一阶电路和二阶电路的时域分析.

合集下载

阶电路和二阶电路的时域

阶电路和二阶电路的时域

二阶电路的冲激响应
冲激响应是二阶电路对单 位冲激函数输入的响应。
冲激响应可以用于分析电 路的极点和零点,从而了 解电路的频率特性。
冲激响应的求解通常需要 使用拉普拉斯变换或傅里 叶变换。
二阶电路的阶跃响应
STEP 01
STEP 02
STEP 03
阶跃响应的求解通常需要 使用常微分方程或差分方 程。
阶跃响应可以用于分析电 路的过渡过程和稳态值。
阶跃响应是二阶电路对单 位阶跃函数输入的响应。
Part
04
阶电路和二阶电路的比较
响应速度的比较
阶电路
阶电路的响应速度较快,因为其系统函数只有一个极点,系统响应较快。
二阶电路
二阶电路的响应速度较慢,因为其系统函数有两个极点,系统响应较慢。
动态性能的比较
Part
05
阶电路和二阶电路的应用实例
阶电路的应用实例
开关电源控制
自动控制系统
阶电路常用于开关电源的控制回路中, 用于调节输出电压或电流的幅度和频 率。
在工业自动化控制系统中,阶电路可 以用于控制各种物理量,如温度、压 力、流量等。
信号放大
在音频、视频或通信系统中,阶电路 可以用于信号的放大和处理,以实现 信号的增强或滤波。
阶跃响应计算
通过将阶跃函数作为输入 信号输入电路,计算输出 信号。
阶跃响应分析
分析阶跃响应的幅度、相 位和电路的时域分析
二阶电路的响应
零输入响应
当输入为零时,电路的响 应由电路的初始状态决定。
零状态响应
当电路的初始状态为零时, 电路的响应完全由输入信 号决定。
全响应
零输入响应和零状态响应 的总和。
阶电路的冲激响应

第七章 一阶电路和二阶电路的时域分析

第七章  一阶电路和二阶电路的时域分析
1 阶跃响应法: 2 等效初值法:
等效初始值:
等效初始值:
难点 1. 初始值的求解; 2. 时间常数的求解; 3. 阶跃响应与冲激响应。 §7.1 动态电路的方程及其初始条件 动态电路 含有动态元件电容和电感的电路。 特点: 当动态电路状态发生改变时(换路)需要经历一个变化过程才能达 到新的稳定状态。这个变化过程称为电路的过渡过程。 2. 换路 电路结构或电路参数发生突变而引起电路变化统称为换路。 意义:能量不能发生突变。 产生原因:电路内部含有储能元件 L、C,电路在换路时能量发生变 化,而能量的储存和释放都需要一定的时间来完成。
3 同一电路中所有响应具有相同的时间常数。 4 一阶电路的零输入响应和初始值成正比,称为零输入线性。 §7.3 一阶电路的零状态响应 零状态响应:动态元件初始能量为零,由t >0电路中外加激励作用所产 生的响应。
1. RC电路: t<0,K在1,电路稳定, 有 t=0,K从1打到2,有 t>0,K在2, 有 解答形式为:
换路定律: 在换路前后电容电流和电感电压为有限值的条件下,换路前后瞬间电容 电压和电感电流不能跃变。 (1)若iC 有限,则: uC ( 0+ )= uC ( 0- ) (2)若uL 有限,则: iL( 0+ )=iL( 0- )
3. 电路初始值的确定
电路初始值 独立初始值:uC (0+)、 iL(0+); 非独立初始值:其余电量在t= 0+时的值;
应用条件:一阶电路;开关激励 时间常数计算:RC电路:;
RL电路:; 实际现象讨论:
(1) 当负载端接有大电容时,电源合闸可能会产生冲击电流。
(1)
(2)
(2) 当负载端接有大电感时,开关断开可能会产生冲击电压。

电路课件 电路07 一阶电路和二阶电路的时域分析

电路课件 电路07 一阶电路和二阶电路的时域分析
第7章一阶电路和二阶电路的时域分析 7-1动态电路方程及初始条件
2019年3月29日星期五
经典法
5
• 线性电容在任意时刻t,其电荷、电压与电流关系:
q(t ) q(t0 ) iC ( )d
t0 t
线性电容换路瞬间情况
uC (t ) uC (t0 )
• q、uc和ic分别为电容电荷、电压和电流。令t0=0-, t=0+得: 0 0
第7章一阶电路和二阶电路的时域分析
2019年3月29日星期五
3
• 动态电路:含动态元件电容和电感电路。 • 动态电路方程:以电流和电压为变量的微分方程或微 分-积分方程。 • 一阶电路:电路仅一个动态元件,可把动态元件以外 电阻电路用戴维宁或诺顿定理置换,建立一阶常微分 方程。 • 含2或n个动态元件,方程为2或n阶微分方程。 • 动态电路一个特征是当电路结构或元件参数发生变化 时(如电路中电源或无源元件断开或接入,信号突然 注入等),可能使电路改变原来工作状态,转变到另 一工作状态,需经历一个过程,工程上称过渡过程。 • 电路结构或参数变化统称“换路”,t=0时刻进行。 • 换路前最终时刻记为t=0-,换路后最初时刻记为t=0+, 换路经历时间为0-到0+。
第7章一阶电路和二阶电路的时域分析 7-2一阶电路的零输入响应
2019年3月29日星期五
RC电路零输入响应-1
12
• 电路中电流 • 电阻上电压
RC电路零输入响应-2
1
t t duC U 0 RC t d 1 RC RC i C C (U 0e ) C ( )U 0e e dt dt 1 RC R
R
13
RC电路零输入响应-3

