9_向量自回归模型(_VAR)_和VEC

合集下载

预测之VAR和VEC模型

预测之VAR和VEC模型

样本内预测模型:根据估计的模型对已有的样本进行预测,可与样本数据进行比
较。

样本外预测模型:根据估计的模型对未来进行预测,这个是对未来进行的估计,
不能进行比较
VAR模型
一、含义:
VAR模型是用模型中所有当期变量对所有变量的若干滞后变量进行回归模型用来估计联合内生变量的动态关系, 不以严格的经济理论为基础。

二、基本形式:
三、优缺点:
由于在模型中每个方程右侧不含有当期变量,这种模型用于预测的优点是不必对解释变量在预测期内的取值作任何预测。

①对原序列进行平稳性检验常采用ADF进行单位根检验,对不平稳的序列进行差分
②滞后期确定多种准则比较选多数准则认同的最优滞后期, 保证所有的残差都不存在自相关性, 即白噪声然后进行格兰杰因果关系检验,脉冲响应、方差分解
③建立VAR模型:(因果关系检验),检验其平稳性,平稳性检验通过(单位根(r<1),)表明模型平稳,即脉冲响应(冲击)是收敛的(如果冲击是发散的,不符合实际经济系统,再分析则毫无经济意义),可做脉冲响应、方差分解等;如果没通过平稳性检验,则不能直接做脉冲响应和方差分解,可以以差分变量做VAR模型,通过VAR建模, 可估计出VAR 模型的相关参数
④用建立的模型进行预测。

可供参考文献:基于向量自回归模型的人民币汇率预测研究_钱倩倩
VEC模型
一、含义:
VEC模型是含有协整约束的VAR模型, 多应用于具有协整关系的非平稳时间序列建模中。

二、基本形式:
三、优缺点:。

VAR模型、协整和VEC模型介绍学习资料

VAR模型、协整和VEC模型介绍学习资料

V AR模型、协整和VEC模型1. V AR(向量自回归)模型定义2. V AR模型的特点3. V AR模型稳定的条件4. V AR模型的分解5. V AR模型滞后期的选择6. 脉冲响应函数和方差分解7. 格兰杰(Granger)非因果性检验8. V AR模型与协整9. V AR模型中协整向量的估计与检验10. 案例分析1980年Sims 提出向量自回归模型(vector autoregressive model )。

这种模型采用多方程联立的形式,它不以经济理论为基础。

在模型的每一个方程中,内生变量对模型的全部内生变量的滞后项进行回归,从而估计全部内生变量的动态关系。

1. V AR (向量自回归)模型定义以两个变量y 1t ,y 2t 滞后1期的V AR 模型为例,y 1, t = c 1 + π11.1 y 1, t -1 + π12.1 y 2, t -1 + u 1t y 2, t = c 2 + π21.1 y 1, t -1 + π22.1 y 2, t -1 + u 2t其中u 1 t , u 2 t ~ IID (0, σ 2), Cov(u 1 t , u 2 t ) = 0。

写成矩阵形式是,⎥⎦⎤⎢⎣⎡t t y y 21=12c c ⎡⎤⎢⎥⎣⎦+⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ⎥⎦⎤⎢⎣⎡--1,21,1t t y y +⎥⎦⎤⎢⎣⎡t t u u 21设Y t =⎥⎦⎤⎢⎣⎡t t y y 21, c =12c c ⎡⎤⎢⎥⎣⎦, ∏1 =⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ, u t =⎥⎦⎤⎢⎣⎡t t u u 21, 则,Y t = c + ∏1 Y t -1 + u t (1.3)含有N 个变量滞后k 期的V AR 模型表示如下:Y t = c + ∏1 Y t -1 + ∏2 Y t -2 + … + ∏k Y t -k + u t , u t ~ IID (0, Ω)其中,Y t = (y 1, ty 2, t … y N , t )', c = (c 1 c 2 … c N )'∏j =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡j NN jN jN j N jj j N j j..2.1.2.22.21.1.12.11πππππππππ, j = 1, 2, …, ku t = (u 1 t u 2,t … u N t )',不同方程对应的随机误差项之间可能存在相关。

