人教版九年级数学第二十四章 圆全章练习
人教版九年级数学上册第24章《圆》单元练习题(含答案)
人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.已知点P 在半径为8的O 外,则( )A .8OP >B .8OP =C .8OP <D .8OP ≥ 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个 3.O 的半径为10cm ,弦//AB CD .若12cm,16cm AB CD ==,则AB 和CD 的距离为( ) A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 4.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒5.如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =,1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π 7.如图,点,,,,A B C DE 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒8.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°9.如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )A .55°B .65°C .60°D .75°10.已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( )A .96πcm 2B .48πcm 2C .33πcm 2D .24πcm 211.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222- 二、填空题13.如图,在Rt ABC △甲,90ABC ︒∠=,2AB =,23BC =,以点B 为圆心,AB 的长为半径作圆,交AC 于点E ,交BC 于点F ,阴影部分的面积为__________(结果保留π).14.如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.15.如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .16.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.17.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.18.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.三、解答题19.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一CD=,求证:AC是O的切线.点,220.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt△ABC中,∠C=90°.求作:一个⊙O,使⊙O与AB、BC所在直线都相切,且圆心O在边AC上.21.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒22.如图,AB 是O 的直径,过点A 作O 的切线AC ,点P 是射线AC 上的动点,连接OP ,过点B 作BD //OP ,交O 于点D ,连接PD .(1)求证:PD 是O 的切线;(2)当APO ∠的度数为______时,四边形POBD 是平行四边形.23.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AO CE ==,1CF =,求BF 的长.24.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线.25.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.26.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26m AB =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5m CD =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m )参考答案1.A2.A3.C4.C5.B6.D7.D8.C9.B10.D11.A12.B13.π33+ 14.2215.10316.6017.118.3619.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.20.解:作∠ABC 的平分线交AC 于O 点,以O 点为圆心,OC 为半径作圆,则O 为所求作的圆.21.证明:∵四边形ABCD 内接于O , ∴180ADC ABC ∠+∠=︒,又∵120ADC ∠=︒,∴180********ABC ADC ∠=︒-∠=︒-︒=︒, ∵AB AC =,∴AB AC =,∴ABC 是等边三角形.22.解:证明:连接OD ,∵P A 切⊙O 于A ,∴P A ⊥AB ,即∠P AO =90°,∵OP ∥BD ,∴∠DBO =∠AOP ,∠BDO =∠DOP , ∵OD =OB ,∴∠BDO =∠DBO ,∴∠DOP =∠AOP ,在△AOP 和△DOP 中,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△DOP (SAS ),∴∠PDO =∠P AO ,∵∠P AO =90°,∴∠PDO =90°,即OD ⊥PD ,∵OD 过O ,∴PD 是⊙O 的切线;(2)由(1)知:△AOP ≌△DOP ,∴P A =PD ,∵四边形POBD 是平行四边形,∴PD =OB ,∵OB =OA ,∴P A =OA ,∴∠APO =∠AOP ,∵∠P AO =90°,∴∠APO =∠AOP =45°.23.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.24.