八年级(上)第二次月考数学试卷解析版
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 7.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3)8.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 10.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等二、填空题11.17.85精确到十分位是_____.12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.4的平方根是 .15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.17.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.18.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50km ,乙车选择没有高架的路线,全程共44km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?22.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.23.如图,反比例函数k y x=与一次函数y=x+b 的图象,都经过点A (1,2)(1)试确定反比例函数和一次函数的解析式;(2)求一次函数图象与两坐标轴的交点坐标.24.已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,在平面直角坐标系中,一次函数y x的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.30.如图,在平面直角坐标系中,直线AB 经过点A 332)和B 3,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.C解析:C【解析】 试题分析:A 31,故错误;B 2<﹣1,故错误;C .﹣12<2,故正确;52,故错误;故选C .【考点】估算无理数的大小.3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.7.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.8.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°, ∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,k->,∴10k>;∴1k>.故答案为:1【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.17.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 18.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.甲车行驶的平均速度为75/km h ,乙车行驶的平均速度为55/km h .【解析】【分析】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据“乙车到达B 地花费的时间是甲车的1.2倍”列方程求解即可.【详解】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据题意,得:50441.220x x⨯=+ 解得:x =55.经检验,x =55是所列方程的解.当x =55时,x +20=75.答:甲车行驶的平均速度为75km/h ,乙车行驶的平均速度为55km/h .【点睛】本题考查了分式方程的应用.找出相等关系是解答本题的关键.22.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.23.(1)反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)(-1,0)与(1,0).【解析】【分析】(1)将点A(1,2)分别代入kyx=与y=x+b中,运用待定系数法即可确定出反比例解析式和一次函数解析式.(2)对于一次函数解析式,令x=0,求出对应y的值,得到一次函数与y轴交点的纵坐标,确定出一次函数与y轴的交点坐标;令y=0,求出对应x的值,得到一次函数与x轴交点的横坐标,确定出一次函数与x轴的交点坐标.【详解】解:(1)∵反比例函数kyx=与一次函数y=x+b的图象,都经过点A(1,2),∴将x=1,y=2代入反比例解析式得:k=1×2=2,将x=1,y=2代入一次函数解析式得:b=2-1=1,∴反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1.∴一次函数图象与两坐标轴的交点坐标为(-1,0)与(1,0).24.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴5 21k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D , ∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上, ∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上 ∴b =4a +2, ∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H , 对于直线y =﹣3x+3,由x =0得y =3 ∴P (0,3), ∴OP =3 由y =0得x =1, ∴Q (1,0),OQ =1, ∵∠QPR =45° ∴∠PSQ =45°=∠QPS ∴PQ =SQ∴由(1)得SH =OQ ,QH =OP∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1 ∴S (4,1),设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3⎧=-⎪⎨⎪=⎩∴直线PR 为y =﹣12x+3 由y =0得,x =6 ∴R (6,0). 【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 28.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】 【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果; (3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x+解出x 即可. 【详解】解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°, ∵CD ⊥AB , ∴∠BDC=90°, ∵BE 平分∠ABC , ∴∠ABE=∠CBE=34°, ∴∠BPD =90-34=56°; (2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x-)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°,∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x+)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC , 则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x-,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x+,∴902x -+902x --(454x+)=90°, 解得:x=36°; ②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y-,由①得:∠ABC+∠BCD=90°,∴902x -+[902x --(902y-)]=90,又y=454x +,解得:x=1807°; ③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y , 由①得:∠ABC+∠BCD=90°,∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合,综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系. 29.(1)①);②B ;(2)3s =;(3)59k ≤≤.【解析】 【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可. 【详解】 解:(1)①∵2a =,∴11b b ==-=',∴坐标为:),故答案为:);②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2, ∵()2,2满足2y =, ∴这个点是B , 故答案为:B ;(2)∵点C 的坐标为(2,2)--, ∴OC 的关系式为:()0y x x =≤, ∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩,∴点P 的限变点Q 的纵坐标满足的关系式为:。
河南省新乡市红旗区新乡学院附属中学2020-2021学年八年级上学期第二次月考数学试题及参考答案
C. D.
6.如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是()
A.1<AD<6B.1<AD<4C.2<AD<8D.2<AD<4
7.若把分式 的x和y都扩大3倍,那么分式 的值()
A.扩大3倍B.扩大9倍C.扩大4倍D.不变
8.已知 - =3,则 的值是( )
∴∠ACB=180°-∠A-∠CBA=180°-40°-60°=80°,
∵P点在AB边上且不与A、B重合,
∴0°<∠ACP<80°,
∴0°<2∠BOC-220°<80°,
∴110°<∠BOC<150°,
∴m=110,n=150.
∴n-m=40.
故选:B.
【点睛】
本题考查了角平分线的性质,三角形内角和定理,一元一次不等式组的解法,熟练掌握三角形内角和定理是解题的关键.
22.甲、乙两商场自行定价销售某一商品.
(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为元;
(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?
(3)在(1)、(2)的结论下,甲、乙两商场把该商品均按原价进行了两次价格调整.
14.一个长方形的两邻边分别是 , ,若 ,则这个长方形的面积是_________
15.观察下列各式:1×3=3,而22-1=3;3×5=15,而42-1=15;5×7=35,而62-1=35;…;11×13=143,而122-1=143.将你发现的规律用含有一个字母的式子表示为_____
三、解答题
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
2019-2020学年安徽省阜阳九中八年级(上)第二次月考数学试卷 (含答案解析)
2019-2020学年安徽省阜阳九中八年级(上)第二次月考数学试卷一、选择题(本大题共10小题,共40.0分)1.在下列四个交通标志图中,不是轴对称图形的是()A. B. C. D.2.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144B. 20或120C. 120D. 203.下列计算正确的是()A. a3−a=a2B. x3⋅x2=x6C. (−2a)2=4a2D. x2n÷x n=x24.如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A. 正方形B. 正五边形C. 正六边形D. 正八边形5.等腰△ABC中,已知有一条边长为4,另一条边长为9,则△ABC的周长为()A. 13B. 17C. 22D. 17或226.点(2,−3)关于y轴的对称点是()A. (−2,3)B. (2,3)C. (−2,−3)D. (2,−3)7.下列运算正确的是()A. 2a2−5a2=3a2B. (−a2)3=−a6C. (a−1)2=a2−1D. a3⋅a4=a128.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD,若AB=7,BC=8,AC=5,则△ADC的周长为()A. 12B. 13C. 15D. 169.如图,△ABC中,∠BAC=90°,AB=AC,延长CA至点D,使AD=AC,点E是BC的中点,连接DE交AB于点F,则AF:FB的值为()A. 12B. √23C. √22D. 2√2310.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A. 7.5B. 5C. 4D. 不能确定二、填空题(本大题共4小题,共20.0分)11.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,那么∠C=________度.12.已知3m=8,3n=2则3m−n=_________.13.在平面直角坐标系中,已知A、B两点的坐标分别为A(−1,1)、B(3,2),若点M为x轴上一点,且MA+MB最小,则点M的坐标为______.14.等腰三角形一腰上的高与另一个腰的夹角为70°,则顶角的度数为________.三、计算题(本大题共3小题,共30.0分))−2+(−1)4;15.计算:(1)(2√3)0−(12(2)a2·(−a7)+(−a2)3·(−a3)2;(3)3x(x2+2x+1)−(2x+3)(x−5).xy),其中16.先化简,再求值.[(x+3y)(x−3y)+(2y−x)2+5y2(1−x)−(2x2−x2y)]÷(−12 x=95,y=220.17.解不等式:3x>2(x−1)+2四、解答题(本大题共6小题,共60.0分)18.如图,在△ABC中,已知AB=AC,BD平分∠ABC,AE为BC边的中线,AE、BD相交于点D,其中∠ADB=125°,求∠BAC的度数.19.如图,利用尺规在平面内确定一点O,使得点O到△ABC的两边AB、AC的距离相等,并且点O到B、C两点的距离也相等(保留作图痕迹,不写作法).20.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.21.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:______ ;(2)证明:______ .22.如图所示,在直角坐标系xOy中,A(3,4),B(1,2),C(5,1).(1)作出△ABC关于y轴的对称图形△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△ABC的面积.23.如图,点M、N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°-------- 答案与解析 --------1.答案:C解析:【分析】本题考查了轴对称图形的知识,判断是否是轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.直接根据轴对称图形的定义解答即可.【解答】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意.故选C.2.答案:B解析:解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为20°或120°.故选:B.利用比例两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,再列式求解.3.答案:C解析:解:A、a3与a不是同类项,不能合并,错误;B、x3⋅x2=x5,错误;C、(−2a)2=4a2,正确;D、x2n÷x n=x n,错误.故选:C.根据同类项、同底数幂的乘法、幂的乘方和同底数幂的除法计算即可.此题考查同类项、同底数幂的乘法、幂的乘方和同底数幂的除法,关键是根据法则进行计算.4.答案:C解析:【分析】本题考查多边形内角和定理及外角和定理,根据正多边形内角和=外角和×2,列方程解答即可.【解答】解:设多边形边数为n.则(n−2)⋅180°=360°×2,解得n=6.。
河南省郑州市高新区枫杨外国语学校2021-2022学年八年级上学期第二次月考数学试卷(解析版)
∴k>0,
∵kb<0,
∴b<0,
故-b>0
∴此函数图象经过一、二、三象限.