向量自回归和向量误差修正模型

向量自回归和向量误差修正模型

模型旨在捕捉变量之间的动态关 系,并分析一个经济系统中的内
在机制。
VAR模型假设变量之间的关系是 非结构性的,即它们之间的关系
是线性的。
VAR模型的参数估计
使用最大似然估计法(MLE) 来估计VAR模型的参数。
MLE是一种统计方法,用于估 计未知参数的值,使得已知数 据与模型预测的概率分布尽可 能接近。
独立同分布假设
02
模型假设误差项独立且同分布,实际数据可能无法满足这一假
设,导致模型的预测能力下降。
参数稳定性假设
03
模型假设参数在样本期间保持不变,这在现实中很难满足,参
数的变化可能影响模型的预测效果。
模型应用范围与限制
领域限制
向量自回归和向量误差修正模型 主要应用于宏观经济和金融领域 的数据分析,在其他领域的应用 可能受到限制。
向量自回归和向量误 差修正模型
目录
• 向量自回归模型(VAR) • 向量误差修正模型(VECM) • 向量自回归和向量误差修正模型的应用 • 向量自回归和向量误差修正模型的比较与选择 • 向量自回归和向量误差修正模型的局限性
01
向量自回归模型(VAR)
VAR模型的原理
多个时间序列变量同时受到各自 滞后值和相互之间滞后值的影响。
模型选择与优化
在向量误差修正模型中,需要根据实际问题和数据特点选择合适的滞后阶数和模型形式。 同时,可以通过比较不同模型的拟合优度、解释力度等指标来优化模型。
03
向量自回归和向量误差修 正模型的应用
宏观经济预测
总结词
向量自回归和向量误差修正模型在宏观经济预测中具有重要应用,能够分析多个经济变量之间的动态关系,预测 未来经济走势。
参数值。

向量自回归模型

向量自回归模型
移而发生突变。
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。

向量自回归模型(-VAR)-和VEC

向量自回归模型(-VAR)-和VEC

模型建立与估计
模型建立
首先需要确定经济时间序列之间的长 期均衡关系,然后构建误差修正项, 最后将误差修正项引入VAR模型中。
模型估计
使用最小二乘法或广义矩估计法 (GMM)对模型进行估计。来自模型应用与实例应用
用于分析经济时间序列之间的长期均 衡关系和短期调整机制,如汇率、利 率、通货膨胀率等。
实例
02
向量误差修正模型(-VEC) 介 绍
定义与原理
定义
向量误差修正模型(Vector Error Correction Model,简称VEC)是一种用于分析 长期均衡关系和短期调整机制的计量经济模型。
原理
基于协整理论,VEC模型通过引入误差修正项来反映经济时间序列之间的长期均 衡关系,并分析短期调整机制。
向量自回归模型(-var)和vec
目录
Contents
• 向量自回归模型(-VAR) 介绍 • 向量误差修正模型(-VEC) 介绍 • 向量自回归模型(-VAR) 与向量误
差修正模型(-VEC) 的比较
目录
Contents
• 向量自回归模型(-VAR) 和向量误 差修正模型(-VEC) 的扩展与展望
以汇率和通货膨胀率为例,通过构建 VEC模型,可以分析两者之间的长期 均衡关系和短期调整机制,为政策制 定提供依据。
03
向量自回归模型(-VAR) 与向量 误差修正模型(-VEC) 的比较
模型相似性
两者都属于向量自回归模型家族, 用于分析多个时间序列之间的动
态关系。
两者都基于向量自回归模型,通 过估计参数来描述时间序列之间 的长期均衡关系和短期调整机制。
模型建立与估计
模型建立
在建立VAR模型之前,需要选择合适的滞后阶数,并确定模型中的变量。然后, 可以使用最小二乘法或最大似然法等估计方法来估计模型的参数。

向量自回归模型(VAR)与向量误差修正模型(vec)

向量自回归模型(VAR)与向量误差修正模型(vec)

向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。

这种模型其优点是具有明显的经济理论含义。

但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。

一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。

为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。

VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。

它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。

而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。

7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。

向量自回归var模型

向量自回归var模型

向量自回归var模型
Vector Autoregressive (VAR) model是一种常用的时间序列模型,用于研究在一段时间内几个变量之间的影响关系。

VAR模型根据变量的时间序列分析出多个变量之间的直接和间接影响。

VAR模型最常用于许多经济变量,如GDP、通货膨胀率和利率,这些经济变量之间有可能存在复杂的因果关系。

通常,VAR模型由几个变量的序列表示,并采用预测及其他统计程序来检验系统的影响。

一般而言,VAR模型的假设是参数是不变的,变量之间没有多个
共线性,变量存在自相关性,误差项是服从正态分布的独立同分布的,误差项的样本自相关为0/1特征(即不存在自相关)。

以上假设均有
助于我们更好地进行变量之间的因果关系研究。

VAR模型除了可以用来预测一个变量对另一个变量的变化对于研
究者来说还有另一个重要用处,可以捕捉变量之间复杂的因果关系。

作为时间序列模型,VAR模型最大的作用是识别变量之间的影响,可以解释在自然系统中发生的各种不确定性,并采取相应的行动及早消除
威胁。

总的来说,VAR模型是一种用于识别变量之间的影响关系的有效
方法,可以有效地使用多个变量时间序列来检验和预测这个系统的状态。

这种模型的强大特性使它在经济、金融和时间序列分析领域非常
流行,以检测变量之间的复杂关系以及把握因果效应。

VAR模型与向量VECM模型

VAR模型与向量VECM模型

向量自回归模型(VAR )与向量误差修正模型(VEC )向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。

这种模型其优点是具有明显的经济理论含义。

但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。

一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。

为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。

VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。

它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。

而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。

VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (15.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (15.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (15. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式. 如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。