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,AB ⊥CD ,∴BC BD =,∴∠CAB =∠BAD ,∵∠BOD =2∠BAD ,∴∠BOD =2∠CAB ;(2)证明:如图,连接OC ,AD ,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵BC BD=,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵BC BC=,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90︒,∴∠CDE+∠DCE=90︒,∴∠OCD+∠DCE=90︒,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.25.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD()Rt Rt HL COH DOH ≅∴,COH DOH ∴∠=∠,BC BD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠,2BOD A ∴∠=∠;(2)证明:连接AD ,OA OD =,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠, ∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠, 180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒, 30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒, 223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,OC DE ∴∥,CE BE ⊥,∴直线CE 为O 的切线. 26.解:∵半径OC AB ⊥, ∴AD BD =.故答案为:AD BD =.(2)设主桥拱半径为R ,由题意可知26AB =,5CD =, ∴11261322BD AB ==⨯=,5OD OC CD R =-=-, 在Rt OBD △中,由勾股定理,得222OB BD OD =+, 即22213(5)R R =+-, 解得19.4R =,∴19R ≈,因此,这座石拱桥主桥拱半径约为19m。
人教版九年级上册数学 第二十四章 圆 单元测试题(含多套试题)
第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。
人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案
人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。
【单元练】人教版初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)
一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245C 解析:C【分析】 先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°,∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =+=+=.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104πB解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.如图,分别以AB,AC为直径的两个半圆,其中AC是半圆O的一条弦,E是弧AEC中点,D是半圆ADC中点.若DE=2,AB=12,且AC˃6,则AC长为()A.2B.2C.2D.2D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80πB解析:B【分析】 先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .πA解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102解析:C【分析】 根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A.8 B.6 C.4 D.2A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222=-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒D解析:D【分析】连接AC,根据圆心角、弧、弦的关系求出∠BAC,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.10.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题11.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,12⎛+ ⎝⎭332⎛ ⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得632JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒∴1122FH AF == ∵已知点M 的纵坐标是312+,即312MH =+ ∴点M 的坐标是:13,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,226632JM CM CJ =-= ∵点I 是正六边形的中心∴1IC IF ==∴32JF IF IC CJ =+-=∴点6M 的坐标是:33,22⎛⎫ ⎪ ⎪⎝⎭. 故答案是:13,122⎛⎫+ ⎪ ⎪⎝⎭;33,22⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.12.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________. 【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵22(32)310MB =-+=∴⊙M 10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.13.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE的长为最大值,∵AO=OC=OE,且AB=AC=4,∴122OE AC==又∵∠BAC=90°∴22222BO AO AB=+=+=4220∴25BO=∴BE=252+=+BO OE+故答案为:225【点睛】此题主要考查了求线段的最大值,构造出△ACE的外接贺是解答本题的关键.