八年级数学上册全套讲义带答案

合集下载

新人教版八年级上册数学培优讲义(全套15讲)

新人教版八年级上册数学培优讲义(全套15讲)

第一讲 三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线. 2.知道三角形两边的和大于第三边,两边之差小于第三边. 3.了解与三角形有关的角(内角、外角) . 4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和. 5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x ,9,则x 的取值范围是______________,周长l 的取值范围是______________ ;当周长为奇数时,x =______________.【变式题组】1.若△ABC 的三边分别为4,x ,9,且9为最长边,则x 的取值范围是______________,周长l 的取值范围是______________.2.设△ABC 三边为a ,b ,c 的长度均为正整数,且a <b <c ,a +b +c =13,则以a ,b ,c 为边的三角形,共有______________个.3.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是( ). A .1 B .2 C .3 D .4【例2】已知等腰三角形的一边长为18cm ,周长为58cm ,试求三角形三边的长.【变式题组】1.已知等腰三角形两边长分别为6cm ,12cm ,则这个三角形的周长是( )A .24cmB .30cmC .24cm 或30cmD .18cm2.已知三角形的两边长分别是4cm 和9cm ,则下列长度的四条线段中能作为第三条边的是( )A .13cmB .6cmC .5cmD .4cm3.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________. 【例3】如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC=1cm 2,则S △ABC =______________.GFE DBAC1.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.2.如图,点D 是等腰△ABC 底边BC 上任意一点,DE ⊥AB 于E ,DF ⊥AC 于F ,若一腰上的高为4cm ,则DE +DF =______________.3.如图,已知四边形ABCD 是矩形(AD >AB ) ,点E 在BC 上,且AE =AD ,DF ⊥AE 于F ,则DF 与AB的数量关系是______________.【例4】已知,如图,则∠A +∠B +∠C +∠D +∠E =______________.【变式题组】1.如图,则∠A +∠B +∠C +∠D +∠E =______________.2.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.3.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.【例5】如图,已知∠A =70°,BO 、CO 分别平分∠ABC 、∠ACB .则∠BOC = ______________.(第1题图)FE DBA C(例4题图)BDACE(第3题图)A BCDE FOBA C(第2题图)FEBCAD (第3题图)FDBCA E(第2题图)ABFE D C(第1题图)ABEDC1.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC =______________.3.如图,∠O =140°,∠P =100°,BP 、CP 分别平分∠ABO 、∠ACO ,则∠A =______________.【例6】如图,已知∠B =35°,∠C =47°,AD ⊥BC ,AE 平分∠BAC ,则∠EAD =______________.【变式题组】 1.(改)如图,已知∠B =39°,∠C =61°,BD ⊥AC ,AE 平分∠BAC ,则∠BFE=__________.2.如图,在△ABC 中,∠ACB =40°,AD 平分∠BAC ,∠ACB 的外角平分线交AD 的延长线于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由.*【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【变式题组】1.如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.(第1题图)OBA C(第3题图)P OBA C(例6题图)E DAB C(第2题图)DE PC AG B F (第1题图)F E DAB C C'B'A BC2.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=______________.(∠AOB =90°,∠B =30°)3.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=______________.演练巩固·反馈提高1.如图,图中三角形的个数为( )A .5个B .6个C .7个D .8个2.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .不确定 3.有4条线段,长度分别是4cm ,8cm ,10cm ,12cm ,选其中三条组成三角形,可以组成三角形的个数是( )A .1个B .2个C .3个D .4个 4.下列语句中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一个外角等于这个三角形的两个内角的和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角5.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 6.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定7.如果等腰三角形的一边长是5cm ,另一边长是9cm ,则这个三角形的周长是______________.8.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________. 9.如图,在△ABC 中,∠A =42°,∠B 与∠C 的三等分线,分别交于点D 、E ,则∠BDC 的度数是______________.(第1题图)α22°OBMA(第2题图)B'A'AO B(第3题图)αEDCBAE D AB CF G10.如图,光线l 照射到平面镜上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55,∠γ=75°,∠β=______________.11.如图,点D 、E 、F 分别是BC 、AD 、BE 的中点,且S △EFC =1,则S △ABC =______________. 12.如图,已知: ∠1=∠2,∠3=∠4,∠BAC =63°,则∠DAC =______________. 13.如图,已知点D 、E 是BC 上的点,且BE =AB ,CD =CA ,∠DAE =13∠BAC ,求∠BAC 的度数培优升级·奥赛检测1.在△ABC 中,2∠A =3∠B ,且∠C -30°=∠A +∠B ,则△ABC 是( )A .锐角三角形B .钝角三角形C .有一个角是30°的直角三角形D .等腰直角三角形 B . C .2.已知三角形的三边a 、b 、c 的长都是整数,且a ≤b ≤c ,如果b =7,则这样的三角形共有( )A .21个B .28个C .49个D .54个 3.在△ABC 中,∠A =50°,高BE 、CF 交于O 点,则∠BOC =______________. 4.在等腰△ABC 中,一腰上的高与另一腰的夹角为26°,则底角的度数为______________. 5.如图,BP 平分∠ABC 交CD 于点F ,DP 平分∠ADC 交AB 于点E ,若∠A =40°,∠C =38°,则∠P = ______________.6.如图,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为(0,a )和(9,a ).点E 在AB 上 ,且AE =13AB .点F 在OC 上 ,且OF =13OC ,点G 在OA 上,且使△GEC 的面积为16,试求α的值.(第9题图)D EBACxy EBG FOCAγβα(第10题图)ⅡⅠ(第11题图)FE DABC(第13题图)D E ABC4321(第12题图)DBA CG FE PAB CDBACDEF 7.如图,已知四边形ABCD 中,∠A +∠DCB =180°,两组对边延长后分别交于P 、Q 两点,∠P 、∠Q 的平分线交于M ,求证PM ⊥QM .第二讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( )A .5对B .4对C .3对D .2对【变式题组】 1.(武汉2011)下列判断中错误的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 MQPABCDA F C ED B 2.(黄冈)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【变式题组】1.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( )A .2B .3C .4D .52.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. AE第1题图A BCDEBCDO第2题图A BC DO F E A C E F B D3.(孝感2013)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【变式题组】1.(绍兴2013)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58°2.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF3.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.EFB AB P D EC第1题图ACDG 第2题图B (E )OC F 图③FA B C DE FAB (E )C DDA图②图①AFECB DA B C D F E【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【变式题组】 1.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .2.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am3.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE的面积为__________AECBA 75° C45° BNM第2题图第3题图DBF AC E NMPDD A CB FE21ABC P Q EF D1.(海南2011)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°2.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°3.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 4.(武汉2012)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°5.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( ) A . △ABE ≌△CBD B . ∠ABE =∠CBD C . ∠ABC =∠EBD =45° D . AC ∥BE6.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对7.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.8.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB的度数为_______.9.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______E2 1N AB DC 第5题图ABCDEAB CD第4题图第6题图M第3题图第1题图C AO D BP第2题图ACA /B B /a αcca50° b72° 58°D C10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____.11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .D A C .QP.B第10题图AB CDE 第9题图EABC D ABC DEF O C AEBD 第7题图第8题图D B A CE FA EB F DC BD E C l AAEF C DB 培优升级·奥赛检测1.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( )A .4对B .5对C .6对D .7对2.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③3.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC4.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等5.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 6.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)7.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.8.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线. 求证:AC =2AE .AB E D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFC D 第1题图B第2题图第3题图4321NM ABO DP A D EG CHBA EB DC 9.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC=∠EAD .求证:∠CED =90°.10.如图,AB =AD ,AC =AE ,∠BAD =∠CAE =180°. AH ⊥AH 于H ,HA 的延长线交DE 于G. 求证:GD=GE .第三讲 角平分线的性质与判定考点·方法·破译1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上. 3.有角平分线时常常通过下列几种情况构造全等三角形.经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PNP CA B MN M N A B D C P E D A BC D CA B 321FEDCAB 1.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.2.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果∠D =120°,求∠B 的度数【变式题组】1.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACD CBDSS ∆∆2.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BDD E C A B DF E B A C第1题图D C B A第2题图D B CA E P 第3题图Q S R PBA C 第4题图E F B D A C 第5题图E B C A 1.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .2.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .演练巩固·反馈提高1.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( )A .13mn B .12mn C . mn D .2 mn2.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC=∠PCB .其中正确的结论个数有( )个 A . 1 B .2 C .3 D .43.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( ) A . ①③ B .②③ C .①② D .①②③4.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( ) A .②③ B .②④ C .②③④ D .①②③④ 5.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( ) A .50° B .45° C .40° D .35°6.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )第6题图F ED PA B C 第7题图P ABCE F 第8题图DABC E第9题图ED C AB 第10题图K NMQ CBA F BDE C A OFE D A B Cl 1l 2DC FG E P AB C D E O B A 7.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P8.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个9.如图,△ABC 中,∠C =90°AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD 平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( ) A .3个 B .2个 C .1个 D .4个10.如图,已知BQ 是∠ABC 的内角平分线,CQ 是∠ACB 的外角平分线,由Q 出发,作点Q 到BC 、AC和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________ 11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD ⊥EF .培优升级·奥赛检测1.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( ) A .一处 B .二处 C .三处 D .四处2.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :CD =9:7,则D 到AB边的距离为( ) A .18 B .16 C .14 D .123.如图,△ABC 中,∠C =90°,AD 是△ABC 的平分线,有一个动点P 从A 向B 运动.已知:DC =3cm ,DB =4cm ,AD =8cm .DP 的长为x (cm ),那么x 的范围是__________GPF E DCBAPD AB C Q P C B A4.如图,已知AB ∥CD ,PE ⊥AB ,PF ⊥BD ,PG ⊥CD ,垂足分别为E 、F 、G ,且PF =PG =PE ,则∠BPD=__________5.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的平分线的交点,OE ⊥AC ,且OE =2,则两平行线AB 、CD间的距离等于__________ 6.如图,AD 平分∠BAC ,EF ⊥AD ,垂足为P ,EF 的延长线于BC 的延长线相交于点G .求证:∠G =12(∠ACB -∠B )7.如图,在△ABC 中,AB >AC ,AD 是∠BAC 的平分线,P 为AC 上任意一点.求证:AB -AC >DB -DC8.如图,在△ABC 中,∠BAC =60°,∠ACB =40°,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线上.求证:BQ +AQ =AB +BP第四讲 轴对称及轴对称变换考点·方法·破译1.轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:①关于某直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.线段垂直平分线平分.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.当已知条件中出现了等腰三角形、角平分线、高(或垂线)、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐”图形,集中条件.经典·考题·赏析【例1】(兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【变式题组】1.将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是()2.(荆州)如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为()【例2】(襄樊)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A’B’C’,则与点B’关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)【变式题组】1.若点P(-2,3)与点Q(a,b)关于x轴对称,则a、b的值分别是()A.-2,3 B.2,3 C.-2,-3 D.2,-32.在直角坐标系中,已知点P(-3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是___________.3.(荆州)已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范【例3】如图,将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B1处,若∠ACB1=70°,则∠ACD=()A.30°B.20°C.15°D.10°【变式题组】1.(孝感)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D’、C’的位置.若∠EFB=65°,则∠AED’等于()A.70°B.65°C.50°D.25°2.如图,△ABC中,∠A=30°,以BE为边,将此三角形对折,其次,又以BA为边,再一次对折,C点落在BE上,此时∠CDB=82°,则原三角形中∠B=___________.【例4】如图,在△ABC中,AD为∠BAC的平分线,EF是AD的垂直平分线,E为垂足,EF交BC的延长线于点F,求证:∠B=∠CAF.【变式题组】1.如图,点D在△ABC的BC边上,且BC=BD+AD,则点D在__________的垂直平分线上.2.如图,△ABC中,∠ABC=90°,∠C=15°,DE⊥AC于E,且AE=EC,若AB=3cm,则DC=___________cm.3.如图,△ABC中,∠BAC=126°,DE、FG分别为AB、AC的垂直平分线,则∠EAG=___________.4.△ABC中,AB=AC,AB边的垂直平分线交AC于F,若AB=12cm,△BCF的周长为20cm,则△ABC的周长是___________cm.【例5】(荆州)如图,在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面的备用图中画出所有这样的△DEF.【变式题组】1.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有___________个.2.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:⑴涂黑部分的面积是原正方形面积的一半;⑵涂黑部分成轴对称图形。

人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)

人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)

第7讲 全等三角形的综合、角平分线⑴平移全等型⑵ 对称全等型⑶ 旋转全等型⑴、角平分线上的点到角的两边的距离相等; ⑵、到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,ABOPPOBAABOP角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.考点1、三角形全等综合1、如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L 上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQ C.MO D.MQ(1)(2)3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35cm,点B与点O的垂直距离AB长是20cm,在点O处作一直线平行于地面,在直线上截取OC=35cm,过C作OC的垂线,在垂线上截取CD=20cm,连接OD,然后,沿着D0的方向打孔,结果钻头正好从点B处打出.这是什么道理?4、1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q 处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点0处,让士兵丈量他所站立位置B与0点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?请说明理由.用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?5、某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有______;(2)请你选择一可行的方案,说说它可行的理由.1、已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.2、已知:如图,AB=CD,BC=DA,AE=CF.求证:BF=DE.3、如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。