电路第五版 罗先觉 邱关源 课件(第七章)课件

电路第五版 罗先觉 邱关源 课件(第七章)课件

2
零输入响应:仅由电路初始储能引起的响应。
(输入激励为零) 零状态响应:仅由输入激励引起的响应。 (初始储能为零)
1. RC电路的放电过程:
如右图,已知uc(0-)=U0,S 于t=0时刻闭合,分析t≧0 时uc(t) 、 i(t)的变化规律。 +
i(t)
S uc(t) R
+ uR(t) -
(a)
i ()=12/4=3A
例3:如图(a)零状态电路,S于t=0时刻闭合,作0+图 并求ic(0+)和uL(0+)。 S Us ic
+ uc -
R2 L
S
↓iL
ic(0+) C
Us R1
R2 L
C R1
+ uL -
+ uL(0+) -
(a) 解: ① t<0时,零状态 →uc(0-)=0 iL(0-)=0 ② 由换路定理有:uc(0+)= uc(0-) =0 iL(0+)= iL(0-) =0 作0+图: 零状态电容→零值电压源 →短路线 零状态电感→零值电流源 →开路 ③ 由0+图有:ic(0+)=Us/R1 uL(0+)=uR(0+)=Us
uc(0+)= uc(0-) =8V
② 由换路定理有: iL(0+)= iL(0-) =2A 作0+等效图(图b)
S i 12V + R3 Us
2 R1 + uc (a) + R2 5 ic + iL 12V uL 4 i(0+) Us
R1 +
5
ic(0+) 8V

第7章_一阶电路和二阶电路的时域分析

第7章_一阶电路和二阶电路的时域分析
17
②测量方法: a.对任意时刻而言,
t 0 t 0
uC (t0 ) = U 0 e
b.次切距长:
AB BC = tan

= U0e

e 1 = 0.368 uC (t0 )
t 0
U0
uC
uC ( t 0 )
A
uC ( t 0 ) U 0e = = = t 0 1 duC U 0e dt t =t0
uC (t ) 4e 0.5t = = e 0.5t A ③求i(t):i (t ) = 4 4
(t 0)
19
习题: 7-2、7-4、7-5。
20
三、RL电路的零输入响应:
求i(t),uR(t), uL(t),(t≧0) 1、物理过程:
U0 i (0 ) = i (0 ) = R0
R
t=0 + iL uL L -
解: 根据换路定则:
i L 不能突变
i L (0 ) = i L (0 ) = 0 A
+ *** t =0K 时的等效电路: R
换路后的电压方程 :
+ U -
t=0
+ + iL uL (0+) uL L L - - iL(0+)
U = iL (0+ ) R + u L (0+ )
uC (0+ ) = uC (0- ) = U 0
uC (0+ ) → 0
U0 i (0 + ) = → 0 为放电过程。 R
13
2、数学分析: ①列微分方程:由KVL, +u U0 _ C
C
S
t=0

第7章 一阶电路和二阶电路时域分析例题

第7章 一阶电路和二阶电路时域分析例题
电 感 用 2A 电 流 uL (0 ) 2 4 8V 源 注意 uL (0 ) uL (0 ) 替 代
返 回 上 页 下 页
-
解 ①先求 iL (0 ) 1 4 + 10V 电感 iL 短路 -
+ uL -
10 iL (0 ) 2A 1 4
例6 求 iC(0+) , uL(0+)
Uo

t RC
p 1 RC
t RC
代入初始条件得: k
uc (t ) U oe
明确
在动态电路分析中,初始条件是得 到确定解答的必需条件。
返 回 上 页 下 页
②电容的初始条件
1 t uC (0 ) 0 i ( )d C 0 0 1 t = 0+ 时刻 u (0 ) u (0 ) i ( ) d C C C 0
解 这是一个求一阶RC 零输入响应问题,有:
uC U 0 e

t RC
t0
返 回 上 页 下 页
U 0 24 V RC 5 4 20 s
S
5F + uC -
i1 2 3 i3

i2 6
t 20
5F +
uC 4 -
i1
uc 24e V
t0
t 20
i1 uC 4 6 e A

wR 0 Ri dt 0 250 10 (80e ) dt 800 J
2 3 t 2
t
5800 5000 J
返 回 上 页 下 页
例11 t=0时,打开开关S,求uv 。电压表量程:50V
S(t=0) + R=10 uV 10V V RV 10k –