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.BC=,若点P是矩形ABCD上一动点,要使得18.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.或4或8【分析】取CD中点P1连接60APBAP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B =60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:434或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=3△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米. 65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.解析:(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD -=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD =-=-=. ∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.解析:证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==解析:(1)证明见解析;(2)364π- 【分析】 (1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 60133360464AOT AOTS S ππ⨯=-=-=-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD 交于圆一点P ,连接AP ,同理可证AP 即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 解析:(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ. 【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.解析:(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒,根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE , ∵AE 是O 的直径, ∴90ACE ∠=︒, ∵52ACB ∠=︒, ∴905238BCE ∠=︒-︒=︒, ∴38BAE BCE ∠=∠=︒, ∵AB AD =, ∴71ABD ADB ∠=∠=︒, ∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.。
人教版初中九年级数学上册第二十四章《圆》习题(含答案解析)
一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,AB 是О的直径,,CB CD 是О的弦,且,CB CD CD =与AB 交于点E ,连接OD .若40,AOD ∠=︒则D ∠的度数是( )A .20B .35C .40D .55 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π 5.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°6.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 7.已知O 的半径为4,点P 在O 外,OP 的长可能是( ) A .2 B .3 C .4 D .5 8.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .4 9.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠10.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.22+1 B.22+2 C.42+1 D.42-211.如图,⊙O的半径为1,点 O到直线a的距离为2,点 P是直线a上的一个动点,PA 切⊙O于点 A,则 PA的最小值是()A.1 B.3C.2 D.512.如图,AB为圆O的直径,点C在圆O上,若∠OCA=50°,OB=2,则弧BC的长为()A.103πB.59πC.109πD.518π13.如图,点M是矩形ABCD的边BC、CD上的点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP,若AB=6,AD=4,则DP的长的最小值为()A.2 B.121313C.4 D.514.如图,△ABC内接于☉O,若☉O的半径为6,∠A=60°,则BC的长为()A .2πB .4πC .6πD .8π 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.已知O 的面积为π,则其内接正六边形的边长为______.18.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB=BC ,连结OB 、OC ,延长CO 交弦AB 于D ,若△OBD 是直角三角形,则弦BC 的长为______________.19.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.20.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.21.如图,AB AC 、分别为O 的内接正方形、内接正三角形的边,BC 是圆内接正n 边形的一边,则n 的值为_______________________.22.如图,正方形 ABCD 中,点 E 是 CD 边上一点,连接 AE ,过点 B 作 BG ⊥AE 于点 G , 连接 CG 并延长交 AD 于点 F ,当 AF 的最大值是 2 时,正方形 ABCD 的边长为______.23.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;24.如图,半径为3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则OC =_____.25.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.26.