2011年体育单招数学试题与答案
体育对口单招数学卷(含答案) (7)
体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称()(A )62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 2.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k的值为()(A )-6(B )6(C )3(D )-33.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为()(A )0(B )-1(C )1(D )24、函数)32(log )(22-+=x x x f 的定义域是()A.[]1,3- B.()1,3-C.(][)+∞-∞-,13, D.()()+∞-∞-,13, 5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.b c a <<C.ca b << D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()GD31GD34GD32GD337.在ABC △中,若2AB BC CA === ,则AB BC ⋅等于()A.3- B.3C.-2D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A.2B.3C.322D.111、已知54cos ,0,2=⎪⎭⎫⎝⎛-∈x x π,则x tan =()A 、34B 、34-C 、43D 、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A 、76B 、28C 、7D 、12913、直线012=+-y x 的斜率是();A 、-1B 、0C 、1D 、214、点P(-3,-2)到直线4x-3y+1=0的距离等于()A 、-1B 、1C 、2D 、-215、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是()。
(完整版)份体育单招数学考试卷
体育单招数学测试卷姓名 ___________ 分数 _______________(注意事项:1.本卷共19小题,共150分。
2.本卷考试时间:90分钟)一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有 一项是符合题目要求的,请将所选答案的字母写在括号里。
1、 设集合 M {x|x (x 1) 0}, N {x|x 2 4},则()A M NB 、M N MC 、M N MD 、M N R 2、 下列函数中既是偶函数又在(0,)上是增函数的是( )A y x 3B 、y |x| 1C 、y x 2 1D 、y 2 |x|3、 过点A (4,a )与B (5,b )的直线与直线y x m 平行,贝U | AB | ()A 6B 、 一 2C 、2D 、不确定 4、某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选本阅读,则不同的选法共有( ) A. 24种 B. 9种C. 3种D. 26种 8在 ABC 中,角A 、BC 所对边的长分别为a,b,c .若b 2 c 2 a 2 -bc ,则sin (B C ) 5 的值为()33-D 、— 555、函数??= D. ??=- ??6 6、已知sin cos J , (0, n ),则 sin27、已知直线 l 过点(1 ,-1)且与直线x 2y 3A. 2xy 1 )A. ??- B.、填空题:本大题共6小题,每小题6分,共36分。
把答案写在题中横线上。
112、 函数 f (x ) =-=-?=+In (x+2)的定义域为 ______ .13、 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 ________ .14、 一个正方体的体积是8,则这个正方体的内切球的表面积是 _____ .2 2 15、已知双曲线 务 笃1(a 0,b 0)的一条渐近线方程是y . 3x ,它的一个焦点与抛物a b 线y 2 16x 的焦点相同。
体育单独招生考试数学卷(答案) (3)
单独考试招生文化考试数学卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知1是2a 与2b 的等比中项,又是a1与b1的等差中项,则22b a b a ++的值是( )(A )1或21(B )1或21-(C )1或31 (D )1或31-2.以下命题正确的是( )(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan >3.已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=AD a ,=BE b ,则AC 是( ) (A )b a 3234+(B )b a 3432+ (C )b a 3234- (D )b a 3432-4.若10<<a ,则下列不等式中正确的是( ) (A )2131)1()1(a a ->- (B )0)1(log )1(>+-a a (C )23)1()1(a a +>-(D )1)1(1>-+a a5、化简3a a 的结果是( )A 、aB 、12aC 、41aD 、83a 6、角2017°是在那个象限内( )A 、第一象限角B 、第二象限角C 、第三象限角 B 、第四象限角 7、直线132yx的倾斜角为( )A 、90°B 、180°C 、120° B 、150°8210y 与直线230xy 的位置关系是( )A 、两线平行B 、两线垂直C 、两线重合 B 、非垂直相交9、在圆:22670x y x 内部的点是( )A 、(1) B 、(-7,0) C 、(-2,7) B 、(2,1)10. 函数2()|1|x f x x 的定义域为( )A 、[-5,+∞)B 、(-5,+∞)C 、[-2,-1)∪(-1,+∞) B 、(-2,-5)∪(-1,+∞)11、设集合M={1,2,3,4,5} ,集合N={1,4,5},集合T={4,5,6},则N T M )(= ( ) A 、{2,4,5,6} B 、{1,4,5} C 、{1,2,3,4,5,6} D 、{2,4,6}12、已知集合{|3A x x n ==+2,N n ∈,},{6,8,10,12,14}B =,则集合A B 中的元素个数为( ) A 、5 B 、4 C 、3 D 、2 13、已知集合A{}12x x =-<<,{03}B x x =<<,则A B = ( )A 、(-1,3)B 、(-1,0)C 、(0,2)D 、(2,3) 14、已知集合A {}2,1,0,1,2=--,{}(1)(2)0B x x x =-+<,则A B ( )A 、{-1,0}B 、{0,1}C 、{-1,0,1}D 、{0,1,2} 15、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ( ) A 、}23|{<<-x x B 、}25|{<<-x x C 、}33|{<<-x x D 、}35|{<<-x x 16、已知集{1,2,3},B {1,3}A ,则A B =( ) A 、{3} B 、{1,2} C 、{1,3} D 、{1,2,3} 17、已知集合{}{}3,2,3,2,1==B A ,则( ) A 、A=B B 、=B A ∅ C 、B A ⊆ D 、A B ⊆18、若集合{}1,1M =-,{}2,1,0N =-,则M N = ( ) A 、{0,-1} B 、{1} C 、{-2} D 、{-1,1}19、设A,B 是两个集合,则“A B A =”是“A B ⊆”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件20、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( ) A 、0 B 、1 C 、2 D 、5 二、填空题:(共20分) 1.tana=0.5,求=_______ 2.若sina=,则=______.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 1.