ⅱ)证明:设Q (x 1,y 1),R (x 2,y 2),F 1(﹣1,0), 由∠RF 1F 2=∠PF 1Q ,可得直线QF 1和RF 1关于x 轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.20.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.21.【答案】【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.22.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.23.【答案】【解析】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S△ABC==1.24.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC中,根据勾股定理得:AC1=2,1则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C中,根据勾股定理得:A′C2=2,2则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.。

平度市第一高级中学2018-2019学年高二上学期第二次月考试卷数学

平度市第一高级中学2018-2019学年高二上学期第二次月考试卷数学

平度市第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-< 2. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( ) A .48B .±48C .96D .±963. 已知ω>0,0<φ<π,直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A .B .C .D .4. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 115. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.6. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列7. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥18. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)9. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .10.若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .211.已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣612.若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .二、填空题13.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.15.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)16.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .17.已知x 、y 之间的一组数据如下:x 0 1 2 3y 8 2 6 4则线性回归方程所表示的直线必经过点.18.若不等式组表示的平面区域是一个锐角三角形,则k的取值范围是.三、解答题19.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.20.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).21.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .22.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.23.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无关,试求点M 的坐标.24.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.平度市第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】D 2. 【答案】B【解析】解:∵在等比数列{a n }中,a 1=3,公比q=2, ∴a 2=3×2=6,=384,∴a2和a 8的等比中项为=±48.故选:B .3. 【答案】A【解析】解:因为直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin (+φ)与sin (+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A .【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.4. 【答案】C【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C5. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.6. 【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用7.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.8.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.9.【答案】B【解析】解:若,则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,化为a2+c2﹣b2=﹣ac,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.10.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.11.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.12.【答案】A【解析】解:∵z=2﹣i ,∴====,∴=10•=4+2i ,故选:A .【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.二、填空题13.【答案】2,21+. 【解析】∵22212112221012a a a a a a +=+⋅+=++=,∴122a a +=,而222123121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,∴12321a a a ++≤,当且仅当12a a +与3a 1.14.【答案】120【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 15.【答案】 ①③⑤【解析】解:建立直角坐标系如图:则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,1).∵集合M={x|x=且i ,j ∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.16.【答案】6.【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.17.【答案】(,5).【解析】解:∵,=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.18.【答案】(﹣1,0).【解析】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,将直线AC绕A点旋转,可得当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,当点C位于C1、C2之间时,△ABC是锐角三角形,而点C在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k<0即k的取值范围是(﹣1,0)故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.三、解答题19.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.20.【答案】【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.21.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.22.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.24.【答案】【解析】解:(1)作出散点图如下:…(3分)(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)=54,x i y i=52.5∴b==0.7,a=3.5﹣0.7×3.5=1.05,∴所求线性回归方程为:y=0.7x+1.05…(10分)(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).∴加工10个零件大约需要8.05个小时…(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.。

山东省青岛平度2018-2019学年度第一学期第二学段模块检测高二数学试题

山东省青岛平度2018-2019学年度第一学期第二学段模块检测高二数学试题

2018-2019学年度第一学期第二学段模块检测高二数学试题第Ⅰ卷(选择题共60分)一选择题1、椭圆221y x +=的右顶点的坐标为A .(1,0) B.(-1,0) C .(√2,0) D.(2,0)2 某路口信号灯有红、绿两种信号,红灯时长60秒,绿灯时长30秒,则经过该路口遇到绿灯的概率为A .34 B.23 C 12. D.133、某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆy=8x+ˆb ,则ˆb 为A .5 B.10 C. 12 D.204.已知ζ服从正态分布N (1,4),P (0≤ζ≤1)=0.3,则P (ζ≥2)=A .0.6 B. 0.3 C. 0.2 D. 0.15已知动点M 和两个不同的定点A ,B ,p :“| |MA|-|MB| |=2a(常数a >0)”,q :“M 点的轨迹是以A 、B 为焦点的双曲线”,则P 是q 的A .充分不必要条件 B.必要不充分条件C. 充要条件D.既非充分也非必要条件6.在长方体ABCD-A1B1C1D1中,AB=BC=1,直线AB1与平面ABCD 所成角等于π/4,则直线AB1与直线A1D 所成角为A .π/6 B. π/4 C. π/3 D. 2π/37.掷一枚筛子,在出现点数大于3的条件下点数为偶数的概率为A .3/4 B. 2/3 C. 1/2 D. 1/38. 在平面直角坐标系中,已知定点A (0,-√2),B (0,,2),直线PA 与PB 的斜率之积为-2,则动点P 的轨迹方程为A .2212y x -= B. 221(0)2x y x +=≠ C.2212y x += D. 221(0)2y x x +=≠ 9. 如图,圆锥的底面直径AB=2,母线长VA=3,点C 在母线VB 上,且VC=1,有一只蚂蚁沿圆锥的侧面从A 到达点C ,则这只蚂蚁爬行的最短距离是A .√13 B.√7 D.10.若点A 在圆C1:221x y +=上,点B 在圆C2:224x y +=,则|AB|的最大值为A .3B.2C. √3D.111.若n的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是 A .-270B.270C. -90D.90 12. 若双曲线C 22221(0,0)x y a b a b+=〉〉的左、右焦点分别为F1、F2,抛物线D :22(0)x py p =>的焦点为F ,点P 时双曲线C 与抛物线D 的一个公共点,且线段PF2的中点恰为F ,则双曲线C 的离心率为A B.√2 C. √3 D.√5二、填空题13.已知命题p :“∃x ∈(0,+∞), 1xx >”,若命题p 的否定为命题q ,则q 的真假性为 14.某企业要种植100株特色树木,若该树木每株的成活率为0.8,则这100株树木成活数量的数学期望为15. 抛物线D : 28x y =的焦点到双曲线C :221x y -=的渐近线的距离为16.甲、乙两名高一同学分别独立的从物理、化学、生物、政治、历史、地理6门学科中选3门参加将来的高考,已知甲不能选物理,乙不能选政治,则甲、乙各自所选3门学科中恰有2门相同的情况共有种。

