2020年整理工程力学公式大全.doc

合集下载

工程力学常用公式

工程力学常用公式

工程力学常用公式3、伸长率:* 1。

%断面收缩率: 字100%5、扭转切应力表达式:^,最大切应力:maxTP RW p , d 44I P ”(1),W P d'(1 4),强度校核: 16max TmaxW P[]6、单位扭转角:d—,刚度校核:maxTmax[], 长度为1dx Gl pGI P的一段轴两截面之间的相对扭转角證,扭转外力偶的计算公式: Me 9549P(KWLn(r/m in )8平面应力状态下斜截面应力的一般公式:最大切应力max -'' - ( x y )22,最大正应力方位2 Y 21、轴向拉压杆件截面正应力 牛,强度校核max2、轴向拉压杆件变形IFi Ni l i 4、胡克定律: E ,泊松比:,剪切胡克定律:G7、薄壁圆管的扭转切应力:T 2 R 29、 x yx ycos22 2 xsin 2-sin 2 x cos2平面应力状态三个主应力:II「( x 2y)2X, ''' 01、100%tan2 0 2xx y10、第三和第四强度理论: r3 X 24 2, r4211、平面弯曲杆件正应力:M ,截面上下对称时,MW Z矩形的惯性矩表达式:I Z兽圆形的惯性矩表达式:I ZV(1 644)矩形的抗扭截面系数:W Z £圆形的抗扭截面系数:W Z 4)13、平面弯曲杆件横截面上的最大切应力:F s S max* zmaxbi z14、平面弯曲杆件的强度校核:(1)弯曲正应力tmax [t ], cmaxc](2)弯曲切应力max [](3)第三类危险点:第三和第四强度理论 16、( 1)轴向载荷与横向载荷联合作用强度: ()FN M maxmax (min 丿15、平面弯曲杆件刚度校核:叠加法 严 [f], max [](2)偏心拉伸(偏心压缩):max ( min)A(3)弯扭变形杆件的强度计算:工程力学常用公式伸长率: F N ; A ;FA ;泊松比E 2(1 ),l bI 0l 0100%,断面收缩率:A o A b A 02、扭转: { M }N gm9549 {P}kW ,{ n} r/ min,W p max TW p,3、4、ddxTGIP,TloGI P弯曲:MdxEl应力状态:MET Z,MyIT,maxMy maxIlMW zd 2wdx2MEIM , xdx)dx CxEIx sin2i2cos 2;x y )22tg2 o拉压强度条件:max(F N)[\ 八/max L扭转强度条件:max(T)[]W p扭转刚度条件:(T)max []GI P梁的弯曲强度条件M maxmaxW.梁弯曲的刚度条件:V V max[]-欧拉公式:F c r -2EIl2,2Ecr 2柔度:-惯性半径:max(min][],maxi x y2max,max . [](丿max [],I zi'■ A。

工程力学公式

工程力学公式

工程力学公式大全第一章:力矩用符号MO(F)表示。

即力矩矢量描述力得转动效应ﻩ力矩矢量得模描述转动效应得大小,它等于力得大小与矩心到力作用线得垂直距离(力臂)得乘积,即为矢径r与力F之间得夹角。

平面力系得合力对平面上任一点之矩等于力系中所有得力对同一点之矩得代数与ﻩ或者简写成力偶矩第二章:一主矢:有任意多个力所组成得力系(F1,F2…Fn),得矢量与:二主矩:力系中所有得力对同一点O之矩得矢量与用表示:ﻩ空间任意汇交系在oxyz坐标中投影表达式:对于空间任意力系主矩得分量表达式为第三章静力学平衡问题平面一般力系得平衡方程:其她形式:(1)(2)空间力系得平衡条件:力系得主矢与对任一点得主矩均为零第四章:正应力切应力变模量、第五章总结公式:1。

正确画出轴力图,计算出各个截面得轴力2、注意拉压变形以及拉压产生得正应力与切应力其中最大正应力发生在垂直于轴线处σα=pα=σ0cosα最大切应力发生在与轴线成45°角时τα= pα=σ=根据胡克定律σ=Eε得拉压变形∆l=(其中EA为拉压刚度)=∆b/b泊松比μ=-强度校核σmax<[σ]同时拉压变形满足叠加原理、可以通过拉压变形建立变形协调方程,解决拉压静不定问题第六章:作用于构件得外扭矩与机器得转速、功率有关。