人教版八年级上册数学全册同步讲义

人教版八年级上册数学全册同步讲义
三角形的一个顶点与它的对边中点的连线叫三角形的中线.
三角形的中线的数学语言:
如图3,AD是ΔABC的中线或AD是ΔABC的BC边上的中线或
BD=CD= BC。AD是ΔABC的中线 BD=CD= BC。
要点诠释:
①三角形的中线是线段;
②三角形三条中线全在三角形内部;
③三角形三条中线交于三角形内部一点,这一点叫三角形的重心.
外角和定理的应用:(1)已知外角度数,求正多边形边数;(2)已知正多边形边数,求外角度数.知识点三:镶嵌
(一)平面镶嵌的定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(或平面镶嵌).
(二)镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形.
(3)有一个角是钝角的三角形是钝角三角形;(4)有一个角是直角的三角形是直角三角形;
(5)有一个角是锐角的三角形是锐角三角形.其中正确的说法有____________.
题型二 三角形三边的关系
例题2.以下列各组线段为边,能组成三角形的是( )
A.2cm, 3cm, 5cm B.1cm, 11cm, 11cm C.5cm, 8cm, 2cm D.三边之比为5:10:4
5.如果线段a,b,c能组成三角形,那么,它们的长度比可能是( )
A、1∶2∶4 B、1∶3∶4 C、3∶4∶7 D、2∶3∶4
6.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( )
A、5 B、6 C、7 D、8
二、填空题
1.如图4,图中所有三角形的个数为,在△ABE中,AE所对的角是,∠ABC所对的边是,AD在△ADE中,是的对边,在△ADC中,是的对边;
2.如图5,已知∠1=0.5∠BAC,∠2 =∠3,则∠BAC的平分线为,∠ABC的平分线为;

八年级数学上册全套讲解-带答案

八年级数学上册全套讲解-带答案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟) 总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△,读作“三角形”,它的边分别是,,(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△,△,△,△,△,以E为顶点的三角形是△,△,△,以∠D为角的三角形是△,△,以为边的三角形是△,△.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6,求其他两边的长.解:(1)设底边长为x,则腰长为3x,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4,12,12.(2)设另一边长为x,依题意得,当6为底边时,2x+6=28,∴x=11;当6为腰长时,x +2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6的等腰三角形,∴其他两边的长为11,11.探究2某同学有两根长度为40,90的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40,50,60,90,130)解:设第三根木条长为x,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60或90.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△,△,△;以为边的三角形有△,△,△.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3,一条边等于6,则它的周长为15.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,是△的边上的高,则有∠=∠=90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,是△的边上的中线,则有==;总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,是△的角平分线,则有∠=∠=∠;总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△中,是中线,是角平分线,是高,则:(1)∵是△的中线,∴==;(2)∵是△的角平分线,∴∠=∠=∠;(3)∵是△的高,∴∠=∠=90°;(4)∵是△的中线,∴=,又∵S△=·,S△=·,∴S△=S△.点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2如图,△中,=2,=4,△的高与的比是多少?解:∵·=·,=2,=4,∴=2,∴∶=1∶2.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C)A.直线B.射线C.线段D.射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B)A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D)A.中线B.高C.角平分线D.以上都正确4.如图,D,E是边的三等分点:(1)图中有6个三角形,是三角形中边上的中线,是三角形中边上的中线,===,==;(2)S△=S△=S△=S△;(3)S△=S△=S△.(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n边形(n>3)最少需要加(n-3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2等腰三角形一腰上的中线将此等腰三角形分成9,15两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x,底边长为y,依题意得,当x>y时,解得当x<y时,解得∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24().答:此等腰三角形的周长为24.点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C)A.梯形B.长方形C.三角形D.正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知,分别是△的中线、高,且=5,=3,则△与△的周长之差为2;△与△的面积关系是相等.5.如图,D是△中边上的一点,∥交边于E,∥交边于F,且∠=∠.求证:是△的角平分线.证明:∵∥,∥,∴∠=∠,∠=∠,又∵∠=∠,∴∠=∠,∴是△的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长到点D,过点B作∥,∵∥,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠=180°,∴∠A+∠+∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作∥,可证得∥,同时将∠分成∠与∠,求出这两个角的度数,就能求出∠.解:过点C作∥,∵∥,∴∥,∵∥,∥,∴∠=∠=50°,∠=∠=40°,∴∠=∠+∠=50°+40°=90°,∵∠=∠-∠=80°-50°=30°,∴∠=180°-∠-∠=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠是60°,从C岛看A,B两岛的视角∠是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2如图,在△中,与交于点G,与的延长线交于点F,∠B=45°,∠F=30°,∠=70°,求∠A的度数.解:在△中,∠=180°-∠-∠F=180°-70°-30°=80°,∴∠=180°-∠=180°-80°=100°,在△中,∠A=180°-∠B-∠=180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△中,∠A=35°,∠B=43°,则∠C=102°.3.在△中,∠A∶∠B∶∠C=2∶3∶4,则∠A=40°,∠B=60°,∠C=80°.4.在△中,如果∠A=∠B=∠C,那么△是什么三角形?解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A +3∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“△”表示,直角三角形可以写成△.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在△中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:△中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠=90°,⊥,垂足为D,∠与∠B有什么关系?为什么?解:结论:∠=∠B.理由如下:在△中,∠A+∠B=90°,在△中,∠A+∠=90°,∴∠=∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C=90°,∠=∠B,△是直角三角形吗?为什么?解:结论:△是直角三角形.理由如下:在△中,∠A+∠B=90°(直角三角形的两个锐角相等).∵∠=∠B,∴∠A+∠=90°,∴△是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,∥,,分别平分∠,∠.求证:△是△.证明:∵∥,∴∠+∠=180°,∵,分别平分∠,∠,∴∠=∠,∠=∠,∴∠+∠=∠+∠=90°,∴△是△(有两个角互余的三角形是直角三角形).探究2如图,在△中,∠C=90°,,是∠,∠的角平分线,求∠D的度数.解:在△中,∠+∠=90°,∵,是∠,∠的角平分线,∴∠=∠,∠=∠,∴∠+∠=∠+∠=45°,在△中,∠D=180°-(∠+∠)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.在△中,∠A∶∠B∶∠C=1∶2∶3,则此三角形是直角三角形.2.如图,在△中,∠=90°,∠=∠B.求证:△是△.证明:在△中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠=∠B,∴∠A+∠=90°,∴△是△(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△的边延长到D,我们把∠叫做三角形的外角.思考:①在△中,除了∠外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△共有6个外角;③外角∠与内角∠的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△中,∠A=70°,∠B=60°,∠是△的一个外角.能由内角∠A,∠B求出外角∠吗?如果能,外角∠与内角∠A,∠B有什么关系?认真思考,完成下面的填空:(1)∠=50°,∠=130°,∠A+∠B=130°,∠=∠A+∠B;(填“>”“<”或“=”)(2)∠>∠A,∠>∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△的外角有∠,∠,∠,以∠为外角的三角形是△,△.2.如图,∠1,∠2,∠3是△不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠+∠,∠2=∠+∠,∠3=∠+∠,∴∠1+∠2+∠3=2(∠+∠+∠),∵∠+∠+∠=180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△中,∠A=α,△的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=α+90°;②β=α;③β=90°-α.证明:(略)探究2如图,∠A=50°,∠B=40°,∠C=30°,求∠的度数.解:连接并延长到点E,∵∠=∠B+∠,∠=∠C+∠,又∵∠=∠+∠,∴∠=∠B+∠+∠C+∠=∠+∠B+∠C=50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C)A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C)A.90°B.110°C.100°D.120°3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.,第3题图),第4题图) 4.如图,∥,∠B=50°,∠C=75°,求∠A的度数.解:∵∥,∴∠=∠C,∵∠=∠B+∠A,∴50°+∠A=75°,∴∠A=25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m边形的一个顶点有7条对角线,n边形没有对角线,求的平方根.解:由题意可得m-3=7,∴m=10,n=3,∴±=±.探究2:填表顶点数一个顶点可引的对角线条数对角线总共条数过一个顶点可分成三角形个数四边形 4 1 2 2五边形 5 2 5 3六边形 6 3 9 4……………n边形n n-3 n-2学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D)A.直角三角形B.等腰三角形C.长方形D.正方形2.过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n边形,依题意得=4n,∵n≥3且为整数,∴n=11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:多边形三角形四边形五边形六边形…n边形一个顶点可引的对角线条数0 1 2 3 …n-3所引对角线分成三角形的个数 1 2 3 4 …n-2三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.总结归纳:n边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1(1)一个多边形的内角和是外角和的一半,它是几边形?(2)一个多边形的内角和是外角和的2倍,它是几边形?解:(1)设它是n边形,则有180°·(n-2)=×360°,∴n=3.(2)设它是n边形,则有180°·(n-2)=2×360°,∴n=6.探究2如图,六边形的内角都相等,∠=60°,与有怎样的位置关系?与有这种关系吗?解:结论:∥,∥.证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.解:设这个边多形的边数为n,则有180°(n-2)=2×180°×(5-2),∴n=8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△与△能重合,则记作△≌△,读作△全等于△,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:与,与,与;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图)3.如图,△≌△,C和B,A和D是对应顶点,相等的边有=,=,=,相等的角有∠A=∠D,∠C=∠B,∠=∠.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△≌△,若=3,=4,=6.则△的周长为13;若∠C=110°,∠A=30°,则∠=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△≌△,A和D,B和E,C和F是对应顶点,与,与,与是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△是△经过平移得到的.②△≌△,A和D,B和B,C和C是对应顶点,与,与,与是对应边,∠A与∠D,∠与∠,∠与∠是对应角,△是△沿所在直线向下翻折得到的.③△≌△,A和A,B和E,C和D是对应顶点,与,与,与是对应边,∠与∠,∠B与∠E,∠C与∠D是对应角,△是△绕点A旋转180°得到的.探究2如图,△≌△,=,=,且点B,E,C,F在同一条直线上.(1)求证:=,∥;(2)若∠D+∠F=90°,试判断与的位置关系.解:(1)证明:∵△≌△,∴=,∠=∠,∴∥,-=-,∴=.(2)结论:⊥.证明:∵△≌△,∴∠A=∠D,∠=∠F,∵∠D+∠F=90°,∴∠A+∠=90°,∴∠B=90°,∴⊥.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△≌△,求证:∥.证明:∵△≌△,∴∠=∠,∴∥.2.如图,△≌△,∠=∠,∠B=∠C,指出其他的对应边和对应角.解:对应边有与,与,与,对应角有∠=∠.(3分钟)找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(1)1.掌握三角形全等的判定(),掌握简单的证明格式.2.初步体会尺规作图.重、难点:掌握三角形全等的判定().一、自学指导自学1:自学课本P35-36页“探究1,探究2及例1”,掌握三角形全等的判定条件,并掌握简单的证明格式,了解三角形的稳定性,完成填空.(7分钟)画△:①使=3;②使=3,=4;③使=3,=4,=5;④使∠A=30°;⑤使∠A=30°,∠B=50°;⑥使∠A=30°,∠B=50°,∠C=100°.每画完一个,与同桌画的三角形对比一下,形状与大小是一样的吗?总结归纳:(1)已知三角形的一个或两个元素,三角形的形状和大小不能确定,三个角相等的三角形形状确定,但大小不确定.(2)三边分别相等的两个三角形全等,简写成边边边或.(3)三角形三边的长度确定了,这个三角形的形状、大小也就确定了.自学2:自学课本P36-37页“探究与例题”,利用尺规作图画一个角等于已知角,初步体会尺规作图.(3分钟)。

【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

分式方程及其应用(讲义)➢课前预习1.请回顾相关知识,填空:2.回忆并背诵应用题的处理思路,回答下列问题:(1)理解题意,梳理信息.梳理信息的主要手段有_______________________________.(2)建立数学模型.建立数学模型要结合不同特征判断对应模型,如:①共需.同时.刚好.恰好.相同……,考虑___________;②不超过.不多于.少于.至少……,考虑_____________. (3)求解验证,回归实际.主要是看结果是否_________________. ➢ 知识点睛1. 分式方程的定义:__________________的方程叫做分式方程.2. 解分式方程:根据________________,把分式方程转化为__________求解,结果必须_______,因为解方程的过程中有可能产生______. 增根产生的原因是方程两边同乘了一个_________________.3. 列分式方程解应用题,也要进行___________.➢ 精讲精练1. 下列关于x 的方程是分式方程的有__________.(填写序号)①315x -=;②x x π=π;③11123x y -=;④1152x x +=+;⑤11x a b =-. 2. 已知方程2512kx x +=+的解为1x =,则k =_________.3. 解分式方程:(1)2115225x x x ++=--; (2)100602020x x=+-; (3)3201(1)x x x x +-=--; (4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.4. 对于分式方程,下列说法一定正确的是( )A .只要是分式方程,一定有增根B .分式方程若有增根,把增根代入最简公分母,其值一定为0C .使分式方程中分母为零的值,都是此方程的增根D .分式方程化成整式方程,整式方程的解都是原分式方程的解5. 若分式方程1322m x x x -=---有增根,则m 的值为( ) A .2 B .3 C .1 D .1-6. 若分式方程11222kx x x-+=--有增根,则k 的值为( ) A .2- B .1- C .1 D .27. 若分式方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-8. 若分式方程342(2)a x x x x =+--有增根,则增根可能为( ) A .0 B .2 C .0或2 D .19. 某校用420元钱到商店购买笔记本,经过还价,每本便宜0.5元,结果多买了20本,则原价每本多少元?设原价每本x 元,则由题意列出的方程为( )A .420420200.5x x -=- B .420420200.5x x -=- C .4204200.520x x -=-D .4204200.520x x-=-10. 已知A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.若水流速度为4千米/时,设该轮船在静水中的速度为x 千米/时,则由题意列出的方程为( ) A .4848944x x +=+-B .4848944x x +=+- C .4849x+=D .9696944x x +=+-11. 为保证某高速公路在2016年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲.乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程为( )A .111104014x x x +=--+ B .111104014x x x +=++- C .111104014x x x -=++- D .111101440x x x +=-+- 12. 某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?13.公交快速通道开通后,小王上班由骑电动车改为乘坐公交车.已知小王家距上班地点9千米,他用乘公交车的方式平均每小时行驶的路程比他用骑电动车的方式平均每小时行驶的路程的1.5倍还多5千米,他从家出发到达上班地点,乘公交车方式所用时间是骑电动车方式所用时间的4.小王用骑电动车方式上班平均每7小时行驶多少千米?【参考答案】➢课前预习1.等式,消元不等号,不等式2.(1)列表,画线段图或示意图(2)①方程模型;②不等式模型(3)符合实际情况➢知识点睛1.分母中含有未知数2.等式的基本性质,整式方程,检验,增根使分母为零的整式3.检验➢精讲精练1.②④2.-13.(1)4x=3(2)5x=(3)无解(4)无解(5)无解(6)x=14.B5.C6.C7.B8.A9.B10. A11. B12. (1)第一次每支铅笔的进价是4元(2)每支售价至少是6元13.小王用骑电动车方式上班平均每小时行驶20千米分式方程及其应用(习题)➢ 例题示范 例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h , 由题意得,1201200.51.2x x =-解得,x =40经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h . ➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a ba x a++= B .xa b x b a +=-11 C .bx a a x 1-=+ D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( )A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++= C .解这个整式方程,得1x = D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( ) A .1515112x x -=+ B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A,B两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2)43x = (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装8. 商厦共盈利90260元分式方程及其应用(随堂测试)1. 下列关于x 的方程:①2103x -=;②x x 3=π-1;③31πy x -=;④13+4x=; ⑤11x a b =-;⑥2153x x x -=--. 其中属于分式方程的是________________.(填序号) 2. 解方程:214111x x x +-=--.3. 如果解关于x 的分式方程1132x k x x+-=--出现了增根,那么增根是_________,k 的值是________.【参考答案】 1. ②④⑥2. x =1是原方程的增根,原分式方程无解3.2x =,4. 1。