平度市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

平度市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

平度市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知,则f{f[f (﹣2)]}的值为( )A .0B .2C .4D .82. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .483. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内4. 已知a 为常数,则使得成立的一个充分而不必要条件是()A .a >0B .a <0C .a >eD .a <e5. 设x ∈R ,则x >2的一个必要不充分条件是()A .x >1B .x <1C .x >3D .x <36. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( )A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)7. 函数的零点所在区间为()A .(3,4)B .(2,3)C .(1,2)D .(0,1)8. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=()A .2B .4C .8D .169. 设,为正实数,,,则=()a b 11a b+≤23()4()a b ab -=log a b A.B. C.D.或01-11-0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.10.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为()[]90,100A .20,2B .24,4C .25,2D .25,411.已知为自然对数的底数,若对任意的,总存在唯一的,使得e 1[,1]x e∈[1,1]y ∈-2ln 1yx x a y e -++=成立,则实数的取值范围是( )a A.B.C.D.1[,]e e2(,]e e2(,)e +∞21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.12.函数y=的图象大致是()A .B .C .D .二、填空题13.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 14.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线上xC y e :=一点,直线经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.20l x y c :++=15.已知,,则的值为 .1sin cos 3αα+=(0,)απ∈sin cos 7sin 12ααπ-16.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P 17.下列命题:①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;R ()f x (0)0f =③既不是奇函数又不是偶函数;2()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1:||f x x →A B f ⑤在定义域上是减函数.1()f x x=其中真命题的序号是.18.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-26121a a a =∙12n n S -⎧⎫⎨⎬⎩⎭的最大值为_________.三、解答题19.(本小题满分14分)设函数,(其中,).2()1cos f x ax bx x =++-0,2x π⎡⎤∈⎢⎥⎣⎦a b R ∈(1)若,,求的单调区间;0a =12b =-()f x (2)若,讨论函数在上零点的个数.0b =()f x 0,2π⎡⎤⎢⎥⎣⎦【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.20.(本小题满分10分)已知函数.()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.()|4|f x x ≤-[1,2]21.(本小题满分10分)选修4­4:坐标系与参数方程.在直角坐标系中,曲线C 1:(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐{x =1+3cos αy =2+3sin α)标系,C 2的极坐标方程为ρ=.2sin (θ+π4)(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面3π4积.22.已知f (x )=log 3(1+x )﹣log 3(1﹣x ).(1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.23.(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都C 022=++++F Ey Dx y x 2C 043=+y x y 相切.(1)求;F E D 、、(2)若直线与圆交于两点,求.022=+-y x C B A 、||AB 24.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X 表示体重超过60kg 的学生人数,求X 的数学期望与方差.平度市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.2.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.3.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 4.【答案】C【解析】解:由积分运算法则,得=lnx=lne﹣ln1=1因此,不等式即即a>1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a>e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.5.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.6.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C7.【答案】B【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,∵f(2)=log32﹣1<0,f(3)=log33﹣>0,∴函数f(x)的零点一定在区间(2,3),故选:B.【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.8. 【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去),即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D . 9. 【答案】B.【解析】,故2323()4()()44()a b ab a b ab ab -=⇒+=+11a b a b ab++≤⇒≤,而事实上,2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤12ab ab +≥=∴,∴,故选B.1ab =log 1a b =-10.【答案】C 【解析】考点:茎叶图,频率分布直方图.11.【答案】B【解析】12.【答案】C【解析】解:∵f(﹣x)==﹣f(x),∴函数y=的图象关于原点对称,故排除B,当x→+∞时,y→0,且为正值,故排除A、D,故选C.【点评】本题考查了函数的图象的判断,常利用排除法.二、填空题13.【答案】 ①②④ .【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.14.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。