故选:D.
【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中函数的图象所在象限是解答此题的关键.
9.若关于 的二元一次方程组 的解为 则 的值分别是()
A. B. C. D.
∴(a-17)2+|b-15|+(c-8)2=0,
∴a-17=0,b-15=0,c-8=0,
∴a=17,b=15,c=8,
∵82+152=172,
∴△ABC是以a为斜边的直角三角形;
故选:A.
【点睛】本题考查了勾股定理的逆定理、绝对值和偶次方的非负性质;熟练掌握绝对值和偶次方的非负性,由勾股定理的逆定理得出结论是关键.
【解析】
【分析】(1)根据已知数据及中位数和众数的概念求解可得;
(2)利用样本估计总体思想求解可得;
(3)答案不唯一,合理均可.
【详解】解:(1)由题意知 ,
将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,
1
0
0
7
b
2
分析数据:
平均数
众数
中位数
七年级
78
75
八年级
78
80.5
应用数据:
(1)由上表填空:a=,b=,c=,d=.
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级 学生对经典文化知识掌握的总体水平较好,请说明理由.
【答案】(1) 11,10,78,81;(2)90人;(3)八年级的总体水平较好
江苏省南通市苏科版八年级数学上册第二次月考真题试卷(一)解析版
江苏省南通市苏科版八年级数学上册第二次月考真题试卷(一)解析版一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-2 2.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,83.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒4.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .65.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )A .6B .5C .4D .36.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A.0.001cm B.0.0001cm C.0.00001cm D.0.000001cm 7.已知一次函数y=kx+b,函数值y随自变置x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A.B.C.D.8.9的平方根是( )A.3B.81C.3±D.81±9.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(﹣2,﹣3)C.(3,2)D.(3,﹣2)10.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE的长为()A.3B.3C.5D.5二、填空题11.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(﹣2,﹣3),棋子B的坐标为(1,﹣2),那么棋子C的坐标是_____.13.若△ABC的三边长分别为a,b,c.下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b ﹣c);③∠A:∠B:∠C=3:4:5;④a:b:c=5:12:13.其中能判断△ABC是直角三角形的是_____(填序号).14.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m +n 的值为_____.15.写出一个比4大且比5小的无理数:__________.16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.17.若等腰三角形的一个角为70゜,则其顶角的度数为_____ . 18.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____. 19.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.20.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题21.通过对下面数学模型的研究学习,解决下列问题:(模型呈现)(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(模型应用)(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.22.已知一次函数y =3x +m 的图象经过点A (1,4). (1)求m 的值;(2)若点B (﹣2,a )在这个函数的图象上,求点B 的坐标.23.在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数()210y kx k k =-+≠进行了探究学习,请根据他们的对话解答问题.(1)张明:当1k =-时,我能求出直线与x 轴的交点坐标为 ; 李丽:当2k =时,我能求出直线与坐标轴围成的三角形的面积为 ;(2)王林:根据你们的探究,我发现无论k 取何值,直线总是经过一个固定的点,请求出这个定点的坐标.(3)赵老师:我来考考你们,如果点P 的坐标为()1,0一,该点到直线()210y kx k k =-+≠的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.24.甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.()1A ,B 两城相距______千米,乙车比甲车早到______小时; ()2甲车出发多长时间与乙车相遇?()3若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?25.如图,在Rt ABC ∆中,90C ∠=︒,BD 是ABC ∆的一条角平分线.点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形.(1)求证:点O 在BAC ∠的平分线上;(2)若5AC =,12BC =,且正方形OECF 的面积为4,求ABO ∆的面积.四、压轴题26.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?27.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6. (1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度; ②当t 为何值时,点M 与点N 重合; ③当△PCM 与△QCN 全等时,则t = .28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)30.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①. (1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:设一次函数的解析式y=kx+b (k≠0),∵一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B , ∴在直线y=-x 中,令x=-1,解得:y=1,则B 的坐标是(-1,1). 把A (0,2),B (-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1b k b =-+=,解得2{1b k ==, 该一次函数的表达式为y=x+2. 故选B .2.B解析:B【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确; C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误; D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误; 故选:B . 【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.C解析:C 【解析】 【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案. 【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称, ∴∠A =∠A ′=30°,∠C =∠C ′=60°; ∴∠B =180°−30°-60°=90°. 故选:C . 【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.4.B解析:B 【解析】 【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值. 【详解】解:如图,在AC 上截取AE=AN ,连接BE ,∵∠BAC 的平分线交BC 于点D , ∴∠EAM=∠NAM , 在△AME 与△AMN 中, ===AE ANEAM NAM AM AM∴△AME ≌△AMN (SAS ), ∴ME=MN .∴BM+MN=BM+ME≥BE ,当BE 是点B 到直线AC 的距离时,BE ⊥AC ,此时BM+MN 有最小值, ∵2AB =,∠BAC=45°,此时△ABE 为等腰直角三角形, ∴2,即BE 2, ∴BM+MN 2. 故选:B . 【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.5.D解析:D 【解析】 【分析】根据图1可知,可分P 在BC 上运动和P 在CD 上运动分别讨论,由此可得BC 和CD 的值,进而利用三角形面积公式可得BCD ∆的面积. 【详解】解:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动, 当P 在BC 段运动,△ABP 面积y 随x 的增大而增大;当P 在CD 段运动,因为△ABP 的底边不变,高不变,所以面积y 不变化.由图2可知,当0<x<2时,y 随x 的增大而增大;当2<x<5时,y 的值不随x 变化而变化. 综上所述,BC=2,CD=5-2=3, 故1123322BCD S CD BC ∆.故选:D . 【点睛】本题考查动点问题的函数图象,动点的图象问题是中考的常考题型,做此类题需要弄清横纵坐标的代表量,并观察确定图象分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等. 匀速变化呈现直线段的形式,平行于x轴的直线代表未发生变化.6.