八年级(上)数学讲义2及答案.doc

八年级(上)数学讲义2及答案.doc

勾股定理及其逆定理(二)本章内容:1.勾股定理的逆定理:如果三角形的三边长4、b、C有下面关系:a2+b2= c2,那么这个三角形是直角三角形。

注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。

1.用勾股定理的逆定理判定一个三角形是否是直角三角形的步骤:(1)首先求出最大边(如c);(2)验证a2+b2与是否具有相等关系;若卜皿,则ZXABC是以ZC=90°的直角三角形。

若d H/+方2,则AABC不是直角三角形。

2.直角三角形的判定方法小结:(1)三角形屮有两个角互余;(2)勾股定理的逆定理;3.紧记一些常用的勾股数,将为我们应用勾股定理逆定理带来方便,如3、4、5; 5、12、13; 6、8、10; 12、16、20 等。

典型例题:例1.在RtAABC屮,ZC = 90° , CD丄AB 于D,求证:AB2 = AD2 -^-DB2 +2CD2 (2) CD2 = AD DB分析:在图中有AABC、MDC与ABCD三个直角三角形,利用勾股定理可以求证。

证明:例2、已知\ABC中,AB = 5cm, BC=\2cm, AC=l3cm,求AC边上的高线的长。

分析:首先通过所给的三角形的三边长,判断出所求高线长的三角形为直角三角形, 并且要求的为斜边上的高线,通过勾股定理可解,未知量可用方程的思想求得。

例3•已知:如图,△肋C中,AB=AC, D为BC上任一点、,求证:AE—Alf=BD・ DC思路分析:通常遇到等腰三角形问题,都是作底边上的高转化为直角三角形,再按解直角三角形的思路探索。

本例首先作AELBC于/便出现两个全等的直角三角形。

例4•如图,已知四边形加匕9的四边AB、BC、CD和刃的长分别为3、4、13、12, Z伽二90° , 求S四边形ABCD例5、在正方形初CZ?中,尸为%的中点,F为力上一点,且兀二-BC,4求证:AEFA二90°分析:通过图形结构和求证本题思路I•分明显,就是要找RtA,那就是要通过勾股定理逆泄理来完成。

八年级数学上册 三角形综合应用(讲义及答案)

八年级数学上册 三角形综合应用(讲义及答案)

三角形综合应用(讲义)知识点睛在三角形背景下处理问题的思考方向: 1. 三角形中的隐含条件是:边:_______________________________________________. 角:①______________________________________________;②_____________________________________________.2. 角平分线出现时,为了计算方便,通常采用__________解决问题.3. 高线出现时考虑__________或__________.精讲精练1. 现有3 cm ,4 cm ,7 cm ,9 cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( ) A .1个B .2个C .3个D .4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( ) A .5B .6C .7D .103. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 4. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.C 21AABCD E第4题图 第5题图5. 如图,一个五角星的五个角的和是________.6. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第2题图FEBA7. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1PNMABC D OO DCBA8. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FA PP A CE图1 图2 图39. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O CM AND A第9题图 第10题图10. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________; (2)若AB =2,BC =3,则AC :AD =____________.11. 如图,在△ABC 中,若AB =2 cm ,AC =3 cm ,BC =4 cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C EAF 12. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D PCEFA【参考答案】知识点睛1. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 2. 设元 3. 互余,面积 精讲精练 1. B 2. C3.①③⑤4.130°5.180°6.360°7.(1)∠A+∠D=∠B+∠C;(2)3;(3)35°;(4)12(α+β)8.(1)∠P=90°+12∠A;(2)∠P=12∠A;(3)∠P=90° 12∠A9.(1)90°(2)∠BOD=∠COE10.(1)245(2)3:211.3:4:612.(1)72(2)证明略三角形综合应用(讲义)知识点睛在三角形背景下处理问题的思考方向:4.三角形中的隐含条件是:边:_______________________________________________.角:①______________________________________________;②_____________________________________________.5.角平分线出现时,为了计算方便,通常采用__________解决问题.6.高线出现时考虑__________或__________.精讲精练13.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个14.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A.5 B.6 C.7 D.1015.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号).第2题图16. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.C 21AABCD E第4题图 第5题图17. 如图,一个五角星的五个角的和是________. 18. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.FEBA19. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1PNMABC D OO DCBA20. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C ABFPA PPA CE图1 图2 图321. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O CM AND A第9题图 第10题图22. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________; (2)若AB =2,BC =3,则AC :AD =____________.23. 如图,在△ABC 中,若AB =2 cm ,AC =3 cm ,BC =4 cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C EAF 24. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D PEFA【参考答案】知识点睛4.三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和.5.设元6.互余,面积精讲精练13.B14.C15.①③⑤16.130°17.180°18.360°19.(1)∠A+∠D=∠B+∠C;(2)3;(3)35°;(4)12(α+β)20.(1)∠P=90°+12∠A;(2)∠P=12∠A;(3)∠P=90° 12∠A21.(1)90°(2)∠BOD=∠COE22.(1)245(2)3:223.3:4:624.(1)72(2)证明略。

人教版八年级上数学精编讲义

人教版八年级上数学精编讲义

第十一章全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180得到的;平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。

沪科版八年级数学上册期末复习讲义(含答案)

沪科版八年级数学上册期末复习讲义(含答案)