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题27.如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =NE =3.(1)求证:BC 是⊙O 的切线;(2)若AE =4,求⊙O 的直径AB 的长度.28.如图,四边形ABCD 内接于O ,AB AC =,BD AC ⊥,垂足为E .(1)若40BAC ∠=︒,求ADC ∠的度数;(2)求证:2BAC DAC ∠=∠.29.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.30.如图,在平面直角坐标系xOy 中,A (0,1),点P (t ,0)为x 轴上一动点(不与原点重合).以P 为圆心,PA 为半径的⊙P 与x 轴正半轴交于点B ,连接AB ,以AB 为直角边在AB 的右上方作等腰直角三角形ABC ,且∠BAC =90°,直线BC 于⊙P 的另一个公共点为F ,连接PF .(1)当t = 2时,点C的坐标为(,);(2)当t >0时,过点C作x轴的垂线l.①判断当点P运动时,直线l的位置是否发生变化?请说明理由;②试说明点F到直线l的距离始终等于OP的长;(3)请直接写出t为何值时,CF=2BF.。
人教版九年级数学上《第二十四章圆》单元测试题含答案
第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。
人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)
人教版九年级上册数学 第二十四章 圆 单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆 2.若点(,0)B a 在以点(1,0)A 为圆心,2为半径的圆内,则a 的取值范围为( )A.1a <-B.3a >C.13a -<<D.1a ≥-且0a ≠3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长尺(1AB =尺10=寸),问:这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC 的长为( )A.13寸B.20寸C.26寸D.28寸4.如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,84AOC ∠=︒,则E ∠等于( )A.42°B.28°C.21°D.20°5.如图,AB 是半圆O 的直径,点C 在半圆上(不与A ,B 重合),DE AB ⊥于点D ,交BC 于点F ,下列条件中能判定CE 是半圆O 的切线的是( )A.E CFE∠=∠∠=∠ B.E ECFC.ECF EFC∠=︒∠=∠ D.60ECF6.如图,在O中,OC AB⊥,32∠=︒,则OBA∠的度数是( )ADCA.64°B.58°C.32°D.26°7.如图,PA,PB分别与O相切于点A,B,70∠的度数P∠=︒,C为O上一点,则ACB为( )A.110°B.120°C.125°D.130°8.如图,在O中,AB是直径,CD是弦,AB CD⊥,下列结论错误的是( )A.AC OD== B.BC BDC.AOD CBD∠=∠∠=∠ D.ABC ODB9.如图,ABC内接于O,将BC沿BC翻折,BC交AC于点D,连接BD.若∠的度数是( )∠=︒,则ABDBAC66A.66°B.44°C.46°D.48° 10.如图,抛物线2144y x =-与x 轴交于A ,B 两点,P 是以点(0,3)C 为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ ,则线段OQ 的最大值是( )A.3B.412C.72D.4二、填空题(每小题4分,共20分)11.如图所示,点,,A B C 在同一直线上,点M 在直线AC 外,经过图中的三个点作圆,可以作__________个.12.如图,已知AB ,CD 是O 的两条直径,且50AOC ∠=︒.过点A 作//AE CD 交O 于点E ,则AOE ∠的度数为___________.13.如图,在O 的内接四边形ABCD 中,142BCD ∠=︒,则BOD ∠=___________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或7 3.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23(2)由(1)知AB=BC=AC,∴△ABC为等边三角形,∴∠OAF=30°,在Rt△OAF中,AF =3,可求OA=2,即⊙O的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为 224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___. 知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5综合练习(二) 圆的基本性质(24.1)一、选择题 1.(2014·舟山)如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( D )A .2B .4C .6D .8,第1题图) ,第2题图)2.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( B )A .DE =BEB .BC ︵=BD ︵C .△BOC 是等边三角形D .四边形ODBC 是菱形 3.(2014·南昌)如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为( D )A .40°B .45°C .50°D .55°,第3题图) ,第4题图)4.如图,直角坐标系中一条圆弧经过网格点A ,B ,C ,其中B 点坐标为(4,4),则圆弧所在圆的圆心坐标为( B )A .(2,-2)B .(2,0)C .(-2,0)D .(0,-2)5.如图,在⊙O 中,半径OD 垂直弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB =8,CD =2,则EC 的长度为( D )A .2 5B .8C .210D .213,第5题图) ,第6题图)6.如图,点P 是等边三角形ABC 外接圆⊙O 上一点,在以下判断中,不正确的是( C ) A .当弦PB 最长时,△APC 是等腰三角形 B .当△APC 是等腰三角形时,PO ⊥AC C .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形 二、填空题 7.