在传动轴计算中,通常给出传动功率P 与转速n,则传动轴所受得外加扭力矩M e可用下式计算:如果功率P得单位用马力(1马力=735。

5N•m/s),则剪切胡克定律当在弹性范围内加载时,剪应力与剪应变成正比:式中G I P—扭转刚度;I P—横截面得极惯性矩。

对于直径为 d 得实心圆截面对于内、外直径分别为d与D得圆环截面受扭圆轴得强度设计准则第八章1、弹性范围内得挠度曲线在一点得曲率在这一点处横截面上得弯矩、弯曲刚度之间关系:EI---------横截面得弯曲刚度2。

梁在弯曲变形后,横截面得位置将发生改变,这种位置得改变称为位移(dis pla ceme nt)。

工程力学公式总结

工程力学公式总结

工程力学公式总结工程力学是一门研究力的作用和分析物体行为的学科。

在工程领域中,掌握力学公式是非常重要的,它能够帮助工程师们预测和解决各种问题。

本文将对一些常用的工程力学公式进行总结。

I. 静力学公式1. 牛顿第一定律:物体的速度保持恒定,除非受到外力的作用。

这个公式可以用来解释一些静力学问题,比如一个静止的物体如果没有受到外力的作用,将保持静止。

2. 牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。

F = ma这个公式是力学中最重要的公式之一,能够解释物体运动的原因。

它表明,当作用力增加时,物体的加速度也会增加;而物体的质量越大,加速度越小。

3. 牛顿第三定律:对于每一个作用力,都存在一个等大、方向相反的反作用力。

这个公式可以解释为什么两个物体之间的力是相互作用的。

例如,当一个物体推另一个物体时,另一个物体也会推回来。

II. 动力学公式1. 动量定理:物体所受的总冲量等于物体的动量变化率。

FΔt = Δmv这个公式可以解释为什么用力撞击物体会改变物体的速度。

它表明,当物体受到一个力的作用时,物体的动量会发生变化。

2. 动能定理:物体的动能变化等于物体所受的净外力沿位移方向所做的功。

ΔKE = W这个公式可以解释为什么物体受到加速度时会增加它的动能。

它表示,当物体受到外力的作用并移动时,物体的动能将发生变化。

III. 应力与变形公式1. 应力应变关系:应力与应变成正比。

σ = Eε这个公式描述了材料受到应力时的变形情况。

E是材料的弹性模量,σ是应力,ε是应变。

2. 杨氏模量:刚度的度量。

E = σ/ε这个公式描述了材料在受到应力时的应变情况。

杨氏模量越大,材料越坚硬。

IV. 力矩与力的关系1. 力矩公式:力矩等于力与力臂的乘积。

M = Fd这个公式用来计算物体受到力的转动效应。

力矩等于力乘以力臂的长度。

2. 力的平衡公式:力的矢量和为零。

ΣF = 0这个公式用来解决物体处于平衡状态下的力的平衡问题。

工程力学常用主要公式

工程力学常用主要公式


M z (x) 2 dx + li EI z

M x (x) 2 dx + li GI p

1 FR 2 k S FS (x) 2 ⎞ ⎟ dx + ⎟ 2 k li GA ⎠
单位载荷法
Δ=
∑ ∫
[
l
0
FN o ( x) FN ( x) dx + EA
+

k S FS o ( x) FS ( x) dx 0 GA
σ r3 = σ 1 − σ 3 ≤ [σ ]
σ r4 =
1 [(σ 1 − σ 2 ) 2 + (σ 2 − σ 3 )2 + (σ 3 − σ 1 )2 ] ≤ [σ ] 2
圆轴扭转
Δϕ = ∫
0
l
M x ( x) dx GI p
Δϕ =
Tl GI p
Ip =
π
32
D4
τ max =
Wp =
Mx Wp
τ I ,II = ± (
应变变换
σ x −σ y
2
)2 + τ xy 2
εx' =
εx + ε y 2
+
εx − ε y 2
cos 2α +
γ xy 2
sin 2α
γx' y' 2
=−
εx − ε y 2
sin 2α +
γ xy 2
cos 2α
εy' =
εx + ε y 2