期末复习(一) 平面直角坐标系01 知识结构图02 重难点突破重难点1 平面直角坐标系中点的坐标特征【例1】 (长沙中考)若点P(2m +1,3m -12)在第四象限,则m 的取值范围是(C )A .m <13B .m >-12C .-12<m<13D .-12≤m<13根据点所在的位置和平面直角坐标系内点的坐标特征,构建方程或不等式(组)求解即可.1.(淮北月考)若点P(a +1,1-2a)在x 轴上,则a 的取值为(B ) A .a =-1 B .a =12C .a =2D .a =-1或a =122.(济宁中考)已知点P(x ,y)位于第四象限,并且x ≤y +4(x ,y 为整数),写出一个符合上述条件的点P 的坐标(1,-2)(答案不唯一).3.(阜阳颍东区期末)已知点P(2,-6)到x轴的距离为a,到y轴的距离为b,则a-b=4.重难点2建立坐标系表示点的坐标【例2】(蚌埠段考)象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘.如果“帅”坐标是(0,1),“卒”坐标是(2,2),那么“马”坐标是(C)A.(-2,1)B.(2,-2)C.(-2,2)D.(2,2)根据点的坐标建立坐标系的方法:若(a,b)是某坐标系中的点,当a>0(a<0)时,向左(向右)|a|个单位长度的铅直线即为y轴;当b>0(b<0)时,向下(向上)|b|个单位长度的水平线即为x轴.4.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为(C) A.(0,3) B.(2,3) C.(3,2) D.(3,0)第4题图第5题图5.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是(B)A.景仁宫(4,2) B.养心殿(-2,3)C.保和殿(1,0) D.武英殿(-3.5,-4)重难点3图形在坐标系中的平移【例3】(大连中考)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A′B′.已知A′的坐标为(3,-1),则点B′的坐标为(B)A.(4,2) B.(5,2) C.(6,2) D.(5,3)图形中任意一点的平移方向和距离都与图形的平移保持一致,所以我们可以通过图形上某一点的坐标变化确定出图形的平移方向和距离,从而确定其他点平移后对应点的坐标.6.(亳州高炉学校期末)点P(x,y)平移后得到点P′(x+1,y-2),其平移的方式是(D)A.先向左平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向下平移2个单位长度C.先向右平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度7.(兰州中考)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则点B1的坐标为(B)A.(1,2)B.(2,1)C.(1,4)D.(4,1)重难点4坐标系中的对称问题【例4】(广西中考)已知△ABC在平面直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于x轴对称,那么点B的对应点B′的坐标为(C)A.(-1,4) B.(1,-4)C.(-1,-4) D.(-4,1)点M(x,y)关于x轴对称的点的坐标为(x,-y),关于y轴对称的点的坐标为(-x,y).8.(海南中考)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是(B) A.(-3,2) B.(2,-3)C.(1,-2) D.(-1,2)第8题图第9题图9.如图,在平面直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是-2.重难点5坐标系中的规律探索问题【例5】在平面直角坐标系中,横坐标、纵坐标都为整数的点叫做整点.如图,设坐标轴的单位长度为1 cm,整点P从原点O出发向右或向上运动,速度为1 cm/s,则点P运动1 s后可以到达(0,1),(1,0)两个整点;它运动2 s后可以到达(2,0),(1,1),(0,2)三个整点;运动3 s后它可以到达(3,0),(2,1),(1,2),(0,3)四个整点;….问:(1)当整点P从点O出发4 s后可以到达的整点是(4,0),(3,1),(2,2),(1,3),(0,4);(2)当整点P从点O出发8 s后,在平面直角坐标系中描出它所能到达的整点,并顺次连接这些整点;(3)当整点P从点O出发14s后可到达整点(9,5)的位置.【思路点拨】由动点在第一象限运动所到达的整点坐标可知,这些整点的横、纵坐标的和等于运动的秒数,所以由此规律可以推得出发后4 s可以到达的整点及要到达整点(9,5)需要的时间.通过观察、猜想、验证找到整点的横、纵坐标与运动的秒数之间的关系,然后由规律写出答案.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中规律排列,如:(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1),…,根据这个规律,第17个点的坐标为(6,-1).11.(北京中考)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是3或4;当点B的横坐标为4n(n为正整数)时,m=6n-3(用含n的代数式表示).03复习自测一、选择题(本大题共10小题,每小题4分,满分40分)1.如图,在平面直角坐标系中,点E的坐标为(a,b),则ab的值为(B)A.1 B.2 C.-1 D.-2第1题图 第2题图2.(安徽模拟)如图,小手盖住的点的坐标可能是(B) A .(3,-4) B .(-4,-3) C .(-4,3) D .(4,2)3.如图,在平面直角坐标系中,点P(-3,5)关于y 轴的对称点的坐标是(B )A .(-3,-5)B .(3,5)C .(3,-5)D .(5,-3)4.(六安校级月考)在平面直角坐标系中,点A(-2,-2m +3)在第三象限,则m 的取值范围是(C ) A .m<-32B .m>-32C .m>32D .m<325.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为(D ) A .(1,2)B .(-1,-2)C .(1,-2)D .(2,1)或(2,-1)或(-2,1)或(-2,-1)6.(蚌埠四校联考)对任意实数x ,点(x ,x 2-2x)一定不在(C ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如图是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为(D )A .(0,0)B .(0,1)C .(1,0)D .(1,2)8.已知正方形ABCD 的边长为3,点A 在原点,点B 在x 轴正半轴上,点D 在y 轴负半轴上,则点C 的坐标是(C )A .(3,3)B .(-3,3)C .(3,-3)D .(-3,-3)9.(安徽模拟)甲、乙两位同学用围棋子做游戏,如图所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(说明:棋子的位置用数对表示,如A 点在(6,3))(C )A .黑(3,7);白(5,3)B .黑(4,7);白(6,2)C .黑(2,7);白(5,3)D .黑(3,7);白(2,6)10.如图,△ABC 的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1).若将B 点向右平移2个单位长度后再向上平移4个单位长度到达B 1点.若设△ABC 的面积为S 1,△AB 1C 的面积为S 2,则S 1,S 2的大小关系为(B )A .S 1≥S 2B .S 1=S 2C .S 1<S 2D .S 1>S 2二、填空题(本大题共4小题,每小题5分,满分20分)11.已知两点A(4,2),B(4,-3),则经过A ,B 两点的直线与y 轴平行.12.(蚌埠期末)在平面直角坐标系中,点M(-3,-4)先向右平移3个单位长度,再向下平移2个单位长度,此时点M 的坐标为(0,-6).13.已知点A(a ,3),过点A 向x 轴、y 轴作垂线,两条垂线与两坐标轴围成的图形的面积是15,则a 的值是±5.14.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1),A 5(2,1),…,则点A 2 019的坐标是(-505,-505).三、解答题(本大题共5小题,满分40分)15.(6分)(陕西中考)已知点P(a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围. 解:依题意,得点P 在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0.解得-1<a <12.∴a 的取值范围是-1<a <12.16.(6分)如图,面积为12的△ABC 向x 轴正方向平移至△DEF 的位置,相应坐标如图所示(a ,b 为常数). (1)求点E ,D 的坐标(用含a ,b 的式子表示); (2)求四边形ACED 的面积.解:(1)E(-a ,0),D(-2a ,b).(2)由题意,得OE =-2a -(-a)=-a ,AD =-2a ,OA =b. ∵S △ABC =12=12(-a)b ,∴-ab =24.∴S 四边形ACED =-2ab -(-12ab)=-32ab =36.17.(9分)各写出3个满足下列条件的点,并在平面直角坐标系中描出它们:(1)横坐标与纵坐标相等;(2)横坐标与纵坐标互为相反数; (3)横坐标与纵坐标的和是6.观察各小题中3个点的位置,指出它们有什么特点.解:(1)答案不唯一,如(1,1),(6,6),(-2,-2),它们在第一、三象限的角平分线上.图略. (2)答案不唯一,如(1,-1),(-2,2),(3,-3),它们在第二、四象限的角平分线上.图略. (3)答案不唯一,如(2,4),(3,3),(-2,8),它们在直线x +y =6上.图略.18.(9分)(淮北杜集区月考)△ABC 在平面直角坐标系xOy 中的位置如图所示,已知A(-2,3),B(-1,1),C(0,2).(1)作△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)将△A 1B 1C 1向右平移4个单位长度,作出平移后的△A 2B 2C 2;(3)在x 轴上求作一点P ,使PB 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果).解:(1)如图所示. (2)如图所示.(3)如图所示,作出B 1关于x 轴的对称点B′,连接B′C 2,交x 轴于点P ,此时PB 1+PC 2的值最小,可得点P 的坐标为(2,0).19.(10分)在平面直角坐标系中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“识别距离”,给出如下定义: 若|x 1-x 2|≥|y 1-y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为|y 1-y 2|. (1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,写出满足条件的B 点的坐标(0,2)或(0,-2); ②直接写出点A 与点B 的“识别距离”的最小值为1;(2)已知C(m ,34m +3),D(0,1),求点C 与点D 的“识别距离”的最小值及相应的C 点坐标.解:依题意,得|m -0|=|34m +3-1|.解得m =8或-87.当m =8时,“识别距离”为8; 当m =-87时,“识别距离”为87.所以当m =-87时,“识别距离”最小,为87,此时C(-87,157).期末复习(二) 一次函数01 知识结构图02 重难点突破重难点1 自变量的取值范围【例1】 已知函数y =2x +1x -2,则自变量x 的取值范围是(D ) A .x ≠2 B .x >2C .x ≥-12D .x ≥-12且x ≠2几种常见类型函数自变量的取值范围如下:1.(西昌中考)下列函数中自变量x 的取值范围是x >1的是(A )A .y =1x -1 B .y =x -1C .y =1x -1D .y =11-x2.(泰州中考)要使y=3-xx-1有意义,则x应该满足(C)A.0≤x≤3 B.0<x≤3且x≠1C.1<x≤3 D.0≤x≤3且x≠1重难点2函数图象【例2】(合肥月考)合肥万达主题公园的“极速升降”项目惊险而刺激,乘坐着先匀速“极速上升”到达顶端,立即又以相同的速度下降到达地面.下列最能反映乘坐时距离地面的高度y(m)与运行时间x(s)之间函数关系的图象是(C)A B C D判断函数图象从以下几方面考虑:(1)看图象的升降趋势,当函数随着自变量的增加而增加时,图象呈上升趋势,反之,呈下降趋势;(2)看图象的曲直,函数随着自变量的变化而均匀变化的,图象是直线,函数随着自变量的变化不均匀变化的,图象是曲线;(3)表示函数不随自变量的变化而变化,即函数是一个定值时,图象与横轴平行.3.小兵从家步行到公交车站台,等公交车去学校.图中的折线表示小兵的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是(D)A.他离家8 km共用了30 minB.他等公交车时间为6 minC.他步行的速度是100m/minD.公交车的速度是350 m/min4.(广元中考)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是(C)A B C D重难点3 一次函数的图象和性质【例3】 (蚌埠期末)直线y =-kx +k -3与直线y =kx 在同一坐标系中的大致图象可能是图中的(B )A B C D一次函数的图象和性质,列表如下:k >0k <0一二三一三一三四一二四二四二三四5.(呼和浩特中考)一次函数y =kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过(A ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.(怀化中考)一次函数y =-2x +m 的图象经过点P(-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是(B )A .12B .14C .4D .8 重难点4 一次函数与方程(组)、不等式的关系【例4】 如图,若直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(a ,2),则关于x 的不等式x +1≥mx +n 的解集为x ≥1.一次函数与不等式关系密切,求解的关键是从“形”的角度观察对应的自变量的取值范围.7.(安徽模拟)如图,直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则不等式组12x <kx +b <0的解集为-3<x <-2.第7题图第8题图8.(北京中考)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b >mx-2的解集是1<x<2.重难点5一次函数的应用【例5】(荆门中考)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数表达式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?【思路点拨】(1)A城运往C乡的农机为x台,则可得A城运往D乡的农机为(30-x)台,B城运往C乡的农机为(34-x)台,B城运往D乡的农机为[40-(34-x)]台,从而可得出W与x的函数关系;(2)根据题意,可知w≥16 460,从而求得x的取值范围,且x为整数,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意,得W =(140-a)x+12 540,所以当a=200时,可得w与x的函数关系式,然后由函数的增减性可算出w的最小值,从而得到结论.【解答】(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12 540(0<x≤30).(2)根据题意,得140x+12 540≥16 460,∴x≥28.∵x≤30,∴28≤x≤30.∴有3种不同的调运方案.第一种调运方案:从A城调往C乡28台,调往D乡2台,从B城调往C乡6台,调往D乡34台;第二种调运方案:从A城调往C乡29台,调往D乡1台,从B城调往C乡5台,调往D乡35台;第三种调运方案:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12 540,∴当a=200时,W最小=-60x+12 540,此时x=30,W最小=10 740.此时的方案:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.解最优方案问题的步骤:(1)设出实际问题中的变量;(2)建立一次函数模型;(3)利用待定系数法求得一次函数表达式;(4)确定自变量的取值范围;(5)根据一次函数增减性确定自变量取值;(6)作答.9.(淮北月考)移动公司推出两种话费套餐,套餐一:每月收取月租34元后,送50分钟的通话时间,超过部分每分钟收费0.20元,并约定每月最低消费40元,低于40元一律按40元收取;套餐二:每月没有最低消费,但每分钟均收取0.40元的通话费用.若分别用y1,y2(单位:元)表示套餐一、套餐二的通话费用,用x(单位:分钟)表示每个月的通话时间.(1)分别求y 1,y 2关于x 的函数表达式;(2)在给定的平面直角坐标系中,画出这两个函数的图象,并直接写出两个函数图象的交点坐标; (3)①结合图象,如何选择话费套餐,才可使每月支付的通话费用较少?②若小亮的爸爸这个月的通话费用是64元,求这两种套餐的通话时间相差多少分钟?解:(1)y 1=⎩⎨⎧40(0≤x ≤80),0.2x +24(x >80),y 2=0.4x(x ≥0).(2)过点A(0,40)和点(80,40)画线段AB ,且过点B(80,40)和点P(120,48)画射线BP ,得到折线ABP 就是函数y 1的图象;过点O(0,0)和点P(120,48)画线段OP 就得y 2的图象.这两个函数图象的交点坐标为(120,48).(3)①由图象可知,当x <120时,y 2<y 1,选择套餐二每月支付的通话费用较少; 当x =120时,y 2=y 1,选择两种套餐每月支付的通话费用一样多; 当x >120时,y 2>y 1,选择套餐一每月支付的通话费用较少;②由于64>40,当y 1=64时,0.2x +24=64,解得x =200;当y 2=64时,0.4x =64,解得x =160.两种套餐的通话时间相差200-160=40(分钟).(套餐一比套餐二通话时间多40分钟)03 复习自测一、选择题(本大题共10小题,每小题4分,满分40分)1.(淮北濉溪县期末)函数y =2x +1中自变量x 的取值范围是(A ) A .x ≥-12B .x ≥0C .x ≥12D .x >-122.若正比例函数的图象经过点(-1,2),则这个图象必经过点(D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)3.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是(D ) A .-2 B .-1 C .0 D .24.一次函数y =(k -2)x +3的图象如图所示,则k 的取值范围是(B )A .k >2B .k <2C .k >3D .k <35.(温州中考)已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是(B ) A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2<0 D .y 2<0<y 16.(淮北月考)按照下列运算程序,当输入x =-2时,输出的y 的值是(A )输入x ―→y =2x -3(x ≤-1)y =x 2+x +1(x >-1)―→输出yA .-7B .-5C .1D .3 7.小亮用作图象的方法解二元一次方程组时,在同一平面直角坐标系内作出了相应的两个一次函数的图象l 1,l 2,如图所示,他解的这个方程组是(D )A .⎩⎪⎨⎪⎧y =-2x +2y =12x -1B .⎩⎪⎨⎪⎧y =-2x +2y =-x C .⎩⎪⎨⎪⎧y =3x -8y =12x -3D .⎩⎪⎨⎪⎧y =-2x +2y =-12x -1第7题图 第8题图8.(宜宾中考)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是(C ) A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,在长方形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC ,CD 逆时针方向向终点D 匀速运动.设点P 所走过路程为x ,则线段AP ,AD 与长方形的边所围成的图形面积为y ,则下列图象中能大致反映y 与x 函数关系的是(A )10.(枣庄中考)如图,直线y =23x +4与x 轴,y 轴分别交于点A ,B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为(C )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)二、填空题(本大题共4小题,每小题5分,满分20分)11.(眉山中考)若函数y =(m -1)x |m|是正比例函数,则该函数的图象经过第二、四象限.12.一个y 关于x 的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y 随x 的增大而减小.这个函数表达式为y =-x +3(答案不唯一)(写出一个即可).13. (淮北月考)某图书馆规定,图书借阅费用标准是:借阅图书3天内(含3天)2元,借阅图书超过3天,超过的部分每天收费1.1元.小红同学在该图书馆借阅一种图书阅读了x 天(x>3),则她借阅图书的费用y(元)与借阅时间x(天)之间的函数表达式是y =1.1x -1.3(x>3).14.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米; ②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒; ④隧道长度为750米.其中正确的结论是②③.(把你认为正确结论的序号都填上)三、解答题(本大题共4小题,满分40分)15.(8分)已知y 与x +2成正比例,且当x =1时,y =-6.(1)求y 与x 之间的函数表达式;(2)若点M(m ,4)在这个函数的图象上,求m 的值. 解:(1)根据题意,设y =k(x +2). 把x =1,y =-6代入,得 -6=k(1+2).解得k =-2.∴y 与x 之间的函数表达式为y =-2(x +2), 即y =-2x -4.(2)把点M(m ,4)代入y =-2x -4,得4=-2m -4.解得m =-4.16.(10分)如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的表达式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(2,2),求△BOC 的面积.解:(1)设直线AB 的表达式为y =kx +b(k ≠0). 将A(1,0),B(0,-2)代入表达式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2. ∴直线AB 的表达式为y =2x -2. (2)S △BOC =12×2×2=2.17.(10分)设关于x 的一次函数y =a 1x +b 1与y =a 2x +b 2,则称函数y =m(a 1x +b 1)+n(a 2x +b 2)(其中m +n =1)为此两个函数的生成函数.(1)当x =1时,求函数y =x +1与y =2x 的生成函数的值;(2)若函数y =a 1x +b 1与y =a 2x +b 2的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.解:(1)当x =1时,y =m(x +1)+n(2x)=m(1+1)+n(2×1)=2m +2n =2(m +n). ∵m +n =1,∴y =2.(2)点P 在此两个函数的生成函数的图象上. 理由:设点P 的坐标为(a ,b), ∵a 1×a +b 1=b ,a 2×a +b 2=b , ∴当x =a 时,y =m(a 1x +b 1)+n(a 2x +b 2) =m(a 1×a +b 1)+n(a 2×a +b 2) =mb +nb =b(m +n)=b.∴点P 在此两个函数的生成函数的图象上.18.(12分)(绥化中考)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km )与小芳离家时间x(h )的函数图象.(1)小芳骑车的速度为20km /h ,H 点坐标为(32,20);(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?解:(2)设直线AB 的表达式为y 1=k 1x +b 1, 将点A(0,30),B(0.5,20)代入y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=30,0.5k 1+b 1=20.解得⎩⎪⎨⎪⎧k 1=-20,b 1=30.y 1=-20x +30. ∵AB ∥CD ,∴设直线CD 的表达式为y 2=-20x +b 2. 将点C(1,20)代入表达式,得b 2=40. ∴y 2=-20x +40.设直线EF 的表达式为y 3=k 3x +b 3. 将点E(43,30),H(32,20)代入表达式,得⎩⎨⎧43k 3+b 3=30,32k 3+b 3=20.解得⎩⎪⎨⎪⎧k 3=-60,k 3=110.∴y 3=-60x +110.联立⎩⎨⎧y =-60x +110,y =-20x +40,解得⎩⎪⎨⎪⎧x =1.75,y =5.∴点D 坐标为(1.75,5).30-5=25(km ).∴小芳出发1.75 h 后被妈妈追上,此时距家25 km .(3)将y =0代入直线CD 的表达式,得 -20x +40=0.解得x =2.将y =0代入直线EF 的表达式,得 -60x +110=0.解得x =116.2-116=16(h )=10(分钟).答:小芳比预计时间早10分钟到达乙地.期末复习(三)三角形中的边角关系、命题与证明01知识结构图02重难点突破重难点1三角形的三边关系【例1】(莆田中考)已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是(B) A.13 cm B.6 cmC.5 cm D.4 cm“三角形两边之和大于第三边,两边之差小于第三边”是判断三条线段能否构成三角形的重要依据.在实际判断时,不需要去将三角形的任意两边都相加,然后判断其和是否大于第三边.只需选取较小的两边相加,判断其和是否大于最大边即可.1.(湛江中考)在下列长度的四根木棒中,能与长度为3 cm,7 cm的两根木棒钉成一个三角形的是(C)A.3 cm B.4 cmC.9 cm D.10 cm2.(合肥瑶海区期中)如图,为估计荔香公园小池塘岸边A,B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15 m,OB=10 m,则A,B间的距离可能是(B)A.5 mB.15 mC.25 mD.30 m3.(濉溪期中)一等腰三角形,一边长为9 cm,另一边长为5 cm,则等腰三角形的周长是19_cm或23_cm.重难点2命题与逆命题【例2】命题“直角三角形的两个锐角互余”的逆命题是有两个角互余的三角形是直角三角形.对于一些简单命题的逆命题可直接交换此命题的条件和结论,而遇到一些高度概括的命题时,则需改写后再交换.特别注意:在交换一个命题的条件和结论时,语言表达要准确,防止用词不当而造成错误.例如,本题的逆命题就不能写成“两个锐角互余的三角形是直角三角形”.4.(泉州中考)下列四个命题中,是假命题的是(B)A.三角形三边垂直平分线的交点有可能在一边上B.过三点一定可以画三条直线C.成轴对称的两个图形中,对应点的连线被对称轴垂直平分D.三角形的内角和等于180°5.(南京中考)请写出一个原命题是真命题,逆命题是假命题的命题:对顶角相等(答案不唯一).6.(福建中考)请给假命题“两个锐角的和是锐角”举出一个反例:α=50°,β=60°,α+β>90°(答案不唯一).重难点3三角形的内角和定理及推论【例3】如图,已知在△ABC中,D点在AC上,E点在BC的延长线上.求证:∠ADB>∠CDE.【思路点拨】因为∠ADB和∠CDE并不在一个三角形上,所以没有办法直接证明,因此需要一个中间量来过渡一下,从图中不难发现,∠DCB正好是∠ADB和∠CDE联系的桥梁.【解答】∵∠DCB是△DCE的一个外角,(外角定义)∴∠DCB>∠CDE.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠ADB是△BCD的一个外角,(外角定义)∴∠ADB>∠DCB.(三角形的一个外角大于任何一个和它不相邻的内角)∴∠ADB>∠CDE.(不等式的性质)证明角的不等关系,往往不能直接证明,所以借助外角就成了解决问题的法宝.7.如图,已知AB∥CD,则(A)A.∠1=∠2+∠3B.∠1=2∠2+∠3C.∠1=2∠2-∠3D.∠1=180°-∠2-∠38.(安庆调研)如图甲,四边形纸片ABCD中,∠B=120°,∠D=50°.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图乙所示,则∠C等于(C)A.80°B.85°C.95°D.110°重难点4推理与证明【例4】如图1,已知直线l1∥l2,直线l3分别和直线l1,l2交于点C,D,在C,D之间有一点P,如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化?若点P在C,D两点的外侧运动时(P 点与点C,D不重合),试探索∠PAC,∠APB,∠PBD之间又有怎样的关系?【思路点拨】若P点在C,D之间运动时,只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C,D两点的外侧运动时(P点与点C,D不重合),则可以分为图2和图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD.【解答】若P点在C,D之间运动时,∠APB=∠PAC+∠PBD.理由:如图1,过点P作PE∥l1,则∠APE =∠PAC.又∵l1∥l2,∴PE∥l2.∴∠BPE=∠PBD.∴∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C,D两点的外侧运动时(P点与点C,D不重合),则有两种情形:①如图2,结论:∠APB=∠PBD-∠PAC.理由:过点P作PE∥l1,则∠APE=∠PAC.又∵l1∥l2,∴PE∥l2.∴∠BPE=∠PBD.∴∠APB=∠BPE-∠APE,即∠APB=∠PBD-∠PAC.②如图3,结论:∠APB=∠PAC-∠PBD.理由:过点P作PE∥l2,则∠BPE=∠PBD.又∵l1∥l2,∴PE∥l1.∴∠APE=∠PAC.∴∠APB=∠APE-∠BPE,即∠APB=∠PAC-∠PBD.解答动态问题时,要从动中求静,运用分类讨论的数学思想方法,在运动变化过程中探索问题的不变性,既要考虑问题的一般情形,也要考虑问题的特殊情形.9.如图,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D.求证:BD∥CE.证明:∵∠1=∠2,∴AD∥BE.∴∠D=∠DBE.∵∠3=∠D,∴∠3=∠DBE.∴BD∥CE.03复习自测一、选择题(本大题共10小题,每小题4分,满分40分)1.下列语句不是命题的是(C)A.三角形的两边之和大于第三边B.射线不是几何图形C.同位角相等吗D.两个锐角的和不可能大于90°2.(茂名中考)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是(B)A.1 B.5 C.7 D.93.(十堰中考)如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=(B)A.40°B.50°C.60°D.70°第3题图第4题图4.如图,已知在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是(B)A.0<x<3 B.x>3C.3<x<6 D.x>65.直角三角形两锐角平分线相交所夹的钝角为(B)A.125°B.135°C.145°D.150°6.已知在△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(A)A.40°B.60°C .80°D .90°7.△ABC 的三边长分别为a ,b ,c ,且a +2ab =c +2bc ,则这个三角形是(B ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形8.(合肥瑶海区期末)一副三角板有两个直角三角形如图叠放在一起,则∠α的度数是(A)A .165°B .120°C .150°D .135°9.(呼伦贝尔中考)锐角三角形的三个内角是∠A ,∠B ,∠C ,如果α=∠A +∠B ,β=∠B +∠C ,γ=∠C +∠A ,那么α,β,γ这三个角中(A )A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角10.如图,在△ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB ,AD ,AC 及BC 的延长线于点E ,H ,F ,G ,则下列四个式子中正确的是(C )A .∠1=12(∠2-∠3)B .∠1=2(∠2-∠3)C .∠G =12(∠3-∠2)D .∠G =12∠1二、填空题(本大题共4小题,每小题5分,满分20分)11.将命题“两点确定一条直线”改写成“如果……那么……”的形式:如果过两个已知点作直线,那么能且只能作一条直线.12.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B =∠F =72°,则∠D =36°.第12题图 第13题图13.(宿迁中考)如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为32.14.(合肥四十二中期中)如图,已知△ABC 的面积是60.若CD ,BE 分别是△ABC 的边AB ,AC 上的中线,则四边形ADOE 的面积为20.。