向量自回归(VAR)和向量误差修正模型(VEC)

向量自回归(VAR)和向量误差修正模型(VEC)
rrt 0.17 1.32 -1.51 -4.0 rrt1 ln(m1)t 0.04-0.0020.178-0.404ln(m1)t1 ln(gd)pt 0.039-0.005-0.004-0.495ln(gd)pt1
-0.387-11.2 17.55 rrt2 e1t 0.003-0.124-0.002ln(m1)t2 e2t
向量自回归(VAR)和向量 误差修正模型(VEC)
§9.1 向量自回归理论
向量自回归(VAR)是基于数据的统计性质建立模型, VAR模型把系统中每一个内生变量作为系统中所有内 生变量的滞后值的函数来构造模型,从而将单变量自回 归模型推广到由多元时间序列变量组成的“向量”自回 归模型。VAR模型是处理多个相关经济指标的分析与 预测最容易操作的模型之一,并且在一定的条件下,多 元MA和ARMA模型也可转化成VAR模型,因此近年来 VAR模型受到越来越多的经济工作者的重视。
25
它是一种结构式经济模型,引入了变量之间的作
用与反馈作用,其中系数 c12 表示变量 zt 的单位变化对
变量 xt 的即时作用,21表示 xt-1的单位变化对 zt 的滞后
影响。虽然 uxt 和 uzt 是单纯出现在 xt 和 zt 中的随机冲击, 但如果 c21 0,则作用在 xt 上的随机冲击 uxt 通过对 xt 的影响,能够即时传到变量 zt 上,这是一种间接的即时 影响;同样,如果 c12 0,则作用在 zt 上的随机冲击 uzt 也可以对 xt 产生间接的即时影响。冲击的交互影响体现 了变量作用的双向和反馈关系。
10
利用VAR(p)模型对 ln(gdp) , ln(m1) 和 rr,3个变量之 间的关系进行实证研究,其中实际GDP和实际M1以对数差分 的形式出现在模型中,而实际利率没有取对数。

VAR模型、协整和VEC模型_yukz解读

VAR模型、协整和VEC模型_yukz解读

V AR模型、协整和VEC模型1. V AR(向量自回归)模型定义2. V AR模型的特点3. V AR模型稳定的条件4. V AR模型的分解5. V AR模型滞后期的选择6. 脉冲响应函数和方差分解7. 格兰杰(Granger)非因果性检验8. V AR模型与协整9. V AR模型中协整向量的估计与检验10. 案例分析1980年Sims 提出向量自回归模型(vector autoregressive model )。

这种模型采用多方程联立的形式,它不以经济理论为基础。

在模型的每一个方程中,内生变量对模型的全部内生变量的滞后项进行回归,从而估计全部内生变量的动态关系。

1. V AR (向量自回归)模型定义以两个变量y 1t ,y 2t 滞后1期的V AR 模型为例,y 1, t = c 1 + π11.1 y 1, t -1 + π12.1 y 2, t -1 + u 1t y 2, t = c 2 + π21.1 y 1, t -1 + π22.1 y 2, t -1 + u 2t其中u 1 t , u 2 t ~ IID (0, σ 2), Cov(u 1 t , u 2 t ) = 0。

写成矩阵形式是,⎥⎦⎤⎢⎣⎡t t y y 21=12c c ⎡⎤⎢⎥⎣⎦+⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ⎥⎦⎤⎢⎣⎡--1,21,1t t y y +⎥⎦⎤⎢⎣⎡t t u u 21设Y t =⎥⎦⎤⎢⎣⎡t t y y 21, c =12c c ⎡⎤⎢⎥⎣⎦, ∏1 =⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ, u t =⎥⎦⎤⎢⎣⎡t t u u 21, 则,Y t = c + ∏1 Y t -1 + u t (1.3)含有N 个变量滞后k 期的V AR 模型表示如下:Y t = c + ∏1 Y t -1 + ∏2 Y t -2 + … + ∏k Y t -k + u t , u t ~ IID (0, Ω)其中,Y t = (y 1, ty 2, t … y N , t )', c = (c 1 c 2 … c N )'∏j =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡j NN jN jN j N jj j N j j..2.1.2.22.21.1.12.11πππππππππ,j = 1, 2, …, ku t = (u 1 t u 2,t … u N t )',不同方程对应的随机误差项之间可能存在相关。