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.7.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.8.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】±.解:9的平方根是3故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.9.C解析:C【解析】【分析】直接利用关于y轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M(﹣3,2)关于y轴对称的点的坐标为:(3,2).故选:C.【点睛】本题考查的知识点是关于x轴、y轴对称的点的坐标,属于基础题目,易于掌握.10.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=CD=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,且BD⊥AC,在Rt△BDC中,由勾股定理得:BD==即DE=BD故选:B.【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.二、填空题11.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.12.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.13.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.14.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.15.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.17.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 18.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.19.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.20.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴331k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =﹣12x +52, 当x =0时,y =52, ∴点C 的坐标为(0,52), 故答案为:(0,52). 【点睛】 此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题21.(1)DE ,AE ;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG∆与ENG∆中,DMG ENG∠=∠,MGD NGE∠=∠,DM EN=,∴DMG ENG∆=(AAS),∴DG EG=,∴点G是DE的中点;②如图,过A作AM⊥y轴,过B作BN⊥x轴于N,AM与BN相交于M,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM,在△OBN与△BAM中,M ONBOBN BAMOB AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBN≌△BAM(AAS),∴AM=BN,ON=BM,设AM=x,则BN=AM=x,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.22.(1)1;(2)(﹣2,﹣5).【解析】【分析】(1)把点A (1,4)的坐标代入一次函数y =3x+m 可求出m 的值,(2)确定函数的关系式,再把B 的坐标代入,求出a 的值,进而确定点B 的坐标.【详解】解:(1)把点A (1,4)的坐标代入一次函数y =3x+m 得:3×1+m =4,解得:m =1,(2)由(1)得:一次函数的关系式为y =3x+1.把B (﹣2,a )代入得:a =3×(﹣2)+1=﹣5,∴B 的坐标为(﹣2,﹣5)【点睛】考查一次函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.23.(1) (3,0),94; (2) (2,1);10; 【解析】【分析】(1) 张明:将k 值代入求出解析式即可得到答案;李丽: 将k 值代入求出解析式,得到直线与x 轴和y 轴的交点,即可得到答案;(2) 将()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数,即可求出;(3) 由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB ,发现直角三角形ABP 中PA 是最大值,所以当PA 与()210y kx k k =-+≠垂直时最大,求出即可.【详解】解:(1)张明: 将1k =-代入()210y kx k k =-+≠得到y=-x-2×(-1)+1y=-x+3 令y=0 得-x+3=0,得x=3所以直线与x 轴的交点坐标为(3,0)李丽:将2k = 代入()210y kx k k =-+≠得到 y=2x-3直线与x 轴的交点为(32,0) 直线与y 轴的交点为(0,-3) 所以直线与坐标轴围成的三角形的面积=1393=224⨯⨯ (2) ∵()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数∴(y-1)=k (x-2)必过(0,0)∴此时x=2,y=1通过图像平移得到()210y kx k k =-+≠必过(2,1)(3)由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB由图中可以得到直角三角形ABP 中AP 大于直角边PB所以P 到()210y kx k k =-+≠最大距离为PA 与直线垂直,即为PA∵ P (-1,0)A (2,1)得到10答:点P 到()210y kx k k =-+≠10.【点睛】此题主要考查了一次函数的性质及一次函数的实际应用-几何问题,正确理解点到直线的距离是解题的关键.24.(1)300千米,1小时(2)2.5小时(3)1小时【解析】【分析】(1)根据函数图象可以直接得到A ,B 两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t 可得出答案.【详解】(1)由图象可知A 、B 两城市之间的距离为300km , 甲比乙早到1小时,(2)设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k=60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt+n ,把(1,0)和(4,300)代入可得04300m n m n +=⎧⎨+=⎩, 解得:100100m n =⎧⎨=-⎩, ∴y 乙=100t-100,令y 甲=y 乙,可得:60t=100t-100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,∴甲车出发2.5小时与乙车相遇(3)当y 甲- y 乙=20时60t-100t+100=20,t=2当y 乙- y 甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t 是甲车所用的时间.25.(1)证明见解析;(2)13.【解析】【分析】(1)过点O 作OM ⊥AB ,由正方形的性质可得OE=OF ,OE ⊥BC ,OF ⊥AC ,根据角平分线上的点到角两边距离相等可得OM=OG ,所以OM=OF ,于是根据角平分线的判定定理可得点O 在∠BAC 的平分线上;(2)由勾股定理得AB 的长,根据正方形的面积可求OE 的长,于是可得OM 的长,根据三角形的面积计算公式可求.【详解】解:(1)证明:过点O 作OM ⊥AB ,∵四边形OECF 是正方形,∴OE=OF ,∠OEC=∠OFC =90°,∴OE ⊥BC ,OF ⊥AC,∵BD 是∠ABC 的一条角平分线,OM ⊥AB,∴OE=OM ,∴OF=OM ,∴点O 在∠BAC 的平分线上;(2)∵5AC =,12BC =,90C ∠=︒,∴在Rt △ABC 中,根据勾股定理222251213AB AC BC +=+=, ∵正方形OECF 的面积为4,∴OM=OE=2,∴1113213.22ABO S AB OM ∆=⋅⋅=⨯⨯= 【点睛】本题考查角平分线的性质和判定,正方形的性质,勾股定理.熟记角平分线的性质定理和判定定理是解决此题的关键. 四、压轴题26.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ;②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm , ∴t =52, ∴点Q 的运动速度=612552=cm /s ,∴当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.27.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14; (2)①当点N 在线段CA 上时,根据CN =CN−BC 即可得出答案;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得t =2即可;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,则CM =CN ,得3t =10−8t ,解得t =1011;当点N 在线段CA 上时,△PCM ≌△QCN ,则3t =8t−10,解得t =2;即可得出答案.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.29.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】。
2020-2021学年陕西省西安市高新一中八年级(上)第二次月考数学试卷(10月份) 解析版