人教版 八年级数学讲义 等腰三角形“三线合一”的性质 (含解析)

人教版 八年级数学讲义  等腰三角形“三线合一”的性质 (含解析)

第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。

我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。

因此,我们有必要把这部分内容学得更扎实。

知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。

2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。

八年级数学上册全套讲义-带答案

八年级数学上册全套讲义-带答案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟) 总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28 cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6 cm,求其他两边的长.解:(1)设底边长为x cm,则腰长为3x cm,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4 cm,12 cm,12 cm.(2)设另一边长为x cm,依题意得,当6 cm为底边时,2x+6=28,∴x=11;当6 cm为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6 cm的等腰三角形,∴其他两边的长为11 cm,11 cm.探究2某同学有两根长度为40 cm,90 cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40 cm,50 cm,60 cm,90 cm,130 cm)解:设第三根木条长为x cm,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60 cm或90 cm.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3 cm,一条边等于6 cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,AD 是△ABC 的边BC 上的高,则有∠ADB =∠ADC =90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,AD 是△ABC 的边BC 上的中线,则有DB =DC =12BC ; 总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,AD 是△ABC 的角平分线,则有∠BAD =∠DAC =12∠BAC ; 总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则:(1)∵AE 是△ABC 的中线,∴BE =CE =12BC ; (2)∵AD 是△ABC 的角平分线,∴∠BAD =∠DAC =12∠BAC ; (3)∵AF 是△ABC 的高,∴∠AFB =∠AFC =90°;(4)∵AE 是△ABC 的中线,∴BE =CE ,又∵S △ABE =12BE ·AF ,S △AEC =12CE ·AF ,∴S △ABE =S △ACE .点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2 如图,△ABC 中,AB =2,BC =4,△ABC 的高AD 与CE 的比是多少?解:∵12AB·CE =12BC·AD ,AB =2,BC =4,∴CE =2AD ,∴AD ∶CE =1∶2.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C )A .直线B .射线C .线段D .射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D )A .中线B .高C .角平分线D .以上都正确4.如图,D ,E 是边AC 的三等分点:(1)图中有6个三角形,BD 是三角形ABE 中AE 边上的中线,BE 是三角形DBC 中CD边上的中线,AD =DE =EC =13AC ,AE =DC =23AC ;(2)S△ABD=S△DBE=S△EBC=13S△ABC;(3)S△ABE=S△DBC=23S△ABC.(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n 边形(n >3)最少需要加(n -3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2 等腰三角形一腰上的中线将此等腰三角形分成9 cm ,15 cm 两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x cm ,底边长为y cm ,依题意得,当x >y 时,⎩⎨⎧x +12x =15,y +12x =9,解得⎩⎪⎨⎪⎧x =10,y =4;当x <y 时,⎩⎨⎧x +12x =9,y +12x =15,解得⎩⎨⎧x =6,y =12,∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm ).答:此等腰三角形的周长为24 cm .点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C )A .梯形B .长方形C .三角形D .正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD ,AE 分别是△ABC 的中线、高,且AB =5 cm ,AC =3 cm ,则△ABD 与△ADC 的周长之差为2_cm ;△ABD 与△ADC 的面积关系是相等.5.如图,D 是△ABC 中BC 边上的一点,DE ∥AC 交AB 边于E ,DF ∥AB 交AC 边于F ,且∠ADE =∠ADF.求证:AD 是△ABC 的角平分线.证明:∵DE ∥AC ,DF ∥AB ,∴∠ADE =∠DAC ,∠ADF =∠DAB ,又∵∠ADE =∠ADF ,∴∠DAC =∠DAB ,∴AD 是△ABC 的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△ABC.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长BC到点D,过点B作BE∥AC,∵BE∥AC,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠ABC=180°,∴∠A+∠ABC+∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作CF∥AD,可证得CF∥BE,同时将∠ACB分成∠ACF与∠BCF,求出这两个角的度数,就能求出∠ACB.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∵CF∥AD,CF∥BE,∴∠ACF=∠DAC =50°,∠FCB=∠CBE=40°,∴∠ACB=∠ACF+∠FCB=50°+40°=90°,∵∠CAB =∠DAB-∠DAC=80°-50°=30°,∴∠ABC=180°-∠CAB-∠ACB=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1 ①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2 如图,在△ABC 中,EF 与AC 交于点G ,与BC 的延长线交于点F ,∠B =45°,∠F =30°,∠CGF =70°,求∠A 的度数.解:在△CGF 中,∠GCF =180°-∠CGF -∠F =180°-70°-30°=80°,∴∠ACB =180°-∠GCF =180°-80°=100°,在△ABC 中,∠A =180°-∠B -∠ACB =180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△ABC 中,∠A =35°,∠B =43°,则∠C =102°.3.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =40°,∠B =60°,∠C =80°.4.在△ABC 中,如果∠A =12∠B =13∠C ,那么△ABC 是什么三角形? 解:∵∠A =12∠B =13∠C ,∴∠B =2∠A ,∠C =3∠A ,∵∠A +∠B +∠C =180°,∴∠A +2∠A +3∠A =180°,∴∠A =30°,∴∠B =60°,∠C =90°,∴△ABC 是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在Rt△ABC中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?解:结论:∠ACD=∠B.理由如下:在Rt△ACB中,∠A+∠B=90°,在Rt△ACD中,∠A+∠ACD=90°,∴∠ACD=∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C=90°,∠AED=∠B,△ADE是直角三角形吗?为什么?解:结论:△ADE 是直角三角形.理由如下:在Rt △ABC 中,∠A +∠B =90°(直角三角形的两个锐角相等).∵∠AED =∠B ,∴∠A +∠AED =90°,∴△ADE 是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,AB ∥CD ,AE ,CE 分别平分∠BAC ,∠ACD.求证:△ACE 是Rt △.证明:∵AB ∥CD ,∴∠BAC +∠ACD =180°,∵AE ,CE 分别平分∠BAC ,∠ACD ,∴∠EAC =12∠BAC ,∠ACE =12∠ACD ,∴∠EAC +∠ACE =12∠BAC +12∠ACD =90°,∴△ACE 是Rt △(有两个角互余的三角形是直角三角形).探究2 如图,在Rt △ABC 中,∠C =90°,AD ,BD 是∠CAB ,∠CBA 的角平分线,求∠D 的度数.解:在Rt △ABC 中,∠CAB +∠CBA =90°,∵AD ,BD 是∠CAB ,∠CBA 的角平分线,∴∠DAB =12∠CAB ,∠DBA =12∠CBA ,∴∠DAB +∠DBA =12∠CAB +12∠CBA =45°,在△ADB 中,∠D =180°-(∠DAB +∠DBA)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则此三角形是直角三角形.2.如图,在△ABC 中,∠ACB =90°,∠ACD =∠B.求证:△ACD 是Rt △.证明:在Rt △ABC 中,∠A +∠B =90°(直角三角形的两个锐角互余).∵∠ACD =∠B ,∴∠A +∠ACD =90°,∴△ACD 是Rt △(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△ABC的边BC延长到D,我们把∠ACD叫做三角形的外角.思考:①在△ABC中,除了∠ACD外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△ABC共有6个外角;③外角∠ACD与内角∠ACB的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角.能由内角∠A,∠B求出外角∠ACD吗?如果能,外角∠ACD与内角∠A,∠B有什么关系?认真思考,完成下面的填空:(1)∠ACB=50°,∠ACD=130°,∠A+∠B=130°,∠ACD=∠A+∠B;(填“>”“<”或“=”)(2)∠ACD>∠A,∠ACD>∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△BFD 的外角有∠CDA ,∠BFC ,∠DFE ,以∠AEB 为外角的三角形是△CEF ,△CEB .2.如图,∠1,∠2,∠3是△ABC 不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠ABC +∠ACB ,∠2=∠BAC +∠ACB ,∠3=∠ABC +∠CAB ,∴∠1+∠2+∠3=2(∠ABC +∠ACB +∠BAC),∵∠ABC +∠ACB +∠BAC =180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,∠A =α,△ABC 的内角平分线或外角平分线交于点P ,且∠P =β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=12α+90°;②β=12α;③β=90°-12α.证明:(略)探究2 如图,∠A =50°,∠B =40°,∠C =30°,求∠BPC 的度数. 解:连接AP 并延长到点E ,∵∠BPE =∠B +∠BAP ,∠CPE =∠C +∠CAP ,又∵∠BPC =∠BPE +∠CPE ,∴∠BPC =∠B +∠BAP +∠C +∠CAP =∠BAC +∠B +∠C =50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C ) A .90° B .110° C .100° D .120° 3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.错误!错误!,第4题图)4.如图,BE∥CF,∠B=50°,∠C=75°,求∠A的度数.解:∵BE∥CF,∴∠ADE=∠C,∵∠ADE=∠B+∠A,∴50°+∠A=75°,∴∠A =25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m 边形的一个顶点有7条对角线,n 边形没有对角线,求mn 的平方根. 解:由题意可得m -3=7,∴m =10,n =3,∴±mn =±30. 探究2:填表学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D )A .直角三角形B .等腰三角形C .长方形D .正方形2.过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n 边形,依题意得n (n -3)2=4n ,∵n ≥3且为整数,∴n =11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.总结归纳:n边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形ABCD中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1(1)一个多边形的内角和是外角和的一半,它是几边形?(2)一个多边形的内角和是外角和的2倍,它是几边形?解:(1)设它是n 边形,则有180°·(n -2)=12×360°,∴n =3.(2)设它是n 边形,则有180°·(n -2)=2×360°,∴n =6.探究2 如图,六边形ABCDEF 的内角都相等,∠DAB =60°,AB 与DE 有怎样的位置关系?BC 与FE 有这种关系吗?解:结论:AB ∥DE ,BC ∥FE.证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数. 解:设这个边多形的边数为n ,则有180°(n -2)=2×180°×(5-2),∴n =8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图) 3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC 与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC 沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC 与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC绕点A旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC =EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A+∠ACB=90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,∴∠BAC=∠DCA,∴AB∥CD.2.如图,△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.解:对应边有AB与AC,AE与AD,BE与CD,对应角有∠BAE=∠CAD.(3分钟)找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.。