平度市实验中学2018-2019学年上学期高二数学12月月考试题含解析

平度市实验中学2018-2019学年上学期高二数学12月月考试题含解析

平度市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个2. 设为虚数单位,则( )A .B .C .D .3. 若,则1sin()34πα-=cos(2)3πα+= A 、 B 、 C 、 D 、78-14-14784. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q5. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数6. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()A .3B .4C .5D .67. 已知向量||=, •=10,|+|=5,则||=()A.B.C.5D.258.已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)9.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为()A.1B.C.2D.410.已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A.B.C.2015D.11.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为()A.(﹣,﹣2]B.[﹣1,0]C.(﹣∞,﹣2]D.(﹣,+∞)12.已知函数f(x)=log2(x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8B.5C.9D.27二、填空题13.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a= .14.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I ,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 15.三角形中,,则三角形的面积为 .ABC 2,60AB BC C ==∠=ABC 16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.18.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .三、解答题19.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cos θ的值. 20.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.21.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.22.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值. 23.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点,(Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.24.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点为圆上一点,为圆的切线,为圆的直径,.C O CP CE 3CP =(1)若交圆于点,,求的长;PE O F 165EF =CE (2)若连接并延长交圆于两点,于,求的长.OP O ,A B CD OP ⊥D CD平度市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A ∩B={1,3},则集合S 的子集有22=4个,故选:C .【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础. 2. 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C 3. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-4. 【答案】D【解析】解:p :根据指数函数的性质可知,对任意x ∈R ,总有3x >0成立,即p 为真命题,q :“x >2”是“x >4”的必要不充分条件,即q 为假命题,则p ∧¬q 为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础 5. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数.故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 6. 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n <i ,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.7.【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C.8.【答案】C【解析】解:已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,故选C【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.9.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.10.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S n=…+=,==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.11.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.12.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log2(x2+1)=2,得x2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.二、填空题13.【答案】 .【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.14.【答案】 ①②⑤ 【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾;假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾;故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力. 15.【答案】【解析】试题分析:因为中,,,又ABC ∆2,60AB BC C ===︒2sin A=1sin 2A =,即,所以,∴,,.BC AB <A C <30C =︒90B =︒AB BC ⊥12ABCS AB BC ∆=⨯⨯=考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正ab 2b 2a 弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式,,,等等.1sin 2ab C 12ah 1()2a bc r ++4abc R16.【答案】 ①④ .【解析】解:由所给的正方体知,△PAC 在该正方体上下面上的射影是①,△PAC 在该正方体左右面上的射影是④,△PAC 在该正方体前后面上的射影是④故答案为:①④ 17.【答案】22,3⎛⎫- ⎪⎝⎭【解析】18.【答案】 2n﹣1 .【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,三、解答题19.【答案】【解析】解:(1)=;∴=;∴;(2)同理可求得;;∴=.【点评】考查向量数量积的运算及其计算公式,根据求的方法,以及向量夹角余弦的计算公式.20.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C2中,根据勾股定理得:A′C2=2,则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.21.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.22.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】23.【答案】【解析】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B (k 2,k 22﹣1)…∴S 1=|MA||MB|=•|k 1||k 2|…y=k 1x ﹣1与椭圆方程联立,可得D (),同理可得E () …∴S 2=|MD||ME|=•• …∴若则解得或∴直线AB 的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键. 24.【答案】(1);(2).4CE =CD =【解析】试题分析:(1)由切线的性质可知∽,由相似三角形性质知,可得;ECP ∆EFC ∆::EF CE CE EP =4CE =(2)由切割线定理可得,求出,再由,求出的值. 12(4)CP BP BP =+,BP OP CD OP OC CP ⋅=⋅CD 试题解析:(1)因为是圆的切线,是圆的直径,所以,,所以∽,CP O CE O CP CE ⊥090CFE ∠=ECP ∆EFC ∆设,,又因为∽,所以,CE x =EP =ECP ∆EFC ∆::EF CE CE EP =所以,解得.2x =4x =考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.。

2025届山东省青岛市平度一中数学高二上期末教学质量检测模拟试题含解析

2025届山东省青岛市平度一中数学高二上期末教学质量检测模拟试题含解析
概率是( )
11
5
A.
B.
36
12
25
C.
36
7
D.
12
9.在四棱锥 P ABCD 中,底面 ABCD 为平行四边形, E 为边 BC 的中点, Fn n N* 为边 CD 上的一列点,连
接 BFn ,交 AC 于 Gn ,且 PA PGn an1 GnB 22an 1GnE ,其中数列an 的首项 a1 0 ,则()
A. an1 2an 1
B.an 1为等比数列
C. Gn A 2n GnC
D. F2D CF2
10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到
与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列 1,3,6,10,
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款 1200 元.他们第 1 天只得到 10 元,之后采取了积极措施,从第 2 天起,每一天收到的捐款都比前一天多 10 元.这次募捐活动一共进行的天数为()
a
a2
3
故选:B.
3、A
【解析】求得抛物线的焦点从而求得 a ,再结合题意求得 b ,即可写出椭圆方程.
【详解】因为抛物线 y2 8x 的焦点坐标为 2, 0 ,故可得 a 2 ;
又短轴长为 2,故可得 2b 2 ,即 b 1;
故椭圆方程为: x2 y2 1. 4
故选: A .
4、D
【解析】根据双曲线定义写出 PF1 PF2 2a ,两边平方代入焦点三角形的余弦定理中即可求解

