二中高三数学第一轮复习数列的综合应用教学案

合集下载

2025届高考数学一轮复习教案:数列-数列的综合应用

2025届高考数学一轮复习教案:数列-数列的综合应用

第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。

[精]高三第一轮复习全套课件3数列:数列的综合应用

[精]高三第一轮复习全套课件3数列:数列的综合应用
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)

高三数学一轮复习精品教案1:数列的综合应用教学设计

高三数学一轮复习精品教案1:数列的综合应用教学设计

6.5数列的综合应用考点一等差数列与等比数列的综合问题『典例』 (2011·江苏高考)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6 成公差为1的等差数列,则q 的最小值是________.『解析』 因为a 1,a 3,a 5,a 7成公比为q 的等比数列,又a 1=1,所以a 3=q ,a 5=q 2,a 7=q 3.因为a 2,a 4,a 6成公差为1的等差数列,所以a 4=a 2+1,a 6=a 2+2.法一: 因为1=a 1≤a 2≤…≤a 7,所以⎩⎪⎨⎪⎧1≤a 2≤a 3≤a 4,a 4≤a 5≤a 6,a 7≥a 6,即⎩⎪⎨⎪⎧a 2≤q ≤a 2+1,a 2+1≤q 2≤a 2+2,解得 33≤q ≤ 3,故q 的最小值为 33.q 3≥a 2+2,法二: a 6=a 2+2≥3,即a 6的最小值为3.又a 6≤a 7,所以a 7的最小值为3即q 3≥3,解得a ≥33.故q 的最小值为33.『答案』33『备课札记』『类题通法』解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解.『针对训练』在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列; (2)求{b n }的前n 项和S n 及{a n }的通项a n . 解:(1)证明:∵b n =log 2a n ,∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2.∵a 1>1,∴b 1=log 2a 1>0.∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1.∴S n =4n +nn -12×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).考点二等差数列与等比数列的实际应用『典例』 (2014·镇江模拟)一位幼儿园老师给班上k (k ≥3)个小朋友分糖果.她发现糖果盒中原有糖果数为a 0,就先从别处抓2块糖加入盒中,然后把盒内糖果的12分给第一个小朋友;再从别处抓2块糖加入盒中,然后把盒内糖果的13分给第二个小朋友;…,以后她总是在分给一个小朋友后,就从别处抓2块糖放入盒中,然后把盒内糖果的1n +1分给第n (n =1,2,3,…,k )个小朋友,分给第n 个小朋友后(未加入2块糖果前)盒内剩下的糖果数为a n .(1)当k =3,a 0=12时,分别求a 1,a 2,a 3;(2)请用a n -1表示a n ,并令b n =(n +1)a n ,求数列{}b n 的通项公式;(3)是否存在正整数k (k ≥3)和非负整数a 0,使得数列{}a n (n ≤k )成等差数列?如果存在,请求出所有的k 和a 0;如果不存在,请说明理由.解:(1)当k =3,a 0=12时,a 1=(a 0+2)-12(a 0+2)=7,a 2=(a 1+2)-13(a 1+2)=6,a 3=(a 2+2)-14(a 2+2)=6.(2)由题意知a n =(a n -1+2)-1n +1(a n -1+2)=n n +1(a n -1+2), 即(n +1)a n =n (a n -1+2)=na n -1+2n .因为b n =(n +1)a n ,所以b n -b n -1=2n , b n -1-b n -2=2n -2, … b 1-b 0=2. 累加得b n -b 0=2+2n n2=n (n +1).又b 0=a 0,所以b n =n (n +1)+a 0.(3)由b n =n (n +1)+a 0,得a n =n +a 0n +1.若存在正整数k (k ≥3)和非负整数a 0,使得数列{a n }(n ≤k )成等差数列,则a 1+a 3=2a 2, 即(1+a 02)+3+a 04=2(2+a 03),解得a 0=0,当a 0=0时,a n =n ,对任意正整数k (k ≥3),有{a n }(n ≤k )成等差数列.『备课札记』 『类题通法』解数列应用题的建模思路从实际出发,通过抽象概括建立数学模型,通过对模型的解析,再返回实际中去,其思路框图为:『针对训练』某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.则第n 年初M 的价值a n =________.『解析』当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列, a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项, 34为公比的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6. 『答案』a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7考点三数列与其他知识的综合应用数列在高考中多与函数、不等式、解析几何、向量交汇命题,近年由于对数列要求降低,但仍有一些省份在考查数列与其他知识的交汇.归纳起来常见的命题角度有: 1数列与不等式; 2数列与函数; 3数列与解析几何.角度一 数列与不等式1.(2014·苏州一调)设数列{a n }的前n 项和为S n ,已知a 1=a 2=1,b n =nS n +(n +2)a n ,数列{b n }是公差为d 的等差数列,n ∈N *. (1)求d 的值;(2)求数列{a n }的通项公式;(3)求证:(a 1a 2·…·a n )·(S 1S 2·…·S n )<22n +1n +1n +2.解:(1)因为a 1=a 2=1,所以b 1=S 1+3a 1=4,b 2=2S 2+4a 2=8,所以d =b 2-b 1=4. (2)因为数列{b n }是等差数列,所以b n =4n , 所以nS n +(n +2)a n =4n ,即S n +n +2n a n =4.① 当n ≥2时,S n -1+n +1n -1a n -1=4.②由①-②得(S n -S n -1)+n +2n a n -n +1n -1a n -1=0.所以a n +n +2n a n =n +1n -1a n -1,即a n a n -1=12·nn -1.则a 2a 1=12·21,a 3a 2=12·32,…,a n a n -1=12·nn -1. 以上各式两边分别相乘,得a n a 1=12n -1·n .因为a 1=1,所以a n =n2n -1.(3)证明:因为S n +n +2n a n=4,a n >0,S n >0,所以S n ·n +2n a n ≤S n +n +2n an 2=2.则0<a n S n ≤4·n n +2.所以(a 1a 2·…·a n )·(S 1S 2·…·S n )≤4n ·1×2n +1n +2.③因为n =1时,S n ≠n +2n a n ,所以③式等号取不到.则(a 1a 2·…·a n )·(S 1S 2·…·S n )<22n +1n +1n +2.『类题通法』数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.角度二 数列与函数2.(2013·苏州暑假调查)已知函数f (x )=(x -1)2,g (x )=10(x -1),数列{a n }满足a 1=2,(a n +1-a n )g (a n )+f (a n )=0,b n =910(n +2)(a n -1).(1)求证:数列{a n -1}是等比数列;(2)当n 取何值时,b n 取最大值?并求出最大值;(3)若t m b m <t m +1b m +1对任意m ∈N *恒成立,求实数t 的取值范围.解:(1)证明:因为(a n +1-a n )g (a n )+f (a n )=0,f (a n )=(a n -1)2,g (a n )=10(a n -1), 所以10(a n +1-a n )(a n -1)+(a n -1)2=0,整理得(a n -1)『10(a n +1-a n )+a n -1』=0, 所以a n =1 ①或10(a n +1-a n )+a n -1=0 ②.由①得数列{a n }是各项为1的常数列,而a 1=2,不合题意. 由②整理得10(a n +1-1)=9(a n -1),又a 1-1=1,所以{a n -1}是首项为1,公比为910的等比数列.(2)由(1)可知a n -1=(910)n -1,n ∈N *,所以b n =910(n +2)(a n -1)=(n +2)(910)n >0,所以b n +1b n=n +3910n +1n +2910n=910(1+1n +2). 当n =7时,b 8b 7=1,即b 7=b 8;当n <7时,b n +1b n >1,即b n +1>b n ;当n >7时,b n +1b n<1,即b n +1<b n .所以当n =7或8时,b n 取得最大值,最大值为b 8=b 7=98107.(3)由t m b m <t m +1b m +1得t m ⎣⎡⎦⎤1m +2-10t 9m +3<0.(*)由题意知,(*)式对任意m ∈N *恒成立.①当t =0时,(*)式显然不成立,因此t =0不合题意; ②当t <0时,由1m +2-10t 9m +3>0可知t m <0(m ∈N *),而当m 为偶数时,t m >0, 因此t <0不合题意;③当t >0时,由t m >0(m ∈N *)知,1m +2-10t 9m +3<0, 所以t >9m +310m +2(m ∈N *).令h (m )=9m +310m +2(m ∈N *).因为h (m +1)-h (m )=9m +410m +3-9m +310m +2=-910m +2m +3<0,所以h (1)>h (2)>h (3)>…>h (m -1)>h (m )…, 所以h (m )的最大值为h (1)=65.所以实数t 的取值范围是(65,+∞).角度三 数列与解析几何3.在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列;解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列. ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.① ∴T n -1=-12b n -1+1(n ≥2),②①②两式相减得b n =-12b n +12b n -1(n ≥2),∴32b n =12b n -1,∴b n =13b n -1.令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列.『备课札记』『课堂练通考点』1.(2014·无锡期末)已知等差数列{}a n 的公差为-2,且a 1,a 3,a 4成等比数列,则a 20=________.『解析』设{}a n 的首项为a ,则a ,a -4,a -6成等比数列,则(a -4)2=a (a -6),解得a =8.又公差d =-2,所以a 20=a +19d =8+19×(-2)=-30. 『答案』-302.(2013·泰州期末)通项公式为a n =an 2+n 的数列{}a n ,若满足a 1<a 2<a 3<a 4<a 5,且a n >a n +1对n ≥8恒成立,则实数a 的取值范围是________.『解析』因为a 1<a 2<a 3<a 4<a 5,即a +1<4a +2<9a +3<16a +4<25a +5,所以a >-19.因为a n >a n +1对n ≥8恒成立,即an 2+n >a (n +1)2+(n +1),所以a <-12n +1.因为2n +1≥17,所以-12n +1≥-117.要使得a <-12n +1对n ≥8恒成立,则a <-117.综上,-19<a <-117.『答案』(-19,-117)3.在等差数列{a n }中,a 1=2,a 3=6,若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________.『解析』由题意知等差数列{a n }的公差d =a 3-a 12=2,则a 4=8,a 5=10,设所加的数为x ,依题意有(8+x )2=(2+x )(10+x ),解得x =-11. 『答案』-114.(2013·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________. 『解析』设每天植树的棵数组成的数列为{a n }, 由题意可知它是等比数列,且首项为2,公比为2, 所以由题意可得21-2n1-2≥100,即2n ≥51,而25=32,26=64,n ∈N *,所以n ≥6. 『答案』65.已知数列{a n }的前n 项和为S n ,且S n =n 2,数列{b n }为等比数列,且首项b 1=1,b 4=8. (1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c n =ab n ,求数列{c n }的前n 项和T n ; 解:(1)∵数列{a n }的前n 项和为S n ,且S n =n 2, ∴当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1.当n =1时,a 1=S 1=1亦满足上式, 故a n =2n -1(n ∈N *).又数列{b n }为等比数列,设公比为q , ∵b 1=1,b 4=b 1q 3=8,∴q =2. ∴b n =2n -1(n ∈N *). (2)c n =ab n =2b n -1=2n -1.T n =c 1+c 2+c 3+…+c n =(21-1)+(22-1)+…+(2n -1) =(21+22+…+2n )-n =21-2n1-2-n .所以T n =2n +1-2-n .。