第7章一阶电路和二阶电路的时域分析

第7章一阶电路和二阶电路的时域分析
只要知道一阶电路的 三个要素,代入一个 公式就可以直接得到 结果,这是分析一阶 电路的最有效方法。
2019年12月9日星期一
RS
i
+
(t=0)
+
US -
C 典型电路
uC -
Si
任意NS
(t=0) +
C uC -
重点掌握3 , 1、2 两种方法可掌握其 中之一。
7
二、换路及换路定则
1.换路
电路结构或元件参数的改变称为
实践中,要 切断 L 的电 流,必须考 虑磁场能量
uV(0+) = 926 kV ! 电压表的量程才50V。 的释放问题
2019年12月9日星期一
19
§7-3 一阶电路的零状态响应
零状态响应:在动态元件 初值为 0 的状态下,外施 激励引起的响应。
1. RC电路
由KVL: uR + uC = US
*§7―9 卷积积分
*§7―10 状态方程
*§7―11 动态电路时域分析中的几个问题
2019年12月9日星期一
1
第七章 一阶电路和二阶电路的时域分析
内容提要与基本要求
1.换路定则和电路初始值的求法;
2.掌握一阶电路的零输入响应、零状态响应、全响应 的概念和物理意义;
3.会计算和分析一阶动态电路(重点是三要素法);
(0+) = (0-)
L中的磁链不能跃变!
由 (t) = LiL(t) 可知,当换路前后L不变时
iL(0+) = iL(0-)
L中的电流也不能跃变!
换路定则表明
(1)换路瞬间,若电容电流保持为有限值,则电容电 压(电荷)在换路前后保持不变,这是电荷守恒 定律的体现。

第7章 一阶电路和二阶电路的时域分析(2010-2011第一学期 邱关源)

第7章 一阶电路和二阶电路的时域分析(2010-2011第一学期 邱关源)
uC (0) U 0e0 U 0
uC ( ) U 0e1 0.368U 0
即经过一个时间常数τ 后,衰减了63.2%,为原值 的36. 8%。 理论上,t = ∞时,uC才能衰减到零,但实际上, 当t = 5τ 时,所剩电压只有初始值的0.674%,可以认 为放电已完毕。因此,工程上常取t = (3-5)τ 作为放电 完毕所需时间。τ 越大,衰减越慢,反之则越快。
uR uC U 0 e

t

可以看出,电压uC、uR及电流i都是按照同样的 指数规律衰减的。它们衰减的快慢取决于指数中τ 的大小。
第七章一阶电路和二阶电路的时域分析
§7-2 一阶电路的零输入响应
τ 的大小反映了一阶电路过渡过程的进展速度, 它是反映过渡过程特性的一个重要的量。可以计算得 t = 0时, t =τ 时,
第七章一阶电路和二阶电路的时域分析
§7-2 一阶电路的零输入响应
第七章一阶电路和二阶电路的时域分析
§7-2 一阶电路的零输入响应
经过全部放电过程,电阻上所吸收的能量为
WR
0
Ri 2 (t )dt

0
U 0 t 2 R ( e ) dt R
0
2 U0 R


0
e

2t RC
第七章 一阶电路和二阶电路的时域分析
河北大学数学与计算机学院
第七章一阶电路和二阶电路的时域分析
§7-1 动态电路的方程及其初始条件
电容和电感的VCR是通过导数(积分)表达 的。当电路中含电容和电感时,电路方程是以电流 和电压为变量的微分方程或微分―积分方程。 对于仅含一个电容或电感的电路,当电路的无 源元件都是线性和时不变时,电路方程将是一阶线 性常微分方程,称为一阶动态电路。 电路结构或参数变化引起的电路变化统称为 “换路”。换路可能使电路改变原来的工作状态, 转变到另一个工作状态。

第7章习题课 一阶电路和二阶电路的时域分析.ppt

第7章习题课 一阶电路和二阶电路的时域分析.ppt
a. 换路后的电路
b. 电容(电感)用电压源(电流源)替代。
方向保持不变
替代定理
c.激励源用us(0+)与is(0+)的直流电源来替代。 4.由0+电路求所需各变量的0+值。
例 求图示电路在开关
闭合瞬间各支路电
i
流和电感电压。
解: 1. 由换路前的“旧电路”
计算uC(0)和iL(0) 。
C视为开路;
0.368U
0 1 2 3
t
越大,曲线变化越慢,uC达到稳态所需要的
时间越长。
2020年10月4日星期日
11
★ 时间常数
uC
U
(1e
t RC
)
U
(1
e
t
)
(t 0)
稳态分量
uC
+U 63.2%U
uC uC
o
t
2020年10月4日星期日
12
★ 时间常数
U uC
0.632U
1 2 3
O 12 3
再由
uLL
diL dt
求出uL。
得 uL 52e100t V
2020年10月4日星期日
17
例 电路原处于稳态,t0 时开关S闭合,求换路
e
t
iL 1.25.2e100t A
2020年10月4日星期日
4W 2 S
iL
i1
-1
+
4W
8V +
0.1H uL
+ 2i1
2W
4W 2 S
iL
i1
iu
+
4W
0.1H uL
+ 2i1

一阶电路和二阶电路的时域分析

一阶电路和二阶电路的时域分析

一阶电路和二阶电路的时域分析一、一阶电路的时域分析:一阶电路指的是由一个电感或电容与线性电阻串联或并联而成的电路。

对于串联的一阶电路,其特征方程为:L di(t)/dt + Ri(t) = V(t) ---------- (1)其中,L是电感的感值,R是电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。

通过对上述方程进行求解可以得到电路中电流与时间的关系。

对于并联的一阶电路,其特征方程为:1/R C dq(t)/dt + q(t) = V(t) ---------- (2)其中,C是电容的电容值,q(t)是电路中电荷的变化,V(t)是电路中的输入电压。