平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析

平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析

平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 2. 若几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .π3. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 4. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð5. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .136. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 7. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形8. 某几何体的三视图如图所示,则它的表面积为( )A .B .C .D .9. 数列1,,,,,,,,,,…的前100项的和等于( )A .B .C .D .10.下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.11.已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.12.若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .15.已知函数,则__________;的最小值为__________.16.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= . 17.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.18.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .三、解答题19..已知定义域为R 的函数f (x )=是奇函数.(1)求a 的值;(2)判断f (x )在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.20.(本小题满分12分)已知函数131)(23+-=ax x x h ,设x a x h x f ln 2)(')(-=, 222ln )(a x x g +=,其中0>x ,R a ∈.(1)若函数)(x f 在区间),2(+∞上单调递增,求实数的取值范围;(2)记)()()(x g x f x F +=,求证:21)(≥x F .21.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.22.已知集合P={x|2x 2﹣3x+1≤0},Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}. (1)若a=1,求P ∩Q ;(2)若x ∈P 是x ∈Q 的充分条件,求实数a 的取值范围.23.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.24.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.2.【答案】B【解析】解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,底面圆的半径为1,高为2,所以该几何体的体积为V几何体=×π•12×2=.故选:B.【点评】本题考查了利用空间几何体的三视图求几何体体积的应用问题,是基础题目.3.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集. 4. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 5. 【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.6. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 7. 【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA , ∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0, ∴A=C 即为等腰三角形. 故选:D .【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.8. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.9. 【答案】A 【解析】解:=1×故选A .10.【答案】C 【解析】考点:几何体的结构特征. 11.【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.12.【答案】A【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .二、填空题13.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.14.【答案】38.【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=2×3+4×8=6+32=32,故答案为:3815.【答案】【解析】【知识点】分段函数,抽象函数与复合函数 【试题解析】当时,当时,故的最小值为故答案为:16.【答案】 3 .【解析】解:∵抛物线y 2=4x=2px ,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4, ∴x=3, 故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.17.【答案】1231n -- 【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 18.【答案】345【解析】考点:点关于直线对称;直线的点斜式方程.三、解答题19.【答案】【解析】解:(1)因为f (x )为R 上的奇函数所以f (0)=0即=0,∴a=1 …(2)f (x )==﹣1+,在(﹣∞,+∞)上单调递减…(3)f (t 2﹣2t )+f (2t 2﹣k )<0⇔f (t 2﹣2t )<﹣f (2t 2﹣k )=f (﹣2t 2+k ),又f (x )=在(﹣∞,+∞)上单调递减,∴t 2﹣2t >﹣2t 2+k ,即3t 2﹣2t ﹣k >0恒成立,∴△=4+12k <0,∴k <﹣.…(利用分离参数也可).20.【答案】(1)]34,( .(2)证明见解析. 【解析】试题解析:解:(1)函数131)(23+-=ax x x h ,ax x x h 2)('2-=,1111] 所以函数x a ax x x a x h x f ln 22ln 2)(')(2--=-=,∵函数)(x f 在区间),2(+∞上单调递增,∴0222ln 2)(')('2≥--=-=x a ax x x a x h x f 在区间),2(+∞上恒成立,所以12+≤x x a 在),2(+∞∈x 上恒成立.令1)(2+=x x x M ,则2222)1(2)1()1(2)('++=+-+=x xx x x x x x M ,当),2(+∞∈x 时,0)('>x M , ∴34)2(1)(2=>+=M x x x M ,∴实数的取值范围为]34,(-∞. (2)]2ln )ln ([22ln ln 22)(222222xx a x x a a x x a ax x x F +++-=++--=, 令2ln )ln ()(222x x a x x a a P +++-=,则111]4)ln (4)ln ()2ln (2ln )2ln ()2ln ()(2222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=.令x x x Q ln )(-=,则x x x x Q 111)('-=-=,显然)(x Q 在区间)1,0(上单调递减,在区间),1[+∞上单调递增,则1)1()(min ==Q x Q ,则41)(≥a P ,故21412)(=⨯≥x F .考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数()x F ,通过观察()x F 的解析式的形式,能够想到解析式里可能存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于41即可,从而对新函数求导判单调性求出最值证得成立.21.【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭,所以221222256323264y y y =++≥=, 当且仅当2222256y y =即22y =16,24y =?时等号成立. 圆的直径OS=因为21y ≥64,所以当21y =64即1y =±8时,min OS =S 的坐标为168±(,). 22.【答案】【解析】解:(1)当a=1时,Q={x|(x ﹣1)(x ﹣2)≤0}={x|1≤x ≤2}则P ∩Q={1}(2)∵a ≤a+1,∴Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}={x|a ≤x ≤a+1} ∵x ∈P 是x ∈Q 的充分条件,∴P ⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型.23.【答案】【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是减函数.(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.又f(0)=0,故函数f(x)的解析式为f(x)=.24.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.。