高考理科第一轮复习课件(5.5数列的综合应用)

高考理科第一轮复习课件(5.5数列的综合应用)

1.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数 列,则{an}的前n项和Sn=(
n 2 7n (A) 4 4 n 2 5n (B) 3 3
) (D)n 2+n
n 2 3n (C) 2 4
【解析】选A.设数列{an}的公差为d,则根据题意得
(2+2d)2=2·(2+5d),解得 d 1 或d=0(舍去),所以数列{an}
【变式备选】已知{an}是首项为19,公差为-2的等差数列,Sn
为{an}的前n项和. (1)求通项an及Sn. (2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn} 的通项公式及其前n项和Tn.
【解析】(1)因为{an}是首项为a1=19,公差d=-2的等差数
列,所以an=19-2(n-1)=-2n+21, Sn=-n2+20n. (2)由题意知bn-an=3n-1,所以bn=an+3n-1, 即bn=-2n+21+3n-1. Tn=Sn+(1+3+„+3n-1)
3n 2 11n 2 2 , n 2, 所以Sn 2 3n 11n 10, n 2, 2 2 4,
这个式子中n=2时两段函数值相等,
n 1,
故可以写为
Sn 3n 2 11n 10, n 2. 2 2
【互动探究】本例题(1)中将条件“S1,S2,S4成等比数列”改
第五节 数列的综合应用
数列的实际应用 (1)解答数列应用题的步骤. ①审题——仔细阅读材料,认真理解题意. ②建模——将已知条件翻译成数学(数列)语言,将实际问题转 化成数学问题,弄清该数列的结构和特征. ③求解——求出该问题的数学解. ④还原——将所求结果还原到原实际问题中.

高三数学第一轮复习教学设计

高三数学第一轮复习教学设计

高三数学第一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学第一轮复习,旨在帮助学生全面回顾和巩固高中数学课程内容,为高考做好充分的准备。

教学内容主要包括:函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率与统计等模块。

通过本轮复习,使学生能够熟练掌握各模块的基本概念、原理和方法,形成完整的知识体系,提高解题能力和数学思维能力。

2、教学对象本教学设计的教学对象为高三学生,他们已经完成了高中数学课程的学习,具有一定的数学基础和解决问题的能力。

但由于学生的个体差异,他们在知识掌握程度、学习方法和兴趣上存在一定差异。

因此,在教学过程中,需要关注每个学生的学习情况,因材施教,提高复习效果。

在教学过程中,教师将充分调动学生的积极性,引导他们主动参与课堂讨论和练习,培养良好的学习习惯和团队合作精神。

同时,针对学生的薄弱环节,进行有针对性的辅导和训练,提高他们的数学素养和应试能力。

二、教学目标1、知识与技能(1)熟练掌握高中数学各模块的基本概念、原理和方法,形成完整的知识体系。

(2)提高数学解题能力,特别是综合应用能力的提升,能够灵活运用所学知识解决实际问题。

(3)培养数学思维能力,包括逻辑推理、空间想象、数据分析等,提高学生的数学素养。

(4)掌握一定的数学研究方法,能够对数学问题进行深入探讨和拓展。

2、过程与方法(1)通过课堂讲解、讨论、练习等多种教学活动,让学生在复习过程中主动参与,提高学习积极性。

(2)采用问题驱动的教学方法,引导学生发现问题、分析问题、解决问题,培养学生的探究精神。

(3)运用案例教学,将数学知识与实际应用相结合,提高学生的应用意识。

(4)鼓励学生进行合作学习,发挥团队协作精神,共同解决问题,提高沟通与协作能力。

3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,使他们认识到数学在生活中的重要作用,增强学习数学的自信心。