(2014·兰州)如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠ADC =54°,则∠BAC 的度数等于__36°___.,第7题图) ,第8题图)8.工程上常用钢珠来测量零件上小圆孔的宽口,如图,假设钢珠的直径是10 mm ,测得钢珠顶端离零件表面的距离为8 mm ,则这个小圆孔的宽口AB 的长度为__8___mm .9.如图,将⊙O 沿弦AB 折叠,使AB ︵经过圆心O ,则∠OAB =__30___°.,第9题图) ,第10题图)10.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为13,则点P 的坐标为__(3,2)___.11.(2014·陕西)如图,⊙O 的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是___.,第11题图) ,第12题图)12.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度绕点C 旋转,CP 与量角器的半圆弧交于点E ,第24秒时,点E 在量角器上对应的读数是__144___度.13.如图,AB 为⊙O 的直径,点P 为其半圆上任意一点(不含A ,B),点Q 为另一半圆上一定点,若∠POA 为x °,∠PQB 为y °,则y 与x 的函数关系是__y =-12x +90___.三、解答题14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.解:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴CE ︵=AD ︵,∴CE ︵=BD ︵,∴BC ︵=DE ︵,∴DE =BC15.(2014·无锡)如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E.(1)若∠B =70°,求∠CAD 的度数; (2)若AB =4,AC =3,求DE 的长.解:(1)∠CAD =35°(2)DE =2-7216.如图,AB 是⊙O 的直径,C 是AE ︵的中点,CD ⊥AB 于点D ,交AE 于点F ,连接AC ,求证:AF =CF.解:连接BC.∵AB 为直径,∴∠ACB =90°,∴∠ABC +∠CAB =90°.∵C 为AE ︵的中点,∴∠ABC =∠EAC.又∵CD ⊥AB ,∴∠ACD +∠CAD =90°,∴∠ACD =∠EAC ,∴AF =CF17.如图,AB 为⊙O 的直径,点C 在⊙O 上,延长BC 至点D ,使DC =CB ,延长DA 与⊙O 的另一个交点为E ,连接AC ,CE.(1)求证:∠B =∠D ;(2)若AB =4,BC -AC =2,求CE 的长.解:(1)∵AB 为⊙O 的直径,∴∠ACB =90°,∴AC ⊥BC.∵DC =CB ,∴AD =AB ,∴∠B =∠D (2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得x 1=1+7,x 2=1-7(舍去).∵∠B =∠E ,∠B =∠D ,∴∠D =∠E ,∴CD =CE.∵CD =CB ,∴CE =CB =1+718.如图,某地有一座圆弧形拱桥,圆心为点O ,桥下水面跨度为7.2 m ,过O 作OC ⊥AB 于点D ,交圆弧于点C ,CD =2.4 m ,现有一艘宽3 m ,船舱顶部为长方形,并高出水面AB 为 2 m 的货船要经过拱桥.问此货船能否顺利地通过这座拱桥?解:连接OA ,ON ,设CD 交MN 于H.AB =7.2 m ,CD =2.4 m ,EF =3 m ,且D 为AB ,EF 的中点,OC ⊥AB ,OC ⊥MN.设OA =R ,则OD =OC -DC =R -2.4,AD =12AB =3.6 m .在Rt △OAD 中,有OA 2=AD 2+OD 2,即R 2=3.62+(R -2.4)2,解得R =3.9 m .在Rt △ONH 中,OH =ON 2-NH 2= 3.92-1.52=3.6 m ,∴FN =DH =OH -OD =3.6-(3.9-2.4)=2.1 m >2 m ,∴货船可以顺利通过这座拱桥24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系1.如图,⊙O的半径为r.(1)点A在⊙O外,则OA__>___r;点B在⊙O上,则OB__=___r;点C在⊙O内,则OC__<___r.(2)若OA>r,则点A在⊙O__外___;若OB=r,则点B在⊙O__上___;若OC<r,则点C在⊙O__内___.2.在同一平面内,经过一个点能作__无数___个圆;经过两个点可作__无数___个圆;经过__不在同一直线上___的三个点只能作一个圆.3.三角形的外心是三角形外接圆的圆心,此点是__三边垂直平分线的交点___.4.反证法首先假设命题的__结论___不成立,经过推理得出矛盾,由此判定假设__错误___,从而得到原命题成立.知识点1:点与圆的位置关系1.已知点A在直径为8 cm的⊙O内,则OA的长可能是( D)A.8 cm B.6 cm C.4 cm D.2 cm2.已知圆的半径为6 cm,点P在圆外,则线段OP的长度的取值范围是__OP>6_cm___.3.已知⊙O的半径为7 cm,点A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系:(1)OP=8 cm;(2)OP=14 cm;(3)OP=16 cm.解:(1)在圆内(2)在圆上(3)在圆外知识点2:三角形的外接圆4.如图,点O是△ABC的外心,∠BAC=55°,则∠BOC=__110°___.5.直角三角形外接圆的圆心在__斜边的中点___上.若直角三角形两直角边长为6和8,则该直角三角形外接圆的面积为__25π___.6.一个三角形的外心在其内部,则这个三角形是( C)A.任意三角形B.直角三角形C.锐角三角形D.钝角三角形7.如图,一只猫观察到一老鼠洞的三个洞口A,B,C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力地同时顾及三个洞口?作出这个位置.解:图略.连接AB,BC,分别作线段AB,BC的垂直平分线,且相交于点O,点O 即为所求知识点3:反证法8.用反证法证明:“垂直于同一条直线的两条直线平行”第一步先假设( D)A.相交B.两条直线不垂直C.两条直线不垂直于同一条直线D.垂直于同一条直线的两条直线相交9.用反证法证明:“△ABC中至少有两个锐角”,第一步假设为__△ABC中至多有一个锐角___.10.用反证法证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°,求证:l1__∥___l2.