八年级数学直角三角形教师讲义带答案

八年级数学直角三角形教师讲义带答案

直角三角形一、直角三角形的性质重点:直角三角形的性质定理与其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:〔1〕在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半;〔2〕在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理与其推论在解题中的应用.二、直角三角形全等的推断重点:驾驭直角三角形全等的断定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等〔HL〕难点:创立全等条件与三角形中各定理联络解综合问题。

三、角平分线的性质定理:角平分线上的点到这个角的两边的间隔相等.定理的数学表示:如图4,∵ OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴ CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.2.关于三角形三条角平分线的定理:〔1〕关于三角形三条角平分线交点的定理:图4三角形三条角平分线相交于一点,并且这一点到三边的间隔 相等.定理的数学表示:如图6,假如AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ ABC 、∠ACB 的平分线,那么: ① AP 、BQ 、CR 相交于一点I ;② 假设ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,那么DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. 〔2〕三角形三条角平分线的交点位置与三角形形态的关系:三角形三个内角角平分线的交点肯定在三角形的内部.这个交点叫做三角形的内心〔即内切圆的圆心〕.3.关于线段的垂直平分线和角平分线的作图:〔1〕会作线段的垂直平分线; 〔2〕会作角的角平分线; 〔3〕会作与线段垂直平分线和角平分线有关的简洁综合问题的图形. 四、勾股定理的证明与应用 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:假如直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发觉并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方勾股定理的证明方法许多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会变更 ②依据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理cba HG FEDCBA常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理提示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因此在应用勾股定理时,必需明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的随意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题假如三角形三边长a ,b ,c 满意222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是断定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形态,在运用这肯定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 与222a b c +=只是一种表现形式,不行认为是唯一的,如假设三角形三边长a ,b ,c 满意222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描绘时,不能说成:当斜边的平方等于两条直角边的平方和时,bacbac cabcaba bcc baE D CBA这个三角形是直角三角形①可以构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以进步解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕;2221,22,221n n n n n ++++〔n 为正整数〕2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕7.勾股定理的应用勾股定理可以扶植我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在运用勾股定理时,必需把握直角三角形的前提条件,理解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进展计算,应设法添加协助线〔通常作垂线〕,构造直角三角形,以便正确运用勾股定理进展求解.8..勾股定理逆定理的应用勾股定理的逆定理能扶植我们通过三角形三边之间的数量关系推断一个三角形是否是直角三角形,在详细推算过程中,应用两短边的平方和与最长边的平方进展比较,切不行不加思索的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理与其逆定理的应用勾股定理与其逆定理在解决一些实际问题或详细的几何问题中,是密不行分的一个整体.通常既要通过逆定理断定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念假如一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

初中数学人教版八年级上册三角形全等之动点问题(讲义及答案)

初中数学人教版八年级上册三角形全等之动点问题(讲义及答案)

初中数学人教版八年级上册实用资料三角形全等之动点问题(讲义)➢课前预习已知:如图,AB=18 cm,动点P从点A出发,沿AB以2 cm/s的速度向点B运动,动点Q从点B出发,沿BA以1 cm/s的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为t秒,请解答下列问题:(1)AP=_______,QB=_______(含t的式子表达);(2)在P,Q相遇之前,若P,Q两点相距6 cm,则此时t的值为_______.➢知识点睛由点(___________)的运动产生的几何问题称为动点问题.动点问题的解决方法:1.研究_____________;2.分析_____________,分段;3.表达_____________,建等式.➢精讲精练1.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边EAD上一点,且AE=7.动点P从点B出发,以每秒2个单位的速度沿BC向点C运动,连接AP,DP.设点P运动时间为t秒.(1)当t=1.5时,△ABP与△CDE是否全等?请说明理由;(2)当t为何值时,△DCP≌△CDE.2.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发以每秒1个单位的速度沿AD向点D运动,动点Q从点C 出发以每秒2个单位的速度沿CB向点B运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P运动时间为x秒,请求出当x为何P D A值时,△PDQ ≌△CQD .3. 已知:如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.点P 在线段BC 上以每秒3 cm 的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 运动.设点P 运动时间为t 秒,若某一时刻△BPD 与△CQP 全等,求此时t 的值及点Q 的运动速度.D CBA4.已知:如图,正方形ABCD的边长为10 cm,点E在边AB上,且AE=4 cm,点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CD上由点C向点D运动.设点P运动时间为t秒,若某一时刻△BPE与△CQP 全等,求此时t的值及点Q的运动速度.5. 已知:如图,在长方形ABCD 中,AB =DC =4,AD =BC =5.延长BC 到E ,使CE =2,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC -CD -DA 向终点A 运动,设点P 运动时间为t 秒. (1)请用含t 的式子表达△ABP 的面积S .(2)是否存在某个t 值,使得△DCP 和△DCE 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.DA6. 已知:如图,在长方形ABCD 中,AB =CD =3 cm ,AD =BC =5 cm ,动点P 从点B 出发,以每秒1 cm 的速度沿BC 方向向点C 运动,动点Q 从点C 出发,以每秒2 cm 的速度沿CD -DA -AB 向点B 运动,P ,Q 同时出发,当点P 停止运动时,点Q 也随之停止,设点P 运动时间为t 秒.请回答下列问题:(1)请用含t 的式子表达△CPQ 的面积S ,并直接写出t 的取值范围.(2)是否存在某个t 值,使得△ABP 和△CDQ 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.DA【参考答案】➢课前预习(1)2t,t(2)4s➢知识点睛速度已知1.研究背景图形,标注;2.分析运动过程,分段;3.表达线段长,建等式.➢精讲精练1.解:(1)当t=1.5时,△ABP≌△CDE.理由如下:如图,由题意得BP=2t∴当t=1.5时,BP=3∵AE=7,AD=10∴DE=3∴BP=DE在矩形ABCD 中 AB =CD ,∠B =∠CDE 在△ABP 和△CDE 中AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CDE (SAS ) (2)如图,由题意得BP =2t ∵BC =10 ∴CP =10-2t若使△DCP ≌△CDE ,则需CP =DE即10-2t =3,t =72∴当t =72时,△DCP ≌△CDE .2. 解:如图,由题意得AP =x ,CQ =2x∵AD =12 ∴DP =12-x要使△PDQ ≌△CQD ,则需DP =QC 即12-x =2x ,x =4∴当x =4时,△PDQ ≌△CQD .3. 解:如图,由题意得BP =3t∵BC =8 ∴PC =8-3t∵AB =10,D 为AB 中点 ∴BD =12AB =5 ①要使△BDP ≌△CPQ , 则需BD =CP ,BP =CQ 即5=8-3t ,t =1 ∴CQ =3t =3则Q 的速度为Q v =s t =31=3(cm/s )即当t =1,Q 的速度为每秒3cm 时,△BDP ≌△CPQ .②要使△BDP ≌△CQP ,则需BP =CP ,BD =CQ 即3t =8-3t ,CQ =5∴t =43则Q 的速度为Q v =s t =5×34=154(cm/s )即当t =43,Q 的速度为每秒154cm 时,△BDP ≌△CQP .综上所述,当t =1,Q 的速度为每秒3cm 或t =43,Q 的速度为每秒154cm 时,△BPD 与△CQP 全等.4. 解:如图,由题意得BP =2t∵正方形ABCD 的边长为10cm ∴AB =BC =10 ∴PC =10-2t ∵AE =4 ∴BE =10-4 =6①要使△BEP ≌△CPQ , 则需EB =PC ,BP =CQ 即6=10-2t ,CQ =2t ∴t =2,CQ =4则点Q 的速度为Q v =s t =42=2(cm/s )即当t =2,Q 的速度为每秒2cm 时,△BEP ≌△CPQ . ②要使△BEP ≌△CQP , 则需BP =CP ,BE =CQ 即2t =10-2t ,CQ =6∴t =52则点Q 的速度为Q v =st=6×25=125(cm/s ) 即当t =52,Q 的速度为每秒125cm 时,△BEP ≌△CQP .综上所述,当t =2,Q 的速度为每秒2cm 或t =52,Q 的速度为每秒125cm 时,△BEP 与△CQP 全等.5. 解:(1)①当P 在BC 上时,如图,由题意得BP =2t (0<t ≤2.5)1214224ABP S AB BP t t∆=⋅=⨯⨯=∴②当P 在CD 上时,(2.5<t ≤4.5)12145210ABP S AB BC∆=⋅=⨯⨯=∴ ③当P 在AD 上时,由题意得AP =14-2t (4.5<t <7)12141422284ABP S AB APt t ∆=⋅=⨯⨯=∴--() (2)①当P 在BC 上时, 如图,由题意得BP =2t要使△DCP ≌△DCE ,则需CP =CE ∵CE =2 ∴5-2t =2,t =1.5即当t =1.5时,△DCP ≌△DCE②当P 在CD 上时,不存在t 使△DCP 和△DCE 全等 ③当P 在AD 上时,由题意得BC +CD +DP =2t ∵BC =5,CD =4, ∴DP =2t -9要使△DCP ≌△CDE ,则需DP =CE 即2t -9=2,t =5.5即当t =5.5时,△DCP ≌△CDE .综上所述,当t =1.5或t =5.5时,△DCP 和△DCE 全等.6. 解:(1)①当Q 在CD 上时,如图,由题意得CQ =2t ,BP=t ∴CP=5-t (0<t ≤1.5)2121(5)22 5CPQ S CP CQt t t t ∆=⋅=-⋅=-∴11 ②当Q 在DA 上时,(1.5<t ≤4)121(5)327.5 1.5CPQ S CP CDt t∆=⋅=⨯=∴--③当Q 在AB 上时,由题意得BQ =11-2t (4<t <5) 2121(5)(112)2215522CPQ S CP BQt t t t ∆=⋅=-⨯-=-+∴(2)①当Q 在CD 上时,不存在t 使△ABP 和△CDQ 全等 ②当Q 在AD 上时,如图,由题意得DQ =2t -3要使△ABP ≌△CDQ ,则需BP =DQ∵DQ =2t -3,BP =t∴t =2t -3,t =3即当t =3时,△ABP ≌△CDQ .③当Q 在AB 上时,不存在t 使△ABP 和△CDQ 全等 综上所述,当t =3时,△ABP 和△CDQ 全等.。