(2)引导学生树立正确的价值观,将数学学习与个人发展、国家利益和社会进步相结合,激发学生的社会责任感。

高三数学一轮复习第33课时数列的综合应用学案

高三数学一轮复习第33课时数列的综合应用学案

高三数学一轮复习第33课时数列的综合应用学案例1 已知等差数列{a n}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{b n}的第2项、第3项、第4项.(1)求数列{a n}、{b n}的通项公式;(2)设数列{c n}对n∈N*,均有c1b1+c2b2+…+c nb n=a n+1成立,求c1+c2+…+c2 012.思考题1 已知等比数列{a n}的公比为q,前n项的和为S n,且S3,S9,S6成等差数列.(1)求q3;(2)求证:a2,a8,a5成等差数列.题型二数列与函数、不等式的综合应用例2已知函数f(x)=log k x(k为常数,k>0且k≠1),且数列{f(a n)}是首项为4,公差为2的等差数列.(1)求证:数列{a n}是等比数列;(2)若b n=a n·f(a n),当k=2时,求数列{b n}的前n项和S n;(3)若c n=a n lg a n,问是否存在实数k,使得{c n}中的每一项恒小于它后面的项?若存在,求出k的范围;若不存在,说明理由.思考题2 已知函数f(x)对任意实数p,q都满足f(p+q)=f(p)·f(q),且f(1)=13 .(1)当n∈N*时,求f(n)的表达式(2)设a n=nf(n)(n∈N*),S n是数列{a n}的前n项的和,求证:S n<34;(3)设b n=nf n+f n(n∈N*),数列{b n}的前n项和为T n,试比较1T1+1T2+1T3+…+1T n与6的大小.题型三数列与导数、解析几何的综合应用例3 已知在正项数列{a n}中,a1=2,点A n(a n,a n+1)在双曲线y2-x2=1上,数列{b n}中,点(b n,T n)在直线y=-12x+1上,其中T n是数列{b n}的前n项和.(1)求数列{a n}的通项公式; (2)求证:数列{b n}是等比数列;(3)若c n=a n·b n,求证:c n+1<c n.思考题3 已知函数f(x)=x2-4,设曲线y=f(x)在点(x n,f(x n))处的切线与x轴的交点为(x n+1,0)(n∈N*),其中x1为正实数.(1)用x n表示x n+1;(2)若x1=4,记a n=lg x n+2x n-2,证明数列{a n}成等比数列,并求数列{a n}的通项公式.题型四数列的实际应用例4 为了增强环保建设,提高社会效益和经济效益,郑州市计划用若干年更换10 000辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车40辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.(1)求经过n年,该市被更换的公交车总数S(n);(2)若该市计划用7年的时间完成全部更换,求a的最小值.思考题4 某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a亩,以后每年植树面积都比上一年增加50%,但从第六年开始,每年植树面积都比上一年减少a亩.(1)求该林场第6年植树的面积;(2)设前n(1≤n≤10且n∈N)年林场植树的总面积为S n亩,求S n的表达式.。

高三数学一轮复习教学案(数列)

高三数学一轮复习教学案(数列)

数列的通项(一)复习要求:1、熟练地掌握求数列通项公式的常见方法;2、掌握由递推公式()1n n a Aa f n +=+、()1n na f n a +=、1n n a pa q +=+或1()n n a pa f n +=+求数列的通项 基础练习:1、已知等差数列{}n a 的前n 项和为n S ,且510S 10,S =40=,则n a = 2、数列2,8,26,80,…的一个通项公式为3、已知数列{}n a 的前n 项和为21n S n =+,则n a =例题讲解:例1、已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 变式:数列{}n a 满足321=a ,n n a n na 11+=+,求n a例2、已知数列{}n a 中,111,21n n a a a +==+,求数列{}n a 的通项公式变式:数列{}n a 中,()111,232n n n a a a n -==+≥,求数列{}n a 的通项公式数列的通项作业(1)1、已知数列21,203,2005,20007,,则它的一个通项公式为2、数列{}n a 中,148,2a a ==,且满足:*2120()n n n a a a n N ++-+=∈,则n a =3.数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列,数列{}a n 的通项公式4.设{}n a 是首项为1的正项数列,且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==,它的通项公式是5.1)已知数列{}n a 中,32,211+==+n n a a a ,则数列{}n a 的通项 2)已知数列{}n a 中,()111,222nn n a a a n -==+≥,求数列{}n a 的通项公式7.1)已知数列{}n a 满足:{}n a 满足211=a ,nn a a n n ++=+211,求n a 2)在数列{}n a 中,1102-1n n a a a n ++=,=,求n a8.已知数列{}a n 31=a ,n n a n n a 23131+-=+,求n a9.在数列{}n a 中,12a =,1431n n a a n +=-+,*n N ∈。

高三数学一轮复习精品教案3:数列的综合应用教学设计

高三数学一轮复习精品教案3:数列的综合应用教学设计

6.5数列的综合应用考向一 数列概念的考查(2013·高考湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N(n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N(n ,3)=12n 2+12n ,正方形数 N(n ,4)=n 2, 五边形数 N(n ,5)=32n 2-12n ,六边形数 N(n ,6)=2n 2-n , ……可以推测N(n ,k )的表达式,由此计算N(10,24)=________.『方法分析』 题目条件:已知第n 个三角形N(n ,3),第n 个正方形数N(n ,4),第n 个五边形数N(n ,5),第n 个六边形数N(n ,6).解题目标:按k 的奇偶性:归纳总结N(n ,k ),并计算N(10,24). 关系探究:当偶数边形时,N(n ,k )的特征为( )n 2-( )n .『解题过程』 由N(n ,4)=n 2,N(n ,6)=2n 2-n ,…,可以推测:当k 为偶数时,N(n ,k )=⎝⎛⎭⎫k 2-1n 2-⎝⎛⎭⎫k 2-2n ,于是N(n ,24)=11n 2-10n ,故N(10,24)=11×102-10×10=1 000.『答案』 1 000『回归反思』 此题是教材内容的深化题,通过由特殊到一般的归纳,得出N(n ,k )的通项公式,代入n =10,k =24计算.考向二 等差、等比数列的综合考查(2012·高考陕西卷)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N *,S k +2,S k ,S k +1成等差数列.『方法分析』 题目条件:已知等比数列{a n }的a 5,a 3,a 4的关系. 解题目标:求公比q ,求证S k +2,S k ,S k +1的等差关系. 关系探究:(ⅰ)由等差中项建立q 的方程.(ⅱ)表示S k +2,S k 和S k +1,验证等差关系,即2S k =S k +2+S k +1.『解题过程』 (1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3. 由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去), 所以q =-2.(2)证法一:对任意k ∈N *,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1=2a k +1+a k +1·(-2)=0, 所以对任意k ∈N *,S k +2,S k ,S k +1成等差数列.证法二:对任意k ∈N *,2Sk =2a 1(1-q k )1-q, S k +2+S k +1=a 1(1-q k +2)1-q +a 1(1-q k +1)1-q =a 1(2-q k +2-q k +1)1-q ,2S k -(S k +2+S k +1)=2a 1(1-q k )1-q -a 1(2-q k +2-q k +1)1-q=a 11-q『2(1-q k )-(2-q k +2-q k +1)』 =a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N *,S k +2,S k ,S k +1成等差数列.『回归反思』 以q 为未知数,以等差数列为关系建立方程,求解时,注意对q 的取舍,证明等差数列时,法一转化为通项的计算.法二转化为求和公式的化简,但最终都转化为等差中项的判断.考向三 数列与不等式知识的综合(2013·高考江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n<564. 『方法分析』 题目条件:已知S n 关于n 的方程,b n 用a n 表示的通项公式,a n >0. 解题目标:(1)求S n 再求a n . (2)根据b n 求和T n ,并比较与564的大小. 关系探究:(1)把S n 的方程因式分解转化为S n =f (n )的形式,利用a n =S n -S n -1的关系求a n . (2)分析b n 的构成特点,裂项法求T n ,放缩法证明T n <564. 『解题过程』 (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得『S n -(n 2+n )』(S n +1)=0.由于数列{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上可知,数列{a n }的通项a n =2n . (2)证明:由于a n =2n ,b n =n +1(n +2)2a 2n ,则b n =n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2. T n =116⎣⎡1-132+122-142+132-152+…+1(n -1)2⎦⎤-1(n +1)2+1n 2-1(n +2)2 =116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564. 『回归反思』 (1)已知条件式等价变形(因式分解)是较隐含的方法,否则此题其它入手方法很麻烦,并注意a n >0,取舍S n .(2)b n =14×n +1n 2(n +2)2,类比{1n (n +2)}可以裂项相消,要注意配平系数116.(3)求和相消的规律是:负数隔两项向后找消掉(正数隔两项向前找消掉).考向四 数列与函数知识的综合(2013·高考安徽卷)设函数f n (x )=-1+x +x 222+x 332+…+x nn 2(x ∈R ,n ∈N *).证明:(1)对每个n ∈N *,存在唯一的x n ∈⎣⎡⎦⎤23,1,满足f n (x n )=0; (2)对任意p ∈N *,由(1)中x n 构成的数列{x n }满足0<x n -x n +p <1n.『方法分析』 题目条件:已知函数解析式f n (x ),x 是自变量,n ∈N *是系数. 解题目标:(1)证明:当x n ∈『23,1』时,f n (x n )=0.(2)由(1)中求得的x n ,证明0<x n -x n +p <1n.关系探究:(1)由x >0时,f ′n (x )>0⇒f n (x )增,同时f n (1)=0⇒f n (1)>0,f n (23)<0⇒零点唯一.(2)由f n (x )单增⇒{x n }递减⇒x n -x n +p >0,并计算x n -x n +p 放缩得x n -x n +p <1n .『解题过程』 (1)证明:对每个n ∈N *,当x >0时,f ′n (x )=1+x2+…+x n -1n>0,故f n (x )在(0,+∞)内单调递增.由于f 1(1)=0,当n ≥2时, f n (1)=122+132+…+1n2>0,故f n (1)≥0.又f n ⎝⎛⎭⎫23=-1+23+∑k =2n⎝⎛⎭⎫23kk 2≤-13+14∑k =2n⎝⎛⎭⎫23k=-13+14·⎝⎛⎭⎫232⎣⎡⎦⎤1-⎝⎛⎭⎫23n -11-23=-13·⎝⎛⎭⎫23n -1<0,所以存在唯一的x n ∈⎣⎡⎦⎤23,1,满足f n (x n )=0.(2)证明:当x >0时,f n +1(x )=f n (x )+x n +1(n +1)2>f n(x ),故f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)内单调递增,知x n +1<x n .故{x n }为单调递减数列, 从而对任意n ,p ∈N *,x n +p <x n .对任意p ∈N *,由于f n (x n )=-1+x n +x 2n 22+…+x n nn2=0,①f n +p (x n +p )=-1+x n +p +x 2n +p 22+…+x n n +p n 2+x n +1n +p (n +1)2+…+x n +p n +p(n +p )2=0,②①式减去②式并移项,利用0<x n +p <x n ≤1,得x n -x n +p =∑k =2nx k n +p -x kn k 2+∑n +p,k =n +1 x k n +p k 2≤∑n +p,k =n +1 x k n +pk 2≤∑n +p,k =n +1 1k 2<∑n +p,k =n +11k (k -1)=1n -1n +p <1n.因此,对任意p ∈N *,都有0<x n -x n +p <1n.1.(2013·高考江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.『解析』首先由已知条件求出{a n }的公比与首项,然后根据求和公式和通项公式将不等式的两边求出,用n 表示,得到关于n 的不等式,然后对不等式进行转化,求得n 的取值范围并进行估算和验证,从而得到n 的最大值.设{a n}的公比为q (q >0),则由已知可得⎩⎨⎧a 1q 4=12,12(q +q 2)=3,解得⎩⎪⎨⎪⎧a 1=132,q =2.于是a 1+a 2+…+a n =132(1-2n )1-2=132(2n -1),a 1a 2…a n =a n1q n (n -1)2=⎝⎛⎭⎫132n 2n (n -1)2.由a 1+a 2+…+a n >a 1a 2…a n 可得132(2n -1)>⎝⎛⎭⎫132n 2n (n -1)2,整理得2n -1>212n 2-112n +5. 由2n >212n 2-112n +5可得n >12n 2-112n +5,即n 2-13n +10<0,解得13-1292<n <13+1292,取n =12,可以验证当n =12时满足a 1+a 2+…+a n >a 1a 2…a n ,n ≥13时不满足a 1+a 2+…+a n >a 1a 2…a n ,故n 的最大值为12. 『答案』122.(2013·高考江苏卷)设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S n k =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 『解析』(1)由c =0,得b n =S nn =a +n -12d .又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝⎛⎭⎫a +d 22=a ⎝⎛⎭⎫a +32d ,化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a . 从而对于所有的k ,n ∈N *,有S n k =(nk )2a =n 2k 2a =n 2S k . (2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1, 即nS nn 2+c =b 1+(n -1)d 1,n ∈N *, 代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝⎛⎭⎫d 1-12d n 3+⎝⎛⎭⎫b 1-d 1-a +12d n 2+cd 1n =c (d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n=D .(*)在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,19A +5B +cd 1=0,21A +5B +cd 1=0,由第二个和第三个方程得A =0,cd 1=-5B ,代入第一个方程,得B =0,从而cd 1=0,即d 1-12d =0, b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0.。