已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F . (1)求证:点F 为11B C 中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --,求111A M AB .2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n(1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ; (2)求c 边的长度. 3、解:(1)由题知5,4,35===b a S设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ; (2)求c 边的长度.参考答案: 一、选择题 1-5题答案:DDAAB; 6-10题答案:CCDDC. 11-15题答案:BDAAA; 16-20题答案:CDBCD. 二、填空题 1. 答案:解析:2.答案:三、解答题1、【解答】(1)证明:连结DE ,在正方体1111ABCD A B C D -中,11//CD C D ,11C D ⊂平面1111A B C D ,CD ⊂/平面1111A B C D , 则//CD 平面1111A B C D ,因为平面1111A B C D 平面CDEF EF =,所以//CD EF ,则11//EF C D ,故1111////A B EF C D ,又因为1111//A D B C ,所以四边形11A B FE 为平行四边形,四边形11EFC D 为平行四边形,所以11A E B F =,11ED FC =, 而点E 为11A D 的中点,所以11A E ED =,故11B F FC =,则点F 为11B C 的中点; (2)解:以点1B 为原点,建立空间直角坐标系,如图所示, 设正方体边长为2,设点(,0,0)M m ,且0m <,则(0,2,2)C -,(2,1,0)E -,(0,1,0)F ,故(2,0,0),(0,1,2),(,1,0)FE FC FM m =-=-=-,设平面CMF 的法向量为(,,1)m a b =,则00m FM m FC ⎧⋅=⎪⎨⋅=⎪⎩,即020ma b b -=⎧⎨-=⎩,所以2a m =,2b =,故2(,2,1)m m =,设平面CDEF 的法向量为(,,1)n x y =,则00n FE n FC ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y -=⎧⎨-=⎩,所以0x =,2y =,故(0,2,1)n =,因为二面角M CF E --,则|||cos ,|||||4m n m n m n ⋅<>===,解得1m =±,又0m <,所以1m =-,故11112A M A B =.【点评】本题考查了立体几何的综合应用,涉及了线面平行的性质定理的应用,二面角的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题. 2、题,参考答案:(1,4);(0,7) 3、题:参考答案:C ab S sin 21=Csin 542135⨯⨯=∴23sin =∴C又 C 是ABC ∆的内角3π=∴C 或32π=C(2)当3π=C 时,3cos 2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c当32π=C 时,22222cos 3c a b ab π=+- 215422516⨯⨯⨯++==6161=∴c。
体育对口单招数学试试卷(答案)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.若集合2{|20},{|log (1)1},M x x N x x =->=-< 则M N =()A.{|23}x x <<B.{|1}x x <C.{|3}x x >D.{|12}x x <<2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a、b 满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=03.已知{}n a 为等差数列,3177,10,n a a a S =+=为其前n 项和,则使得n S 达到最大值的n 等于()A.4B.5C.6D.74.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.23B.33C.223D.2335、方程43)22(log =x 的解为()A.4=xB.2=xC.2=xD.21=x 6、下列各组函数是同一函数的是()①3()2()2f x x g x x x =-=⋅-与②2()()f x x g x x ==与③001()()f x x g x x ==与④22()21()21f x x xg x t t =--=--与A.①②B.①③C.③④D.①④7、下列命题是假命题的是()A.(0,),sin 2x x x π∀∈>B.000,sin cos 2x R x x ∃∈+=C.,30x x R ∀∈>D.00,lg 0x R x ∃∈=8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()9.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280B.-160C.160D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421 B.121 C.114 D.2711、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A、cb a <<B、b ac <<C、bc a <<D、a b c <<12、不等式152x x ---<的解集是()A、(,4)-∞B、(,1)-∞C、(1,4)D、(1,5)13、函数x x y 2cos sin =是()A、偶函数B、奇函数C、非奇非偶函数C、既是奇函数,也是偶函数14、若(12)a+1<(12)4-2a,则实数a 的取值范围是()A、(1,+∞)B、(12,+∞)C、(-∞,1)D、(-∞,12)15、化简3a a 的结果是()A、aB、12a C、41a D、83a 16、下列计算正确的是()A、(a3)2=a9B、log36-log32=1C、12a -·12a =0D、log3(-4)2=2log3(-4)17、三个数a=0.62,b=log20.3,c=30.2之间的大小关系是()A、a<c<bB、a<b<cC、b<a<cD、b<c<a 18、8log 15.021+-⎪⎭⎫⎝⎛的值为()A、6B、72C、16D、3719、下列各式成立的是()A、()52522n m n m +=+B、(b a )2=12a 12b C、()()316255-=-D、31339=20、设2a=5b=m,且1a +1b=3,则m 等于()A、310B、10C、20D、100二、填空题:(共20分)1.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________;2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________;3.已知m b a ==32,且211=+b a ,则实数m 的值为______________;4.若0>a ,9432=a ,则=a 32log ____________;三、解答题:(本题共3小题,共40分)1.计算:1033cos 3)27lg0.012p +-++2.等差数列{an}中,a2=13,a4=9.(1)求a1及公差d;(2)当n 为多少时,前n 项和Sn 开始为负?3.如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2)若2)nx 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的常数项等于多少?参考答案:一、选择题1-5题答案:DCBAA6-10题答案:BDDBA11-15题答案:BABAB;16-20题答案:BBCDA.二、填空题1.-3;2.),1( ;3.6;4.3;三、解答题1.参考答案.62.参考答案.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