向量自回归模型及其预测结果分析

向量自回归模型及其预测结果分析

向量自回归模型及其预测结果分析时间序列分析是统计学中的一个重要分支,主要关注某一个变量在时间上的变化规律,以及该变量与其他变量之间的关系。

在实际应用中,人们往往需要对未来的变量值进行预测。

而向量自回归模型是一种常用的时间序列模型,能够较准确地对未来时间点的变量值进行预测。

一、向量自回归模型介绍向量自回归模型(VAR)是一种多元时间序列模型,它能够同时考虑多个变量之间的相互作用,并描述每个变量在过去一段时间内的变化趋势。

VAR模型建立在向量自回归的基础上,用过去一段时间内自身的变量值来预测未来的变量值。

通常情况下,VAR模型是由基础时间序列、观察时间长度和滞后阶数三个因素共同决定的。

基础时间序列指的是多元时间序列模型中的所有变量,观察时间长度指的是时间序列模型的建立时间跨度,而滞后阶数则是指VAR模型所考虑的时间序列自回归的最高阶数。

VAR模型的优点在于它能够同时考虑多个变量之间的作用,而且能够较好地处理协整关系。

但是,它的缺点在于模型中包含的变量较多,需要较多的样本数据才能稳定地进行模型的预测。

二、VAR模型的建模流程VAR模型的建模流程主要包括以下几个步骤:1. 数据准备阶段:首先需要准备可以用来构建VAR模型的数据,要求数据可以被分解成多个变量的时间序列。

2. 模型估计阶段:VAR模型是基于多元回归模型的基础上建立的,需要通过估计模型中的系数来求解模型。

通常采用最小二乘法来进行估计。

3. 模型诊断阶段:对VAR模型进行一系列的检验、诊断,包括回归系数的显著性检验、残差的正态性检验、异方差性检验等等,以保证模型的可靠性。

4. 模型预测阶段:用已知的历史数据来建立VAR模型,再根据模型对未来的时间点进行预测。

三、VAR模型的预测结果分析VAR模型的预测结果主要包括两个方面,即点预测和置信区间。

点预测是指对未来时间点的变量值进行确定性的预测,而置信区间则是指预测的不确定性范围。

通过比较预测结果和实际观测值,可以对VAR模型的预测能力进行评估。

金融计量var、vec模型讲义

金融计量var、vec模型讲义
数据准备
收集相关经济指标的历史数据,如GDP、通货膨胀率、利率、汇率 等,并对数据进行清洗和整理,确保数据质量和一致性。
数据频率
选择适当的数据频率,如年度、季度或月度数据,以满足分析需求。
模型估计与结果解读
1 2
模型估计
采用适当的统计软件(如EViews、Stata等)对 VAR或VEC模型进行估计,确定模型的最佳滞后 阶数,并检验模型的稳定性。
模型检验与诊断
平稳性检验
残差检验
诊断检验
在建立VAR、VEC模型之前, 需要对数据进行平稳性检验, 如ADF检验、PP检验等。如果 数据不平稳,需要进行差分或 其他处理使其平稳。
在模型估计完成后,需要对残 差进行检验,以判断模型是否 拟合良好。常见的残差检验方 法有自相关检验、异方差检验 和正态性检验等。
结果解读
对模型估计结果进行解读,分析各经济变量之间 的动态关系和相互影响,以及模型的拟合优度。
3
检验与诊断
对模型进行各种诊断检验,如残差检验、自相关 检验等,以确保模型的有效性和可靠性。
模型预测与政策建议
模型预测
利用估计好的VAR或VEC模型对 未来经济走势进行预测,为政策 制定提供参考依据。
政策建议
根据模型结果和预测,提出针对 性的政策建议,如财政政策、货 币政策等,以促进经济稳定和增 长。
政策效果评估
通过VAR或VEC模型对政策效果 进行评估,分析政策对经济的长 期和短期影响,为政策调整提供 依据。
04
VAR、VEC模型的优缺 点与改进方向
VAR、VEC模型的优点
数据要求低
VAR、VEC模型对数据的要求相对较低,只需要时间序列数据即可 进行分析,不需要复杂的样本设计和实验过程。