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

高考数学专题复习 数列的综合应用教案 文 教案

高考数学专题复习 数列的综合应用教案 文 教案

福建省漳浦县道周中学2014年高考数学专题复习数列的综合应用教案文1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)分期付款模型:设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b =r1+r n 1+r n-1a.[难点正本疑点清源]1.用函数的观点理解等差数列、等比数列(1)对于等差数列,由a n=a1+(n-1)d=dn+(a1-d),当d≠0时,a n是关于n的一次函数,对应的点(n,a n)是位于直线上的若干个离散的点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减数列. 若等差数列的前n项和为S n,则S n=pn2+qn (p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列:a n=a1q n-1.可用指数函数的性质来理解.①当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;②当a1>0,0<q<1或a1<0,q>1时,等比数列{a n}是递减数列.③当q=1时,是一个常数列.④当q<0时,无法判断数列的单调性,它是一个摆动数列.2.解答数列综合问题的注意事项(1)要重视审题、精心联想、沟通联系;(2)将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.题型一等差数列与等比数列的综合应用例1在等比数列{a n} (n∈N*)中,a1>1,公比q>0,设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n ;(3)试比较a n与S n的大小.探究提高在解决等差数列和等比数列综合题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,如本例中就合理地应用了等差中项.已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1 (n≥2,q≠0).(1)设b n=a n+1-a n (n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,a n是a n+3与a n+6的等差中项. 题型二数列与函数的综合应用例2已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(2a n)=2n (n∈N*).(1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.探究提高本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查学生的逻辑分析能力.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x -1)的图象被f(x)的图象截得的弦长为417,数列{a n}满足a1=2,(a n+1-a n)g(a n)+f(a n)=0 (n∈N*).(1)求函数f(x)的解析式;(2)求数列{a n}的通项公式;(3)设b n=3f(a n)-g(a n+1),求数列{b n}的最值及相应的n.题型三 数列与不等式的综合应用例3 已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n .(1)求b 1,b 2,b 3,b 4; (2)求数列{b n }的通项公式;(3)设S n =a 1a 2+a 2a 3+…+a n a n +1,求实数a 为何值时,4aS n <b n .探究提高 由a n +b n =1得到a n 的表达式,然后利用裂项相消法求得S n ,将4aS n <b n 转化为(a -1)n2+(3a -6)n -8<0对任意n ∈N *恒成立.利用二次函数的性质进行分析,设f (x )=(a -1)x 2+3(a -2)x -8,对x 2的系数分a =1,a >1及a <1三种情况进行分类讨论,从而求得使不等式成立的a 的取值范围.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N *,(1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0032对一切n ∈N *成立,求最小正整数m .题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.从社会效益和经济效益出发,某旅游县区计划投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2010年投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业有促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(2010年为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg 2=0.301 0)15.用构造新数列的思想解题试题:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n.审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明. 规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分]将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n 2n ≥2.[6分](2)证明 ∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n=12-14n;[10分]当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.[12分]批阅笔记 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.(2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1. (3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.专题四 数列的综合应用(时间:60分钟) A 组 专项基础训练题组 一、选择题1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( ) A.15B.12C.-12D.-152.(2010·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A.6B.7C.8D.93.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1C.nn -1D.n +1n二、填空题4.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.5.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为_____________.6.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =________. 三、解答题7.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.8.某人有人民币1万元,若存入银行,年利率为6%;若购买某种股票,年分红利为24%,每年储蓄的利息和买股票所分的红利都存入银行.(1)问买股票多少年后,所得红利才能和原来的投资款相等?(2)经过多少年,买股票所得的红利与储蓄所拥有的人民币相等?(精确到整年) (参考数据:lg 2≈0.301 0,lg 3≈0.477 1,lg 1.06≈0.025 3)B 组 专项能力提升题组 一、选择题1.{a n }是等差数列,a 2=8,S 10=185,从{a n }中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{b n },则b n 等于 ( )A.3n +1+2 B.3n +1-2C.3n+2D.3n-22.已知数列{a n }的通项公式为a n =log 2n +1n +2 (n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n( )A.有最小值63B.有最大值63C.有最小值31D.有最大值313.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n -n -6|<1125的最小正整数n 是 ( )A.5B.6C.7D.8二、填空题4.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.5.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为__________.6.对正整数n ,若曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为____________. 三、解答题7.已知数列{a n }满足a 1=2,a n +1=a n -1n n +1.(1)求数列{a n }的通项公式;(2)设b n =na n ·2n,求数列{b n }的前n 项和S n .8.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1na n +3 (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t 36总成立?若存在,求出t ;若不存在,请说明理由. 答案题型分类·深度剖析例1 (1)证明 ∵b n =log 2a n ,∴b n +1-b n =log 2a n +1a n=log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q . (2)S n =9n -n 22 a n =25-n (n ∈N *)(3)解 显然a n =25-n>0, 当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n .变式训练1 (1)证明 由题设a n +1=(1+q )a n -qa n -1 (n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列.(2)a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1n , q =1(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.例2 解 (1)由已知得log 22a n -1log 22a n =2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0.∴a n =n -n 2+1.(2)∵a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1, 又∵a n <0,∴a n +1>a n , ∴{a n }是递增数列.变式训练2 (1)f (x )=(x -1)2(2)a n =⎝ ⎛⎭⎪⎫34n -1+1(3)解 b n =3(a n -1)2-4(a n +1-1),令b n =y ,u =⎝ ⎛⎭⎪⎫34n -1,则y =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u -122-14=3⎝ ⎛⎭⎪⎫u -122-34. ∵n ∈N *,∴u 的值分别为1,34,916,2764,…,经比较916距12最近,∴当n =3时,b n 有最小值是-189256,当n =1时,b n 有最大值是0. 例3 (1)b 1=34,b 2=45,b 3=56,b 4=67(2)b n =n +2n +3(3)解 a n =1-b n =1n +3,∴S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1n +3n +4=⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫1n +3-1n +4=14-1n +4=n 4n +4. ∴4aS n -b n =an n +4-n +2n +3=a -1n 2+3a -6n -8n +3n +4.由条件可知(a -1)n 2+(3a -6)n -8<0在[1,+∞)上恒成立即可满足条件. 设f (x )=(a -1)x 2+3(a -2)x -8, 则a =1时,f (x )=-3x -8<0,恒成立;a >1时,由二次函数的性质知不可能成立; a <1时,对称轴x =-32·a -2a -1=-32⎝ ⎛⎭⎪⎫1-1a -1<0.f (x )在[1,+∞)上为单调递减函数. f (1)=(a -1)+(3a -6)-8=4a -15<0.∴a <154,∴a <1时,4aS n <b n 恒成立.综上知,a ≤1时,4aS n <b n 恒成立.变式训练3 (1)a n =23n +13(2)-49(2n 2+3n ) (3)2 012例4 解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50, 则S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n , 有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 变式训练4 (1)a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1(2)解 设经过n 年,旅游业的总收入超过总投入,由此b n -a n >0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得5x 2-7x +2>0,解此不等式,得x <25,或x >1(舍去),即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. 答 至少经过5年,旅游业的总收入才能超过总投入. 课时规范训练 A 组1.A2.A3.A4.33 5.-10 6.97.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2, ∴a n =2n.(2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n). 设T n =1×2+2×22+…+n ·2n, ③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数,∴满足条件的n 的最小值为5. 8.解 设该人将1万元购买股票,x 年后所得的总红利为y 万元,则y =24%+24%(1+6%)+24%(1+6%)2+…+24%(1+6%)x -1=24%(1+1.06+1.062+…+1.06x -1)=4(1.06x-1).(1)由题意,得4(1.06x-1)=1, ∴1.06x=54.两边取常用对数,得x lg 1.06=lg 54=lg 5-lg 4=1-3lg 2.∴x =1-3lg 2lg 1.06≈1-3×0.301 00.025 3≈4.(2)由题意,得4(1.06x-1)=(1+6%)x,∴1.06x=43.解得x ≈5.答 (1)买股票4年后所得的红利才能和原来的投资款相等; (2)经过大约5年,买股票所得的红利与储蓄所拥有的人民币相等. B 组1.A2.A3.C4.2 0005.n 2-n +626.2n +1-27.(1)a n =n +1n,n ∈N * (2)S n =n ·2n +18.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *). (2)b n =1na n +3=12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =b 1+b 2+…+b n=12[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1] =12⎝ ⎛⎭⎪⎫1-1n +1=n2n +1. 假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12n +2-n2n +1 =12n +2n +1>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.。