平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析参考

平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析参考

平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 2. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称3. 如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±xB .y=±3xC .y=±xD .y=±x4. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .5. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对6. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .7. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x .则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.8. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点9. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .10.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .11.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)12.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(二、填空题13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .14.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.15.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .16.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .17.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧 面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.18.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .三、解答题19.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.20.若已知,求sinx 的值.21.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.22.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .23.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y =cx 2+d 作为蔬菜农药残量与用水量的回归方程,求其解析式;(c ,a 精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)24.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.平度市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】试题分析:()2222==+=+,故向上平移个单位.log2log2log1logg x x x x考点:图象平移.2.【答案】A【解析】解:方程x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0),∴方程x2+2ax+y2=0(a≠0)表示的圆关于x轴对称,故选:A.【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.3.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x,即有渐近线方程为y=x.故选D.【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.4.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.5.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.6.【答案】B【解析】解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A、C错.故选:B.7.【答案】D第Ⅱ卷(共100分)[.Com]8.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.9.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.10.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.11.【答案】B【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,∴f(π)=f(6﹣π),f(5)=f(1),∵f(6﹣π)<f(2)<f(1),∴f(π)<f(2)<f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.12.【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a a ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.二、填空题13.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.14.【答案】①②⑤【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.15.【答案】【解析】解:对于①,把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cosα=cosβ=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos(2x+π)的一条对称轴,故③正确.对于④,函数y=4sin(2x+)=4cos[﹣(2x+)]=4cos(﹣2)=4cos(2x﹣),故函数y=4sin(2x+)与函数y=4cos(2x﹣)相同,故④正确.对于⑤,在上,2x﹣∈,函数y=2sin(2x﹣)在上没有单调性,故⑤错误,故答案为:①③④.16.【答案】(﹣,).【解析】解:∵,,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.17.【答案】⎣⎦【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.18.【答案】0.6.【解析】解:随机变量ξ服从正态分布N (2,σ2), ∴曲线关于x=2对称,∴P (ξ>0)=P (ξ<4)=1﹣P (ξ>4)=0.6, 故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.三、解答题19.【答案】【解析】解:(1)∵直线l 的参数方程为(t 为参数),∴直线l 的普通方程为.∵曲线C 的极坐标方程是ρ=4,∴ρ2=16, ∴曲线C 的直角坐标系方程为x 2+y 2=16.(2)⊙C 的圆心C (0,0)到直线l : +y ﹣4=0的距离:d==2,∴cos ,∵0,∴,∴.20.【答案】【解析】解:∵,∴<<2π,∴sin ()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin ()cos﹣cos ()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.21.【答案】(1){}11x x x ><-或;(2)(,2]-∞-. 【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论. 22.【答案】【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列. ∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2,解得q=2.(2)由(1)可得:a n =2n ﹣1.b n =lna 3n+1=ln23n =3nln2.∴数列{b n }的前n 项和T n =3ln2×(1+2+…+n )=ln2.23.【答案】 【解析】解:(1)根据散点图可知,x 与y 是负相关. (2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=-811374≈-2.17, a ^=y -c ^ω=38-(-2.17)×11=61.87.∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87, 又ωi =x 2i ,∴y 关于x 的回归方程为y =-2.17x 2+61.87. (3)当y =0时,x =61.872.17=6187217≈5.3.估计最多用5.3千克水. 24.【答案】【解析】解:(1)∵EP 与⊙O 相切于点A ,∴∠ACB=∠PAB=25°, 又BC 是⊙O 的直径,∴∠ABC=65°,∵四边形ABCD 内接于⊙O ,∴∠ABC+∠D=180°, ∴∠D=115°.证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB ,∠D=∠PBA ,∴△ADC ∽△PBA ,∴, 又DA=BA ,∴DA 2=DC •BP .。

山东省青岛市平度云山镇云山中学2018-2019学年高二数学理上学期期末试题含解析

山东省青岛市平度云山镇云山中学2018-2019学年高二数学理上学期期末试题含解析

山东省青岛市平度云山镇云山中学2018-2019学年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图是无上底的几何体的三视图,其中正视图和侧视图是全等的图形,外边界是矩形,它的底边长为4,宽为3,俯视图是半径为2的圆,求该几何体的表面积和体积.参考答案:考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图由两部分组成,上面是一个圆柱里面挖取一个倒立的圆锥,下面是一个圆柱.利用表面积与体积计算公式即可得出.解答:解:由三视图由两部分组成,上面是一个圆柱里面挖取一个倒立的圆锥,下面是一个圆柱.其表面积S=π×22+2π×2×3+=;体积V==.点评:本题考查了圆锥与圆柱的表面积与体积计算公式,属于基础题.2. 下列条件中,能判断两个平面平行的是( )A.一个平面内的一条直线平行于另一个平面;B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面参考答案:D3. 已知变量满足则的最小值是()A. 2B. 3C. 4D. 5参考答案:A4. 某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶参考答案:C略5. 圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A.π B.2π C.π D.π参考答案:D上底半径r=1,下底半径R=2.∵S侧=6π,设母线长为l,则π(1+2)·l=6π,∴l =2,∴高h==,∴V=π·(1+1×2+2×2)=π.故选D.6. 过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是()A.28 B.22 C.14 D.12参考答案:A7. 已知直线与圆交于不同的两点,,是坐标原点,,则实数的取值范围是()A. B.C. D.参考答案:B略8. 已知△ABC的内角A,B,C对的边分别为a,b,c,且,则cos C 的最小值等于()A.B.C.D.参考答案:A已知等式,利用正弦定理化简可得:,两边平方可得:,即,,即,,当且仅当时,即时取等号,则的最小值为,故选A.9. 设l是空间一条直线,α和β是两个不同的平面,则下列结论正确的是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若α⊥β,l⊥α,则l∥βD.若l∥α,l⊥β,则α⊥β参考答案:D【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,l与β相交、平行或l?β;在C中,l 与β相交、平行或l?β;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由l是空间一条直线,α和β是两个不同的平面,知:在A中:若l∥α,l∥β,则α与β相交或平行,故A错误;在B中:若α⊥β,l∥α,则l与β相交、平行或l?β,故B错误;在C中:若α⊥β,l⊥α,则l与β相交、平行或l?β,故C错误;在D中:若l∥α,l⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.10. 已知等差数列的前13的和为39,则a6+a7+a8=()A.6 B.12 C.18 D.9参考答案:D【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由求和公式和性质可得a7的值,而所求等于3a7,代入计算可得.【解答】解:由题意可得等差数列的前13的和S13===39解之可得a7=3,又a6+a8=2a7故a6+a7+a8=3a7=9故选D【点评】本题考查等差数列的性质和求和公式,划归为a7是解决问题的关键,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 如果椭圆的一个焦点坐标为,且长轴长是短轴长的倍,则此椭圆的标准方程为_____参考答案:【分析】由椭圆的焦点坐标分析可得该椭圆的焦点在x轴上,且,再根据长轴长是短轴长的倍可得,通过即可解可得、的值,最后将其代入椭圆的标准方程即可得答案。