向量自回归var模型的应用

向量自回归var模型的应用

向量自回归var模型的应用
向量自回归(Vector Autoregression,VAR)模型是一种多变量时间序列模型,广泛应用于经济学、金融学等领域。

VAR模型的主要应用包括以下几个方面:
1. 宏观经济预测:VAR模型可以用于预测宏观经济变量,如GDP、通货膨胀率、失业率等。

通过建立包含多个宏观经济变量的VAR模型,可以对未来的经济走势进行预测,并为政府决策提供参考。

2. 金融市场分析:VAR模型可以用于分析金融市场的波动和相关性。

通过建立包含多个金融市场变量的VAR模型,可以研究不同市场之间的相互影响,并预测金融市场的未来趋势。

3. 货币政策分析:VAR模型可以用于评估货币政策的效果。

通过建立包含货币政策变量和宏观经济变量的VAR模型,可以分析货币政策对经济的影响,并评估不同政策措施的效果。

4. 风险管理:VAR模型可以用于风险管理和投资组合优化。

通过建立包含不同资产价格变量的VAR模型,可以估计不同资产之间的风险敞口,并为投资组合的风险管理提供参考。

5. 冲击传导分析:VAR模型可以用于分析经济冲击的传导机制。

通过VAR模型,可以估计不同变量之间的冲击传导路径,从而揭示经济体系中的关键变量和传导机制。

VAR模型是一种灵活、全面的分析工具,可以应用于各种经济、金融问题的研究和预测分析。

向量自回归模型(VAR)-Eviews实现

向量自回归模型(VAR)-Eviews实现
缺点
对于滞后阶数的选择存在主观性,可 能导致模型拟合不足或过度拟合;无 法进行因果检验和结构分析。
02 Eviews软件介绍
Eviews软件的特点
界面友好
Eviews软件采用图形用户界面,操作简便,易 于上手。
灵活多变
Eviews软件支持自定义函数和命令,用户可以 根据需要自行编写程序。
ABCD
系方面的有效性。
实证分析中,我们采用了国内生 产总值(GDP)、消费者价格指数 (CPI)和货币供应量(M2)三个经 济指标,通过VAR模型分析它们 之间的动态关系,并利用Eviews 软件进行了模型估计和检验。
实证结果表明,VAR模型能 够有效地描述多个时间序列 变量之间的动态关系,并且 通过Eviews软件可以实现方
02
模型通过估计变量之间的滞后系数来分析变量之间 的动态关系。
03
滞后阶数决定了模型中包含的滞后项数量,滞后阶 数越多,模型拟合的自由度越少。
VAR模型的应用场景
用于分析多个经济指标或金融变量之间的动态关 系。 用于预测经济趋势和政策效应。
用于评估经济政策的有效性。
VAR模型的优缺点
优点
能够同时考虑多个时间序列变量之间 的动态关系,能够捕捉到变量之间的 长期均衡关系和短期调整机制。
预测性能评估
使用各种预测性能指标, 如MSE、MAE、RMSE等, 对VAR模型的预测性能进 行评估。
04 案例分析
案例选择与数据准备
案例选择
选择一个具有代表性的经济时间序列数据集,如股票收益率、汇 率等。
数据准备
收集所需数据,进行数据清洗和整理,确保数据准确性和一致性。
数据预处理
对数据进行必要的预处理,如缺失值填充、异常值处理等。

向量自回归模型(VAR)和VEC

向量自回归模型(VAR)和VEC

数据清洗
对数据进行预处理,如缺失值填 充、异常值处理、数据转换等, 以保证数据的质量和一致性。
数据平稳性检验
对时间序列数据进行平稳性检验, 以避免伪回归问题,确保模型的 有效性。
模型选择与参数估计
模型选择
根据研究目的和数据特征,选择合适的VAR或VECM模型。 考虑模型的滞后阶数、变量个数等参数设置。
向量自回归模型(VAR) 和VECM
目录
Contents
• 向量自回归模型(VAR)介绍 • 向量误差修正模型(VECM)介绍 • VAR与VECM的比较 • 实证分析 • 结论与展望
01 向量自回归模型(VAR)介绍
VAR模型的原理
多个时间序列变量同时受到各 自过去值和彼此过去值的影响。
模型通过将多个时间序列变 量视为内生变量,并考虑它 们之间的相互影响,来分析 这些变量之间的动态关系。
将VAR和VECM模型的结果进行对比 分析,探讨两种模型在解释变量相互 影响方面的异同点。
政策建议
根据模型结果,提出针对性的政策建 议,为政府决策提供参考依据。
不足与展望
总结研究的不足之处,并提出进一步 研究的方向和展望。
05 结论与展望
结论总结
本文通过实证分析,探讨了向量自回归 模型(VAR)和向量误差修正模型(VECM) 在分析多个时间序列数据时的适用性和 优势。
01
参数估计
采用合适的估计方法,如最小二乘法、 极大似然法等,对模型参数进行估计。
02
03
模型诊断
对模型进行诊断检验,如残差检验、 稳定性检验等,以确保模型的合理性 和有效性。
模型结果解释与讨论
结果解释
对模型结果进行详细解释,包括各变 量的系数估计值、符号、显著性等, 分析其对内生变量的影响。

VAR模型和VEC模型Johansen协整检验

VAR模型和VEC模型Johansen协整检验
VAR模型和VEC模型Johansen协整 检验
一、向量自回归(VAR)模型
4. VAR模型的检验 VAR模型的滞后结构检验 (1)AR根的图与表 如果VAR模型所有根模的倒数都小于1,即都在单位圆内, 则该模型是稳定的;如果VAR模型所有根模的倒数都大于1, 即都在单位圆外,则该模型是不稳定的。如果被估计的VAR 模型不稳定,则得到的结果有些是无效的。
一、向量自回归(VAR)模型
3. VAR模型的建立
VAR模型的滞后结构检验 (3)滞后排除检验 滞后排除检验(Lag Exclusion Tests) 是对VAR模型中的每一阶数的 滞后进行排除检验。如右图所示。 第一列是滞后阶数, 第二列和第三列是方程的χ2统计 量, 最后一列是联合的χ2统计量。
四、 Johansen协整检验
EViews操作 在 EViews 软 件 操 作 中 , 选 择 VAR01 对 象 工 具 栏 中 的 “View”|“Cointegration Test…”选项,打开下图所示的协整检 验设定对话框。
检验
一、向量自回归(VAR)模型
3. VAR模型的建立
选择“Quick”|“Estimate VAR…”选项,将会弹出下图所示的 对话框。 该对话框包括三个选项卡,分别是“Basics”、 “Cointegration”和“VEC Restrictions”, 后两个选项卡在VEC模型操 作中使用。系统默认是“Basics” 选项卡。。
VAR模型和VEC模型Johansen协整 检验
四、Johansen协整检验
2、Johansen协整检验 (1)特征根迹(Trace)检验 (2)最大特征值检验
VAR模型和VEC模型Johansen协整 检验
四、Johansen协整检验