数列综合应用教案

数列综合应用教案

数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。

教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。

检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。

二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。

三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。

等差数列的前n项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

高考数学一轮复习数列求和

高考数学一轮复习数列求和

解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.

高三数学一轮复习学案:数列的综合应用 学案

高三数学一轮复习学案:数列的综合应用 学案

数列的综合应用一、知识回顾1. 数列的概念,等差、等比数列的基本概念;2. 等差、等比数列的通项、前n 项和公式;3. 等差、等比数列的重要性质;4. 与数列知识相关的应用题;5. 数列与函数等相联系的综合问题。

二、基本训练1. 数列{}n a 中,12,a =12,2,n n na n a a n ++⎧=⎨⎩ 是奇是偶 ,则5a =。

2. 等差数列{}n a 中,12a =,公差不为零,且1311,,a a a 恰为某等比数列的前3项,那么该等比数列的公比等于。

3. n S 是等差数列{}n a 的前n 项和,0n a ≠,若2110,m mm a a a -+-+=2138m S -=,则m = 。

4. 设{}n a 是等比数列,{}n b 是等差数列,且10b =,数列{}n c 的前三项依次是1,1,2,且n n n c a b =+,则数列{}n c 的前10项和为。

5. 如果函数()f x 满足:对于任意的实数a b 、,都有()()()f a b f a f b +=,且(1)2f =,则(2)(5)(9)(14)(1274)(1)(3)(6)(10)(1225)f f f f f f f f f f +++++=。

三、例题分析例1设无穷等差数列{}n a 的前n 项和为n S .(1)若首项=1a 32 ,公差1=d ,求满足2)(2k k S S =的正整数k ;(2)求所有的无穷等差数列{}n a ,使得对于一切正整数k 都有2)(2k k S S=成立.例2 如图,64个正数排成8行8列方阵.符号(18,18,*)ij a i j i j N ≤≤≤≤∈、表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若1112a =,241a =,3214a =,(1)求{}ij a 的通项公式;(2)记第k 行各项和为k A ,求1A 的值及数列{}k A 的通项公式;(3)若1k A <,求k 的值。