同样,通过对上述方程进行求解可以得到电路中电荷与时间的关系。

一阶电路的响应可以分为自由响应和强迫响应两部分。

自由响应指的是由于电路中初始条件的存在,电流或电荷在没有外部输入电压的情况下的变化。

强迫响应指的是由于外部输入电压作用而产生的电流或电荷的变化。

对于一个初始处于稳定状态的电路,在有外部输入电压作用时,电路中电流或电荷会从初始值开始发生变化,最终趋于一个新的稳定状态。

这一过程可以由电流或电荷的指数递减或递增的形式表示。

在分析一阶电路的时域特性时,可以利用巴塞尔函数法或拉普拉斯变换法。

巴塞尔函数法主要是通过巴塞尔函数的表达式计算电压或电流的变化情况;拉普拉斯变换法则通过将时域的微分方程转化为复频域的代数方程,然后求解代数方程,最后再对求得的结果进行逆变换获得电流或电压的表达式。

二、二阶电路的时域分析:二阶电路是指由两个电感或电容与线性电阻串联或并联而成的电路。

对于串联的二阶电路,其特征方程为:L₁L₂ d²i(t)/dt² + (L₁R₁+L₂R₂+L₁R₂+L₂R₁) di(t)/dt + R₁R₂i(t) = V(t) ---------- (3)其中,L₁和L₂分别是两个电感的感值,R₁和R₂分别是两个电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。

电路时域分析

电路时域分析

一二阶电路时域分析一、基本概念含有动态元件的电路称为动态电路。

动态电路的特征是电路出现换路时,将出现过渡过程。

一阶电路通常含有一个动态元件,可以列写电压或电流的一阶微分方程来描述。

二阶电路通常含有二个动态元件,可以列写电压或电流的二阶微分方程来描述。

零状态响应:是指换路后电路无外加电源,其响应由储能元件的初始值引起,称暂态电路的零输入响应。

零状态响应:是指储能元件的初始值为零,换路后电路的响应是由外加电源引起的响应,称暂态电路的零状态响应。

全响应:换路后的响应由储能元件初始值和外加电源共同产生的响应,称为暂态电路的全响应。

二、一阶电路的阶跃响应和冲激响应1、 奇异函数奇异函数也叫开关函数,当电路有开关动作时,就会产生开关信号,奇异函数是开关信号最接近的理想模型。

(1)单位阶跃函数00()10t t t ε<⎧=⎨>⎩ (2)单位冲激函数⎪⎩⎪⎨⎧≠==⎰∞∞-)0(0)(1)(t t dt t 当δδ冲激函数有两个非常重要的性质:① 单位冲激函数()t δ对时间t 的积分等于单位阶跃函数()t ε,即 )()(t d tεξξδ=⎰∞-反之,阶跃进函数()t ε对时间的一阶导数等于冲激函数()t δ,即 )()(t dt t d δε=② 单位冲激函数的“筛分”性质设()f t 是一个定义域为(,)t ∈-∞∞,且在0t t =时连续的函数,则)()()(00t f dt t t t f =-⎰∞∞-δ2、一阶电路的阶跃响应和冲激响应电路在单位阶跃函数电源作用下产生的零状态响应称为单位阶跃响应。

常用)(t S 表示。

电路在单位冲激函数电源作用下产生的零状态响应称为单位冲激响应。

常用)(t h 表示。

冲激响应也可这样求得:因冲激函数是阶跃函数的导数,则冲激响应为阶跃响应的导数。

即dt t dS t h )()(=三、二阶动态电路的分析方法经典法:以电容电压或电感电流为电路变量,根据KVL 、KCL 、VCR 对电路列写二阶微分方程,然后求解。

电路理论第7章 一阶电路和二阶电路的时域分析(7.5-7.8)

电路理论第7章 一阶电路和二阶电路的时域分析(7.5-7.8)

US 0
t
返 回 上 页 下 页

求电流 i 的零状态响应。 i1 2A + 2W
0.5u1 1/6F 1H 2W
解 首先写微分方程
i1= i - 0.5 u1 = i - 0.5(2- i)2 = 2i -2
S
u1 2W - 2-i
i
di 2i 由KVL: 2(2 i ) 2i1 6 i1dt d t d 2i di 8 12i 12 整理得: 2 dt dt 二阶非齐次
A1 U 0 A2 U 0
u U 0 1 δ t e δ t C 非振荡放电 duC U 0 δ t i C te 临界阻尼 dt L di u L U 0 1 δ t e δ t L dt
经典法求二阶电路零输入响应的步骤: 1、根据基尔霍夫定律和元件特性列出换路后电路的微 分方程(二阶)。 2、由特征方程求出特征根,并判断电路是处于衰减放 电还是振荡放电还是临界放电状态。 p1t p 2t L R2 过阻尼, 非振荡放电 uc A1e A2 e C L t t u A e A te R2 临界阻尼, 非振荡放电 c 1 2 C L t u Ae sin(t ) R2 欠阻尼, 振荡放电 c C
uc
U0
0
0 t U0e uc零点:t = -,2- ... n-
t
t=0时 uc=U0
- 2- 2
衰减系数: = R/2L , 越大,衰减振荡的振幅衰 减得就越快,反之则越慢。 振荡角频率: , 越大,衰减振荡的振荡速度就越 快,振荡周期越小,反之则速度越慢、周期越大。
ic=0
返 回 上 页 下 页