2020-2021学年陕西省西安市高新一中八年级(上)第二次月考数学试卷(10月份)一、选择题(每小题3分,共30分)1.函数①y=πx;②y=2x﹣1;③y=,④y=x2﹣1中,y是x的一次函数的有()A.1个B.2个C.3个D.4个2.若点A(﹣2,m)在函数y=﹣0.5x+1的图象上,则m的值是()A.0B.1C.﹣2D.23.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)4.函数y=中的自变量x的取值范围是()A.x>1B.x≠2C.x>1且x≠2D.x≥1且x≠2 5.已知关于x的一次函数y=(2﹣m)x+2+m的图象上两点A(x1,y1),B(x2,y2),若x1<x2时,y1>y2,则m的取值范围是()A.m>2B.m>﹣2C.m<2D.m<﹣26.无论m、n为何实数,直线y=﹣3x+1与y=mx+n的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分(如图),与剩余木板的面积y(m2)与x(m)的关系式为(0≤x<5)()A.y=2x B.y=5x C.y=10﹣2x D.y=10﹣x8.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.9.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①图象经过点(1,﹣3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时,y<0.其中正确的是()A.①②③B.①③④C.②③④D.①②④10.正方形A1B1C1O,A2B2C2C1,A3B2C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,2n﹣1)二.填空题(每小题3分,共21分)11.若y=(m﹣2)x+5是一次函数函数,则其解析式为.12.将直线y=﹣2x+1向下平移2个单位长度,所得直线与x轴的交点坐标为.13.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是.14.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=.15.直线l与直线y=x+1关于y轴对称,则直线l的解析式为.16.直线y=kx﹣4与两坐标轴所围成三角形的面积是4,则k=.17.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.三.解答题:18.(9分)已知,直线L经过点A(4,0),B(0,2).(1)画出直线L的图象,并求出直线L的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△P AB=3?若存在,求出点P的坐标,若不存在,请说明理由.19.(8分)汕头外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m元.(1)若某“外卖小哥”某月送了500单,收入元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式.20.(9分)如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)点C的坐标为;(2)若CQ将△AOC分成1:2两部分时,t的值为;(3)若S△ACQ:S四边形CQOB=1:2时,求直线CQ对应的函数关系式.21.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)小张骑自行车的速度;小李出发后分钟到达甲地;(2)小张出发后分与小李相遇.(3)求小张停留后再出发时y与x之间的函数表达式,并写出自变量x的取值范围.22.(13分)如图:在平面直角坐标系中,直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),过点C(﹣1,0)作垂直于x轴的直线交AB于点D,点E(﹣1,m)在直线CD上且在直线AB的上方.(1)求k、b的值;(2)用含m的代数式表示S四边形AOBE,并求出当S四边形AOBE=5时,点E的坐标;(3)当m=2时,以AE为边在第二象限作等腰直角三角形△P AE.直接写出点P的坐标.2020-2021学年陕西省西安市高新一中八年级(上)第二次月考数学试卷(10月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.函数①y=πx;②y=2x﹣1;③y=,④y=x2﹣1中,y是x的一次函数的有()A.1个B.2个C.3个D.4个【分析】利用一次函数定义进行解答即可.【解答】解:①y=πx;②y=2x﹣1是一次函数;③y=是反比例函数,不是一次函数;④y=x2﹣1是二次函数,不是一次函数,因此一次函数共2个,故选:B.2.若点A(﹣2,m)在函数y=﹣0.5x+1的图象上,则m的值是()A.0B.1C.﹣2D.2【分析】将x=﹣2代入一次函数解析式中求出y值,此题得解.【解答】解:∵点A(﹣2,m)在函数y=﹣0.5x+1的图象上,∴m=﹣0.5×(﹣2)+1=2.故选:D.3.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)【分析】由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.【解答】解:A、∵=,∴两点在同一个正比例函数图象上;B、∵≠,∴两点不在同一个正比例函数图象上;C、∵≠,∴两点不在同一个正比例函数图象上;D、∵≠,两点不在同一个正比例函数图象上;故选:A.4.函数y=中的自变量x的取值范围是()A.x>1B.x≠2C.x>1且x≠2D.x≥1且x≠2【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:D.5.已知关于x的一次函数y=(2﹣m)x+2+m的图象上两点A(x1,y1),B(x2,y2),若x1<x2时,y1>y2,则m的取值范围是()A.m>2B.m>﹣2C.m<2D.m<﹣2【分析】由当x1<x2时,y1>y2,可得出y随x的增大而减小,再利用一次函数的性质可得出2﹣m<0,解之即可得出m的取值范围.【解答】解:∵当x1<x2时,y1>y2,∴y随x的增大而减小,∴2﹣m<0,∴m>2.故选:A.6.无论m、n为何实数,直线y=﹣3x+1与y=mx+n的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的函数式来判断直线所在的象限.【解答】解:由直线y=﹣3x+1的解析式可以看出,此直线必过一二四象限,不经过第三象限.因此两直线若相交,交点无论如何也不可能在第三象限.故选:C.7.一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分(如图),与剩余木板的面积y(m2)与x(m)的关系式为(0≤x<5)()A.y=2x B.y=5x C.y=10﹣2x D.y=10﹣x【分析】根据剩余木板的面积=原长方形的面积﹣截去的面积.【解答】解:依题意有:y=2×5﹣2x=10﹣2x.故选:C.8.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.9.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①图象经过点(1,﹣3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时,y<0.其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:把点(2,0),点(0,3)代入y=kx+b得,,解得:,∴一次函数的解析式为y=﹣x+3,当x=1时,y=,∴图象不经过点(1,﹣3);故①不符合题意;由图象得:关于x的方程kx+b=0的解为x=2,故②符合题意;关于x的方程kx+b=3的解为x=0,故③符合题意;当x>2时,y<0,故④符合题意;故选:C.10.正方形A1B1C1O,A2B2C2C1,A3B2C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,2n﹣1)【分析】根据题意分别求得B1,B2,B3…的坐标,根据横纵坐标可以得到一定的规律,据此即可求解.【解答】解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).故选:D.二.填空题(每小题3分,共21分)11.若y=(m﹣2)x+5是一次函数函数,则其解析式为y=﹣4x+5.【分析】根据一次函数的定义解答即可.【解答】解:∵y=(m﹣2)x+5是一次函数函数,∴m﹣2≠0,且m2﹣3=1,解得:m=﹣2,∴y=﹣4x+5,故答案为y=﹣4x+5.12.将直线y=﹣2x+1向下平移2个单位长度,所得直线与x轴的交点坐标为(﹣,0).【分析】根据函数的平移规则“上加下减”,即可得出直线平移后的直线解析式,再让y =0,得到关于x的方程,解方程即可求得.【解答】解:根据平移的规则可知:直线y=﹣2x+1向下平移2个单位长度后所得直线的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,令y=0,则﹣2x﹣1=0,解得x=﹣,∴所得直线与x轴的交点坐标为(﹣,0),故答案为:(﹣,0).13.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【解答】解:∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.14.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=0.【分析】由点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限的角平分线上可得m+2与﹣3互为相反数,﹣4与n+5互为相反,从而可求得m,n的值,从而求得m+n的值.【解答】解:∵A(m+2,﹣3)在二四象限角平分线上,∴m+2=3,解得m=1,∵点B(﹣4,n+5)在二四象限角平分线上,∴n+5=4,解得n=﹣1,∴m+n=1﹣1=0.故答案为:0.15.直线l与直线y=x+1关于y轴对称,则直线l的解析式为y=﹣x+1.【分析】利用关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变解答即可.【解答】解:与直线y=x+1关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则y=(﹣x)+1,即y=﹣x+1.所以直线l的解析式为:y=﹣+1.故答案为y=﹣x+1.16.直线y=kx﹣4与两坐标轴所围成三角形的面积是4,则k=±2.【分析】先根据坐标轴上点的坐标特征求出直线y=kx﹣4与坐标轴的交点坐标,然后根据三角形面积公式得到•4•||=4,再解绝对值方程即可得到k的值.【解答】解:当x=0时,y=kx﹣4=﹣4,则直线与y轴的交点坐标为(0,﹣4),当y=0时,kx﹣4=0,解得x=,则直线与x轴的交点坐标为(,0),所以•4•||=4,解得k=±2.故答案为±2.17.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.