高考数学一轮复习 第六章数列6.5数列的综合应用教学案 理

高考数学一轮复习 第六章数列6.5数列的综合应用教学案 理

6.5 数列的综合应用考纲要求1.能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列的有关知识解决相应的问题.2.了解等差数列与一次函数、等比数列与指数函数的关系.1.数列在实际生活中有着广泛的应用,其解题的基本步骤,可用图表示如下:2.数列应用问题的常见模型(1)等差模型:一般地,如果增加(或减少)的量是一个固定的具体量时,该模型是等差模型,增加(或减少)的量就是公差,其一般形式是:a n+1-a n=d(常数).(2)等比模型:一般地,如果增加(或减少)的量是一个固定的百分数时,该模型是等比模型,与变化前的量的比就是公比.(3)混合模型:在一个问题中,同时涉及到等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项(第2项起)与它的前一项(或前几项)间的递推关系式,那么我们可以用递推数列的知识求解问题.1.(2012北京高考)已知{a n}为等比数列,下面结论中正确的是( ).A.a1+a3≥2a2B.a21+a23≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a22.已知{a n},{b n}均为等差数列,且a2=8,a6=16,b2=4,b6=a6,则由{a n},{b n}的公共项组成的新数列{c n}的通项公式c n=( ).A.3n+4 B.6n+2C.6n+4 D.2n+23.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余的钢管为( ).A.9根B.10根C.19根D.21根4.在数列{a n}中,对任意自然数n∈N*恒有a1+a2+…+a n=2n-1,则a1+a22+a33+…+a n n=__________.5.一个蜂巢里有1只蜜蜂,第一天,它飞出去找回了2个伙伴;第二天3只蜜蜂飞出去,各自找回了2个伙伴,…,如果这个找伙伴的过程继续下去,第五天所有蜜蜂都归巢后,蜂巢中一共有__________只蜜蜂.一、等差、等比数列的综合问题【例1】已知等差数列{a n}的前四项的和A4=60,第二项与第四项的和为34,等比数列{b n}的前四项的和B4=120,第二项与第四项的和为90.(1)求数列{a n},{b n}的通项公式;(2)设c n=a n·b n,且{c n}的前n项和为S n,求S n.方法提炼1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式,前n 项和公式以及等差中项、等比中项问题是历年命题的热点.2.利用等比数列前n 项和公式时注意公比q 的取值,同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的难度,解题时有时还需利用条件联立方程组求解.请做演练巩固提升1二、数列在实际问题中的应用【例2】有一种零存整取的储蓄项目,在每月某日存入一笔相同金额,这是零存;到期可以提出全部本金和利息,这是整取.它的本利和公式如下:本利和=每期存入的金额×[存期+12×存期×(存期+1)×利率].(1)试解释这个本利和公式;(2)若每月初存入100元,月利率为5.1%,到第12个月底的本利和是多少? (3)若每月初存入一笔金额,月利率是5.1%,希望到第12个月底取得本利和2 000元,那么每月初应存入多少?方法提炼1.解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,使关系明朗化、标准化.然后用等差、等比数列知识求解.这其中体现了把实际问题数学化的能力,也就是所谓的数学建模能力.2.等比数列中处理分期付款问题的注意事项 (1)准确计算出在贷款全部付清时,各期所付款额及利息(注:最后一次付款没有利息). (2)明确各期所付的数额连同到最后一次付款时所生的利息之和,等于商品售价及从购买到最后一次付款时的利息之和.只有掌握了这一点,才可顺利建立等量关系.特别强调:银行储蓄单利公式及复利公式分别是:单利公式——设本金为a 元,每期利率为r ,存期为n ,则本利和a n =a (1+rn ),属于等差模型.复利公式——设本金为a 元,每期利率为r ,存期为n ,则本利和a n =a (1+r )n,属于等比模型.请做演练巩固提升3三、数列与解析几何、不等式的综合应用【例3】已知函数f (x )在(-1,1)上有定义,f ⎝ ⎛⎭⎪⎫12=-1,且满足x ,y ∈(-1,1)时,f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy .(1)证明f (x )在(-1,1)上为奇函数;(2)设数列{x n }中,x 1=12,x n +1=2x n1+x 2n,求用n 表示f (x n )的表达式;(3)求证:当n ∈N *时,1f x 1+1f x 2+…+1f x n >-2n +5n +2恒成立.方法提炼数列、函数、解析几何、不等式是高考的重点内容,将三者综合在一起,强强联合命制大型综合题是历年高考的热点和重点.数列是特殊的函数,以数列为背景的不等式证明问题及以函数为背景的数列综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,从而一直成为高考命题者的首选.请做演练巩固提升4构造新数列解答数列问题【典例】 (12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1(n ≥2).求证:S 21+S 22+…+S 2n ≤12-14n.规范解答:∵a n =-2S n ·S n -1(n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2(n ≥2),(2分)∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列.∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n .∴S n =12n .(4分)将S n =12n代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n2n ≥2.(7分)∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n =12-14n;(10分)当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.(12分)答题指导:1.在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.2.本题首先构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1.1.已知等差数列{a n }的公差d ≠0,等比数列{b n }的公比q 是小于1的正有理数.若a 1=d ,b 1=d 2,且a 21+a 22+a 23b 1+b 2+b 3是正整数,则q 等于( ).A .-17B .17C .12D .-122.(2012北京高考)某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为( ).A.5 B.7 C.9 D.113.一辆邮政车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,设该车从各站出发时邮政车内的邮袋数构成一个有穷数列{a k}(k=1,2,3,…,n).(1)求a1,a2,a3;(2)邮政车从第k站出发时,车内邮袋共有多少个?4.(2012湖南高考)某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产,设第n年年底企业上缴资金后的剩余资金为a n万元.(1)用d表示a1,a2,并写出a n+1与a n的关系式;(2)若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示).参考答案基础梳理自测基础自测 1.B2.C 解析:设{a n }的公差为d 1,{b n }的公差为d 2,则d 1=a 6-a 26-2=84=2,d 2=b 6-b 26-2=124=3.∴a n =a 2+(n -2)×2=2n +4, b n =b 2+(n -2)×3=3n -2.∴数列{a n }为6,8,10,12,14,16,18,20,22,…,数列{b n }为1,4,7,10,13,16,19,22,…. ∴{c n }是以10为首项,以6为公差的等差数列. ∴c n =10+(n -1)×6=6n +4.3.B 解析:设堆成x 层,得1+2+3+…+x ≤200,即求使得x (x +1)≤400成立的最大正整数x ,应为19.∴200-19(19+1)2=10.4.2n +1-3 解析:∵a 1+a 2+…+a n =2n -1, 当n ≥2时,a 1+a 2+…+a n -1=2(n -1)-1, 两式作差得a n =2(n ≥2), 当n =1时,a 1=1,∴a 1+a 22+a 33+...+a n n =1+22+23+ (2)=1+22(1-2n -1)1-2=2n +1-3.5.243 解析:第一天1+2只,第二天有a 2=3a 1=9只,第三天a 3=3a 2=27,…,故第n 天为a n =3n ,则a 5=35=243. 考点探究突破【例1】 解:(1)由题意知,对数列{a n }, ⎩⎪⎨⎪⎧ a 2+a 4=34,A 4=60⇒⎩⎪⎨⎪⎧ a 2+a 4=34,a 1+a 3=26, ①② ∴①-②可得:2d =8. ∴d =4,a 1=9.∴a n =4n +5(n ∈N *).由题意知,对数列{b n },⎩⎪⎨⎪⎧B 4=120,b 2+b 4=90,∴⎩⎪⎨⎪⎧ b 1+b 3=30,b 2+b 4=90.③④④÷③可得q =3,则b 1=3,∴b n =3×3n -1=3n (n ∈N *).(2)由c n =a n ·b n =(4n +5)·3n,∴S n =9·3+13·32+17·33+…+(4n +5)·3n. 两边同乘以3,得3S n =9·32+13·33+17·34+…+(4n +1)·3n +(4n +5)·3n +1. 两式相减,得-2S n =9·3+4·32+4·33+…+4·3n -(4n +5)·3n +1=27+4·32(1-3n -1)1-3-(4n +5)·3n +1=27+2·3n +1-18-(4n +5)·3n +1,∴S n =12[(4n +3)·3n +1-9].【例2】 解:(1)设每期存入的金额为A ,每期利率为P ,存期为n ,则各期的利息之和为nAP +(n -1)AP +…+2AP +AP =n (n +1)AP2,所以本利和为nA +n (n +1)AP2=A ⎣⎢⎡⎦⎥⎤n +n (n +1)2P (元). (2)到第12个月底的本利和为100⎣⎢⎡⎦⎥⎤12+12×12×(12+1)×5.1%=1 597.8(元). (3)设每月初应存入x 元,则有x ⎣⎢⎡⎦⎥⎤12+12×12×(12+1)×5.1%=2 000, 解得x ≈125.2.所以每月初应存入125.2元.【例3】 解:(1)证明:令x =y =0, 得2f (0)=f (0), ∴f (0)=0.令y =-x ,得f (x )+f (-x )=f (0)=0. ∴f (-x )=-f (x ).∴f (x )在(-1,1)上是奇函数.(2)f (x 1)=f ⎝ ⎛⎭⎪⎫12=-1, f (x n +1)=f ⎝ ⎛⎭⎪⎫2x n 1+x 2n =f ⎝ ⎛⎭⎪⎫x n +x n 1+x n x n=f (x n )+f (x n )=2f (x n ),∴数列{f (x n )}是以-1为首项,以2为公比的等比数列.∴f (x n )=-2n -1.(3)证明:1f (x 1)+1f (x 2)+…+1f (x n )=-⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=-1-12n1-12=-2+12n -1>-2,而-2n +5n +2=-⎝ ⎛⎭⎪⎫2+1n +2=-2-1n +2<-2,∴当n ∈N *时,1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2恒成立.演练巩固提升1.C 解析:因为q 是小于1的正有理数,所以首先排除选项A ,D. 又a 12+a 22+a 32b 1+b 2+b 3=a 12+(a 1+d )2+(a 1+2d )2b 1+b 1q +b 1q 2=14d 2d 2(1+q +q 2)=141+q +q 2, 则将B ,C 选项中公比q 的值逐一代入141+q +q 2检验知,只有当q =12时,a 12+a 22+a 32b 1+b 2+b 3才是正整数,所以q =12.2.C 解析:结合S n 与n 的关系图象可知,前2年产量均为0,显然S 22=0为最小,在第3年~第9年期间,S n 的增长呈现持续稳定性.但在第9年之后,S n 的增长骤然降低,因为当n =9时,S 99的值为最大,故m 的值为9.3.解:(1)由题意得a 1=n -1, a 2=(n -1)+(n -2)-1=2n -4,a 3=(n -1)+(n -2)+(n -3)-1-2=3n -9.(2)在第k 站出发时,放上的邮袋共(n -1)+(n -2)+…+(n -k )个, 而从第二站起,每站放下的邮袋共1+2+3+…+(k -1)个,故a k =(n -1)+(n -2)+…+(n -k )-[1+2+…+(k -1)]=kn -12k (k +1)-12k (k -1)=kn -k 2(k =1,2,…,n ),即邮政车从第k 站出发时,车内共有邮袋个数为kn -k 2(k =1,2,…,n ). 4.解:(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d .a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d=…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1 =⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d . 由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000 ⎝ ⎛⎭⎪⎫32m -1=1 000(3m -2m +1)3m -2m,故该企业每年上缴资金d 的值为1 000(3m -2m +1)3m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.。