εx − ε y 2
σ r3 = (
M Mz 2 ) + 4( x ) 2 = Wz Wp

常用工程力学公式

常用工程力学公式

ω2=ω02+2a(ψ-ψ0)
aτ=r·a
an=r·ω2
a=sqrt(aτ2+ an2)
动力学方程
ΣF=m·a ΣM=Jz•a
JZ=JZC+md2
转动惯理
J0=m·r2/2 (圆柱) )

W:直线移动物体的重量(kg)
移动惯量
J=W*(L/2π)^2
θ=180T/(πG·IP)≤[θ]
[θ]:0.5~1.0度/米 [θ]:1.0~2.5度/米
一般传动 精度不高传动
[θ]:2.0~4.0度/米
精度低传动

τmax=MT/WT
WT——抗扭截面模量 ,WT=αhb2,方形截面扭转,系数
见右表

WZ=bh2/6
抗弯截面系数 矩形截面
弯曲
WZ=πD3/32 或πD3(1-a4)/32 抗弯截面系数 圆形或环形截面
L:电机每转在直线方向移动的距离(cm)


W=k·(s12- s22)/2
W=M0·(ψ2-ψ1)

功率
P=Fτ·υ P=M·ω
动能定理 周期与频率
T=M·υ2/2 T= JZ·ω2/2 ω2=k/m T=2π/ω=1/f
弹簧钢度
k并=k1+k2 k串= k1·k2/(k1+k2)
弹力的功
转动的功 1w=1N*m/s P=3.14nM/30 直线运动 转动动能
拉伸与压缩
δ=(l1-l)/l ψ=(A-A1)/A ε=Δl/l
伸长率
断面收宿率 轴向线应变
胡克定律 材料特性
u=ε|/ε σ=E·ε Δl=FN•l/(E•A)
塑性: 碳钢 黄铜 铝合金

工程力学公式总概括

工程力学公式总概括

工程力学公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x y σσσ+='''0σ= 最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=-- 10、第三和第四强度理论:3r σ=,4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:3[]r Zσσ==4[]r Z σσ==≤简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。

工程力学公式大全

工程力学公式大全

工程力学公式胡克定律:- E ■:,泊松比:;'--:;,剪切胡克定律:.=G最大切应力.max 二 £ 二■- C x^ ")22,最大正应力方位tan2〉°二10、第三和第四强度理论:;「r3二■2' 4 ■2,二r4=;42,3.1、 轴向拉压杆件截面正应力 c=F N,强度校核 A二max -[二]2、轴向拉压杆件变形,計八詈. L 一 I伸长率: -- I 100%断面收缩率:A A 、A100%扭转切应力表达式:,最大切应力:-max R = — , I pII P " W P二 d 4(1_G 432二d 34W p(1 -〉),强度校核:max16Tmaxk 二【]d 甲 T单位扭转角:,刚度校核:^maxmaxdx Gl PGl P乞口],长度为I 的一段轴两截面之间的相对扭转角IL ,扭转外力偶的计算公式: GIMe 二 9549P (KW)n(r/m in)薄壁圆管的扭转切应力:•-22 兀 R0§8、 平面应力状态下斜截面应力的一般公式: CL =cr +cr cr -<yxyx ycos2: - x sin2:,sin 2: x cos2-29、平面应力状态三个主应力:CT +CF 丄__y ■1 a -cr cc(x2丫,匚''CF一(X2CTy )2,二'''=02x14、平面弯曲杆件的强度校核:(1 )弯曲正应力二tmax乞[G],二cmax乞[二c](2 )弯曲切应力gax乞[J(3 )第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法W p aX- [W],二max -[二](2 )偏心拉伸(偏心压缩):二max (二min)=旦,二匸一A W z(3)弯扭变形杆件的强度计算:1 .M2 T2M y2 Mz2T2逬二]W Z W Z 1 y表1杆件基本变形部分主要公式基本变形应力公式变形公成轴向拉压F N= ----AA/ =EA扭转Tn^甲=TlJ max —GIP弯曲0 —Mlmax -—-..i I El.11、平面弯曲杆件正应力: —My,截面上下对称时,IZMCT = ----------W Z矩形的惯性矩表达式: bh3——圆形的惯性矩表达式:124I z (1)矩形的抗扭截面系数:bh?叫盲,圆形的抗扭截面系数:3WZ 甘一4)13、平面弯曲杆件横截面上的最大切应力:FSS * zmaxmaxbi z= K F SAmax16、(1 )轴向载荷与横向载荷联合作用强度: faxUmint^ -仏A W Z-r4 W z、nW z「M 2 2 2y M z 0.75T 打二]表3杆在简单载荷作用下的变形简團瓦载荷“2内容 半面应力 状态中任 意斜截面 sin 2a 十 T xy cos 2A上的应力 *而应变 狀态中任 总方向h2的应变 截面儿何性质的转 轴公犬16£7yo=2El+■_L ■卩.4-- --F*] ■ \仁公式2_切 ~2~F0&A =~6D =X6E11G, 3B =TTcos 2a - s sin 2ticos 一 sin 2ft2 2 sin 2a 十世比 cos 2a-cns2n — sin 2n2 { 2--- »JH 2<t + cxjb 2u2谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。