电路第7章一阶二阶电路

电路第7章一阶二阶电路
电路第7章一阶二阶电 路
目录
• 一阶电路 • 二阶电路 • 一阶二阶电路的应用 • 一阶二阶电路的实验
01
一阶电路
一阶电路的定义
总结词
一阶电路是指包含一个动态元件的电 路。
详细描述
一阶电路通常由一个电感或电容等动 态元件与电阻、电压源或电流源等其 他元件组成。这种电路中只有一个动 态元件,因此被称为一阶电路。
详细描述
在时域分析中,我们通过建立和求解一阶微分方程来分析一阶电路的行为。频域分析则是将电路转换 为频域,通过分析频率响应来了解电路的性能。这两种方法各有优缺点,适用于不同类型的问题和场 景。
02
二阶电路
二阶电路的定义
总结词
二阶电路是指包含两个动态元件的线性电路。
详细描述
在电路理论中,二阶电路是由两个动态元件组成的线性电路。动态元件是指其电压或电流随时间变化的元件,如 电感器和电容器。线性是指电路中的元件关系满足线性关系,即输出与输入成正比。
二阶电路的特性
总结词
二阶电路具有振荡和过阻尼两种特性。
详细描述
二阶电路的特性主要取决于其阻尼比。当阻 尼比大于1时,电路呈现过阻尼特性,系统 将逐渐稳定;当阻尼比小于1时,电路呈现 振荡特性,系统将产生周期性振荡。此外, 二阶电路还具有能量存储和转换的特性,能
够实现电能与其他形式能量的转换。
二阶电路的分析方法
频谱分析
一阶二阶电路可以用于频谱分析, 将信号分解成不同频率的成分, 以便进一步处理。
调制解调
一阶二阶电路可以用于调制解调, 将信号从一种形式转换为另一种 形式,以便传输或处理。
04
一阶二阶电路的实验
一阶电路的实验
实验目的
通过实验了解一阶电路的响应特性,掌握一阶电路的时 域分析方法。

注电考试最新版教材-第10讲 第五章一阶电路和二阶电路的时域分析(一)(2011年新版)

注电考试最新版教材-第10讲 第五章一阶电路和二阶电路的时域分析(一)(2011年新版)

0=t :换路时刻,换路经历的时间为0_到+0;-=0t :换路前的最终时刻;+=0t :换路后的最初时刻;5.1.2动态电路的初始条件设0=t 时电路换路,若换路前后电容电流和电感电压为有限值的条件下,则在换路瞬间电容元件的电压和电感元件的电流不能跃变,这就是换路定律。

其数学表达式为)0()0()0()0(-+-+==u u q q c 电容上电荷和电压不发生跃变! ①若-=0t 时,0)0(q q C =-,0)0(U u C =-,则有0)0(q q C =+,0)0(U u C =+,故换路瞬间,电容相当于电压值为0U 的电压源;②若-=0t 时,0)0( ,0)0(==--C C u q ,则应有0)0( ,0)0(==++C C u q ,则换路瞬间,电容相当于短路。

⎩⎨⎧==-+-+)0( )0( )0()0(L L L L i i ψψ电感的磁链和电流不发生跃变! ①若-=0t 时,00)0( ,)0(I i L L ==--ψψ,则有00)0( ,)0(I i L L ==++ψψ,故换路瞬间,电感相当于电流值为0I 的电流源;②若-=0t 时,0)0( ,0)0(==--L L i ψ,则应有0)0( ,0)0(==++L L i ψ,则换路瞬间,电感相当于开路。

换路后初始瞬间+=0t 时刻,电路中电压和电流值称为初始值。

换路定律仅适用于电容电压和电感电流初始值的确定。

独立初始条件)0(+C u 和)0(+L i :由-=0t 时的)0(-C u 和)0(-L i 确定。

非独立初始条件(电阻电压或电流、电容电流、电感电压)需要通过已知的初始条件求得。

本节重点:动态电路初始值的确定,电路和换路情况复杂时,容易出错5.2一阶电路的时域分析5.2.1一阶电路的零输入响应零输入响应:无外施激励,由动态元件的初始值引起的响应。

电路的微分方程为⎪⎩⎪⎨⎧=≥=+0)0(0 0U u t u dt du RC C C C 0 )( 0≥=∴-t e U t u RC tC0 )(0≥=-=-t e RU dt du C t i RC t C 这里,特征方程RCs +1=0,特征根 1 RCs -=,时间常数RC =τ 。