三.解答题:18.(9分)已知,直线L经过点A(4,0),B(0,2).(1)画出直线L的图象,并求出直线L的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△P AB=3?若存在,求出点P的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法求一次函数解析式;(2)根据三角形面积公式得到即可;(3)设P(x,0),则P A=|x﹣4|,根据题意得到|x﹣4|×2=3,解得x的值,即可求得P的坐标.【解答】解:(1)画出函数图象如图:设直线l的解析式为y=kx+b,把A(4,0)、点B(0,2)分别代入得,解得,∴一次函数解析式为y=﹣x+2;(2)∵点A(4,0),B(0,2).∴OA=4,OB=2,∴S△AOB==4;(3)在x轴上存在一点P,使S△P AB=3,理由如下:设P(x,0),∵A(4,0)、B(0,2),∴P A=|x﹣4|,∵S△P AB=3,∴P A•OB=3,即|x﹣4|×2=3,∴x﹣4=±3,∴x=7或1,∴P的坐标为(7,0)或(1,0).19.(8分)汕头外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m元.(1)若某“外卖小哥”某月送了500单,收入2000元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式.【分析】(1)根据每月不超出750单,每单收入4元,可以计算出某“外卖小哥”某月送了500单,收入多少元;(2)根据函数图象中的数据,可以计算出y与x之间的函数关系式.【解答】解:(1)由题意可得,某“外卖小哥”某月送了500单,收入500×4=2000(元),故答案为:2000;(2)当0≤x≤750时,y=4x,当x>750时,设y=kx+b,,解得,,即当x>750时,y=5x﹣750,由上可得,y与x的函数关系式为y=.20.(9分)如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)点C的坐标为(2,2);(2)若CQ将△AOC分成1:2两部分时,t的值为2或4;(3)若S△ACQ:S四边形CQOB=1:2时,求直线CQ对应的函数关系式.【分析】(1)由题意得:,解得,即可求解;(2)CQ将△AOC分成1:2两部分时,则OQ=OA或OA,即OQ=2或4,即可求解;(3)若S△ACQ:S四边形CQOB=1:2时,则若S△ACQ:S△OAB=1:3,即(×AQ×y C):(×OA•OB)=1:3,进而求解.【解答】解:(1)由题意得:,解得,故点C的坐标为(2,2),故答案为(2,2);(2)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,故点A(6,0),点B(0,3),则OA=6,OB=3,∵CQ将△AOC分成1:2两部分时,则OQ=OA或OA,即OQ=2或4,即t=2或4,故答案为2或4;(3)若S△ACQ:S四边形CQOB=1:2时,则若S△ACQ:S△OAB=1:3,即(×AQ×y C):(×OA•OB)=1:3,则(×AQ×2):(×6×3)=1:3,解得:AQ=3,故点Q(3,0),设直线CQ的表达式为y=kx+b,则,解得,故直线CQ的表达式为y=﹣2x+6.21.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)小张骑自行车的速度300米/分;小李出发后3分钟到达甲地;(2)小张出发后分与小李相遇.(3)求小张停留后再出发时y与x之间的函数表达式,并写出自变量x的取值范围.【分析】(1)由图象看出小张的路程和时间,根据速度公式可得小张骑自行车的速度;根据“时间=路程÷速度”即可得出小李出发后到达甲地所需时间;(2)设小张出发后x分与小李相遇,根据题意列方程解答即可;(3)首先求出点B的坐标,利用待定系数法可得函数解析式.【解答】解:(1)由题意得,小张骑自行车的速度为:(2400﹣1200)÷4=300(米/分);小李出发后到达甲地所需时间为:2400÷800=3(分钟).故答案为:300米/分;3.(2)设小张出发后x分与小李相遇,根据题意得:300(x﹣2)+800(x﹣60)=2400,解得,即小张出发后分与小李相遇.故答案为:.(3)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得:,解得:,∴小张停留后再出发时y与x之间的函数表达式;y=﹣300x+3000(6≤x≤10).22.(13分)如图:在平面直角坐标系中,直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),过点C(﹣1,0)作垂直于x轴的直线交AB于点D,点E(﹣1,m)在直线CD上且在直线AB的上方.(1)求k、b的值;(2)用含m的代数式表示S四边形AOBE,并求出当S四边形AOBE=5时,点E的坐标;(3)当m=2时,以AE为边在第二象限作等腰直角三角形△P AE.直接写出点P的坐标.【分析】(1)利用待定系数法解决问题即可;(2)根据S四边形AOBE=S△ABE+S△AOB进而即可;(3)分AE是等腰直角三角形的斜边或直角边两种情形分别求解即可.【解答】解:(1)∵直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),∴,解得;(2)由(1)可知,直线AB的解析式为y=x+1,∵EC⊥OA,E(﹣1,m),∴D(﹣1,),∴DE=m﹣,∴S四边形AOBE=S△ABE+S△AOB=•(m﹣)•3+×3×1=m+,当S四边形AOBE=5时,即m+=5,解得m=3,故点E(﹣1,3);(3)当m=2时,EC=AC=2.∵∠ACE=90°,AC=EC,∴△AEC是等腰直角三角形,当AE是等腰直角三角形的斜边时,P(﹣3,2),当AE是等腰直角三角形的直角边时,P1(﹣5,2)或P2(﹣3,4).综上所述,满足条件的点P的坐标为(﹣3,2)或(﹣5,2)或(﹣3,4).。
广州大学附属中学2023-2024学年八年级上学期月考数学试题(解析版)
广东省广州市越秀区广州大学附属中学2023-2024学年八年级上学期10月月考(数学)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 下列六个实数:022π73,,,3.14159265,0.101001000100001⋅⋅⋅,其中无理数的个数是()A 2 个 B. 3 个 C. 4 个 D. 5 个【答案】B【解析】【分析】根据无理数的定义和常见无理数的特点去判断即可.2 ==2=,π3,0.101001000100001⋅⋅⋅是无理数,故选B.【点睛】本题考查了无理数即无限不循环小数,化为最简二次根式,熟练掌握定义是解题的关键.2. 若单项式2x2y a+b与﹣13x a﹣2b y5的和仍然是一个单项式,则a﹣5b的立方根为()A. ﹣1B. 1C. 0D. 2【答案】A【解析】【分析】根据题意得到两单项式为同类项,利用同类项定义列出方程组,求出方程组的解得到a与b的值,即可确定出原式的立方根.【详解】∵单项式2x2y a+b与13−x a﹣2b y5的和仍然是一个单项式,∴225a ba b−=+=,解得:41ab==,则a﹣5b=4﹣5=﹣1,﹣1的立方根为﹣1.故选A.【点睛】本题考查了立方根,合并同类项,熟练掌握立方根定义是解答本题的关键.3. 下列数组中,能构成勾股数的是().A. 1,1B. 6,8,10C. 2,4,6D. 13,14,15【答案】B【解析】 【分析】根据勾股数的定义逐项判断即可得到答案.【详解】解:A 不是正整数,故1,1不能构成勾股数,故此选项不符合题意;B 、6,8,10是正整数,且22268366410010 ,故6,8,10能构成勾股数,故此选项符合题意;C 、2,4,6是正整数,但22224416206+=+=≠,故2,4,6不能构成勾股数,故此选项不符合题意;D 、13,14,15不是正整数,故13,14,15不能构成勾股数,故此选项不符合题意; 故选:B .【点睛】本题考查了勾股数的定义,满足222+=a b c 的三个正整数,称为勾股数,熟练掌握此定义是解题的关键.4. 在平面直角坐标系中,若将一次函数26y x =−+的图象向下平移(0)n n >个单位长度后恰好经过点(1,2)−−,则n 的值为( )A. 10B. 8C. 5D. 3【答案】A【解析】 【分析】先得出向下平移后一次函数的解析式,再将点(1,2)−−代入求解即可得.【详解】将一次函数26y x =−+的图象向下平移(0)n n >个单位长度后的函数解析式为26y x n =−+− 将点(1,2)−−代入26y x n =−+−得:262n +−=−解得10n =故选:A .【点睛】本题考查了一次函数图象的平移规律,掌握一次函数图象的平移规律是解题关键.5. 若k k+1(k 是整数),则k=( )A. 6B. 7C. 8D. 9【答案】D【解析】【分析】找到90.【详解】本题考查二次根式的估值.∵8190100<<,∴910<<,∴9k =.一题多解:可将各个选项依次代入进行验证.如下表: 选项 逐项分析正误 A若6,369049k =<> × B若7,499064k =<> × C若8,649081k =<> × D 若9,8190100k =<< √【点睛】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.6. 一架2.5m 长的梯子斜立在一竖直的墙边,梯脚距墙底0.7m ,这时梯子达到的高度是( )A. 2.5mB. 2.4mC. 2mD. 1.8m 【答案】B【解析】【分析】根据勾股定理求出梯子达到的高度,进而可得出结论.【详解】解:∵一架2.5m 长的梯子斜立在一竖直的墙边,梯脚距墙底0.7m ,(m ). 故选:B .【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7. )A. 是无理数B. =±C. 23<<D. 2÷=【答案】B【解析】8的算术平方根,而算术平方根是求一个非负数的正的平方根,据此可以得到结果.【详解】A 是无理数,故A 正确.B 、表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,.故B 错误.C 、23<<∴<<.故C 正确.D 2÷.故D 正确.故选B .【点睛】本题考查了算术平方根的定义、二次根式的除法及无理数的有关概念,正确的理解算术平方根是解决此题的关键.8. 已知关于x 的一次函数y =(2﹣m )x +2+m 的图象上两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2时,y 1>y 2,则m 的取值范围是( )A. m >2B. m >﹣2C. m <2D. m <﹣2 【答案】A【解析】【分析】当x 1<x 2时,y 1>y 2,则y 随x 的增大而减小,根据一次函数的性质得: 2﹣m <0,即可得出答案.