平度市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

平度市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

平度市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=2. 已知函数f (x )=,则的值为( )A.B.C .﹣2D .33. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .D .4. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .15. 正方体的内切球与外接球的半径之比为( ) A.B.C.D.6. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 7. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)8. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +9. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 10.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米11.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.12.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.二、填空题13.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 15.已知tan()3αβ+=,tan()24πα+=,那么tan β= . 16.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则 OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.17.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .18.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.三、解答题19.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.20.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.21.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.22.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.23.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .24.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.平度市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .2. 【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .3. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

平度市高级中学2018-2019学年高二上学期第二次月考试卷数学

平度市高级中学2018-2019学年高二上学期第二次月考试卷数学

平度市高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知集合,则A0或 B0或3C1或D1或32. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则( )A .x=﹣B .x=C .x=﹣D .x=3. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 4. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .5. 设a=lge ,b=(lge )2,c=lg,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a6. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.7.已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.28.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若向量=(3,m),=(2,﹣1),∥,则实数m的值为()A.﹣B.C.2 D.610.∃x∈R,x2﹣2x+3>0的否定是()A.不存在x∈R,使∃x2﹣2x+3≥0 B.∃x∈R,x2﹣2x+3≤0C.∀x∈R,x2﹣2x+3≤0 D.∀x∈R,x2﹣2x+3>011.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .312.已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)二、填空题13.已知函数,则__________;的最小值为__________.14.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .15.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.16.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .17.-23311+log 6-log 42()= . 18.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .三、解答题19.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值; (Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.20.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.21.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++23.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,EA ED EF ===.(1)求证:AD BE ⊥;(2)若BE -F BCD的体积.24.某运动员射击一次所得环数X的分布如下:(I)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望Eξ.平度市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B 【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。

平度市第一中学校2018-2019学年高二上学期第二次月考试卷数学

平度市第一中学校2018-2019学年高二上学期第二次月考试卷数学

平度市第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q2. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.3. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣24. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+15. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=6. 已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( ) A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭ B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭ C 、16t t ⎧⎫>-⎨⎬⎩⎭ D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭7. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个8. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥09. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

平度市高中2018-2019学年上学期高二数学12月月考试题含解析

平度市高中2018-2019学年上学期高二数学12月月考试题含解析

平度市高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合( )A .B .C .D .2. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .33. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.4. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定5. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >6. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]7. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关8. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 9. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .25010.若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <011.函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .12.已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .2二、填空题13.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .14.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .15.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 . 16.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .17.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.18.已知x 是400和1600的等差中项,则x= .三、解答题19.已知奇函数f (x )=(c ∈R ).(Ⅰ)求c 的值;(Ⅱ)当x ∈[2,+∞)时,求f (x )的最小值.20.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.21.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.22.设集合{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=.(1)若{}2A B =,求实数的值;(2)A B A =,求实数的取值范围.1111]23.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.24.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.平度市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:集合A 中的不等式,当x >0时,解得:x >;当x <0时,解得:x <,集合B 中的解集为x >,则A ∩B=(,+∞). 故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2. 【答案】B【解析】解:∵指数函数的反函数是对数函数, ∴函数y=3x 的反函数为y=f (x )=log 3x , 所以f (9)=log 33=1. 故选:B .【点评】本题给出f (x )是函数y=3x (x ∈R )的反函数,求f (3)的值,着重考查了反函数的定义及其性质,属于基础题.3. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.4. 【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.5. 【答案】B【解析】解:当a=0时,f (x )=﹣2x+2,符合题意当a ≠0时,要使函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.6.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.7.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.8.【答案】D【解析】考点:命题的真假.9.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.10.【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b≥0,故选:A.【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.11.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.12.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.二、填空题13.【答案】50π.【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.14.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.15.【答案】2016.【解析】解:∵f (x )=f (2﹣x ),∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ). ∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ), 即函数f (x )是周期为2的周期函数,∵方程f (x )=0在[0,1]内只有一个根x=,∴由对称性得,f ()=f ()=0,∴函数f (x )在一个周期[0,2]上有2个零点, 即函数f (x )在每两个整数之间都有一个零点, ∴f (x )=0在区间[0,2016]内根的个数为2016, 故答案为:2016.16.【答案】 ②③ .【解析】解:①∵sin αcos α=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx 是偶函数,故②正确,③当时,=cos (2×+)=cos π=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sin α=sin β,即sin α<sin β不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.17.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.18.【答案】 1000 .【解析】解:∵x 是400和1600的等差中项,∴x==1000.故答案为:1000.三、解答题19.【答案】【解析】解:(Ⅰ)∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴=﹣=,比较系数得:c=﹣c,∴c=0,∴f(x)==x+;(Ⅱ)∵f(x)=x+,∴f′(x)=1﹣,当x∈[2,+∞)时,1﹣>0,∴函数f(x)在[2,+∞)上单调递增,∴f(x)min=f(2)=.【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题.20.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.…21.【答案】(1)22143x y+=;(2)点R在定直线1x=-上.【解析】试题解析:(1)由12e =,∴2214e a =,∴2234a b =7=,解得2,a b ==,所以椭圆C 的方程为22143x y +=.设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得1121221212011224424()41()814x x x x x x x x x x x x x x x λλ++⋅-+++===+-++++又2212122226412322424()24343434k k x x x x k k k---++=⨯+⨯=+++,212223224()883434k x x k k -++=+=++,从而121201224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系. 22.【答案】(1)1a =或5a =-;(2)3a >. 【解析】(2){}{}1,2,1,2A A B == .①()()22,2150B x a x a =∅+-+-=无实根,0∆<, 解得3a >;② B 中只含有一个元素,()()222150x a x a +-+-=仅有一个实根,{}{}0,3,2,2,1,2a B A B ∆===-=-故舍去;③B 中只含有两个元素,使 ()()222150x a x a +-+-= 两个实根为和,需要满足()2212121=a 5a ⎧+=--⎪⎨⨯-⎪⎩方程组无根,故舍去, 综上所述3a >]考点:集合的运算及其应用. 23.【答案】【解析】解:(1)由m+>0,(x ﹣1)(mx ﹣1)>0,∵m >0,∴(x ﹣1)(x ﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.24.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.。