第七章一阶电路和二阶电路的时域分析PPT课件

第七章一阶电路和二阶电路的时域分析PPT课件

U 63.2%U
uC
u
' C
o -36.8%U
u
" C
t
-U
§7-3 一阶电路的零状态响应
uRR iUet
稳态分量(强制分量):电 路到达稳定状态时的电压, 其变化规律和大小都与电 源电压U有关。 瞬态分量(自由分量):仅 存在于暂态过程中,其变 化规律与电源电压U无关, 但其大小与U有关。
§7-3 一阶电路的零状态响应
讲课7学时,习题1学时。
§7-1 动态电路的方程及其初始条件
一、动态电路的有关概念
⒈ 一阶(动态)电路 仅含一个动态元件,且无源元件都是线性和时不
变的电路,其电路方程是一阶线性常微分方程。
⒉ 二阶(动态)电路 含两个动态元件的电路,其电路方程是二阶微分
方程。
§7-1 动态电路的方程及其初始条件
⒊ 过渡过程 当电路的结构或元件的参数发生变化时,可能使
第七章 一阶电路和二阶电路的时域分析
§7-1 动态电路的方程及其初始条件 §7-2 一阶电路的零输入响应 §7-3 一阶电路的零状态响应 §7-4 一阶电路的全响应 §7-5 二阶电路的零输入响应 §7-6 二阶电路的零状态响应和全响应
§7-7 一阶电路和二阶电路的阶跃响应 §7-8 一阶电路和二阶电路的冲激响应 *§7-9 卷积积分 *§7-10 状态方程 *§7-11 动态电路时域分析中的几个问题
dt
t=0
+
所以
eL
L
di dt
很大
+
U-
R uRL
eL可能使开关两触点之
L-
间的空气击穿而造成电弧以
1S
i
延缓电流的中断,开关触点

第7章一阶电路和二阶电路的时域分析

第7章一阶电路和二阶电路的时域分析
2013年7月5日星期五
(t ≥0)
16
i(t) = I0 e
t -t
S
2 (t≥0)
电阻和电感上的 电压分别为:
i + L uL
-
uR = Ri
= R I0 e
t -t
R u R I0 + o
RI0
i, uR , uL
uR i uL t
,(t ≥0)
t -t
uL = - uR = - R I0 e 或者:uL = L
t
u' C
瞬态分量
duc US - t i=C = e t dt R uC = US - US e
2013年7月5日星期五
o
-US
-t
t
20
duc + uC = US RC dt uC = US + A
第七章 一阶电路和二阶电路的时域分析
内容提要与基本要求 1.换路定则和电路初始值的求法; 2.掌握一阶电路的零输入响应、零状态响应、全响 应的概念和物理意义; 3.会计算和分析一阶动态电路(重点是三要素法); 4.了解二阶电路零状态响应、零输入响应、全响应 的概念和物理意义; 5.会分析简单的二阶电路; 6.会计算一阶电路的阶跃响应、冲激响应; 7.会用系统法列写简单的状态方程。
0
t - t
U02 = R
∞ - 2 t e RC dt 0
2 = 1 CU0 2
C储存的能量全被R 吸收, 并转换成热能消耗掉。
14
例:试求t≥0时的i(t)。 R 解: 2W 10×4 = 4 V uC(0-) = + 2+4+4 10V 根据换路定则: uC(0-) = uC(0+) = 4 V

第七章 复习题

第七章 复习题

第七章 一阶电路和二阶电路的时域分析一、是非题1.若电容电压(0)0c u -=,则接通时电容相当于短路。

在t=∞时,若电路中电容电流0c i =,则电容相当于开路。

2. 换路定则仅用来确定电容的起始电压(0)c u +及电感的起始电流(0)L i +,其他电量的起始值应根据(0)c u +或(0)L i +按欧姆定律及基尔霍夫定律确定。

3. 在一阶电路中,时间常数越大,则过渡过程越长。

4.一阶电路的时间常数只有一个,即一阶电路中的各电压、电流的时间常数是相同的。

5. 零输入的RC电路中,只要时间常数不变,电容电压从100V 放电到50V 所需时间与从150V 放电到100V 所需时间相等。

6.在R、C串联电路中,由于时间常数与电阻成正比,所以在电源电压及电容量固定时,电阻越大则充电时间越长,因而在充电过程中电阻上消耗的电能也越多。

7.单位冲激函数是单位阶跃函数的一阶导数,因此线性电路的单位冲激响应是单位阶跃响应的一阶导数。

( ) 8.一阶RL 电路在冲激函数()t δ作用下,换路定律()()00L L i i +-=不再适用。

( )二、选择题1.RC 电路在零输入条件下,时间常数的意义是A 、响应的初始值衰减到0.632倍时所需时间B 、响应的初始值衰减到0.368倍时所需时间C 、过渡过程所需的时间D 、过渡过程结束所需的时间c2.一阶电路的零状态响应,是指: (A) 电容电压()00VC u +=或电感电压()00VL u += (B) 电容电压()00VC u +=或电感电流()00VL i +=(C) 电容电流()00VC i +=或电感电压()00V L u += (D) 电容电流()00V C i +=或电感电流()00VL i +=3.R 、C 放电电路经过1.2秒后,电容器电压降为原来的36.8%,则其时间常数τ为 (A) 0.4s (B) 1.2s (C) 0.8s (D) 0.6s4. R 、C 串联电路,已知全响应()()1083V 0tC u t et -=-≥,其零状态响应为:( )(A) 1088V te-- (B) 1083V te-- (C) 103V te-- (D) 105V te-5.电压波形的数值表达式为_____. (A) -2ε(t)+ε(t-1) (B) -2ε(t)+3ε(t+1)-ε(t+3)(C) -2ε(t)+3ε(t-1)-ε(t-3) (D) -2ε(t)+3ε(t-1)6.一阶电路的全响应u C (t)=[10-6 e-10t]V,初始状态不变而若输入增加一倍,则全响应u C (t)为______。