体育对口单招数学试卷(答案) (4)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题6分,共60分)1.复数32ii -+的虚部为()A.i B.-i C.1D.-12.设集合{|2011},{|01}M x x N x x =<=<<,则下列关系中正确的是()A.M N R = B.{|01}M N x x =<< C.N N∈D.M N φ= 3.已知平面向量a,b 满足||1,||2,a b ==a 与b 的夹角为60︒,则“m=1”是“()a mb a -⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.从221x y m n -=(其中,{1,2,3}m n ∈-)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为()A.12B.47C.23D.345、数列{}n a 是递增的整数数列,且13a ,123100n a a a a +++⋯+=,则n 的最大值为()A.9B.10C.11D.126、已知集合A ={}1,3,B ={}2,3,则A B 等于()A.∅B.{}1,2,3C.{}1,2D.{}37.设,“”是“”的()A.充分非必要条件 B.必要充分条件C.充要条件D.既充分又必要条件8.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是()(A)0(B)1(C)-1(D)9.已知n m ,是夹角为o60的单位向量,则n m a +=2和n m b 23+-=的夹角是()(A)o30(B)o60(C)o90(D)o12010.已知锐角ABC ∆的面积为,4,3BC CA ==,则角C 的大小为()A.75°B.60°C.45°D.30°11、“1=x ”是“0122=+-x x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件12、“2)1(+=n n a n ”是“0)2(log 21<+x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件13、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件14.设复数1z bi =+()b R ∈且||2z =,则复数的虚部为()A.i±B.C.1±D.15.若,,,,a b c d R ∈且,a b c d >>,则下列结论正确的是()A.22ac bc>B.ac bd>C.11a b<D.a c b d +>+16、设b a ,是实数,则“0>+b a ”是“0>ab ”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件17、已知x x x f 2)(2+=,则)2(f 与)21(f 的积为()A、5B、3C、10D、818、“ααcos sin =”是“02cos =α”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件19、函数)32(log )(22-+=x x x f 的定义域是()A、[]1,3-B、()1,3-C、(][)+∞-∞-,13, D、()()+∞-∞-,13, 20、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A、c b a <<B、b c a <<C、ca b <<D、ac b <<二、填空题:(本题共5小题,每小题6分,共30分)1、f(x)=+(m-4)x+2为偶函数,那么实数m 的值为____2、f(x)=-+mx 在(一∞,1]上是增函数,么m 的取值范围是___3.计算dxex)1(03-⎰=______4.右图所示的伪代码输出的结果S 为______5.与圆22(4)x y +-=2相切,且在两坐标轴上截距相等的直线共有_______条。
体育单招数学模拟试题及答案
过椭圆的焦点作直线交椭圆于、两点,是椭圆另一焦x y F A B F 221236251+=体育单招数学模拟试题(一)一、 选择题1, 下列各函数中,与x y =表示同一函数的是( )(A)xx y 2= (B)2x y = (C)2)(x y = (D)33x y =2,抛物线241x y -=的焦点坐标是( ) (A) ()1,0-(B)()1,0(C)()0,1(D)()0,1-3,设函数216x y -=的定义域为A,关于X的不等式a x<+12log 2的解集为B,且A B A = ,则a 的取值范围是( )(A)()3,∞- (B)(]3,0 (C)()+∞,5 (D)[)+∞,54,已知x x ,1312sin =是第二象限角,则=x tan ( ) (A)125 (B) 125- (C) 512 (D)512-5,等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( ) (A)240(B)240±(C) 480 (D)480±6,tan330︒= ( )(A(B(C) (D)7,点,则△ABF 2的周长是( ) (A ).12 (B ).24 (C ).22 (D ).108,函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )(A )(,0)12π-(B )(,0)6π-(C )(,0)6π(D )(,0)3π二,填空题(本大题共4个小题,每小题5分,共20分) 9. 函数()ln 21y x =-的定义域是. 10. 把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 11. 某公司生产A 、B 、C 三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,样本中A 种型号的轿车比B 种型号的轿车少8辆,那么n =. 12. 已知函数1(0xy aa -=>且1)a ≠的图象恒过点A . 若点A 在直线 上, 则12m n+的最小值为. 三,解答题()100mx ny mn +-=>13.12(1) 完成如下的频率分布表:(2)从得分在区间[)10,20内的运动员中随机抽取2人 , 求这2人得分之和大于25的概率.14. 已知函数.cos sin sin )(2x x x x f +=(1) 求其最小正周期; (2) 当20π≤≤x 时,求其最值及相应的x 值。
体育对口单招数学试卷(包含答案) (7)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,共60分)1.已知命题,命题恒成立。
若为假命题,则实数的取值范围为( )A 、B 、C 、D 、2.已知平面平面,=c ,直线直线c a ,不垂直,且c b a ..交于同一点,则“c b ⊥”是“a b ⊥”的( )A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. 函数)10()(≠>-⋅-=a a a x a a x y x且的图像可以是( )A B C D4.设函数3)(x x f =,若20πθ≤≤时,0)1()cos (>-+m f m f θ恒成立,则实数的取值范围为( )A .)1,0(B .)0,(-∞C .1,(-∞)D .)21,(-∞ 5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( )A .6B .8C .2D .56.若tan θ=-2,则sin θ(1+sin2θ)sin θ+cos θ =( ) A.−65B.−25C.25 D.65 01,:≤+∈∃m R m p 01,:2>++∈∀mx x R x q q p ∧2≥m 2-≤m 22≥-≤m m 或22≤≤-m ⊥αββα ,α⊂a ,β⊂b7.若过点(a,b)可以作曲线y=ex 的两条切线,则( )A.eb<aB.ea<bC.0<a<ebD.0<b<ea8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.设a ≥0,b ≥0,且1222=+b a ,则21b a +的最大值为( )(A )43 (B )42 (C )423 (D )2310.