工程力学公式总概括

工程力学公式总概括

工程力学公式:3、伸长率:¥ 1。

%断面收缩率:5、扭转切应力表达式:r,最大切应力:max ^R Wp,d4 4I p ”(1)W P叭1 4),强度校核:16 maxT maxW p[]6、单位扭转角: d 亠,刚度校核:max - T max[],长度为1dx V G I p Gl P式:Me 9549P(KW1n(r/min)8平面应力状态下斜截面应力的一般公式:9、- -—-cos2 x sin22 2-- sin 2 x cos22平面应力状态三个主应力:II 「(x2y)22,''' 0最大切应力IImax (七丄)22,最大正应力方位1、轴向拉压杆件截面正应力A,强度校核max2、轴向拉压杆件变形I F Nil i4、胡克定律:E,泊松比: ,剪切胡克定律:G的一段轴两截面之间的相对扭转角TIGl扭转外力偶的计算公7、薄壁圆管的扭转切应力: T2 R2tan210、第三和第四强度理论:r3 .2 4 2,「4 、•211、平面弯曲杆件正应力: M '截面上下对称时'W Z矩形的惯性矩表达式:i Z兽圆形的惯性矩表达式:I zV(164矩形的抗扭截面系数:W Z竽,圆形的抗扭截面系数: WZ4)13、平面弯曲杆件横截面上的最大切应力:maxS*zmaxbi z14、平面弯曲杆件的强度校核:(1)弯曲正应力t max [ t],cmax c] (2)弯曲切应力max[](3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法竽 [w],max []16、(1)轴向载荷与横向载荷联合作用强度:( ) F N M maxmax ( min 丿A W z(2)偏心拉伸(偏心压缩):max ( min )F NA W z(3)弯扭变形杆件的强度计算:W z"0柯2 2y2 2M z 0.75T简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql八4/(384EI).式中:Ymax为梁跨中的最大挠度(mm).q为均布线荷载标准值(kn/m).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm八2.I为钢的截面惯矩,可在型钢表中查得(mm A4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl A3/(384EI)=1pl A3/(48EI).式中:Ymax为梁跨中的最大挠度(mm).p为各个集中荷载标准值之和(kn).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mmA2.I为钢的截面惯矩,可在型钢表中查得(mmA4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中其计算公式:Y max = 6.81p|A3/(384EI).式中:Ymax为梁跨中的最大挠度(mm).p为各个集中荷载标准值之和(kn).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mmA2.I为钢的截面惯矩,可在型钢表中查得(mmA4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Y max = 6.33pl八3/(384EI).式中:Ymax为梁跨中的最大挠度(mm).p为各个集中荷载标准值之和(kn).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm八2.I为钢的截面惯矩,可在型钢表中查得(mm A4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql A4/(8EI). ;Ymax =1pl A3/(3EI).q为均布线荷载标准值(kn/m). ;p为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。