[物理]电路 第7章 一阶电路和二阶电路的时域分析

[物理]电路 第7章 一阶电路和二阶电路的时域分析
何谓“零状态响应”? 一、RC串联充电电路 初始无储能,输入不为零
i
R
uC uR U s
duC uC RC Us dt
一阶线性非齐次微分方程

Us



C


uc
“一阶非齐次线性方程的通解等于其对应的齐 次方程的通解与非齐次方程的一个特解之和。”
摘自《高等数学》下册第343页
第 1 章

U0

1
2
L
iL
uL
R
初始条件为: i(0 ) i(0 ) I 0 通解为:
i Ae pt
R L

L
iL
uL
R
特征方程为: Lp R 0 特征根为:
p
解得:
i I 0e
R t L
R t di uL L RI 0 e L dt
电压电流都以同样的指数规律衰减,衰减快慢取决于 衰减的时间常数 L
静电场
uc uc uc Us uc
uc uc
非齐次方程的特解 对应齐次方程的通解
U s e uc

1 t RC 1 t RC
1 t U s RC i e R
因此 uc U s (1 e
)
稳态分量和瞬态分量
Us uc
强制分量、与外激励有关;
R1
1
例7-1:

U0

R2
L

C

uc ic
iL
第 1 章
静电场
换路前后瞬间电容电压与电感电流不能跃变!
第 1 章
静电场
7.2 一阶电路的零输入响应

阶电路和二阶电路的时域分析.outpu

阶电路和二阶电路的时域分析.outpu
特性
全响应是零输入响应和零状态响应的叠加。在响应过程中,电压或电流既包含瞬态分量( 由初始状态引起),也包含稳态分量(由外部激励引起)。
分析方法
通过求解电路的一阶微分方程,可以得到全响应的数学表达式。根据初始条件、激励源的 形式和电路参数,可以确定响应的具体形式。同时,可以利用叠加原理将全响应分解为零 输入响应和零状态响应两部分进行分析。
冲激响应
01
定义
冲激响应是指电路在冲激信号作用下的响应。冲激信号是 一种在某一时刻瞬间出现并立即消失的信号,具有极短的 持续时间和极大的幅度。
02 03
性质
冲激响应具有瞬态性质,表现为电路在冲激信号作用下的 瞬间反应。冲激响应的幅度和持续时间取决于电路的结构 和参数。
分析方法
对于一阶电路和二阶电路,可以通过求解电路微分方程得 到冲激响应的解析表达式。同时,也可以利用电路仿真软 件进行数值分析。在实际应用中,常常利用卷积定理将冲 激响应与输入信号进行卷积运算,从而得到电路的零状态 响应。
两者之间的关系
联系
阶跃响应和冲激响应都是描述电路在 特定信号作用下的时域行为。它们都 可以通过求解电路微分方程得到,并 且可以利用电路仿真软件进行数值分 析。
区别
阶跃响应描述的是电路在阶跃信号作 用下的响应,而冲激响应描述的是电 路在冲激信号作用下的响应。阶跃信 号是一种持续存在的信号,而冲激信 号是一种瞬间出现的信号。因此,阶 跃响应和冲激响应在时域上具有不同 的特性。
探索新的数学工具和分析方法, 提高时域分析的精度和效率。
结合实际应用需求,研究电路的时域 响应特性和稳定性问题,为电路设计 提供更加全面和深入的理论指导。
THANKS
感谢您的观看
有广泛的适用性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 uC (0 ) uC (0 ) C
0 0
t =0+时刻

0 0
i ( )d
i
q(0 ) q(0 ) i ( )d
+ uC -
C
当i(t)为有限值时
uC (0+) = uC (0-)
q (0+) = q (0-)
换路瞬间,若电容电流保持为有限值,则电容电压(电荷) 换路前后保持不变。在换路瞬间,可将其视为一个电压源。
duC RC uC 0 dt
i R
pt
C
+ uC –
+ uR –
uC (0+)=U0
uC Ae
p 1 RC
特征方程
RCp+1=0
特征根
t RC
uC U 0e
t0
uC U 0e

t RC
t0
t RC
U0 uC
t RC
uC U 0 i e R R
I 0e

f (0 ) f ( ) A

t

A f (0 ) f ( )
t
f ( t ) f ( ) [ f (0 ) f ( )]e
3 U0 e -3 0.05U0
5 U0 e -5 0.007U0

U0 0.368U0
工程上认为,经过3 - 5,过渡过程结束。 能量关系: uC(0+)=U0

1 2 电容放出能量: CU 0 2
t 1 2 U 0 RC 2 CU ( e ) Rdt 0 2 R
电阻吸收能量:WR i 2 Rdt 0
三、动态电路过渡过程的分析方法 时域分析法:经典法、状态变量法 经典法:求解描述电路的线性常微分方程 得到电路所求变量(电流或电压),采用 经典法时,必须根据电路的初始条件确定
解答中的积分常数。
复频域分析法:拉普拉斯变换法 数值法
四、电路的初始条件 初始条件为 t = 0+时u ,i 及其各阶导数的值。
iC(0-) iC(0+)
例2 10V
1
4 L iL + uL -
K
t = 0时K闭合, 求uL(0+)
uL (0 ) 0 uL (0 ) 0
0+电路 1 4 2A + uL -