【详解】解:∵当x 1<x 2时,y 1>y 2∴y 随x 的增大而减小,∴2﹣m <0,∴m >2.故选:A .【点睛】本题考查一次函数的图像与性质,根据函数的增减性得到系数的范围,属于一般题型. 9. 如图所示,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度cm h ,则h 的取值范围是( )A. 17cm h ≤B. 8cm h ≥C. 15cm 16cm h ≤≤D. 7cm 16cm h ≤≤【答案】D【解析】【分析】当筷子的底端在A 点时,筷子露在杯子外面的长度最短,当筷子的底端在D 点时,筷子露在外面的长度最长,然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【详解】解:如图,当筷子的底端在D 点时,筷子露在外面的长度最长,∴24816cm h −,当筷子的底端在A 点时,筷子露在杯子外面的长度最短,在Rt ABD 中,15AD =,8BD =,∴17AB =,此时24177cm h =−=,所以h 取值范围是7cm 16cm h ≤≤,故选:D .【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题的关键.10. 如图,已知圆柱的底面直径BC =6π,高AB =3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A.B. C. D. 【答案】D【解析】 【详解】试题解析:把圆柱侧面展开,展开图如右图所示,点A 、C 的最短距离为线段AC 的长.在RT △ADC 中,∠ADC =90°,CD =AB =3,AD 为底面半圆弧长,AD =3,所以AC=C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为2AC=D .二、填空题(本大题4小题,每小题5分,共20分)请将下列各题的正确答案填写在答题卡的位置上.11. 1的相反数是_____,绝对值是_______,倒数是_______1−11−【解析】【详解】1的相反数=-(1)-11的绝对值=︱1︱=-︱1︱1−1的倒数=1÷(1)=(1)÷()=1−1−112. _______.【答案】3【解析】9=,在计算9的算术平方根即可得出答案.【详解】9=,9算术平方根为3∴3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.13. 如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为_____.的【答案】7【解析】【分析】根据勾股定理求得BC ,再根据折叠性质得到AE =CE ,进而由三角形周长=AB +BC 求解即可.【详解】∵在△ABC 中,∠B =90°,AB =3,AC =5,∴BC4=.∵△ADE 是△CDE 翻折而成,∴AE =CE ,∴AE +BE =BC =4,∴△ABE 的周长=AB +BC =3+4=7.故答案是:7.【点睛】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键.14. 如图是一个三级台阶,它的每一级的长、宽、高分别为100cm ,15cm 和10cm ,A 和B 是这个台阶的两个端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度为_________cm .【答案】125【解析】【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:的则AC=100cm ,BC=15×3+10×3=75cm ,在Rt △ABC 中,=125cm .所以蚂蚁所走的最短路线长度为125cm .故答案为:125.【点睛】本题考查了勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.三、计算题(本大题2小题,每小题6分,共12分)15. 计算:(1计算:(2. 【答案】(1)0.1;(2【解析】【分析】(1)先计算算术平方根,再合并即可;(2)把分子、分母都乘以【详解】解:(11.2 1.10.1=−=; (2; 【点睛】本题考查的是求解算术平方根,分母有理化,掌握相应的运算法则是解本题的关键.四、解答题(本大题4小题,共38分)16. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB CF ,90F ACB ∠=∠=°,45E∠=°,60A ∠=°,2AC =,则CD 的长度是___________.【答案】3【解析】【分析】过点B 作BM FD ⊥于点M ,根据题意可求出BC 的长度,然后在EFD △中可求出45EDF ∠=°,进而可得出答案.【详解】解:过点B 作BM FD ⊥于点M ,在ACB △中,90ACB ∠=°,60A ∠=°,2AC =, 30ABC ∴∠=°,24AB AC ∴==.BC ∴∵AB CF ,BM ∴,3CM =,在EFD △中,90F ∠=°,45E ∠=°,45EDF =∴∠°,MD BM ∴==,3CD CM MD ∴=−=−.故答案为:3−【点睛】本题考查了勾股定理和含30度角的直角三角形,根据题意构造直角三角形,利用直角三角形的性质进行解答是解题的关键.17. △ABC 在平面直角坐标系中的位置如图所示.(1)画出△ABC 关于y 轴的对称图形△DEF (点A ,B ,C 分别与点D ,E ,F 对应),并直接写出D ,E ,F 三点的坐标;(2)连接CF、CD,则△DFC的面积为.【答案】(1)画图见解析;D(﹣4,6)、E(﹣5,2)、F(﹣2,1)(2)10【解析】【分析】(1)分别作出点A、B、C关于y轴的对称点D、E、F,再首尾顺次连接即可;(2)利用三角形的面积公式求解可得答案.【详解】解:(1)如图所示,△DEF即为所求,D(﹣4,6)、E(﹣5,2)、F(﹣2,1).×4×5=10,(2)△DFC的面积为:12故答案为:10.【点睛】本题主要考查作图——轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.18. A 城有化肥200 吨,B 城有化肥300 吨,现要把化肥运往牛家、红旗两农村,如果从A 城运往牛家村、红旗村运费分别是20 元/吨与30 元/吨,从B 城运往牛家村、红旗村运费分别是15 元/吨与22 元/吨,现已知牛家村需要220 吨化肥,红旗村需要280 吨化肥.(1)如果设从A 城运往牛家村x 吨化肥,求此时所需的总运费y(元)与x(吨)之间的函数关系式(直接写出自变量x 的取值范围).(2)如果你承包了这项运输任务,算一算怎样调运花钱最少,并求出最少运费.【答案】(1)y=-3x+11060(0≤x≤200);(2)从A城运往牛家村200吨,从B城运往牛家村肥料20吨,则从B 城运往红旗村280吨时总运费最少,最少运费是10460元.【解析】【分析】(1)设从 A 城运往牛家村 x 吨化肥,用含x 的代数式分别表示出从A 运往运往红旗村的肥料吨数,从B 城运往牛家村化肥吨数,及从B 城运往红旗村化肥吨数,根据:运费=运输吨数×运输费用,得一次函数解析式;(2)利用一次函数的性质即得结论.【详解】(1)∵从 A 城运往牛家村 x 吨化肥,∴从A 城运往红旗村(200-x )吨化肥,从B 城运往牛家村化肥(220-x )吨,则从B 城运往红旗村(80+x )吨.∴根据题意,得:y=20x+30(200-x )+15(220-x )+22(80+x )=-3x+11060(0≤x ≤200)(2)由于y=-3x+11060是一次函数,k=-3<0,∴y 随x 增大而减小.因为x ≤200,所以当x=200时,运费最少,最少运费是10460元.∴当从A 城运往牛家村200吨,从B 城运往牛家村肥料20吨,则从B 城运往红旗村280吨时总运费最少,最少运费是10460元.【点睛】本题考查了一次函数的应用,根据题意列出一次函数解析式是关键.19. 如图,在平面直角坐标系xOy 中,直线y =43−x +4与x 轴、y 轴分别交于点A 、点B ,点D (0,﹣6)在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处,直线CD 交AB 于点E .(1)求点A 、B 、C 的坐标;(2)求△ADE 的面积;(3)y 轴上是否存在一点P ,使得PAD S ∆=12ADE S ∆,若存在,请直接写出点P 的坐标;若不存在,请说明理由.的【答案】(1)点A 的坐标为(3,0),点B 的坐标为(0,4),点C 的坐标为(8,0)(2)9 (3)y 轴上存在一点P (0,﹣3)或(0,﹣9),使得PAD S ∆=12ADE S ∆ 【解析】【分析】(1) 直线y =43−x +4中,分别令x =0、y =0,确定B 、A 坐标,运用勾股定理计算AB ,根据折叠性质,AC =AB ,确定OC 的长即可确定点C 的坐标.(2)证明Rt △AOD ≌Rt △AED ,根据ADE AOD S S ∆∆=计算即可.(3)设点P 的坐标为(0,m ),则DP =|m +6|.根据9|6|221m AO += ,计算m 的值即可. 【小问1详解】当x =0时,y =43−x +4=4, ∴点B 的坐标为(0,4);当y =0时,43−x +4=0, 解得:x =3,∴点A 的坐标为(3,0).在Rt △AOB 中,OA =3,OB =4,∴AB5.由折叠的性质,可知:∠BDA CDA ,∠D =∠C ,AC =AB =5,∴OC =OA +AC =8,∴点C 的坐标为(8,0).小问2详解】∵∠B =∠C ,∠OAB =∠EAC ,∠B +∠AOB +∠OAB =180°,∠C +∠AEC +∠EAC =180°,∴∠AEC =∠AOB =90°=∠AED =∠AOD .又∵∠BDA =∠CDA ,在Rt △AOD 和Rt △AED 中,【90AOD AED ODA EDA DA DA ∠=∠= ∠=∠ =∴Rt △AOD ≌Rt △AED , ∴1136922ADE AOD O S A S OD ∆∆===××= . 【小问3详解】存在点P ,且坐标为(0,-3)或(0,-9),理由如下:设点P 的坐标为(0,m ),则DP =|m +6|. ∵PAD S ∆=12ADE S ∆, ∴1113|6|9222OA PD m =××+=× , ∴|m +6|=3,解得:m =﹣3或m =﹣9,∴y 轴上存在点P (0,﹣3)或(0,﹣9),使得PAD S ∆=12ADE S ∆. 【点睛】本题考查了一次函数与坐标轴的交点,解析式的确定,折叠的性质,一次函数与几何图形的综合,熟练掌握待定系数法,折叠性质,一次函数与几何图形的综合是解题的关键.。
河北省唐山市友谊中学2023-2024学年八年级上学期月考数学试题(含解析)
值范围,熟练根据解的属性,增根的意义建立不等式是解题的关键.