工程力学公式总概括

工程力学公式总概括

工程力学公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x y σσσ+='''0σ= 最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=-- 10、第三和第四强度理论:3r σ=,4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:3[]r Zσσ==4[]r Z σσ==≤简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。

工程力学公式概括

工程力学公式概括

1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []PT W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=+''2x y σσσ+='''0σ= 最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x y τασσ=--10、第三和第四强度理论:3r σ=,4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:3[]r Zσσ==≤4[]r Z σσ==≤。

工程力学单位换算公式大全

工程力学单位换算公式大全

工程力学单位换算公式大全
工程力学中常见的单位包括长度单位(米、厘米、毫米等)、质量单位(千克、克等)、力单位(牛顿、千克力等)等。

下面我会列举一些常见的工程力学中的单位换算公式,希望能对你有所帮助。

1. 长度单位换算公式:
1米 = 100厘米。

1米 = 1000毫米。

1千米 = 1000米。

2. 质量单位换算公式:
1千克 = 1000克。

1千克 = 2.20462磅。

1克 = 0.001千克。

3. 力单位换算公式:
1牛顿 = 1千克·米/秒^2。

1牛顿 = 0.22481磅力。

1千克力 = 9.80665牛顿。

以上是一些工程力学中常见的单位换算公式,希望对你有所帮助。

如果你需要更多单位的换算公式或者其他方面的帮助,请随时告诉我。

工程力学公式总结

工程力学公式总结

工程力学公式总结工程力学是物理学的一个分支,研究物体在受力作用下的运动、变形和它们之间的关系。

它是工程学科中不可或缺的基础课程,应用广泛,涉及到力学、材料力学、结构力学、固体力学等领域。

在学习工程力学过程中,我们会遇到许多公式,这些公式是我们解决工程力学问题的重要工具。

下面我来总结一些常用的工程力学公式,希望能对大家的学习有所帮助。

1. 牛顿第二定律:F = ma牛顿第二定律描述了物体在外力作用下的加速度与力的关系。

其中,F代表力,m代表物体的质量,a代表物体的加速度。

这个公式在力学问题的求解中经常使用。

2. 力的合成与分解:当一个物体受到多个力的作用时,可以将这些力合成为一个合力。

合力的大小等于各个力的矢量和。

同时,也可以将一个力分解为两个或多个分力,分力的矢量和等于原力。

3. 力矩与力矩平衡条件:力矩是力对物体转动产生的影响。

力矩等于力的大小与力臂的乘积。

力矩的方向符合右手螺旋定则。

力矩平衡条件要求物体受到的所有力矩的矢量和为零,即力矩的代数和为零。

4. 刚体静力平衡条件:刚体静力平衡要求物体受到的所有力的矢量和为零,即力的代数和为零。

这个条件可以用于解决静力学问题,确定物体的受力情况。

5. 牛顿万有引力定律:F = G * (m1 * m2) / r^2牛顿万有引力定律描述了两个物体之间的引力的大小与它们之间的距离和质量有关。

其中,F代表引力,G为引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。

6. 弹性力学公式:弹性力学公式用于描述物体在受力下的弹性变形。

其中,Hooke定律描述了弹性材料的应力与应变之间的关系,即σ = E * ε。

这里,σ代表应力,E为杨氏模量,ε代表应变。

7. 杆件受拉伸或压缩的应力公式:当杆件受拉伸或压缩时,应力的大小与外力、截面积和材料性质有关。

受拉伸时,应力的大小等于外力除以截面积;受压缩时,应力的大小等于外力除以截面积的负值。

8. 曲杆弯曲公式:曲杆弯曲公式描述了杆件在受弯矩作用下的弯曲变形。

工程力学公式大全

工程力学公式大全