iL(0+)= iL(0-) =2A
10V
uL (0 ) 2 4 8V
US US iL e R R
t
( t 0)
( t 0)
三、正弦电源激励下的零状态响应(以RL电路为例) K(t=0)
R
L
i + uL –
uS Um cos( t u )
接入相位角
+
-
uS
iL(0-)=0
uS
di Ri L U m cos( t u ) dt
t0
= L/R:一阶RL电路时间常数
I0 o
i
i I 0e

t

t0
t
t uL
uL RI 0e

t0
ቤተ መጻሕፍቲ ባይዱ
t -RI0
例1 电压表量程: 50V,t=0时, 打开K
K(t=0)
iL
+
uV V 10k 10V –
RV
R=10 L=4H
iL (0+) = iL(0-) = 1 A
RI S iC ( 0 ) I S 0 R
1 di L L L dt RI S L
duC dt
0
1 duC C C dt
0
0
0
0
§7-2 一阶电路的零输入响应
零输入响应:没有外施激励,仅由初始储能作用于电路 产生的响应。 K(t=0) 一、RC放电电路 已知uC (0-)=U0
y( t ) y(0 )e

t

2. 衰减快慢取决于时间常数 RC电路: = RC,RL电路: = L/R 3. 同一电路中所有响应具有相同的时间常数。
4. 一阶电路的零输入响应和初始值成正比(零输入线性)。
时间常数 的计算
R1 R1 R2 L
+
-
R2
L
= L / Req = L / (R1// R2 )
过渡过程是自然界中一种客观的物理现象,其产生原因是 能量不能跃变,电感及电容能量的存储和释放需要时间。 有利的方面,如电子技术中常用它来产生各种波形; 不利的方面,如在暂态过程发生的瞬间,可能出现过压 或过流,致使设备损坏,必须采取防范措施。
二、换路
电路结构或参数变化引起的电路变化。 换路前瞬间 - 换路在 t =0时刻进行 0-:t = 0的前一瞬间 0+:t = 0的后一瞬间 换路后瞬间 + t
电容储存 电阻消耗

1 2 CU S 2

0
U S 2 US e dt CU S R
R
US + C
t
-


0
i2Rd t

0
1 U S 2 2 ( e ) R d t CU S 2 R
t
电源提供的能量一半消耗在电阻上,一半转换成电场能量 储存在电容中。充电效率50%。
二、RL电路的零状态响应 iL(0-)=0
iL e
t /
L 4 4 10 4 s R RV 10000
uV RV iL 10000 e2500 t
t 0
uV (0+)= - 10000V,造成电压表损坏。


1. 一阶电路的零输入响应是由储能元件的初值引起的响应, 都是由初始值衰减为零的指数衰减函数。
A Im cos( u )
t
i I m cos( t u ) I m cos( u )e

i I m cos( t u ) I m cos( u )e
讨论几种情况:

t

1)合闸时,u = –/2,直接进入稳态,不产生过渡过程。
第7章 一阶电路和二阶电路的时域分析
动态电路的方程及其初始条件
零输入响应、零状态响应、全响应
重点:
初始条件的确定 一阶电路三要素法 二阶电路的经典法
§7-1 动态电路的方程及其初始条件
动态电路:含有动态元件电容或电感的电路。 根据KVL、KCL及元件的VCR建立电路的方程,方 程是以电流或电压为变量的线性常微分方程。方程
π i I m cos( t ) 2
2)u =
i I m cos( t ) I me

t

t = T/2时刻出现最大电流,见P.135图6-12。
§7-4 一阶电路的全响应
全响应:非零初始状态的电路受到激励时电路的响应。 一、一阶电路的全响应及其两种分解方式
duC RC uC U S dt
非齐次方程 US
t
K(t=0)
R + uR –
i + uC C –
uC U S Ae

=RC
A=U0 - US
t
uC (0-)=U0
uC (0+)=US + A=U0
uC US (U 0 US )e

t 0
全响应=稳态分量+暂态分量 =强制分量+自由分量
uC US (U 0 US )e
t
i i i
R + -
Im
Um R2 (L)2

Um Z
I
jL
U S
arctg
L
R
i Im cos( t u )
t
i I m cos( t u ) Ae

i (0 ) Im cos( u ) A 0
例3 求 iC(0+),uL(0+) 及
duC dt di L , dt 0
L IS + uL – K(t=0)
iL R C
0
iC + uC –
iL(0+) = iL(0-) = IS
uC(0+) = uC(0-) = RIS
0+电路
+u
L
IS – R
iC + RIS –
di L dt
uL(0+)= - RIS
的阶数取决于动态元件的个数和电路的结构。
一阶电路:只含有一个动态元件的电路。
一、动态电路的过渡过程
电路由一个稳态过渡到另一个稳态需要经历的过程。 t=0 US K R + uC – C
i
K未动作前 i=0,uC = 0
i
US R + uC – C
K接通电源后很长时间
i=0,uC=US
直流电路、交流电路都存在过渡过程
dni d n 1 i di an n an1 n1 a1 a0 i uS dt dt dt t0
n阶微分方程,求解需要i及其1阶至(n-1)阶导数 在0+时刻的值。 独立初始条件:电容电压、电感电流。 电容电流、电感电压、电阻的电压和电流等
称为非独立初始条件
五、换路定则
t

t

t 0
t
US (1 e ) U0e
uC US U0 uC

(t 0)
全响应= 零状态响应 + 零输入响应
相关文档
最新文档