平度市一中2018-2019学年上学期高二数学12月月考试题含解析

平度市一中2018-2019学年上学期高二数学12月月考试题含解析

平度市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .23. 若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x则)1(f 的值为( ) A .8 B .81 C .2 D .214. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 5. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种6. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 7. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )DABCOA .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.8. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A.B.C.D. =0.08x+1.239. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.10.在ABC ∆中,b =3c =,30B =,则等于( )AB. CD .2 11.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12112.二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.二、填空题13.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .14.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等. 15.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e e xxf x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.17.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.18.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.三、解答题19.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.20.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.21.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.22.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.23.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.24.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).平度市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .2. 【答案】C【解析】 因为角、、依次成等差数列,所以由余弦定理知,即,解得所以, 故选C答案:C3. 【答案】B 【解析】试题分析:()()311328f f -===,故选B 。

平度市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

平度市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
平度市第一高级中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 已知函数 f(x)=x(1+a|x|).设关于 x 的不等式 f(x+a)<f(x)的解集为 A,若 实数 a 的取值范围是( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ A. C. B. D. ) ) ,则
6. 某中学有高中生 3500 人,初中生 1500 人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取 一个容量为 n 的样本,已知从高中生中抽取 70 人,则 n 为( A.100 B.150 C.200 D.250 7. 设双曲线 A. B.2 C. =1(a>0,b>0)的渐近线方程为 y= D. ) x,则该双曲线的离心率为( )
2. 设偶函数 f(x)在[0,+∞)单调递增,则使得 f(x)>f(2x﹣1)成立的 x 的取值范围是( A.( ,1) B.(﹣∞, )∪(1,+∞) C.(﹣ , ) D.(﹣∞,﹣ )∪( ,+∞) )
3. 已知条件 p:|x+1|≤2,条件 q:x≤a,且 p 是 q 的充分不必要条件,则 a 的取值范围是( A.a≥1 B.a≤1 C.a≥﹣1 D.a≤﹣3 4. 正方体的内切球与外接球的半径之比为( A. B. C. D. ) C.坐标原点对称 D.直线 y=x 对称 ) 5. 函数 f(x)= ﹣x 的图象关于( A.y 轴对称 B.直线 y=﹣x 对称 )