扬州科技学院工程力学资料工程力学公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P PT TR I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:maxmax []PT W ττ=≤ 6、单位扭转角:Pd Tdx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202TR τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x yσσσ+='''0σ=最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=--10、第三和第四强度理论:3r σ=4r σ=11、平面弯曲杆件正应力:ZMy I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=-矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=-13、平面弯曲杆件横截面上的最大切应力:max max *S z SZ F S FK bI Aτ==14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w wl l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: maxmax min ()N ZF M A W σσ=±(2)偏心拉伸(偏心压缩):max min ()N ZF F A W δσσ=±(3)弯扭变形杆件的强度计算:22222311[]r y z Z M T M M T W W σσ=+=++≤222224110.750.75[]r y z ZZM T M M T W W σσ=+=++≤机械制图方面=>齿轮计算公式1 齿轮模数:m=p/π齿轮模数m=齿距p 除以 3.14测绘时的简易计算m=齿顶圆直径(外径)d 除以(齿数z+2)2 齿轮分度圆直径:d=mz分度圆直径d=模数m 乘以齿数z3 齿轮压力角:标准齿轮的压力角为20度压力角标准为20度其他还有14.5度17.5度15度25度和28度4 齿轮变位系数:用范成法加工齿轮时,刀具中心线不与齿轮的分度圆相切,刀具中心与齿轮的分度圆的距离除以模数所得的商就是齿轮的变位系数。

工程力学公式

工程力学公式

(压)扭转平面弯曲应力xsAx N )(=s Ot rpI T r r t =)(zx I My =s s txy zzy bI QS *=t Q][m ax m axs s ≤=AN ][m ax m axt t ≤=tW T ][m ax m axs s ≤=ZW M ][m ax t t ≤332016D.D R I W p t ≈==π16)1(43απ-==D R I W p t 324dI p π=对于实心圆截面:dO对于空心圆截面:)1(32)(32 4444αππ-=-=D d D I p )(Dd =αdD644dI I y z π==323dW W y z π==)1(3243απ-=DW z ybh123bh I z =62bh W z =Aa I I yC y 2+=平行移軸公式:nn (合力)(合力)P PP c n nQ剪切与挤压的实用计算[]t t ≤=AQ[]jyjyjy jy A F s s ≤=⎪⎪⎩⎪⎪⎨⎧+-=--++=αt αs s t αt αs s s s s αα2cos 2sin 22sin 2cos 22xy y x xy y x y x xy s xt xys y Os αt αα平面内的主应力yx xys s t α--=22tg 0xys xt xy s yO主单元体1s '2s ')2222xyy x y x minmax t s s s s s s +-±+=⎩⎨⎧(或3s t222x y y x minmax t s s t t +-±=⎩⎨⎧'')(045成最大剪应力面与主平面拉压扭转平面弯曲变形Lxx EA x F L L N d )()(⎰=∆ABpABGI Tl =ϕq= f ´y=fEIx M x y )()(=''qyx y∑=∆EALF L N ][m ax m axq q ≤=pGI T []njxs s=:1、容许应力},,2.0{ :2b s jx s s s s =、极限应力)εεμ'=γt =G εs =E Gijij t γ=()[]k j i i Es s μs ε+-=1),,,,(z y x k j i =(广义虎克定律)AP crcr =s 1.临界力和临界应力3.其中:2.压杆的临界应力:—惯性半径。