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 ( )(A )5 (B )3 (C )2 (D )111. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( )A. BD ⃗⃗⃗⃗⃗B. DB ⃗⃗⃗⃗⃗C. AC ⃗⃗⃗⃗⃗D. CA ⃗⃗⃗⃗⃗12. 下列函数以π为周期的是( )A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是()A. 400B. 380C. 190D. 4014. 已知直线的倾斜角为60°,则此直线的斜率为( )A. −√33B. −√3C. √3D. √3315. 若sin α>0且tan α<0,则角α终边所在象限是( )A. 第一象限B. 第二象限C. 第三象限D.第四象限16、 不等式0412>-+x x 的解集是( )A 、RB 、 (1,4)C 、 ),4()1,(+∞-∞D 、 )4,(-∞17、不等式()0)5(7≥-+x x 的解集是( )A 、 ()7,5-B 、 ),5()7,(+∞--∞C 、 ),5[]7,(+∞--∞D 、 []57,- 18、若ab<0,则( )A 、a>0,b>0B 、a<0,b>0C 、a>0,b<0或 a<0,b>0D 、a>0,b>0或 a<0,b<019、下列命题中,正确的是( )A 、a>-aB 、a a <2C 、b a b a >>那么如果,D 、22,0,c b c a c b a >≠>则如果 20、在等差数列{}n a 中,3,21=-=d a ,则=7a ( )A 、16B 、17C 、18D 、19二、填空题:(本题共5小题,每小题6分,共30分.)1.记Sn 为等比数列{an}的前n 项和.若214613a a a ==,,则S5=____________.2.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.3.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 4.{}{},13),(,3),(=+==-=y x y x B y x y x A那么=B A _____;5、042=-x 是x+2=0的 ____条件.三、解答题:(本题共4小题,每小题10分,共40分)1、计算:sin π2−lg 1000+0.25−12÷√325−3!+√(−5)2. 2、求过点),(24-,且与直线033=+-y x 平行的直线方程。
体育单招历年真题排列组合二项式、概率(含答案)
体育单招历年真题排列组合二项式定理概率1、(2011年第10题) 将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有( )A 90种B 180种C 270种D 360种2、(2011年第11题)261(2)x x +的展开式中常数项是 。
3、(2012年第5题)已知9()x a +的展开式中常数项是8-,则展开式中3x 的系数是( )A. 168B. 168-C. 336D. 336-4、(2012年第8题)从10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法有( )A.120种B. 240种C.360 种D. 720种5、(2012年第14题)某选拔测试包含三个不同项目,至少两个科目为优秀才能通过测试.设某学员三个科目优秀的概率分别为544,,,666则该学员通过测试的概率是 。
6、(2013年第8题) 把4个人平均分成2组,不同的分组方法共有( )(A )5种 (B )4种 (C )3种 (D )2种7、(2013年第14题)有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 .8、(2014年第5题)从5位男运动员和4位女运动员中任选3人接受记者采访,这3人中男、女运动员都有 的概率是( ) A. 125 B. 85 C. 43 D. 65 9、(2014年第6题) 244)1(xx + 的展开式中,常数项为( ) A. 1224C B. 1024C C. 824C D. 624C10、(2014年第12题)一个小型运动会有5个不同的项目要依次比赛,其中项目A 不排在第三,则不同的排法共有 种。
(用数字作答)11、(2015年第8题)从5名新队员中选出2人,6名老队员中选出1人,组成训练小组,则不同的组成方案 共有( )A.165种B. 120种C. 75种D. 60种12、(2015年第15题) 4)12(-x 展开式中 3x 的系数是 。
体育对口单招数学卷(答案) (2)
体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称()(A )62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 2.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k的值为()(A )-6(B )6(C )3(D )-33.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为()(A )0(B )-1(C )1(D )24、函数)32(log )(22-+=x x x f 的定义域是()A.[]1,3- B.()1,3-C.(][)+∞-∞-,13, D.()()+∞-∞-,13, 5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.b c a <<C.ca b << D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()GD31GD34GD32GD337.在ABC △中,若2AB BC CA === ,则AB BC ⋅等于()A.3- B.3C.-2D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为()(A )240(B )120(C )60(D )3010.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba 11<成立的充分条件的个数是()(A )1(B )2(C )3(D )311、已知54cos ,0,2=⎪⎭⎫⎝⎛-∈x x π,则x tan =()A 、34B 、34-C 、43D 、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A 、76B 、28C 、7D 、12913、直线012=+-y x 的斜率是();A 、-1B 、0C 、1D 、214、点P(-3,-2)到直线4x-3y+1=0的距离等于()A 、-1B 、1C 、2D 、-215、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是()。
全国体育单招数学真题分类2011-2015
全国体育单招数学真题分类2011-20151.给定集合M={x|0<x<1},集合N={x|-1<x<1},则M∩N=M。
2.已知集合M={x|x>1},N={x|x≤2},则M∩N=(1,2]。
3.已知集合M={x|-2<x<2},N={x|-3<x<-1},则M∩N=(-2,-1)。
4.设集合A={x|0<x<7,x∈N},则A的元素共有6个。
5.已知集合A={x|x=3n,n∈N},B={x|x=3n+1,n∈N},C={x|x=3n+2,n∈N},其中真命题是①和③。
6.给定函数y=x+5(x≠-5)的反函数为y=x-5(x≠0)。
7.已知函数f(x)=4ax+1/(2x)(a>0)有最小值8,则a=1/2.8.函数y=x/(2x+1)-1的反函数是y=(x+1)/(2-x)(x≠-1/2)。
9.函数f(x)=ln((1-x)/(1+x))的定义域是(-1,1)。
10.下列函数中,减函数的是y=-x+1.一、函数1.函数f(x)=2x-x^2的值域是[A。
+∞),其中A为f(x)的最大值。
2.已知f(x)是奇函数,当x>0时,f(x)=x^2+ln(x+1/x^2),则当x<0时,f(x)=-x^2+ln(-x+1/x^2)。
二、不等式1.不等式|x-1|/x<1的解集是{x|0<x<1}。