【详解】∵
x
x
2
4
m 2
x
,
去分母,得 x 4 x 2 m ,
解得 x 8 m . 3
∵分式方程
x
x
2
4
m 2
x
的解为正数,且方程的增根为
x
2
时间=工作总量÷工作效率,结合结果比原计划提前一周完成任务,即可得出关于 x 的分式方
程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程
是解题的关键.
【详解】解:∵一周后以原来速度的1.4 倍修建,原计划一周修建隧道 x 米,
∴第一周修建了
x
1280 米隧道,一周后每周修建隧道1.4x 米.依题意得:
0
,
∴ 8 m >0 ,且 m 2 , 3
解得 m> 8 ,且 m 2 ,
故选 C. ab
11. 2a
【分析】直接约去分子与分母的公因式即可得到答案.
【详解】解: 3a a+b = a+b .
6a2
2a
a+b 故答案为: .
2a
【点睛】本题考查了分式的基本性质的应用,分式的约分找到分子分母的公因式是关键,是
答案与解析 1.B 【分析】因式分解是把一个多项式转化成几个整式积的形式,据此逐一判定即可得答案. 【详解】解:A、2x (x+3)=2x2+6x,是整式乘法,不是因式分解,故本选项不合题意; B、x2-y2=(x+y) (x-y),是因式分解,故本选项符合题意; C、x2+2xy+y2+1=(x+y)2+1,等式的右边不是积的形式,不是因式分解,故本选项不合题 意; D、24xy2=3x•8y2,等式左边不是多项式,不是因式分解,故本选项不合题意; 故选:B. 【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 2.D 【分析】本题考查了分式的定义,分母整式中含有字母是分式的重要特征.
人教版2022-2023学年八年级数学上册第二次月考测试题(附答案)
2022-2023学年八年级数学上册第二次月考测试题(附答案)一、选择题(共30分)1.计算下列四个式子,其运算结果最小的是()A.(﹣)2B.(﹣3)2C.﹣32D.(﹣3)02.在等腰△ABC中,∠A=50°,则∠B的度数不可能是()A.50°B.60°C.65°D.80°3.小王想做一个三角形的框架,他有两根长度分别为7cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分为两截的木条是()A.7cm的木条B.8cm的木条C.两根都可以D.两根都不行4.如图,△ABC是等边三角形,CB=CD,∠ABD=12°,则∠BAD的度数为()A.10°B.15°C.18°D.20°5.如图,已知∠O,点P为其内一定点,分别在∠O的两边上找点A、B,使△P AB周长最小的是()A.B.C.D.6.已知a=355,b=444,c=533,则下列关系中正确的是()A.b>c>a B.a>c>b C.b>a>c D.a<b<c7.若x2﹣kx+49是完全平方式,则k的值是()A.±9B.+14C.±14D.﹣148.如图为三条两两相交的公路,某石化公司拟建立一个加油站,计划使得该加油站到三条公路的距离相等,则加油站的可选位置有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,∠B=∠C,E、D、F分别是AB、BC、AC上的点,且BE=CD,BD=CF,若∠A=104°,则∠EDF的度数为()A.24°B.32°C.38°D.52°10.如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC的度为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°二、填空题(共15分)11.若a﹣b=5,则a2﹣b2﹣10b的值是.12.若(a﹣2)0=1,则a需要满足的条件是.13.若(mx2﹣3x)(x2﹣x﹣1)的乘积中不含x3项,则m的值是.14.如图,在Rt△ABC中,∠A=90°,∠ACB=30°,BD平分∠ABC,交AC于点D,CD=4,则点D到BC的距离是.15.如图,△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,CD与AE交于点F,若∠ABC=30°,∠ACB=15°,则∠CFE的度数为.三、解答题(满分75分)16.(1)计算:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷3a2b;(2)运用平方差公式解方程:(x+3)2﹣(x﹣3)2=36.17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如(如图),在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数.(1)根据上面的规律,写出(a+b)4的展开式;(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.18.甲、乙两人共同计算一道整式乘法题:(3x+a)(4x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为12x2﹣5x﹣2;乙由于漏抄了第二个多项式中x的系数,得到的结果为3x2+5x+2.(1)求正确的a、b的值;(2)计算这道乘法题的正确结果.19.如图1、图2和图3,A、B两点在直线l同侧,且点A、B所在直线与l不平行,在直线l上画出符合要求的点P(不写作法与理由,保留作图痕迹).(1)P A﹣PB为最大值,在图1中的直线l上画出点P1的位置;(2)P A=PB,在图2中的直线l上画出点P2的位置;(3)P A+PB为最小值,在图3中的直线l上画出点P3的位置.20.如图,AD,BC相交于点E,AD=BC,∠A=∠B=90°.(1)求证:△ACD≌△BDC;(2)若∠BCD=22°,求∠BDE的度数.21.求证:有两条边和其中一边上的中线对应相等的两个三角形全等.22.如图,在平面直角坐标系中,A(2,﹣1),B(4,2),C(1,4).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC的面积为;(3)请仅用无刻度的直尺画出∠ABC的平分线BD,保留作图痕迹.23.如图,小明将一张长方形的纸片沿着对角线AC对折,点B与点E为对应点,EC交AD 于点F.(1)图中共有对全等三角形;(2)若∠EAF为34°,求∠ACB的度数;(3)若长方形纸片的周长为18cm,猜想△DCF的周长,并证明你的结论.参考答案一、选择题(共30分)1.解:(﹣)2=,(﹣3)2=9,﹣32=﹣9,(﹣3)0=1,∵﹣9<<1<9,∴运算结果最小的是﹣32.故选:C.2.解:当∠A为顶角时,则∠B==65°;当∠B为顶角时,则∠B=180°﹣2∠A=80°;当∠A、∠B为底角时,则∠B=∠A=50°;∴∠B的度数不可能为60°,故选:B.3.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于7,所以,可以,而7cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.4.解:∵△ABC是等边三角形,∠ABC=60°,而∠ABD=12°,∴∠DBC=60°+12°=72°.∵CB=CD,∴∠BCD=180°﹣72°﹣72°=36°,∴∠DCA=60°﹣36°=24°,∵CD=CB=CA,∴∠DAC=×(180°﹣24°)=78°,∴∠BAD=78°﹣60°=18°.故选:C.5.解:分别作点P关于∠O的两边的对称点P1,P2,连接P1P2交∠O的两边于A,B,连接P A,PB,此时△P AB的周长最小.故选:D.6.解:∵a=355=(35)11,b=444=(44)11,c=533=(53)11,35=243,44=256,53=125,∴b>a>c,故选:C.7.解:∵x2﹣kx+49=x2﹣kx+72,x2﹣kx+49是完全平方式,∴﹣kx=±2•x•7,解得k=±14.故选:C.8.解:在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个,故选:C.9.解:∵AB=AC,∠A=104°,∴∠B=∠C=38°,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴∠BED=∠CDF,∠BDE=∠CFD,∴∠BED+∠BDE=∠CDF+∠CFD,∵∠BED+∠B=∠CDE=∠EDF+∠CDF,∴∠B=∠EDF=38°,故选:C.10.