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

19
表11.3
P AIC
AIC与SC随P的变化
SC
Lnl(P )
1 2 3 4
-5.3753 -5.6603 -5.8804 -5.6693
-4.8474 -4.7271 -4.5337 -3.9007
108.7551 120.0551 129.9676 132.5442
由表11.3知,在P=1时,SC 最小(-4.8474) ,在P=3时,AIC 最小(-5.8804),相互矛盾不 能确定P值,只能用似然比LR确定P值。
模型形式 (C t p)
(c 0 3) (c 0 0) (c 0 0)
DW值
1.6551 1.9493 1.8996
结论
LGDPt ~I(1) LCt ~I( 1) LIt~I(1)
LCt
2
LIt
2
注 C为位移项, t为趋势,p为滞后阶数。
由表11.1知, LGDPt、 LCt和LIt均为一阶单 整,可能存在协整关系。
待估参数个数为2 × 2×2= P N 2 用线性方程组表示VAR(2)模型:
y t 1 1 1 y t 1 1 1 2 x t 1 2 1 1 y t 2 2 1 2 x t 2 u 1t x t 1 2 1 y t 1 1 2 2 x t 1 2 2 1 y t 2 2 2 2 x t 2 u 2 t
4
政策分析。但实际中,这种模型的效果并不令人满 意。
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。 (2)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时,为达到可识别 的目的,常要将不同的工具变量加到各方程中,通常这种 工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设, 带来更严重的伪回归问题。

向量自回归(VAR)模型和向量误差修正(VEC)模型理论及EVIEWS操作

向量自回归(VAR)模型和向量误差修正(VEC)模型理论及EVIEWS操作
2
一、VAR模型及特点
1. VAR模型—向量自回归模型
经典计量经济学中,由线性方程构成的联立方程
组模型,由科普曼斯(poOKmans1950)和霍德-科普曼 斯(Hood-poOKmans1953)提出。联立方程组模型在20 世纪五、六十年代曾轰动一时,其优点主要在于对每个方
程的残差和解释变量的有关问题给予了充分考虑,提出了
y1t y2t
yNt 为应变量,以N个应变量y1t y2t
yNt
的最大p阶滞后变量为解释变量的方程组模型,方程组模 型中共有N个方程。显然,VAR模型是由单变量AR模型推广到 多变量组成的“向量”自回归模型。
对于两个变量(N=2),Yt ( yt xt )T 时,VAR(2)模型为
2
Yt iYti Ut 1Yt1 2Yt2 Ut i 1
7
VAR模型
VAR模型主要用于预 测和分析随机扰动对 系统的动态冲击,冲 击的大小、正负及持 续的时间。
VAR模型的定义式 为:设 yt是N×1阶 时序应变量列向量, 则p阶VAR模型(记 为AR(p)):
Yt ( y1t y2t
yNt )T
p
Yt iYt i Ut 1Yt 1 2Yt 2 i 1
工具变量法、两阶段最小二乘法、三阶段最小二乘法、有
限信息极大似然法和完全信息极大似然法等参数的估计方
法。这种建模方法用于研究复杂的宏观经济问题,有时多
达万余个内生变量。当时主要用于预测和政策分析。但实
际中,这种模型的效果并不令人满意。
3
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。