工程力学公式总结

工程力学公式总结

工程力学公式总结
哇塞,朋友们!今天咱就来讲讲工程力学公式总结。

你想想看,工程力学就像一个超级大宝藏,而这些公式就是打开宝藏大门的钥匙呀!
先来说说牛顿第二定律吧,F=ma,简单来说就是力等于质量乘加速度。

就好比你推一个大箱子,箱子越重,你得用更大的力才能让它动得快,这不是很明显嘛!比如小明要推动一个大柜子,累得气喘吁吁,就是因为柜子质量大,那需要的力也就大呀。

再看看胡克定律,F=kx,这就像一根弹簧,你拉它的长度变化和力是
成正比的。

你看那些蹦蹦床,人在上面跳来跳去,弹簧的伸缩不就是这个道理嘛!小红在蹦蹦床上玩得可欢了,就是因为弹簧的特性。

还有什么呢?对了,压强公式P=F/S。

压力除以受力面积就是压强啦。

你看我们踩在雪地上,有时候会陷进去,那就是我们对雪地的压强比较大呀。

要是穿上大鞋底,受力面积大了,压强就小啦,不就没那么容易陷进去了嘛。

小李穿着雪地靴在雪地里轻松行走,就是利用了这个道理呢!
还有很多很多其他的公式呢,每个公式都有它独特的用处和意义。

这些公式就像是我们解决问题的秘密武器呀,掌握了它们,我们就能在工程力学的世界里畅通无阻。

工程力学公式真的太重要啦,它们是我们探索和理解这个世界的有力工具,我们一定要好好钻研它们呀,让它们为我们的生活和工作带来更多的便利和惊喜!。

工程力学公式大全

工程力学公式大全

工程力学公式:1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []PT W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x y σσσ+='''0σ=最大切应力max '''2σστ-=±=最大正应力方位02tan 2x x yτασσ=-- 10、第三和第四强度理论:3r σ=4r σ= 11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312ZbhI=圆形的惯性矩表达式:44(1)64ZdIπα=-矩形的抗扭截面系数:26ZbhW=,圆形的抗扭截面系数:34(1)32ZdWπα=-13、平面弯曲杆件横截面上的最大切应力:maxmax*S z SZF S FKbI Aτ==14、平面弯曲杆件的强度校核:(1)弯曲正应力max[]t tσσ≤,max[]c cσσ≤(2)弯曲切应力max[]ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max[]w wl l≤,max[]θθ≤16、(1)轴向载荷与横向载荷联合作用强度:maxmax min()NZF MA Wσσ=±(2)偏心拉伸(偏心压缩):max min()NZF FA Wδσσ=±(3)弯扭变形杆件的强度计算:22222311[]r y zZM T M M TW Wσσ=+=++≤222224110.750.75[]r y zZM T M M TW Wσσ=+=++≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学公式:
1、轴向拉压杆件截面正应力N
F A
σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i
F l l EA ∆=

3、伸长率:1100%l l l δ-=
⨯断面收缩率:1
100%A A A
ψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=
5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T
R I W τ==,44(1)32
P d I πα=-,3
4(1)16
P d W πα=
-,强度校核:max
max []P
T W ττ=
≤ 6、单位扭转角:P d T
dx GI ϕθ=
=,刚度校核:max max []P
T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl
GI ϕ=
,扭转外力偶的计算公式:()(/min)
9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T
R τπδ
=
8、平面应力状态下斜截面应力的一般公式:
cos 2sin 22
2
x y
x y
x ασσσσσατα+-=
+
-,sin 2cos 22
x y
x ασστατα-=
+
9、平面应力状态三个主应力:
'2
x y
σσσ+=
,''2x y
σσσ+='''0σ=
最大切应力max '''
2
σστ-=±
=最大正应力方位02tan 2x
x y
τασσ=-
-
10、
第三和第四强度理论:3r σ=
4r σ=
11、平面弯曲杆件正应力:Z My I σ=
,截面上下对称时,Z
M
W σ=
矩形的惯性矩表达式:
3
12
Z
bh
I=圆形的惯性矩表达式:
4
4
(1)
64
Z
d
I
π
α
=-
矩形的抗扭截面系数:
2
6
Z
bh
W=,圆形的抗扭截面系数:
3
4
(1)
32
Z
d
W
π
α
=-
13、平面弯曲杆件横截面上的最大切应力:max
max
*
S z S
Z
F S F
K
bI A
τ==
14、平面弯曲杆件的强度校核:(1)弯曲正应力
max
[]
t t
σσ
≤,
max
[]
c c
σσ

(2)弯曲切应力
max
[]
ττ
≤(3)第三类危险点:第三和第四强度理论
15、平面弯曲杆件刚度校核:叠加法max[]
w w
l l
≤,
max
[]
θθ

16、(1)轴向载荷与横向载荷联合作用强度:max
max min
()N
Z
F M
A W
σσ=±
(2)偏心拉伸(偏心压缩):
max min
()N
Z
F F
A W
δ
σσ=±
(3)弯扭变形杆件的强度计算:
22222
3
11
[]
r y z
Z
M T M M T
W W
σσ
=+=++≤
22222
4
11
0.750.75[]
r y z
Z
M T M M T
W W
σσ
=+=++≤。

相关文档
最新文档