(完整版)八年级数学上知识点+习题+答案

(完整版)八年级数学上知识点+习题+答案

(一)三角形部分一、知识点汇总1. 三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。

三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b 表示,顶点A所对的边BC可用a表示。

注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的没有意义.2、(1)三角形按边分类:(2)三角形按角分类:3、三角形的三边关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是:任意两边之和大于第三边.4、和三角形有关的线段:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1、AD是△ABC的BC上的中线. 2、BD=DC=0.5BC。

3、AD是ABC的中线;注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。

表示法:1、AD是△ABC的∠BAC的平分线.2、∠1=∠2=0。

5∠BAC。

3、AD平分BAC,交BC于D注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;(3)三角形的高三角形的高:从三角形的一顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高,表示法:1、AD是△ABC的BC上的高。

2、AD⊥BC于D。

3、∠ADB=∠ADC=90°.4、AD是△ABC的高.注意:①三角形的高是线段:高与垂线不同,高是线段,垂线是直线.②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外;三角形三条高所在直线交于一点.(而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

2020年秋人教版八年级数学上册第11章《三角形的三线及面积》(讲义、随堂练习、习题及答案)

2020年秋人教版八年级数学上册第11章《三角形的三线及面积》(讲义、随堂练习、习题及答案)

人教版八年级数学上册第11章三角形的三线及面积(讲义)➢ 课前预习1. 三角形有关的性质和定理:定义:由___________________的三条线段_________________所组成的图形叫做三角形,三角形可以用符号“_______”表示. 性质:边:三角形两边之和______第三边,两边之差______第三边; 角:三角形的内角和等于_______; 直角三角形两锐角________;三角形的一个外角等于______________________________. 2. 如图,在△ABC 中,(1)若点D 是BC 的中点,则S △ABD :S △ACD =__________; (2)若BD :CD =2:1,则S △ABD :S △ACD =__________; (3)若BD :CD =a :b ,则S △ABD :S △ACD =__________.DCBA➢ 知识点睛1. 三角形的三线:(1)在三角形中,连接一个顶点与它对边中点的________,叫做这个三角形的中线,三角形的三条中线_____________交于一点,这点称为三角形的__________.(2)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的______叫做三角形的角平分线,三角形的三条角平分线________________交于一点,这点称为三角形的_________.(3)从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的________叫做三角形的高线(简称三角形的高),三角形的三条高________________交于一点,这点称为三角形的________;锐角三角形的三条高线及垂心都在其________,直角三角形的垂心是________,钝角三角形的垂心和两条高线在其________.如图,在△ABC中,作出AC边上的高线.CA________即为所求.2.面积问题:(1)处理面积问题的思路①_____________________________;②_____________________________;③_____________________________.(2)处理面积问题方法举例①利用平行转移面积21如图,满足S△ABP =S△ABC的点P都在直线l1,l2上.②利用等分点转移面积两个三角形底相等时,面积比等于_____之比;高相等时,面积比等于_____之比.➢精讲精练1.如图,△ABC的角平分线AD、中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABC的中线.其中()A.①②都正确B.①②都不正确C .①正确,②不正确D .①不正确,②正确AC DE OE DAF第1题图第2题图2. 如图所示,在△ABC 中,BC 边上的高是_______,AB 边上的高是_______;在△BCE 中,BE 边上的高是________,EC 边上的高是_________;在△ACD 中,AC 边上的高是________,CD 边上的高是________.3. 如图,在△ABC 中,AD 为∠BAC 的平分线,G 为AD 的中点,延长BG 交AC 于点E ,过点C 作CF ⊥AD 于点H ,交AB 于点F .下列说法:①AD 是△ABE 的角平分线;②BE 是△ABD 的中线;③CH 为△ACD 边AD 上的高;④AH 是△ACH 边CH 上的高;⑤AH 是△ACF 的角平分线.其中正确的说法有_______(填序号).ABCDEF G H第3题图第4题图4. 如图,在正方形ABCD 中,BC =2,∠DCE 是正方形ABCD 的外角,P 是∠DCE 的平分线CF 上任意一点,则△PBD 的面积等于_________.5. 如图,在梯形ABCD 中,AB ∥CD ,延长DC 到E ,使CE =AB ,连接BD ,BE .若梯形ABCD 的面积为25cm 2,则△BDE 的面积为__________.EDC BA第5题图第6题图6. 正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为____________. 7. 在如图所示4×4的方格纸中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个.第7题图第8题图8. 在如图所示的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2,则满足条件的格点C 的个数是_______个. 9. 如图,在△ABC 中,点D ,E ,F 分别为BC ,AD,CE 的中点,且S △ABC =16,则S △DEF =_____________.10. 如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =() A .1B .2C .3D.4F ED CA第10题图第11题图11. 如图所示,S △ABC =6,若S △BDE =S △DEC =S △ACE ,则S △ADE =______.12. 如图,设E ,F 分别是△ABC 的边AC ,AB 上的点,线段BE ,CF 交于点D .若△BDF ,△BCD ,△CDE 的面积分别是3,7,7,则△EDF 的面积是_______,△AEF 的面积是______.EFDCBAC 1B 1A 1CBA第12题图第13题图13. 如图,对面积为1的△ABC 进行以下操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1,B 1,C 1,则△A 1B 1C 1的面积为______.14. 如图,梯形ABCD 被对角线分为4个小三角形,已知△AOB 和△BOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是_____________.15. 如图,在长方形ABCD 中,△ABP 的面积为20cm 2,△CDQ 的面积为35cm 2,则阴影四边形EPFQ 的面积是_________.16. 如图,若梯形ABCD 面积为6,E ,F 为AB 的三等分点,M ,N 为DC 的三等分点,则四边形EFNM 的面积是_________.E F DCBA MNO C D BA 2535【参考答案】➢课前预习1.不在同一条直线上,首尾顺次相接,△大于,小于180°互余和它不相邻的两个内角的和2.(1)1:1(2)2:1(3)a:b➢知识点睛1.(1)线段,在三角形内部,重心.(2)线段,在三角形内部,内心.(3)线段,所在直线,垂心,内部,直角顶点,外部.作图略2.(1)①公式法;②割补法;③转化法.(2)②对应高,对应底.➢精讲精练1. C2.AF,CE;CE,BE;DC,AC.3. ③④⑤4. 25. 25 cm 26. 167. 68. 59. 2 10. B 11. 112. 3,15 13. 1914. 144 cm 2 15. 55 cm 2 16. 2三角形的三线及面积(随堂测试)1. 下列四个图形中,线段BD 是△ABC 的高的是()A .B .C .D .2. 如图,正方形ABCD 和正方形BEFG 的位置如图所示,点E 在线段AB 上,已知正方形ABCD 的面积为50cm 2,则△AFC 的面积是___________.3. 已知在正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个(在图中标出点C 的位置).DCBA C DA BA BD C DC AAB EFG CD4. 如图,在△ABC 中,点E ,F 分别是AB ,BC 的中点,连接EF ,若△ABC的面积是8cm 2,则△BEF 的面积是______.【参考答案】1. D2. 25cm²3. 64. 2 cm²三角形的三线及面积(习题)➢ 例题示范例1:已知在4×4的正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数为__________个.【思路分析】连接AB ,则AB 作为△ABC 的底,要使△ABC 的面积为1,利用同底等高,即平行转移面积即可.具体操作:①先在AB 的一侧找一个点C ,使△ABC 的面积为1,过点C 作AB 的平行线; ②再在AB 的另一侧找一个点C ,使△ABC 的面积为1,过点C 作AB 的平行线. 如图所示:F E CBA共6个.➢巩固练习正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高3.在直角三角形、钝角三角形和锐角三角形中,有两条高在三角形外部的是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能4.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④∠BDC=∠BAC.其中正确的有______________(填序号).第4题图第5题图5. 在如图的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2,则满足条件的格点C 的个数是_______个.6. 如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则△ACE 的面积为___________.7. 如图,在△ABC 中,已知点D ,E,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,那么阴影部分的面积是_________.8. 已知:如图,在△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,BD =2CD ,AD ,BE ,CF 交于一点G ,S △BGD =8,S △AGE =3,那么△ABC 的面积是____________.F E DC BAA DEF G9. 如图,将△ABC 的三边AB ,BC ,CA 分别延长至D ,E ,F ,且使BD =AB ,CE =2BC ,AF =3AC .若S △ABC =1,则S △DEF =____.10. 如图,两条对角线把梯形分割成四个三角形,若S △EDC =6,S △BEC =18,则△AEB的面积是____________,△AED 的面积是___________.11. 如图所示,在△ABC 中,点D是AB 的中点,点E 在边BC 上,CE =2BE ,12. 部分的面积是______________.【参考答案】1. D2. C3. B4.①②③5. 56.87. 1 cm²8.309.1810.6 211.112.6 cm²。

八年级数学上册全套讲义带答案

八年级数学上册全套讲义带答案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟)总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6cm,求其他两边的长.解:(1)设底边长为x cm,则腰长为3x cm,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4cm,12cm,12cm.(2)设另一边长为x cm,依题意得,当6cm为底边时,2x+6=28,∴x=11;当6cm为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6cm的等腰三角形,∴其他两边的长为11cm,11cm.探究2某同学有两根长度为40cm,90cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40cm,50cm,60cm,90cm,130cm)解:设第三根木条长为x cm,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60cm或90cm.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3cm,一条边等于6cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,AD是△ABC的边BC上的高,则有∠ADB=∠ADC =90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,AD是△ABC的边BC上的中线,则有DB=DC=BC;总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,AD是△ABC的角平分线,则有∠BAD=∠DAC=∠BAC;总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∵AE是△ABC的中线,∴BE=CE=BC;(2)∵AD是△ABC的角平分线,∴∠BAD=∠DAC=∠BAC;(3)∵AF是△ABC的高,∴∠AFB=∠AFC=90°;(4)∵AE是△ABC的中线,∴BE=CE,又∵S△ABE=BE·AF,S△AEC=CE·AF,∴S△ABE=S△ACE.点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2如图,△ABC中,AB=2,BC=4,△ABC的高AD与CE的比是多少?解:∵AB·CE=BC·AD,AB=2,BC=4,∴CE=2AD,∴AD∶CE=1∶2.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C)A.直线B.射线C.线段D.射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B)A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D)A.中线B.高C.角平分线D.以上都正确4.如图,D,E是边AC的三等分点:(1)图中有6个三角形,BD是三角形ABE中AE边上的中线,BE是三角形DBC中CD边上的中线,AD=DE=EC=AC,AE =DC=AC;(2)S△ABD=S△DBE=S△EBC=S△ABC;(3)S△ABE=S△DBC=S△ABC.(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n边形(n >3)最少需要加(n-3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2等腰三角形一腰上的中线将此等腰三角形分成9cm,15cm两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x cm,底边长为y cm,依题意得,当x>y时,解得当x<y时,解得∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm).答:此等腰三角形的周长为24cm.点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C)A.梯形B.长方形C.三角形D.正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD,AE分别是△ABC的中线、高,且AB=5cm,AC=3cm,则△ABD与△ADC的周长之差为2_cm;△ABD与△ADC的面积关系是相等.5.如图,D是△ABC中BC边上的一点,DE∥AC交AB 边于E,DF∥AB交AC边于F,且∠ADE=∠ADF.求证:AD是△ABC的角平分线.证明:∵DE∥AC,DF∥AB,∴∠ADE=∠DAC,∠ADF=∠DAB,又∵∠ADE=∠ADF,∴∠DAC=∠DAB,∴AD是△ABC 的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△ABC.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长BC到点D,过点B作BE∥AC,∵BE∥AC,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠ABC=180°,∴∠A+∠ABC +∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作CF∥AD,可证得CF∥BE,同时将∠ACB分成∠ACF与∠BCF,求出这两个角的度数,就能求出∠ACB.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∵CF∥AD,CF∥BE,∴∠ACF=∠DAC=50°,∠FCB=∠CBE=40°,∴∠ACB =∠ACF+∠FCB=50°+40°=90°,∵∠CAB=∠DAB-∠DAC =80°-50°=30°,∴∠ABC=180°-∠CAB-∠ACB=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2如图,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A 的度数.解:在△CGF中,∠GCF=180°-∠CGF-∠F=180°-70°-30°=80°,∴∠ACB=180°-∠GCF=180°-80°=100°,在△ABC中,∠A=180°-∠B-∠ACB=180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△ABC中,∠A=35°,∠B=43°,则∠C=102°.3.在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A=40°,∠B=60°,∠C=80°.4.在△ABC中,如果∠A=∠B=∠C,那么△ABC是什么三角形?解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,∴∠A=30°,∴∠B =60°,∠C=90°,∴△ABC是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在Rt△ABC中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?解:结论:∠ACD=∠B.理由如下:在Rt△ACB中,∠A+∠B=90°,在Rt△ACD中,∠A+∠ACD=90°,∴∠ACD=∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C=90°,∠AED=∠B,△ADE是直角三角形吗?为什么?解:结论:△ADE是直角三角形.理由如下:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角相等).∵∠AED=∠B,∴∠A+∠AED=90°,∴△ADE是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,AB∥CD,AE,CE分别平分∠BAC,∠ACD.求证:△ACE是Rt△.证明:∵AB∥CD,∴∠BAC+∠ACD=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ACE=∠ACD,∴∠EAC+∠ACE=∠BAC+∠ACD=90°,∴△ACE是Rt△(有两个角互余的三角形是直角三角形).探究2如图,在Rt△ABC中,∠C=90°,AD,BD是∠CAB,∠CBA的角平分线,求∠D的度数.解:在Rt△ABC中,∠CAB+∠CBA=90°,∵AD,BD是∠CAB,∠CBA的角平分线,∴∠DAB=∠CAB,∠DBA=∠CBA,∴∠DAB+∠DBA=∠CAB+∠CBA=45°,在△ADB中,∠D=180°-(∠DAB+∠DBA)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则此三角形是直角三角形.2.如图,在△ABC中,∠ACB=90°,∠ACD=∠B.求证:△ACD是Rt△.证明:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠ACD=∠B,∴∠A+∠ACD=90°,∴△ACD是Rt△(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△ABC的边BC延长到D,我们把∠ACD叫做三角形的外角.思考:①在△ABC中,除了∠ACD外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△ABC 共有6个外角;③外角∠ACD与内角∠ACB的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC 的一个外角.能由内角∠A,∠B求出外角∠ACD吗?如果能,外角∠ACD与内角∠A,∠B有什么关系?认真思考,完成下面的填空:(1)∠ACB=50°,∠ACD=130°,∠A+∠B=130°,∠ACD=∠A+∠B;(填“>”“<”或“=”)(2)∠ACD>∠A,∠ACD>∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△BFD的外角有∠CDA,∠BFC,∠DFE,以∠AEB为外角的三角形是△CEF,△CEB.2.如图,∠1,∠2,∠3是△ABC不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠ABC+∠CAB,∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC),∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=α+90°;②β=α;③β=90°-α.证明:(略)探究2如图,∠A=50°,∠B=40°,∠C=30°,求∠BPC 的度数.解:连接AP并延长到点E,∵∠BPE=∠B+∠BAP,∠CPE =∠C+∠CAP,又∵∠BPC=∠BPE+∠CPE,∴∠BPC=∠B+∠BAP+∠C+∠CAP=∠BAC+∠B+∠C=50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C)A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C)A.90°B.110°C.100°D.120°3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.,第4题图)4.如图,BE∥CF,∠B=50°,∠C=75°,求∠A的度数.解:∵BE∥CF,∴∠ADE=∠C,∵∠ADE=∠B+∠A,∴50°+∠A=75°,∴∠A=25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m边形的一个顶点有7条对角线,n边形没有对角线,求mn的平方根.解:由题意可得m-3=7,∴m=10,n=3,∴±=±.探究2:填表……………n边形n n-3 n-2学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D)A.直角三角形B.等腰三角形C.长方形D.正方形2.过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n边形,依题意得=4n,∵n≥3且为整数,∴n=11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:总结归纳:三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.总结归纳:n边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形ABCD中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1(1)一个多边形的内角和是外角和的一半,它是几边形?(2)一个多边形的内角和是外角和的2倍,它是几边形?解:(1)设它是n边形,则有180°·(n-2)=×360°,∴n=3.(2)设它是n边形,则有180°·(n-2)=2×360°,∴n=6.探究2如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB与DE有怎样的位置关系?BC与FE有这种关系吗?解:结论:AB∥DE,BC∥FE.证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.解:设这个边多形的边数为n,则有180°(n-2)=2×180°×(5-2),∴n=8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟)总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图) 3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3cm,BD=4cm,OD=6cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB 与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB 与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B 与∠E,∠C与∠D是对应角,△AED是△ABC绕点A旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC=EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D +∠F=90°,∴∠A+∠ACB=90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,。