VAR模型和VEC模型

VAR模型和VEC模型

• 2值计、的,PnTR作为E为样最V本终A个预R模数测型。误的它差最是,佳优它阶点是数是使。平把σ衡F2Pn了为E(选滞n)择后=σ低n2n期(阶T时+数n残造)/(差成T-的n偏)方的离差最性估小的 风险和选择高滞后阶数造成方差增长的风险。
• 3、信息准则,包括SC、AIC和HQ。如果滞后期越长,则要估 计参数就越多,自由度就越少。因此信息准则就是寻求滞后期与 自由度之间的一种均衡。一般根据SC、AIC和HQ的信息量取值 最小的准则确定模型的阶数。
4、VAR模型的估计
• 前面我们提到,如果VAR模型中变量是平稳 的,并且方程右边包含相同的解释变量,随机误 差项满足基本假定,则我们可以分别应用普通最 小二乘法对单个方程予以估计,所得到的估计值 是一致的、渐进有效的。当上述条件不满足时, 我们需要用到估计联立方程模型的其它方法。
3、平稳性检验
• VAR模型也可以作序列平稳性检验的,可以用单位根方 法进行检验。在VAR模型的输出窗口中,通过 View→Lag Structure→AR Roots Table 或者AR Roots Graph分别得到VAR模型特征方程的根的倒数值的表和 图。例如在案例4中,得到如下图:
如果全部特征根的 倒数值都在单位园 内,则VAR模型是 稳定的,否则不稳 定,不稳定不可以 作脉冲响应函数分 析。这表明本例的 VAR模型是稳定的
• VAR模型在涉及到多变量并且有相互制约和影响的 经济分析中都是一个强有力的分析工具,特别是在 联立方程的预测能力受到质疑的时候,这种模型的 提出在预测方面和脉冲响应分析方面均显示出较大 的优势。
(一)、VAR模型的形式
• 在一个含有n个方程(即n个被解释变量)的VAR 模型中,每个被解释变量都对自身以及其它被解 释变量的若干期滞后值回归,若令滞后阶数为k, 则VAR模型的一般形式可用下式表示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
待估参数个数为2 × 2×2= PN2 用线性方程组表示VAR(2)模型:
yt 111 yt 1 112 xt 1 211 yt 2 212 xt 2 u1t xt 121 yt 1 122 xt 1 221 yt 2 222 xt 2 u2t
18
表11.3
P AIC
AIC与SC随P的变化
SC
Lnl ( P )
108.7551 120.0551 129.9676 132.5442
1 2 3 4
-5.3753 -5.6603 -5.8804 -5.6693
-4.8474 -4.7271 -4.5337 -3.9007
由表11.3知,在P=1时,SC 最小(-4.8474) ,在P=3时,AIC 最小(-5.8804),相互矛盾不 能确定P值,只能用似然比LR确定P值。
1.格兰杰因果性定义 2.格兰杰因果性检验 案例 五、 建立VAR模型 案例 六、利用VAR模型进行预测 案例 七、脉冲响应函数与方差分解 案例 八、向量误差修正模型 案例
2
一、VAR模型及特点
1. VAR模型—向量自回归模型
经典计量经济学中,由线性方程构成的联立方程 组模型,由科普曼斯(poOKmans1950)和霍德-科普曼 斯(Hood-poOKmans1953)提出。联立方程组模型在20 世纪五、六十年代曾轰动一时,其优点主量法、两阶段最小二乘法、三阶段最小二乘法、有 限信息极大似然法和完全信息极大似然法等参数的估计方 法。这种建模方法用于研究复杂的宏观经济问题,有时多 达万余个内生变量。当时主要用于预测和
11
的自相关。但p值又不能太大。p值过大,待估参数多, 自由度降低严重,直接影响模型参数估计的有效性。 这里介绍两种常用的确定p值的方法。 (1)用赤池信息准则(AIC)和施瓦茨(SC)准 则确定p值。确定p值的方法与原则是在增加p值的过程 中,使AIC和 SC值同时最小。 具体做法是:对年度、季度数据,一般比较到P=4 ,即分别建立VAR(1)、VAR(2)、VAR(3)、VAR(4)模型 ,比较AIC、SC,使它们同时取最小值的p值即为所求 。而对月度数据,一般比较到P=12。 当AIC与SC的最小值对应不同的p值时,只能用LR 检验法。
案例1
160000
120000
80000
40000
0 55 60 65 70 75 80 85 CT 90 IT 95 00
12 11 10 9 8
GD P
图11-1 GDPt、 Ct和 It
的时序图
7 6 5 55 60 65 70 LGDP 75 80 85 90 95 LIT 00
LCT
图11-2 LGDPt、 LCt和 LIt的时序图
明。
13
我国1953年~2004年支出法国内生产总 值(GDP)、最终消费(Ct)和固定资本形成总额(It) 的时序数据列于D8.1中。数据来源于《中国统计年鉴》 各期。
用商品零售价格指数p90(1990年=100)对GDP、 Ct和It进行平减,以消除物价变动的影响,并进行自然 对数变换,以消除序列中可能存在的异方差,得到新序 列: LGDPt=LOG(GDPt/p90t); LCt=LOG(Ct/p90t); LIt=LOG(It/p90t)。 GDP、 Ct和 It与LGDPt、 LCt和LIt的时序图分别示于 图11-1和图11-2,由图11-2可以看出,三个对数序列的 14 变化趋势基本一致,可能存在协整关系。
4