证明:假设l1__不平行___l2,即l1与l2相交于一点P,则∠1+∠2+∠P__=___180°(__三角形内角和定理___),所以∠1+∠2__<___180°,这与__已知___矛盾,故__假设___不成立,所以__l1∥l2___.11.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中,不正确的是( A)A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外12.如图,△ABC的外接圆圆心的坐标是__(-2,-1)___.13.在平面直角坐标系中,⊙A的半径是4,圆心A的坐标是(2,0),则点P(-2,1)与⊙A的位置关系是__点P在⊙A外___.14.若O为△ABC的外心,且∠BOC=60°,则∠BAC=__30°或150°___.15.如图,△ABC中,AC=3,BC=4,∠C=90°,以点C为圆心作⊙C,半径为r.(1)当r在什么范围时,点A,B在⊙C外?(2)当r在什么范围时,点A在⊙C内,点B在⊙C外?解:(1)0<r<3(2)3<r<416.如图,⊙O′过坐标原点,点O′的坐标为(1,1),试判断点P(-1,1),Q(1,0),R(2,2)与⊙O′的位置关系.解:点P在⊙O′外,点Q在⊙O′内,点R在⊙O′上17.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来;(尺规作图,不写作法,保留作图痕迹)(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.解:(1)用尺规作出两边的垂直平分线,交于O点,以O为圆心,OA长为半径作出⊙O,⊙O即为所求作的花坛的位置(图略)(2)25π平方米18.如图①,在△ABC中,BA=BC,D是平面内不与点A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图②,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.解:(1)由SAS可证(2)四边形BECD是菱形.证明:∵△ABD≌△CBE,∴CE=AD.∵点D是△ABC的外接圆圆心,∴DA=DB=DC.又∵BD=BE,∴BD=BE=EC=CD,∴四边形BECD是菱形24.2.2 直线和圆的位置关系第1课时 直线和圆的位置关系1.直线和圆有__相交___、__相切___、__相离___三种位置关系.2.直线a 与⊙O__有唯一___公共点,则直线a 与⊙O 相切;直线b 与⊙O__有两个___公共点,则直线b 与⊙O 相交;直线c 与⊙O__没有___公共点,则直线c 与⊙O 相离.3.设⊙O 的半径为r ,直线到圆心的距离为d ,则: (1)直线l 1与⊙O__相离___,则d__>___r ; (2)直线l 2与⊙O__相切___,则d__=___r ; (3)直线l 3与⊙O__相交___,则d__<___r.知识点1:直线与圆的位置关系的判定 1.(2014·白银)已知⊙O 的半径是6 cm ,点O 到同一平面内直线l 的距离为5 cm ,则直线l 与⊙O 的位置关系是( A )A .相交B .相切C .相离D .无法判断2.已知一条直线与圆有公共点,则这条直线与圆的位置关系是( D ) A .相离 B .相切 C .相交 D .相切或相交3.在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆( C ) A .与x 轴相交,与y 轴相切 B .与x 轴相离,与y 轴相交 C .与x 轴相切,与y 轴相交 D .与x 轴相切,与y 轴相离4.在Rt △ABC 中,∠C =90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm .解:过点C 作CD ⊥AB ,垂足为D ,可求CD = 3.(1)r =1.5 cm 时,相离;(2)r = 3 cm 时,相切;(3)r =2 cm 时,相交知识点2:直线与圆的位置关系的性质5.直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,则半径r 的取值范围是( A )A .r >5B .r =5C .0<r <5D .0<r ≤56.如图,⊙O 的半径OC =5 cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于A ,B 两点,AB =8 cm ,则l 沿OC 所在的直线向下平移,当l 与⊙O 相切时,平移的距离为( B )A .1 cmB .2 cmC .3 cmD .4 cm7.已知⊙O 的圆心O 到直线l 的距离为d ,⊙O 的半径为r ,若d ,r 是方程x 2-4x +m =0的两个根,且直线l 与⊙O 相切,则m 的值为__4___.8.在Rt △ABC 中,∠A =90°,∠C =60°,BO =x ,⊙O 的半径为2,求当x 在什么范围内取值时,AB 所在的直线与⊙O 相交、相切、相离?解:过点O 作OD ⊥AB 于D ,可得OD =12OB =12x.当AB 所在的直线与⊙O 相切时,OD =r =2,∴BO =4,∴0<x <4时,相交;x =4时,相切;x >4时,相离9.已知⊙O 的面积为9π cm 2, 若点O 到直线l 的距离为π cm ,则直线l 与⊙O 的位置关系是( C)A.相交B.相切C.相离D.无法确定10.已知⊙O的半径为3,直线l上有一点P满足PO=3,则直线l与⊙O的位置关系是( D)A.相切B.相离C.相离或相切D.相切或相交11.已知⊙O的半径为r,圆心O到直线l的距离为d.若直线l与⊙O相切,则以d,r 为根的一元二次方程可能为( B)A.x2-3x=0 B.x2-6x+9=0C.x2-5x+4=0 D.x2+4x+4=012.如图,在矩形ABCD中,AB=6,BC=3,⊙O是以AB为直径的圆,则直线DC 与⊙O的位置关系是__相切___.13.已知⊙O的半径是5,圆心O到直线AB的距离为2,则⊙O上有且只有__3___个点到直线AB的距离为3.14.如图,⊙P的圆心P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′,根据作图直接写出⊙P′与直线MN的位置关系;(2)若点N在(1)中的⊙P′上,求PN的长.解:(1)图略,⊙P′与直线MN相交(2)连接PP′并延长交MN于点Q,连接PN,P′N.由题意可知:在Rt△P′QN中,P′Q=2,P′N=3,由勾股定理可求出QN=5;在Rt△PQN中,PQ=3+5=8,QN=5,由勾股定理可求出PN=82+(5)2=6915.