2.不等式x+1>x-1的解集是{x|全体实数}。
3.不等式log2(4+3x-x^2)≤log2(4x-2)的解集为{x|-1<x<4}。
4.不等式x^2+x-2<x+5的解集为{x|(-3.-2]∪[1.+∞)}。
5.不等式(1-2x)/(x+3)>0的解集是{x|(-∞。
-3)∪(1/2.+∞)}。
6.若0<a<1,且loga(2a+1)<loga(3a)<1,则a的取值范围是(1/3.1/2)。
体育单招考试数学卷(答案) (4)
单独考试招生文化考试数学卷(满分120分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数12,3,z m i z i =+=-若12z z ⋅是纯虚数,则实数m 的值为( )A .13-B .-3C .3D .32 2.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为( )(A )0 (B )-1 (C )1 (D )23.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是( )(A )38>d (B )3<d (C )38≤3<d (D )d <38≤34.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是( )(A )π98 (B )π2197 (C )π2199 (D )π1005、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( )A .6B .8C .2D .56.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是( )(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥7.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为( ) (A )(41,+∞) (B )41[,+∞) (C )(0,21) (D )(0,]21)8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( )A. {-1,1}B.{-2}C.{3}D.∅9. 不等式x2-4x ≤0的解集为( )A. [0,4]B.(1,4)C.[-4,0)∪(0,4]D.(-∞,0]∪[4,+∞)10. 函数f (x )=ln(x −2)+1x−3的定义域为( ) A. (2,+∞) B.[2,+∞)C.(-∞,2]∪[3,+∞)D.(2,3)∪(3,+∞) 11. 已知平行四边形ABCD ,则向量AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD ⃗⃗⃗⃗⃗ B.DB ⃗⃗⃗⃗⃗ C.AC ⃗⃗⃗⃗⃗ D.CA⃗⃗⃗⃗⃗ 12. 下列函数以π为周期的是( )A.y =sin (x −π8)B.y =2cos xC.y =sin xD.y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( )A. 400B.380C.190D.4014. 已知直线的倾斜角为60°,则此直线的斜率为( )A. −√33B.−√3C.√3D.√3315. 若sin α>0且tan α<0,则角α终边所在象限是( )A. 第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本题共5小题,每小题6分,共30分.)1.全称命题“”的否定是___________2.设f(x)=x+(m -4)x+2为偶函数,则实数m 的值为_______.3.f(x)=在(一∞,1]上是增函数,则m 的取值范围是_______.4.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A _____;5. 042=-x 是x+2=0的 ____条件.三、解答题:(本题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)1、已知函数232()xf x x a -=+.(1)若0a =,求()y f x =在(1,(1))f 处的切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.2、求过点),(24-,且与直线033=+-y x 平行的直线方程。
体育单招近十年数学集合专项
集合2009.1. 集合I={0,1,2,3,4,5},M={0,2,4},N={1,3,5},则I M C N=⋂【 】A.ϕB. IC. MD. N2010.1. 已知集合M={x |-23<x <23},N={x |x =2n ,n ∈Z },则M∩N=【 】 A. φB.{0}C.{-1,1}D.{-1,0,1}2011.1. 设集合M = {x |0<x <1},集合N={x | -1<x <1},则【 】A. M ∪N=MB. M ∪N=NC. M∩N=ND. M∩N= M ∪N2012.1. 已知集合{}1,M x x =>{}22,N x x =≤则MN =【 】A. {1x x <≤B. {}1x x <≤C. {x x ≤D. {x x ≥2013.1. 已知集合Μ={x│-2 < x < 2},N={x│-3 < x < -1},则Μ∩N=【 】A.{x│-3< x <2}B.{x│-3< x <-1}C.{x│-2< x <-1}D.{x│-1< x <2}2014.16. 已知集合A={x ∣x =3n ,n ∈N},B={x ∣x =3n +1,n ∈N},C={x ∣x =3n +2,n∈N},有下列4个命题:①A B=⋂∅, ②A B C ⊆⋃()③A C B ⋃⊆() ④N C A B =C ⋃()其中是真命题的有____________(填写所有真命题的序号)。
2015.1. 若集合x A {=∣0﹤x ﹤},,27N x ∈则A 的元素共有【 】 A. 2个B. 3个C. 4个D. 无穷个2016.1.已知集合{}2,4,6,8M =,{}|15N x x =<<,则M N =【 】A .{}2,6B .{}4,8C .{}2,4D .{}2,4,6,82017.1. 设集合{}{}1,2,3,4,5,1,3,6,M N ==则M N ⋂=( )A. {}1,3B. {}3,6C. {}1,6D. {}1,2,3,4,5,62018.1. 设集合{}{}1,2,3,4,2,4,6,8M N ==,则M N ⋂=( )A. ∅B. {}1,3C. {}2,4D. {}1,2,3,4,6,8第一部分答案2009.1. C解析:}4,2,0{=N C I ,则}4,2,0{=⋂N C M I ,故选C2010.1. B解析:只有0符合2011.1. B解析:略2012.1. D解析:集合N 的解集{x ∣-2≦x ≦2},则MN ={.x x ≥ 2013.1. C 解析:本题考查集合的运算{}{}{}223121M N x x x x x ⋂=-<<⋂-<<-=-<<-2014.16. ①④解析:集合A 为3的倍数的自然数,集合B 是被3除余1的自然数,集合C 是被3除余2的自然数,A 与B 没有公共元素,所以①正确;对于②,A 与B ∪C 也没有公共元素,所以②错误; ()A C B ⋃⊄,所以③错误;∵A ∪B ∪C=N 且集合ABC 两两交集为∅,∴C B A C N =⋃)(,所以④正确。
体育单招数学试题
体育单招数学试题
尊敬的考生:
欢迎参加体育单招数学试题。
以下是本次试题内容,请仔细阅读并按要求回答。
1. 在一场足球比赛中,甲队和乙队比赛。
甲队投射10次射门,其中8次射门命中,乙队投射8次射门,其中6次射门命中。
请问两队的射门命中率分别是多少?
2. 已知一个三角形的两边长分别为12 cm和16 cm,夹角为45度。
请问该三角形的面积是多少?
3. 甲、乙两名游泳选手进行100米自由泳比赛,甲选手在比赛开始5秒钟后出发,乙选手在比赛开始10秒钟后出发。
已知甲的速度是每秒3米,乙的速度是每秒2.5米。
请问乙选手在比赛结束时是否能够追上甲选手?
4. 一只足球队在连续4个赛季中取得的比赛胜率分别为0.6、0.7、0.5和0.8。
请问这只队伍在4个赛季中的平均胜率是多少?