由此可知,经济理论指导下建立的结构性经典计量模 型存在不少问题。为解决这些问题而提出了一种用非结构 性方法建立各变量之间关系的模型。本章所要介绍的VAR模 型和VEC模型,就是非结构性的方程组模型。 VAR (Vector Autoregression)模型由西姆斯 (C.A.Sims,1980)提出,他推动了对经济系统动态分析的 广泛应用,是当今世界上的主流模型之一。受到普遍重视, 得到广泛应用。 VAR模型主要用于预测和分析随机扰动对系统的动态冲 击,冲击的大小、正负及持续的时间。 T VAR模型的定义式为:设 Yt ( y1t y2t yNt ) 是N×1阶时序 应变量列向量,则p阶VAR模型(记为VAR(p)):
19
检验的原假设是模型滞后阶数为1,即P=1 ,似然比检验统计量LR :
LR 2( Lnl (1) Lnl (3)) 2(108.7551 129.9676) 42.4250 其中,Lnl(1)和Lnl(3)分别为P=1和P=3时VAR(P) 模型的对数似然函数值。在零假设下,该统计量 2 ( f ) 服从渐进的 分布,其自由度f为从VAR(3) 到VAR(1)对模型参数施加的零约束个数。对本 例: f=VAR(3) 估计参数个数-VAR(1)估计参数 个数 3 32 1 32 18 。
3
政策分析。但实际中,这种模型的效果并不令人满 意。
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。 (2)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时,为达到可识别 的目的,常要将不同的工具变量加到各方程中,通常这种 工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设, 带来更严重的伪回归问题。
2 3
4
-9.1226
-7.6022
257.9417
由表11.2知,AIC和SC最小值对应的p值均为 2, 故应取VAR模型滞后阶数p=2 。
17
案例2 序列y1、y2和y3分别表示我国1952 年至1988年工业部门、交通运输部门和商业部门 的产出指数序列,数据在D11.1中。试确定VAR模 型的滞后阶数p。 设 Ly1=log(y1); Ly2=log(y2); Ly3=log(y3)。 用AIC 和 SC准则判断,得表11.3。
-2.9202 -2.9202 -2.9202
模型形式 (C t p)
(c 0 3) (c 0 0) (c 0 0)
DW值
1.6551 1.9493 1.8996
结论
LGDPt ~I(1) LCt ~I( 1) LIt~I(1)
注 C为位移项, t为趋势,p为滞后阶数。
由表11.1知, LGDPt、 LCt和LIt均为一阶单 整,可能存在协整关系。
Yt iYt i Ut 1Yt 1 2Yt 2 pYt p Ut
i 1
p
Ut IID(0, )
(11.1)
5
式中,i (i 1,2,,p) 是第i个待估参数N×N阶矩阵; Ut (u1t u2t u Nt )T 是N×1阶随机误差列向量;
Yt iYt i Ut 1Yt 1 2Yt 2 U t
i 1
6
2
用矩阵表示:
yt 111 112 yt 1 211 212 yt 2 u1t x x x u t 121 122 t 1 221 222 t 2 2t
15
案例 1 (一)单位根检验 由于 LGDP、 LCt和LIt可能存在协整关系, 故对它们进行单位根检验,且选用pp检验法。检 验结果列于表11.1.
表11.1 PP单位根检验结果
检验 变量 2 LGDP t 2 LCt
LIt
2
检验值 -4.3194
-5.4324 -5.7557
5% 临界值
1
一、VAR模型及特点 1. VAR模型—向量自回归模型 2. VAR模型的特点 二、VAR模型滞后阶数p的确定方法 确定VAR模型中滞后阶数 p 的两种方法 案例 三、Jonhamson协整检验 1.Johanson协整似然比(LR)检验 2.Johanson协整检验命令 案例 3.协整关系验证方法 案例 四、 格兰杰因果关系检验
8
所以, VAR模型既可用于预测,又可用于结构 分析。近年又提出了结构VAR模型(SVAR: Structural VAR)。 有取代结构联立方程组模 型的趋势。由VAR模型又发展了VEC模型。
2. VAR模型的特点
VAR模型较联立方程组模型有如下特点: (1)VAR模型不以严格的经济理论为依据。 在建模过程中只需明确两件事:第一,哪些变量 应进入模型(要求变量间具有相关关系——格兰 杰因果关系 );第二,滞后阶数p的确定(保证 残差刚好不存在自相关);
这种方程组模型主要用于分析联合内生变量 间的动态关系。联合是指研究N个变量 y1t y2t yNt 间的相互影响关系,动态是指p期滞后。故称VAR 模型是分析联合内生变量间的动态关系的动态模 型,而不带有任何约束条件,故又称为无约束 VAR模型。建VAR模型的目的: (1)预测,且可用于长期预测; (2)脉冲响应分析和方差分解,用于变量间 的动态结构分析。
12
(2)用似然比统计量LR选择p值。LR定义为 :
2 LR 2ln l( p) ln l( p i) ( f ) (11.2)
式中, lnl(p) 和 lnl(p+i) 分别为VAR(p)和 VAR(p+i)模型的对数似然函数值;f为自由度。 用对数似然比统计量LR确定P的方法用案例说
第九章 向量自回归 ( VAR) 模型和向量误差 修正 (VEC)模型
本章的主要内容:
(1)VAR模型及特点; (2)VAR模型中滞后阶数p的确定方法; (3)变量间协整关系检验; (4)格兰杰因果关系检验; (5)VAR模型的建立方法; (6)用VAR模型预测; (7)脉冲响应与方差分解; (8)VECM的建立方法。

是N×N阶方差协方差矩阵; p 为模型最大滞后阶数。
相关文档
最新文档