平度市民族中学2018-2019学年上学期高二数学12月月考试题含解析

平度市民族中学2018-2019学年上学期高二数学12月月考试题含解析

第 7 页,共 16 页
精选高中模拟试卷
当 1+m<0 且 1﹣m>0 时,有解:m<﹣1; 当 1+m<0 且 1﹣m<0 时,无解; 故选:C. 【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题. 5. 【答案】C 【解析】解:A、函数 f(x)的定义域为 R,函数 g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数; B、函数 f(x)的定义域为 R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数; C、因为 综上可得,C 项正确. 故选:C. 6. 【答案】B 【解析】解:∵函数 y=ax﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a>1,a0﹣b﹣1<0, 即 a>1,b>0, 故选:B 7. 【答案】D 【解析】解:双曲线: 的 a=1,b=2,c= = ,故两函数相同; D、函数 f(x)的定义域为{x|x≥1},函数 g(x)的定义域为{x|x≤1 或 x≥1},定义域不同,故不是相同函数.
,M 为 BC 的中点
第 6 页,共 16 页
精选高中模拟试卷
平度市民族中学 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案) 一、选择题
1. 【答案】D 【解析】解:设 F2 为椭圆的右焦点 由题意可得:圆与椭圆交于 P,并且直线 PF1(F1 为椭圆的左焦点)是该圆的切线, 所以点 P 是切点,所以 PF2=c 并且 PF1⊥PF2. 又因为 F1F2=2c,所以∠PF1F2=30°,所以 根据椭圆的定义可得|PF1|+|PF2|=2a, 所以|PF2|=2a﹣c. 所以 2a﹣c= 故选 D. 【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义. 2. 【答案】D 【解析】 试题分析:由已知 f ( x) 2sin( x ,所以 e= . .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平度市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)2.已知向量||=,•=10,|+|=5,则||=()A.B.C.5D.253.已知向量=(1,),=(,x)共线,则实数x的值为()A.1B.C.tan35°D.tan35°4.已知,其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.35.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不能被5整除D.a,b有1个不能被5整除6.阅读下面的程序框图,则输出的S=()A.14B.20C.30D.557. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .38. 底面为矩形的四棱锥P ­ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P ­ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π9. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数10.设是虚数单位,则复数在复平面内所对应的点位于( )i 21ii-A .第一象限 B .第二象限 C .第三象限D .第四象限11.把“二进制”数101101(2)化为“八进制”数是()A .40(8)B .45(8)C .50(8)D .55(8)12.已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1(3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=内没有零点.下列命题为真命题的是( ))4,3(A .B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(二、填空题13.数列{a n }是等差数列,a 4=7,S 7= .14.函数f (x )=x ﹣的值域是 .15.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是.三、解答题19.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.20.设函数f(x)=ax2+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.21.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()AB C D22.(本小题满分12分)已知点,直线与圆()()(),0,0,4,4A a B b a b >>AB 相交于两点, 且,求.22:4430M x y x y +--+=,C D 2CD =(1)的值;()()44a b --A (2)线段中点的轨迹方程;AB P (3)的面积的最小值.ADP ∆23.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m. 平度市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B2.【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C.3.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.4.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.5.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.6.【答案】C【解析】解:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故答案为C.【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.7.【答案】D【解析】解:设等差数列{a n}的公差为d,则S4=4a1+d=﹣2,S5=5a1+d=0,联立解得,∴S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.8. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b ,则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =S 矩形ABCD ·PO13=abR ≤R 3.1323∴R 3=18,则R =3,23∴球O 的表面积为S =4πR 2=36π,选A.9. 【答案】C【解析】解:∵对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1,∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1],∴f (x )+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答. 10.【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B 【答案】B11.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D .12.【答案】A 【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以p 2π=∠APB AB ()()11322=-++y x ,解得,因此,命题是真命题.命题:函数,,121+≤≤-n n 31≤≤n p ()xxx f 3log 4-=()0log 1443<-=f ,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是()0log 34333>-=f ()x f []4,3()x f ()4,3假命题.因此只有为真命题.故选A .)(q p ⌝∧考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆P 2π=∠APB AB P 上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数1)1(3(22=-++y x P 是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.x x x f 3log 4)(-=二、填空题13.【答案】49【解析】解:==7a 4=49.故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解. 14.【答案】 (﹣∞,1] .【解析】解:设=t ,则t ≥0,f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣,开口向下,在区间[0,+∞)上单调减,∴f (t )max =f (0)=1,∴函数f (x )的值域为(﹣∞,1].故答案为:(﹣∞,1].【点评】本题主要考查函数的值域的求法.换元法是求函数的值域的一个重要方法,应熟练记忆.15.【答案】,.π【解析】∵,∴,又∵,∴的定义域为22tan ()tan 21tan x f x x x ==-2(tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩()f x ,,将的图象如下图画出,从而(,)(,)(,)244442kk k k k k ππππππππππππ-+-+-++++ k Z ∈()f x 可知其最小正周期为,故填:.ππ16.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题. 17.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2,f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式. 18.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.三、解答题19.【答案】【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),且f ′(x )=﹣=.当a ≤0时,f ′(x )>0,所以f (x )在区间(0,+∞)内单调递增;当a >0时,由f ′(x )>0,解得x >a ;由f ′(x )<0,解得0<x <a .所以f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上述:a ≤0时,f (x )的单调递增区间是(0,+∞);a >0时,f (x )的单调递减区间是(0,a ),单调递增区间是(a ,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a ≤0时,f (x )无最小值,不合题意;当a >0时,[f (x )]min =f (a )=1﹣a+lna=0,令g (x )=1﹣x+lnx (x >0),则g ′(x )=﹣1+=,由g ′(x )>0,解得0<x <1;由g ′(x )<0,解得x >1.所以g (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g (x )]max =g (1)=0,即当且仅当x=1时,g (x )=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.20.【答案】【解析】解:(1)∵f(x)为奇函数,∴f(﹣x)=﹣f(x),即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c,∴c=0.∵f′(x)=3ax2+b的最小值为﹣12,∴b=﹣12.又直线x﹣6y﹣7=0的斜率为,则f′(1)=3a+b=﹣6,得a=2,∴a=2,b=﹣12,c=0;(2)由(1)知f(x)=2x3﹣12x,∴f′(x)=6x2﹣12=6(x+)(x﹣),列表如下:x(﹣∞,﹣)﹣(﹣,)(,+∞)f′(x)+0﹣0+f (x ) 增 极大减 极小 增所以函数f (x )的单调增区间是(﹣∞,﹣)和(,+∞).∵f (﹣1)=10,f ()=﹣8,f (3)=18,∴f (x )在[﹣1,3]上的最大值是f (3)=18,最小值是f ()=﹣8.21.【答案】C【解析】22.【答案】(1);(2);(3).()()448a b --=()()()2222,2x y x y --=>>6【解析】试题分析:(1)利用,得圆心到直线的距离,再进行化简,即可求2CD =2d =2解的值;(2)设点的坐标为,则代入①,化简即可求得线段中点的轨()()44a b --A P (),x y 22a xb y ⎧=⎪⎪⎨⎪=⎪⎩AB P 迹方程;(3)将面积表示为,再利用基本()()()114482446224ADP b S a a ba b a b ∆==+-=+-=-+-+A 不等式,即可求得的面积的最小值.ADP ∆(3),()()()11448244666224ADP b S a a b a b a b∆==+-=+-=-+-+≥+=A 当时, 面积最小, 最小值为.∴4a b ==+6+考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为,再利用基本不等式是解答的一个难点,属于()()446ADP S a b ∆=-+-+中档试题.23.【答案】【解析】证明:(Ⅰ)由b n =,且a n+1=a n +,得,∴,下面用数学归纳法证明:0<b n <1.①由a 1=∈(0,1),知0<b 1<1,②假设0<b k <1,则,∵0<b k <1,∴,则0<b k+1<1.综上,当n ∈N *时,b n ∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n ≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.24.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想. 。

相关文档
最新文档