2012年高三数学第一轮复习教案(新人教A)数列的综合运用

2012年高三数学第一轮复习教案(新人教A)数列的综合运用

§2.2 数列的综合运用考点核心整合1.函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到.2.数列与函数、数列与不等式的综合、用数列知识解决实际问题等内容是近几年高考的热点之一.考题名师诠释【例1】设数列{a n }的前n 项和为S n ,点(n,n S n )(n ∈N *)均在函数y=3x-2的图象上. (1)求数列{a n }的通项公式;(2)设b n =13+n n a a ,T n 是数列{b n }的前n 项和,求使得T n <20m 对所有n ∈N *都成立的最小正整数m.解:(1)依题意得nS n =3n-2,即S n =3n 2-n. 当n ≥2时,a n =S n -S n-1=(3n 2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a 1=S 1=3×12-2×1=1=6×1-5.所以a n =6n-5(n ∈N *).(2)由(1)得b n =13+n n a a =]5)1(6)[56(3-+-n n =21(561-n -161+n ), 故T n =∑=ni i b 1=21[(1-71)+(71-131)+…+(561-n -161+n )]=21(1-161+n ). 因此,使得21(1-161+n )<20m (n ∈N *)成立的m 必须且仅需满足21≤20m ,即m ≤10,故满足要求的最小整数m 为10.评述:本小题主要考查等差数列、数列求和、不等式等基础知识和基本运算技能,考查分析问题的能力和推理能力.【例2】已知函数f(x)=2n 21x +-x 在[0,+∞)上的最小值是a n (n ∈N *).(1)求数列{a n }的通项公式;(2)证明211a +221a +…+21n a <21; (3)在点列A n (2n,a n )中是否存在两点A i 、A j (i 、j ∈N *),使直线A i A j 的斜率为1?若存在,求出所有的数对(i,j);若不存在,请说明理由.(1)解:由f(x)=2n 21x +-x ,得f ′(x)=212x nx+-1.令f ′(x)=0,得x=1412-n .当x ∈(0,1412-n )时,f ′(x)<0; 当x ∈(1412-n ,+∞)时,f ′(x)>0.∴f(x)在[0,+∞]上,当x=1412-n 时取得最小值142-n .∴a n =142-n .(2)证明:∵21n a =1412-n =21(121-n -121+n ), ∴211a +221a + (21)a =21[(1-31)+(31-51)+…+(121-n -121+n )] =21(1-121+n )<21. (3)解:不存在.设A i (2i,a i )、A j (2j,a j )(其中i 、j ∈N *),则j i A A k =)(2j i a a ji --=)(2141422j i j i ----=1414)(2)(42222-+---j i j i j i . 又1414)(222-+-+j i j i >2244)(2j i j i ++=1,故不存在.链接·思考若a n =242-n ,则点列A n (2n,a n )呈现什么样的分布特征?从而本题第(3)问能否从曲线的角度给出解答?提示:令x=2n,y=a n ,则y=12-x (x ≥2).点(x,y)在曲线x 2-y 2=1(x ≥2,y ≥0)上,而双曲线的一条渐近线方程为y=x,其斜率为1,A i 、A j 在双曲线上,故j i A A k <1矛盾.评述:本题从研究函数最值入手推导通项公式,比较新颖,又考查了数列、不等式及直线的斜率公式、圆锥曲线,综合性非常强.【例3】(2005山东高考,21理)已知数列{a n }的首项a 1=5,前n 项和为S n ,且S n+1=2S n +n+5(n ∈N *).(1)证明数列{a n +1}是等比数列;(2)令f(x)=a 1x+a 2x 2+…+a n x n ,求函数f(x)在点x=1处的导数f ′(1),并比较2f ′(1)与23n 2-13n 的大小.解:(1)由已知S n+1=2S n +n+5,∴n ≥2时,S n =2S n-1+n+4.两式相减,得S n+1-S n =2(S n -S n-1)+1,即a n+1=2a n +1,从而a n+1+1=2(a n +1).当n=1时,S 2=2S 1+1+5,∴a 1+a 2=2a 1+6.又a 1=5,∴a 2=11.从而a 2+1=2(a 1+1).故总有a n+1+1=2(a n +1),n ∈N *.又∵a 1=5,∴a n +1≠0.从而111+++n n a a =2,即{a n +1}是以a 1+1=6为首项,2为公比的等比数列. (2)由(1)知a n =3×2n -1.∵f(x)=a 1x+a 2x 2+…+a n x n ,∴f ′(x)=a 1+2a 2x+…+na n x n-1.从而f ′(1)=a 1+2a 2+…+na n=(3×2-1)+2(3×22-1)+…+n(3×2n -1)=3(2+2×22+…+n ×2n )-(1+2+…+n)=3[n ×2n+1-(2+…+2n )]-2)1(+n n =3[n ×2n+1-2n+1+2]-2)1(+n n =3(n-1)·2n+1-2)1(+n n +6. 由上2f ′(1)-(23n 2-13n)=12(n-1)·2n -12(2n 2-n-1)=12(n-1)·2n -12(n-1)(2n+1)=12(n-1)[2n -(2n+1)]. (*)当n=1时,(*)式=0,∴2f ′(1)=23n 2-13n;当n=2时,(*)式=-12<0,∴2f ′(1)<23n 2-13n;当n ≥3时,n-1>0.又2n =(1+1)2=0n C +1n C +…+1-n n C +nn C ≥2n+2>2n+1,∴(n-1)[2n -(2n+1)]>0,即(*)式>0,从而2f ′(1)>23n 2-13n.链接·思考在比较2f ′(1)与23n 2-13n 的大小时能否采用数学归纳法证明呢?用数学归纳法:n ≥3时,猜想2f ′(1)>23n 2-13n.由于n-1>0,只要证明2n >2n+1.事实上,①当n=3时,23>2×3+1.不等式成立.②设n=k 时(k ≥3),有2k >2k+1,则2k+1>2(2k+1)=4k+2=2(k+1)+1+(2k-1).∵k ≥3,∴2k-1>0.从而2k+1>2(k+1)+1+(2k-1)>2(k+1)+1,即n=k+1时,亦有2n >2n+1.综上①②知,2n >2n+1对n ≥3,n ∈N *都成立.∴n ≥3时,有2f ′(1)>23n 2-13n.综上,n=1时,2f ′(1)=23n 2-13n;n=2时,2f ′(1)<23n 2-13n;n ≥3时,2f ′(1)>23n 2-13n.【例4】(2005上海高考,20理)假设某市2004年新建住房400万平方米,其中有250万平方米是低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的低价房的面积占该年建造住房面积的比例首次大于85%?解:(1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列.其中a 1=250,d=50. 则S n =250n+2)1(-n n ×50=25n 2+225n, 令25n 2+225n ≥4 750,即n 2+9n-190≥0,而n 是正整数,∴n ≥10.∴到2013年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列.其中b 1=400,q=1.08.则b n =400(1.08)n-1.由题意可知a n >0.85b n .有250+(n-1)·50>400·(1.08)n-1·0.85.用计算器解得满足上述不等式的最小正整数n=6.∴到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 评述:本题主要考查学生运用所学数列知识解决实际问题的能力,以及数学建模能力.【例5】(2006上海高考,21理)已知有穷数列{a n }共有2k 项(整数k ≥2),首项a 1=2,设该数列的前n 项和为S n ,且a n+1=(a-1)S n +2(n=1,2,…,2k-1),其中常数a>1.(1)求证:数列{a n }是等比数列;(2)若a=1222-k ,数列{b n }满足b n =n1log 2(a 1a 2…a n )(n=1,2,…,2k),求数列{b n }的通项公式; (3)若(2)中的数列{b n }满足不等式.|b 1-23|+|b 2-23|+…+|b 2k-1-23|+|b 2k -23|≤4,求k 的值. 解:(1)a n+1=(a-1)S n +2, ①当n ≥2时,a n =(a-1)S n-1+2, ②两式相减得a n+1-a n =(a-1)(S n -S n-1)=(a-1)a n ,∴a n+1=aa n . ∴nn a a 1+=a 为常数. ∴数列{a n }是以a 1=2为首项,以a 为公比的等比数列.(2)由(1)知a n =2·a n-1,∴b n =n 1log 2(2·2a ·2a 2·…·2a n-1) =n1log 2(2n ·a 1+2+…+(n-1)) =n1(n+2)1(2log -n n a )=1+n 1·2)1(-n n ·log 2a =1+21-n ·122-k =1+121--k n . (3)|b n -23|=|121--k n -21|=|)12(2122---k k n |, ∴|b 1-23|+|b 2-23|+…+|b 2k-1-23|+|b 2k -23| =|)12(221--k k |+|)12(223--k k |+…+|)12(232--k k |+|)12(212--k k | =2[)12(21-k +)12(23-k +…+)12(232--k k +)12(212--k k ] =12)12(531--+⋅⋅⋅+++k k =122-k k . 令122-k k ≤4,即k 2-8k+4≤0, ∴4-23≤k ≤4+23.又∵k ≥2,k ∈Z ,∴k 的值为2,3,4,5,6,7.评注:本题主要考查数列知识的综合运用以及对数知识和解绝对值不等式的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案 数列的综合应用一、课前检测1.猜想1=1,1-4= - (1+2), 1-4+9=1+2+3,……的第n 个式子为 。