5. 甲、乙两名运动员进行跳远比赛。
已知甲的最好成绩是6米,乙的最好成绩是5.5米。
他们进行5轮比赛,每轮比赛各自的跳远成绩如下:
甲:6.1米、5.9米、6.2米、6.3米、5.8米
乙:5.4米、5.6米、5.7米、5.3米、5.9米
请根据比赛成绩计算两名运动员的平均跳远成绩,并判断谁的平均成绩更高。
请将以上各题的解答完整写在答题纸上,并在答题纸上注明题目编号。
祝您顺利完成试题,拿到优异的成绩!。
2011年体育单招数学试题与答案
x2 y 2 1 9 8
(13)
3 4
(14)3
(15)
2 6 5
(16)2
三.解答题: (17)解: (I) 设甲得分为 k 的事件为 Ak ,乙得分为 k 的事件为 Bk ,k=0,1,2,3 则
P( A0 ) 0.43 0.064 P( A1 ) 3 0.6 0.42 0.288
(II)原点 O 到直线 y k ( x 3) 的距离 d
3|k| k 2 1
若d
3 ,则 k 3 2
|PQ|=16
OPQ 的面积是 12。
A ' Q BB ' 16 得 A'Q A ' B ' PB ' 5
DQ=
12 4 41 3 2 , QB ' , cos PB ' D ' 5 5 10
(II)过点 B 作 PC 的垂线 BR,垂足为 R,由三垂线定理 BR⊥PC. BRB ' 是二面角
B PC B ' 的平面角
(2)已知函数 f ( x) 的图象与函数 y sin x 的图象关于 y 轴对称,则 f ( x) 【 (A) cos x (B) cos x (C) sin x (D) sin x
(3)已知平面向量 a (1, 2), b (1,3) ,则 a 与 b 的夹角是【 (A)
P( A2 ) 3 0.6 0.4 0.432
P( A3 ) 0.63 0.216 P( B0 ) 0.53 0.215
P(B1 ) 3 0.53 0.375
P(B2 ) 3 0.53 0.375
P( B3 ) 0.53 0.125
体育对口单招数学试卷(最后答案)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分)1.一次选拔运动员,测得7名选手的身高(单位cm )分布茎叶图如图,测得平均身高为177cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为( )A .5B .6C .7D .8 2、在下列区间中,函数-的零点所在的区间为( )A .(0,1) B.(1,2) C.(2,3) D.(3,4)3.已知则等于( )A .B .C .D .4.已知抛物线上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( )A .x=8B .x=-8C .x=4D .x=-4 5.不等式23x +>的解集是( ) A. ()(),51,-∞-+∞ B. ()5,1- C. ()(),15,-∞-+∞ D.()1,5-6.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )1801170389x sin()sin 0,32ππααα++=-<<2cos()3πα+45-35-354522y px=7.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( )A. A ′C ⊥平面DBC ′B. 平面AB ′D ′//平面BDC ′C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1} B. {-2} C. {3} D. ∅ 9.已知θ是三角形的一个内角,且1sin cos 2θθ+=,则方程22sin cos 1x y θθ-=表示( )(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆(C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 10.已知边长为a 的菱形ABCD ,∠A=3π,将菱形ABCD沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是( )(A )a 23 (B )a 43 (C )a23(D )a 4311. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD ⃗⃗⃗⃗⃗ B. DB ⃗⃗⃗⃗⃗ C. AC ⃗⃗⃗⃗⃗ D. CA ⃗⃗⃗⃗⃗ 12. 下面函数以π为周期的是( )A.y =sin (x −π8) B. y =2cos x C. y =sin x D. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法总数是( ) A. 420 B. 200 C. 190 D. 240 14、设全集3{|05},{1,3},{|log ,}U x z x A B y y x x A =∈≤≤===∈集合,则集合C ∪(A ∪B )=( )A .{0,4,5}B .{2,4,5}C .{0,2,4,5}D .{4,5} 15、cos20°·cos40°·cos60°·cos80°=( )A .14B .18C .116D .132二、填空题:(本题共5小题,每小题6分,共30分.) 1、A={x|x>O},B={x-2<x<1},那么A ⌒B=________ 2、A={1,3},B={0,1},那么集合AUB=________.4.已知函数: c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,则事件A 发生的概率为________.5.002012sin )212cos 4(312tan 3--=________6.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……则前n 个图形的边数的总和为____________.三、解答题:(本题共2小题,每小题10分,共40分) 1、已知抛物线的顶点在原点,焦点坐标为F(3,0). (1)求抛物线的标准方程(2)若抛物线上点M 到焦点的距离为4,求点M 的坐标. 2、如图,正三棱锥P-ABC 的侧棱长为2√3,底面边长为4. (1)求正三棱锥P-ABC 的全面积;(2)线段PA 、AB 、AC 的中点分别为D 、E 、F ,求二面角D-EF-A 的余弦值.参考答案: 一、选择题: 1-5题答案:DAABA 6-10题答案:DCABD 11-15题答案:CDCCC 二、填空题: 1.答案:{x|0<x<1} 2.答案: {0,1,3}4. 855.34-6.41n-三、问答题:1、参考答案.(1)212y x ;(2)(1,23)M2、参考答案.(1)43;(2。