如图,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当⊙P和x轴相切时,写出点P的坐标,并判断此时y轴与⊙P的位置关系;(2)当⊙P和y轴相切时,写出点P的坐标,并判断此时x轴与⊙P的位置关系;(3)⊙P是否能同时与x轴和y轴相切?若能,写出点P的坐标;若不能,说明理由.解:∵⊙P的圆心在直线y=2x-1上,∴圆心坐标可设为(x,2x-1).(1)当⊙P和x 轴相切时,2x-1=2或2x-1=-2,解得x=1.5或x=-0.5,∴P1(1.5,2),P2(-0.5,-2).∵1.5<2,|-0.5|<2,∴y轴与⊙P相交(2)当⊙P和y轴相切时,x=2或-2,得2x -1=3或2x-1=-5,∴P1(2,3),P2(-2,-5).∵|-5|>2,且|3|>2,∴x轴与⊙P相离(3)不能.∵当x=2时,y=3,当x=-2时,y=-5,|-5|≠2,3≠2,∴⊙P不能同时与x轴和y轴相切16.已知∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D,E两点,设AD=x.(1)如图①,当x取何值时,⊙O与AM相切?(2)如图②,当x取何值时,⊙O与AM相交于B,C两点,且∠BOC=90°?解:(1)过O点作OF⊥AM于F,当OF=r=2时,⊙O与AM相切,此时OA=4,故x=AD=2(2)过O点作OG⊥AM于G,∵OB=OC=2,∠BOC=90°,∴BC=22,∴BG=CG =2,∴OG= 2.∵∠A=30°,∴OA=22,∴x=AD=22-2第2课时切线的判定与性质1.经过半径的__外端___,并且__垂直___于这条半径的直线是圆的切线.2.圆的切线必__垂直___于过__切点___的半径.知识点1:切线的判定1.下列说法中,正确的是( D)A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为__∠ABC=90°___.3.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°.求证:CD是⊙O的切线.解:连接OC.∵AC=CD,∠D=30°,∴∠A=∠D=30°.∵OA=OC,∴∠OCA=∠A =30°,∴∠COD=60°,∴∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线4.(2014·孝感)如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.解:(1)如图(2)AB与⊙O相切.证明:作OD⊥AB于点D,∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切知识点2:切线的性质5.(2014·邵阳)如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB 与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( A)A.30°B.45°C.60°D.40°,第5题图),第6题图),第7题图)6.如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA =__4___.7.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切于点A.若∠MAB =30°,则∠B=__60°___.8.如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.求证:AC=BC.解:∵AB切⊙O于点C,∴OC⊥AB.∵OA=OB,∴AC=BC9.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且CO =CD ,则∠PCA =( D )A .30°B .45°C .60°D .67.5°,第9题图),第10题图),第11题图)10.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( A )A .30°B .45°C .60°D .90°11.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( D )A .OC ∥AEB .EC =BCC .∠DAE =∠ABED .AC ⊥OE 12.(2014·自贡)如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为__3___cm .,第12题图) ,第13题图)13.如图,直线PA 过半圆的圆心O ,交半圆于A ,B 两点,PC 切半圆于点C ,已知PC =3,PB =1,则该半圆的半径为__4___.14.(2014·毕节)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,连接CD.(1)求证:∠A =∠BCD.(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.解:(1)∵AC 为直径,∴∠ADC =90°,∴∠A +∠ACD =90°.∵∠ACB =90°,∴∠BCD +∠ACD =90°,∴∠A =∠BCD (2)当点M 是BC 的中点时,直线DM 与⊙O 相切.理由:如图,连接DO.∵DO =CO ,∴∠1=∠2.∵∠BDC =90°,点M 是BC 的中点,∴DM =CM ,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM 与⊙O 相切15.如图,已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过点P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,求∠CDP 的度数.解:∵PC 是⊙O 的切线,∴OC ⊥OP ,即∠OCP =90°.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB -∠OCB =∠OCP -∠OCB ,即∠ACO =∠BCP.又OA =OC ,∴∠A =∠ACO ,∴∠BCP =∠BAC.∵PD 是∠APC 的平分线,∴∠CPD =∠APD.∵∠ABC =∠CPD +∠APD +∠BCP ,∠BAC +∠ABC =90°,∴∠BAC +∠CPD +∠APD +∠BCP =90°,∴∠CDP =∠APD +∠BAC =45°16.(2014·德州)如图,⊙O 的直径AB 为10 cm ,弦BC 为6 cm ,D ,E 分别是∠ACB 的平分线与⊙O ,AB 的交点,P 为AB 延长线上一点,且PC =PE.(1)求AC ,AD 的长;(2)试判断直线PC 与⊙O 的位置关系,并说明理由.。