答案:12114916(1)(1)(1234)n n n n ++-+-++-=-+++++2.用数学归纳法证明1)a ,N (n a-1a -1a ......a a 12n 1n 2≠∈=++++*++,在验证1n =成立时,左边所得的项为( C )A.1B.1+aC.21a a ++D.231a a a +++二、知识梳理1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题。

⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1.其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++- ⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.注意:“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则n 期后本利和为:(1)2(1)(12)(1)()n n n S p r p r p nr p n r +=+++++=+(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清.如果每期利率为r (按复利),那么每期等额还款x 元应满足:12(1)(1)(1)(1)n n n p r x r x r x r x --+=+++++++ (等比数列问题).⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m mm mm m mr r ar x r r x r a x r x r x r x r a 2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求a n 还是求S n ,特别要准确地确定项数n.3.数列与其他知识的综合也是常考的题型,如:数列与函数、不等式、解析几何知识相互联系和渗透,都是常见的题型。

4.强化转化思想、方程思想的应用.三、典型例题分析题型1 以等差数列为模型的问题例1 由于美伊战争的影响,据估计,伊拉克将产生60~100万难民,联合国难民署计划从4月1日起为伊难民运送食品.第一天运送1000 t ,第二天运送1100 t ,以后每天都比前一天多运送100t ,直到达到运送食品的最大量,然后再每天递减100 t ,连续运送15天,总共运送21300 t ,求在第几天达到运送食品的最大量. 剖析:本题实质上是一个等差数列的求通项和求和的问题. 解:设在第n 天达到运送食品的最大量.则前n 天每天运送的食品量是首项为1000,公差为100的等差数列. a n =1000+(n -1)·100=100n+900.其余每天运送的食品量是首项为100n+800,公差为-100的等差数列. 依题意,得1000n+2)1(-n n ×100+(100n+800)(15-n )+2)14)(15(n n --×(-100)=21300(1≤n ≤15).整理化简得n 2-31n+198=0.解得n=9或22(不合题意,舍去). 答:在第9天达到运送食品的最大量.变式训练1 数列{a n }中,a 1=6,且a n -a n -1=a n -1n+n +1(n∈N *,n≥2),则这个数列的通项a n =________. 答案:(n +1)(n +2)解:由已知等式得na n =(n +1)a n -1+n(n +1)(n∈N *,n≥2),则a n n +1-a n -1n =1,所以数列{a n n +1}是以a 12=3为首项,1为公差的等差数列,即a nn +1=n +2,则a n =(n +1)(n +2).n =1时,此式也成立.小结与拓展:对数列应用题要分清是求通项问题还是求和问题。

题型2 以等比数列为模型的实际问题例2 (2005年春季上海,20)某市2004年底有住房面积1200万平方米,计划从2005年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2005年底和2006年底的住房面积; (2)求2024年底的住房面积.(计算结果以万平方米为单位,且精确到0.01) 剖析:本题实质是一个等比数列的求和问题. 解:(1)2005年底的住房面积为1200(1+5%)-20=1240(万平方米), 2006年底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),∴2005年底的住房面积为1240万平方米,2006年底的住房面积为1282万平方米.(2)2024年底的住房面积为1200(1+5%)20-20(1+5%)19-20(1+5%)18-…-20(1+5%)-20=1200(1+5%)20-20×05.0105.120-≈2522.64(万平方米),∴2024年底的住房面积约为2522.64万平方米.评述:应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案.变式训练2 从2002年1月2日起,每年1月2日到银行存入一万元定期储蓄,若年利率为p ,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,到2008年1月1日将所有存款及利息全部取回,则可取回的钱的总数为___ _万元. 答案:p1[(1+p )7-(1+p )] 解:存款从后向前考虑(1+p )+(1+p )2+…+(1+p )5=pp p ]1)1)[(1(6-++=p 1[(1+p )7-(1+p )].注:2008年不再存款.小结与拓展:对数列应用题要分清是求通项问题还是求和问题。

题型3 数列与函数、不等式等问题的综合应用例3 (文)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n≥2,n∈N).(1)试判断数列{1a n }是否为等差数列;(2)设{b n }满足b n =1a n ,求数列{b n }的前n 项为S n ; (3)若λa n +1a n +1≥λ,对任意n≥2的整数恒成立,求实数λ的取值范围.解:(1)∵a 1≠0,∴a n ≠0,∴由已知可得1a n -1a n -1=3(n≥2),故数列{1a n }是等差数列.(2)由(1)的结论可得b n =1+(n -1)×3,所以b n =3n -2, ∴S n =n(1+3n -2)2=n(3n -1)2. (3)将a n =1b n =13n -2代入λa n +1a n +1≥λ并整理得λ(1-13n -2)≤3n+1,∴λ≤(3n +1)(3n -2)3n -3,原命题等价于该式对任意n≥2的整数恒成立.设C n =(3n +1)(3n -2)3n -3,则C n +1-C n =(3n +1)(3n -4)3n(n -1)>0,故C n +1>C n ,∴C n 的最小值为C 2=283, ∴λ的取值范围是(-∞,283].变式训练3 已知数列{a n }的前n 项和为S n ,对任意n∈N *都有S n =23a n -13,若1<S k <9(k∈N *),则k 的值为________.答案:4解:∵S n =23a n -13,∴S 1=23a 1-13=a 1,a 1=-1.a n =S n -S n -1(n>1),即a n =(23a n -13)-(23a n -1-13)=23a n -23a n -1,整理得:a na n -1=-2,∴{a n }是首项为-1,公比为-2的等比数列,S k =a 1(1-q k )1-q =(-2)k -13,∵1<S k <9,∴1<(-2)k -13<9,即4<(-2)k <28,仅当k =4时不等式成立.小结与拓展:数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.四、归纳与总结(以学生为主,师生共同完成)1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题. 解应用题的关键是建立数学模型,转化为数学问题,要加强培养转化意识.2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求an 还是求Sn,特别要准确地确定项数n.3.数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.4.强化转化思想、方程思想的应用.。

相关文档
最新文档