八年级数学上课外辅导讲义

八年级数学上课外辅导讲义

八年级数学讲义2011年秋(一)平方根和立方根【知识归纳】1.平方根:(1)若x 2=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根,记为 。

规定,0的算术平方根为 。

(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。

(3)两个公式:(a )2= ( );=2a2.立方根:1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。

3)立方根的性质:(1)3= ,(2= .4).已知某数有两个平方根分别是a +3与2a -15,求这个数.5).已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.6).已知a <0,b <0,求(2a +3b )2的算术平方根.7)甲乙二人计算a +2)1(a -的值,当a =3的时候,得到下面不同的答案:甲的解答:a +2)1(a -=a +1-a =1. 乙的解答:a +2)1(-a =a +a -1=2a -1=5.哪一个解答是正确的?错误的解答错在哪里?为什么? 【巩固练习】:1、16的算术平方根是_______,平方根是_______;2、若x 2=16,则5-x 的算术平方根是 ;3、3664-的平方根是 ,算术平方根是 ;4、若4a +1的平方根是±5,则a 2的算术平方根是 ;5、0)2(12=-+-b a ,则b a +的平方根为 .6.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 7.21++a 的最小值是________,此时a 的取值是________.平方根与立方根典型题大全一、填空题1.如果9=x ,那么x =________;如果92=x,那么=x ________2.若一个实数的算术平方根等于它的立方根,则这个数是_________; 3.算术平方根等于它本身的数有________,立方根等于本身的数有________.4.x ==则 ,若,x x =-=则 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟) 总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28 cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6 cm,求其他两边的长.解:(1)设底边长为x cm,则腰长为3x cm,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4 cm,12 cm,12 cm.(2)设另一边长为x cm,依题意得,当6 cm为底边时,2x+6=28,∴x=11;当6 cm为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6 cm的等腰三角形,∴其他两边的长为11 cm,11 cm.探究2某同学有两根长度为40 cm,90 cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40 cm,50 cm,60 cm,90 cm,130 cm)解:设第三根木条长为x cm,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60 cm或90 cm.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3 cm,一条边等于6 cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟) 作出下列三角形的高:如图①,AD 是△ABC 的边BC 上的高,则有∠ADB =∠ADC =90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,AD 是△ABC 的边BC 上的中线,则有DB =DC =12BC ; 总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,AD 是△ABC 的角平分线,则有∠BAD =∠DAC =12∠BAC ; 总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则:(1)∵AE 是△ABC 的中线,∴BE =CE =12BC ; (2)∵AD 是△ABC 的角平分线,∴∠BAD =∠DAC =12∠BAC ; (3)∵AF 是△ABC 的高,∴∠AFB =∠AFC =90°;(4)∵AE 是△ABC 的中线,∴BE =CE ,又∵S △ABE =12BE ·AF ,S △AEC =12CE ·AF ,∴S △ABE =S △ACE .点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2 如图,△ABC 中,AB =2,BC =4,△ABC 的高AD 与CE 的比是多少?解:∵12AB·CE =12BC·AD ,AB =2,BC =4,∴CE =2AD ,∴AD ∶CE =1∶2.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C ) A .直线 B .射线 C .线段 D .射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D ) A .中线 B .高C .角平分线D .以上都正确4.如图,D ,E 是边AC 的三等分点:(1)图中有6个三角形,BD 是三角形ABE 中AE 边上的中线,BE 是三角形DBC 中CD 边上的中线,AD =DE =EC =13AC ,AE =DC =23AC ;(2)S△ABD=S△DBE=S△EBC=13S△ABC;(3)S△ABE=S△DBC=23S△ABC.(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n边形(n>3)最少需要加(n-3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2等腰三角形一腰上的中线将此等腰三角形分成9 cm,15 cm两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x cm ,底边长为y cm ,依题意得,当x >y 时,⎩⎨⎧x +12x =15,y +12x =9,解得⎩⎪⎨⎪⎧x =10,y =4;当x <y 时,⎩⎨⎧x +12x =9,y +12x =15,解得⎩⎪⎨⎪⎧x =6,y =12,∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm ).答:此等腰三角形的周长为24 cm .点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C ) A .梯形 B .长方形 C .三角形 D .正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD,AE分别是△ABC的中线、高,且AB=5 cm,AC=3 cm,则△ABD与△ADC 的周长之差为2_cm;△ABD与△ADC的面积关系是相等.5.如图,D是△ABC中BC边上的一点,DE∥AC交AB边于E,DF∥AB交AC边于F,且∠ADE=∠ADF.求证:AD是△ABC的角平分线.证明:∵DE∥AC,DF∥AB,∴∠ADE=∠DAC,∠ADF=∠DAB,又∵∠ADE=∠ADF,∴∠DAC=∠DAB,∴AD是△ABC的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△ABC.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长BC到点D,过点B作BE∥AC,∵BE∥AC,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠ABC=180°,∴∠A+∠ABC+∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作CF∥AD,可证得CF∥BE,同时将∠ACB分成∠ACF与∠BCF,求出这两个角的度数,就能求出∠ACB.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∵CF∥AD,CF∥BE,∴∠ACF=∠DAC=50°,∠FCB=∠CBE=40°,∴∠ACB=∠ACF+∠FCB=50°+40°=90°,∵∠CAB=∠DAB -∠DAC=80°-50°=30°,∴∠ABC=180°-∠CAB-∠ACB=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2如图,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A的度数.解:在△CGF中,∠GCF=180°-∠CGF-∠F=180°-70°-30°=80°,∴∠ACB=180°-∠GCF=180°-80°=100°,在△ABC中,∠A=180°-∠B-∠ACB=180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△ABC中,∠A=35°,∠B=43°,则∠C=102°.3.在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A=40°,∠B=60°,∠C=80°.4.在△ABC中,如果∠A=12∠B=13∠C,那么△ABC是什么三角形?解:∵∠A =12∠B =13∠C ,∴∠B =2∠A ,∠C =3∠A ,∵∠A +∠B +∠C =180°,∴∠A +2∠A +3∠A =180°,∴∠A =30°,∴∠B =60°,∠C =90°,∴△ABC 是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在Rt△ABC中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?解:结论:∠ACD=∠B.理由如下:在Rt△ACB中,∠A+∠B=90°,在Rt△ACD中,∠A+∠ACD=90°,∴∠ACD =∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C=90°,∠AED=∠B,△ADE是直角三角形吗?为什么?解:结论:△ADE是直角三角形.理由如下:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角相等).∵∠AED=∠B,∴∠A+∠AED=90°,∴△ADE是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,AB ∥CD ,AE ,CE 分别平分∠BAC ,∠ACD.求证:△ACE 是Rt △. 证明:∵AB ∥CD ,∴∠BAC +∠ACD =180°,∵AE ,CE 分别平分∠BAC ,∠ACD ,∴∠EAC =12∠BAC ,∠ACE =12∠ACD ,∴∠EAC +∠ACE =12∠BAC +12∠ACD =90°,∴△ACE 是Rt △(有两个角互余的三角形是直角三角形).探究2 如图,在Rt △ABC 中,∠C =90°,AD ,BD 是∠CAB ,∠CBA 的角平分线,求∠D 的度数.解:在Rt △ABC 中,∠CAB +∠CBA =90°,∵AD ,BD 是∠CAB ,∠CBA 的角平分线,∴∠DAB =12∠CAB ,∠DBA =12∠CBA ,∴∠DAB +∠DBA =12∠CAB +12∠CBA =45°,在△ADB 中,∠D =180°-(∠DAB +∠DBA)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则此三角形是直角三角形.2.如图,在△ABC中,∠ACB=90°,∠ACD=∠B.求证:△ACD是Rt△.证明:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠ACD=∠B,∴∠A+∠ACD=90°,∴△ACD是Rt△(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△ABC的边BC延长到D,我们把∠ACD叫做三角形的外角.思考:①在△ABC中,除了∠ACD外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△ABC共有6个外角;③外角∠ACD与内角∠ACB的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角.能由内角∠A,∠B求出外角∠ACD吗?如果能,外角∠ACD与内角∠A,∠B有什么关系?认真思考,完成下面的填空:(1)∠ACB=50°,∠ACD=130°,∠A+∠B=130°,∠ACD=∠A+∠B;(填“>”“<”或“=”)(2)∠ACD>∠A,∠ACD>∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△BFD的外角有∠CDA,∠BFC,∠DFE,以∠AEB为外角的三角形是△CEF,△CEB.2.如图,∠1,∠2,∠3是△ABC不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠ABC+∠CAB,∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC),∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=12α+90°;②β=12α;③β=90°-12α.证明:(略)探究2 如图,∠A =50°,∠B =40°,∠C =30°,求∠BPC 的度数.解:连接AP 并延长到点E ,∵∠BPE =∠B +∠BAP ,∠CPE =∠C +∠CAP ,又∵∠BPC =∠BPE +∠CPE ,∴∠BPC =∠B +∠BAP +∠C +∠CAP =∠BAC +∠B +∠C =50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C)A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C)A.90°B.110°C.100°D.120°3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.错误!,第4题图) 4.如图,BE∥CF,∠B=50°,∠C=75°,求∠A的度数.解:∵BE∥CF,∴∠ADE=∠C,∵∠ADE=∠B+∠A,∴50°+∠A=75°,∴∠A=25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟) 11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m边形的一个顶点有7条对角线,n边形没有对角线,求mn的平方根.解:由题意可得m-3=7,∴m=10,n=3,∴±mn=±30.探究2:填表学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D )A .直角三角形B .等腰三角形C .长方形D .正方形2.过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n 边形,依题意得n (n -3)2=4n ,∵n ≥3且为整数,∴n =11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:总结归纳:三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度. 总结归纳:n 边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D =1∶2∶3∶4,则∠C =108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 (1)一个多边形的内角和是外角和的一半,它是几边形? (2)一个多边形的内角和是外角和的2倍,它是几边形? 解:(1)设它是n 边形,则有180°·(n -2)=12×360°,∴n =3.(2)设它是n 边形,则有180°·(n -2)=2×360°,∴n =6.探究2如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB与DE有怎样的位置关系?BC与FE有这种关系吗?解:结论:AB∥DE,BC∥FE.证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.解:设这个边多形的边数为n,则有180°(n-2)=2×180°×(5-2),∴n=8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟)。

相关文档
最新文档