体育对口单招数学卷(含答案) (1)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设n S n n 1)1(4321--++-+-= ,则32124++++m m m S S S (∈m N*)的值为()(A )0(B )3(C )4(D )随m 的变化而变化2.已知向量=a (αcos 2,αsin 2),=b (βcos 3,βsin 3),a 与b 的夹角为60o ,则直线021sin cos =+-ααy x 与圆21)sin ()cos (22=++-ββy x 的位置关系是()(A )相切(B )相交(C )相离(D )随βα,的值而定3.已知向量=a (αcos 2,αsin 2),=b (βcos 3,βsin 3),a 与b 的夹角为o 60,则直线021sin cos =+-ααy x 与圆21)sin ()cos (22=++-ββy x 的位置关系是()(A )相切(B )相交(C )相离(D )随βα,的值而定4、0=b 是直线b kx y +=过原点的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、方程43)22(log =x 的解为()A.4=x B.2=x C.2=x D.21=x 6.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是()A.天然气 B.核能 C.水利发电 D.再生能源表我国各种能源消费的百分率原油(%)天然气(%)原煤(%)核能(%)水利发电(%)再生能源(%)2011年17.7 4.570.40.7 6.00.72014年17.5 5.666.0 1.08.1 1.87.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是()A.34,55⎛⎫- ⎪⎝⎭ B.43,55⎛⎫- ⎪⎝⎭ C.34,55⎛⎫- ⎪⎝⎭ D.43,55⎛⎫- ⎪⎝⎭8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()GD27GD28GD29GD309.已知()2n x -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280 B.-160 C.160 D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421 B.121 C.114 D.2711、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A 、cb a <<B 、b ac <<C 、bc a <<D 、a b c <<12、不等式152x x ---<的解集是()A 、(,4)-∞B 、(,1)-∞C 、(1,4)D 、(1,5)13、函数x x y 2cos sin =是()A 、偶函数B 、奇函数C 、非奇非偶函数C 、既是奇函数,也是偶函数14、若(12)a +1<(12)4-2a ,则实数a 的取值范围是()A 、(1,+∞)B 、(12,+∞)C 、(-∞,1)D 、(-∞,12)15、化简3a a 的结果是()A 、aB 、12a C 、41a D 、83a 16、下列计算正确的是()A 、(a3)2=a9B 、log36-log32=1C 、12a -·12a =0D 、log3(-4)2=2log3(-4)17、三个数a =0.62,b =log20.3,c =30.2之间的大小关系是()A 、a<c<bB 、a<b<cC 、b<a<cD 、b<c<a18、8log 15.021+-⎪⎭⎫⎝⎛的值为()A 、6B 、72C 、16D 、3719、下列各式成立的是()A 、()52522n m n m +=+B 、(b a)2=12a 12b C 、()()316255-=-D 、31339=20、设2a =5b =m ,且1a +1b=3,则m 等于()A 、310B 、10C 、20D 、100二、填空题:(共20分)1.抛物线的焦点坐标是______. 2.双曲线的渐近线方程是______.3.抛物线x=-的准线方程是________三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.计算:34cos 49()15(4log 2102π+--+.2.设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ;(2)求c 边的长度.3.已知函数)1,0()(≠>+=b b b a x f x 的图象过点)4,1(和点)16,2(.(1)求)(x f 的表达式;(2)解不等式23)21()(xx f ->;(3)当]4,3(-∈x 时,求函数6)(log )(22-+=x x f x g 的值域.参考答案:一、选择题1-5题答案:BCCCA 6-10题答案:DADBA 11-15题答案:BABAB;16-20题答案:BBCDA.二、填空题1.答案:2.答案:3x ±2y=03.答案:x=0.125解析:y'=0.5x,抛物线x=-的准线方程是0.125。
体育单招数学考点(附答案)
体育单招数学考点数学主要有代数、立体几何、解析几何三部分热点一:集合与不等式1.(2011真题)设集合M = {x|0<x<1},集合N={x| -1<x<1},则【 】(A )M ∩N=M (B )M ∪N=N(C )M ∩N=N (D )M ∩N= M ∩N2.(2012真题)已知集合{}1,M x x =>{}22,N x x =≤则MN =( )A. {1,x x <≤B.{}1,x x <≤C. {,x x ≤D. {.x x ≥ 3.(2013真题)已知},13|{},22|{-<<-=<<-=x x N x x M 则=N MA .}23|{<<-x xB .}13|{-<<-x xC .}12|{-<<-x xD .}21|{<<-x x4.(2011真题)不等式10x x-<的解集是 【 】 (A ){x|0<x<1} (B ){x|1<x<∞}(C ){x|-∞<x<0} (D ){x|-∞<x<0}从三年真题可以看出,每年有一个集合运算的选择题,同时兼顾考查简单不等式的知识,所以同学们一定要熟练掌握集合的交、并、补运算,同时熟练掌握一元一次不等式、一元二次不等式、简单的分式不等式的解法,那么这道选择题6分就抓住了热点二:函数、方程、不等式1. (2011真题)已知函数22()4(0)a f x ax a x=+>有最小值8,则a = 。
2.(2012真题)函数y x = ) A. 21,(0)2x y x x -=< B. 21,(0)2x y x x-=> C. 21,(0)2x y x x +=< D. 21,(0)2x y x x+=> 3.(2012真题)已知函数()ln1x a f x x -=+在区间()0,1上单调增加,则a 的取值范围是 .4(2013真题) ..5.(2013真题)6. (2013真题)设函数a xx y ++=2是奇函数,则=a 第一题函数只是只是载体,实际上考查同学们对基本不等式求最小值掌握情况以及简单一元一次方程解法,第二题考查反函数的求法,第三题和第四题都是考查函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)已知函数 f ( x) 的图象与函数 y sin x 的图象关于 y 轴对称,则 f ( x) 【 (A) cos x (B) cos x (C) sin x (D) sin x
(3)已知平面向量 a (1, 2), b (1,3) ,则 a 与 b 的夹角是【 (A)
】
2
(B)
3
(C)
4
(D)
6
1 ( x 5) 的反函数是【 】 x5 1 (A) y x 5( x R) (B) y 5( x 0) x 1 y 5( x 0) x x 1 0 的解集是 【 (5)不等式 】 x
(4)函数 y (A){x|0<x<1} (C){x|-∞<x<0} (B){x|1<x<∞} (D){x|-∞<x<0}
(10)将 3 名教练员与 6 名运动员分为 3 组,每组一名教练员与 2 名运动员,不同的分法 有【 】 (B)180 种 (C)270 种 (D)360 种
(A)90 中
二.填空题:本大题共 6 小题,每小题 6 分,共 36 分.把答案填在题中横线上。 (11) (2 x 2 ) 6 的展开式中常数项是
2 3
8 3
(B) ( , ) 上的增函数
8 3
2 3
(7)已知直线 l 过点 (1,1) ,且与直线 x 2 y 3 0 垂直,则直线 l 的方程是【 ( A ) 2x y 1 0 (B) 2x y 3 0 (C) 2x y 3 0
】 (D)
选择题:本题考查基本知识和基本运算.每小题 6 分,满分 60 分.
( 1 ) B ( 2 ) C ( 3 ) C (4)D(5)A( 6 ) D ( 7 ) A ( 8 ) B ( 9 ) D (10)A
二.填空题:本题考查基本知识和基本运算.每小题 6 分,满分 36 分.
(11)60
(12)
x2 y 2 1 9 8
P( A3 ) 0.63 0.216
P( B0 ) 0.53 0.215
P(B1 ) 3 0.53 0.375 P(B2 ) 3 0.53 0.375
P( B3 ) 0.53 0.125
甲和乙得分相等的概率为
p p( A0 B0 A1B1 A2 B2 ) 0.305
由
12 BR PC ,得 BR 5 BP BC
tan BRB '
5 3
5 3
二面角 B PC B ' 的大小为 arctan
(III)四面体 B PCB ' 的体积 V 8
三角形 PCB ' 的距离 d 3
V 6 34 S 17
(19)本题主要考查直线与双曲线的位置关系应用.涉及平面向量的数量积、点 到直线的距离公式及三角形的面积公式,考查分析问题、解决问题的能力和运算 能力。
3 则 cos B 5
。
(16)已知函数 f ( x) 4ax 2
a (a 0) 有最小值 8,则 a x2
。
三.解答题:本大题共 3 小题,共 54 分.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分 18 分) 甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为 0.6,乙罚球命中率为 0.5。 (I)甲、乙各罚球 3 次,命中 1 次得 1 分,求甲、乙等分相等的概率; (II)命中 1 次得 1 分,若不中则停止罚球,且至多罚球 3 次,求甲得分比乙多的概率。
1 x
。
(12)已知椭圆两个焦点为 F1 (1,0) 与 F2 (1, 0) ,离心率 e
1 ,则椭圆的标准方程 3
是
。
(13)正三棱锥的底面边长为 1,高为
6 ,则侧面面积是 6
。
(14)已知{ an }是等比数列, a1 a2 则 a1 2a2 3a3 1,则 a1
。
(15)在 ABC 中,AC=1,BC=4, cos A
(18) (本题满分 18 分) 如图正方体 ABCD A ' B ' C ' D ' 中,P 是线段 AB 上的点, AP=1,PB=3
(I)求异面直线 PB ' 与 BD 的夹角的余弦值; (II)求二面角 B PC B ' 的大小; (III)求点 B 到平面 PCB ' 的距离
C’ D’ C D A P A’
甲得分比乙多的概率为
p p( D0 E0 D1E1 D2 E2 ) 0.417
18. 本题主要考查立体儿何中角与距离的计算,涉及两条异面直线角、二面角、 点到面的距离.考查运算能力和空间想象能力。 解:(I)连接 B ' D ' , B ' D ' //BD,异面直线 PB ' 与 BD 的夹角是 PB ' D ' 。过点 A ' 作 PB ' 的垂线,垂足为 Q,由三垂线定理,DQ⊥ PB ' 由
(II)设甲得分多于 k 的事件为 Dk ,乙得分为 k 的事件为 Ek , k 0,1, 2 ,则
p( D0 ) 0.6
p( D1 ) 0.62 0.36
p( D2 ) 0.63 0.216
p( E0 ) 0.5
p( E1 ) 0.52 0.25
p( E2 ) 0.53 0.125
(II)原点 O 到直线 y k ( x 3) 的距离 d
3|k| k 2 1
若d
3 ,则 k 3 2
|PQ|=16
OPQ 的面积是 12。
2x y 1 0
(8) 已知圆锥曲线母线长为 5,底面周长为 6 ,则圆锥的体积是【 (A) 6 (B) 12 (C) 18 (D) 36 】
】
(9) Sn 是等差数列 {an } 的前 n 项合和,已知 S3 12 , S6 6 ,则公差 d 【 (A)-1 (B)-2 (C)1 (D)2
A ' Q BB ' 16 得 A'Q A ' B ' PB ' 5
DQ=
12 4 41 3 2 , QB ' , cos PB ' D ' 5 5 10
(II)过点 B 作 PC 的垂线 BR,垂足为 R,由三垂线定理 BR⊥PC. BRB ' 是二面角
B PC B ' 的平面角
(C) y x 5( x R)
(D)
(6)已知函数 f ( x)
1 x 3 x cos sin ,则 f ( x) 是区间 【 2 2 2 2
2 4 3 3 4 2 (D) ( , ) 上的增函数 3 3
】
(A) ( , ) 上的增函数 (C) ( , ) 上的增函数
(13)
3 4
(Байду номын сангаас4)3
(15)
2 6 5
(16)2
三.解答题: (17)解: (I) 设甲得分为 k 的事件为 Ak ,乙得分为 k 的事件为 Bk ,k=0,1,2,3 则
P( A0 ) 0.43 0.064
P( A1 ) 3 0.6 0.42 0.288
P( A2 ) 3 0.6 0.4 0.432
B’
B
(19)(本题满分 18 分)
设 F(c,0)(c>0)是双曲线 x 2 点,O 是坐标原点。
y2 1的右焦点,过点 F(c,0)的直线 l 交双曲线于 P,Q 两 2
(I)证明 OP OQ 1 ;
(II)若原点 O 到直线 l 的距离是
3 ,求 OPQ 的面积。 2
解得两个交点的坐标分别是
(
3k 2 2 k 2 1 2 3k 2k k 2 1 , ) 2 k2 2 k2
3k 2 2 k 2 1 2 3k 2k k 2 1 , ) 2 k2 2 k2
(
3k 4 4(k 2 1) 12k 2 4k 2 (k 1) 从而 OP OQ 1 (2 k )2
绝密★ 启用前 2011 年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试 数学试题参考答案和评分参考 评分说明: 1.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参 考. 如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制 订相应的评分细则, 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变 该题的内容和难度, 可视影响的程度决定后继部分的给分,但不得超过该部分正 确解答应得分效的一半:如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数.表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.
解:(I) c 3
若直线 l 的方程是 x 3 ,代入双曲线方程,解得两个交点的坐标分别是