解:∵O为三条边的垂直平分线的交点,∴点O为△ABC的外心,∴x=2∠A,∵I为三个角的平分线的交点,∴点I是△ABC的内心,∴y=90°+A,∴y=90°+x,∴4y﹣x=360°,故选:D.二、填空题(共15分)11.解:∵a﹣b=5,即a=b+5,∴a2﹣b2﹣10b+1=(b+5)2﹣(b+5)2+25=25.故答案为:25.12.解:若(a﹣2)0=1,则a需要满足的条件是:a≠2.故答案为:a≠2.13.解:原式=mx4﹣(m+3)x3+(3﹣m)x2+3x由题意可知:m+3=0,∴m=﹣3,故答案为:﹣3.14.解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2,故答案为:2.15.解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=15°,∠BAC=∠BAE,∵∠ABC=30°,∴∠BAC=180°﹣15°﹣30°=135°,∴∠EAC=360°﹣135°﹣135°=90°,∴∠CFE=∠ACD+∠EAC=90°+15°=105°,故答案为:105°.三、解答题(满分75分)16.解:(1)原式=[a3b2﹣a2b﹣a2b+a3b2]÷3a2b=(2a3b2﹣2a2b)÷3a2b=ab﹣;(2)(x+3)2﹣(x﹣3)2=36.(x+3+x﹣3)(x+3﹣x+3)=36,∴12x=36,解得x=3.17.解:(1)根据上面的规律可知:(a+b)4=a4+4a3b+6a2b+4ab2+b4;(2)结合(1)可知:(a+b)n的展开式共有(n+1)项,系数和为2n.∵(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,∴25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=15=1.18.解:(1)∵(3x﹣a)•(4x+b)=12x2+3bx﹣4ax﹣ab=12x2+(3b﹣4a)x﹣ab,∴3b﹣4a=﹣5①,∵(3x+a)•(x+b)=3x2+3bx+ax+ab,∴3b+a=5②,由①和②组成方程组:,解得:;(2)(3x+2)•(4x+1)=12x2+11x+2.19.解:(1)如图1中,点P1即为所求作.(2)如图2中,点P2即为所求作.(3)如图3中,点P3即为所求作.20.证明:(1)∵∠A=∠B=90°,在Rt△ACD与Rt△BDC中,,∴Rt△ACD≌Rt△BDC(HL),(2)∵Rt△ACD≌Rt△BDC,∴∠ADC=∠BCD=22°,∴∠BDC=90°﹣∠BCD=90°﹣22°=68°,∴∠BDE=∠BDC﹣∠ADC=68°﹣22°=46°.21.已知:如图在△ABC和△DEF中,AB=DE,BC=EF,AN是BC上的中线,DM是EF 上的中线,且AN=DM,求证:△ABC≌△DEF.证明:∵BC=EF,AN是BC上的中线,DM是EF上的中线,∴BN=EM,在△ABN和△DEM中,,∴△ABN≌△DEM(SSS),∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).22.解:(1)如图所示,△A1B1C1即为所求;(2)由题可得,AB=BC==,∠ABC=90°,∴△ABC的面积为AB×BC=×()2=;故答案为:;(3)如图所示,BD即为所求.23.解:(1)∵四边形ABCD是矩形,∴AD∥BC,△ABC≌△CDA,∴∠DAC=∠ACB,∵△AEC是由△ABC沿着AC折叠得到的,∴△ABC≌△AEC,∠ECA=∠BCA,AE=AB,∴∠F AC=∠ACF,∴AF=CF,又∵AB=CD,∴AE=CD,∴Rt△AEF≌Rt△CDF(HL),∵△ABC≌△CDA,△ABC≌△AEC,∴△CDA≌△AEC,∴图中有4对全等三角形:△ABC≌△CDA,△ABC≌△AEC,△CDA≌△AEC,△AEF ≌△CDF.故答案为:4;(2)∵长方形的纸片沿着对角线AC对折,∴∠ACB=∠ACE,∠B=∠AEF=90°,∵∠EAF=34°,∴∠AFE=90°﹣∠EAF=56°,∵∠F AC=∠FCA,∴∠ACF=∠AFE=28°,∴∠ACB=28°;(3)△DCF的周长为9cm.证明:∵长方形纸片的周长为18cm,∴AD+DC=18=9(cm),∵AF=CF,∴△DCF的周长=DF+CF+DC=AF+DF+DC=AD+DC=9(cm).。
苏州高新区第一初级中学校2024—2025学年上学期八年级数学月考试卷 (解析版)
初二数学练习一、选择题1. 下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对选项进行分析即可.【详解】解:A,B,C选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故不符合题意;D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,解本题的关键在寻找图形的对称轴,看图形两部分折叠后是否能够互相重合.2. 在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在的他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC()A. 三边中线的交点B. 三条角平分线交点C. 三边中垂线的交点D. 三边上高交点【答案】C【解析】【分析】本题考查了与三角形相关的线段以及线段的垂直平分线.当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质,即可求解.【详解】解:根据题意得:当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的到线段两端的距离相等,的三边中垂线的交点,∴凳子应放的最适当的位置是在ABC故选:C.3. 已知等腰三角形的一个角为80°,则该三角形的底角度数为()A. 80°B. 50°或80°C. 50°或30°D. 30°【答案】B【解析】【分析】分80°的角为顶角,80°的角为底角,利用三角形内角和定理和等腰三角形的性质求解即可.【详解】解:当80°的角为顶角时,则底角度数为18080502°−°=°,当80°的角为底角时,则底角度数为80°;综上所述,该三角形的底角度数为50°或80°,故选B.【点睛】本题主要考查了等边对等角,三角形内角和定理,利用分类讨论的思想求解是解题的关键.4. 如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A. 20°B. 40°C. 50°D. 70°【答案】C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.5. 如图,△ABC中,AC=8,点D,E分别在BC,AC上,F是BD的中点.若AB=AD,EF=EC,则EF 的长是()A. 3B. 4C. 5D. 6【答案】B【解析】 【分析】连接AF ,得到∠AFC =90°,再证AE=EF ,可得EF=AE=EC ,即可求出EF 的长.【详解】解:如图:连接AF ,∵AB=AD, F 是BD 的中点,∴AF ⊥BD,∵EF=EC ,∴∠EFC =∠C ,∵在Rt △AFC 中,∠AFC =90°,∴∠AFE +∠EFC =90°,∠F AC +∠C ∴∠AFE =∠F AC ,∴AE=EF ,∵AC =8,∴EF=AE=EC=12AC=4. 故选B .【点睛】本题主要考查等腰三角形的判定和性质,直角三角形的性质.解题的关键是正确的添加辅助线. 6. 已知:如图ABC 中,=60B ∠°,80C ∠=°,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分ACD 或BCD △为等腰三角形两种情况画出图形即可判断.【详解】解:如图:当BC BD =时,BCD △是等腰三角形;∵=60CBA ∠°,∴BCD △是等边三角形,∴BC BD CD ==;当1BC BD =时,BCD △是等腰三角形;当23AC AD AD ==,4CA CD =,当55CD D A =时,ACD 都是等腰三角形; 综上,符合条件的点D 的个数有6个.故选:B .【点睛】本题考查等腰三角形存在问题,如果题中没有说明等腰三角形的腰或者底分别是哪条线段,都要进行分类讨论,让三条线段分别两两相等,得出三种情况,再根据题意看有没有需要排除的情况,然后再一一分析符合条件的图形.7. 如图,在ABC 中,30BAD ∠=°,将ABD △沿AD 折叠至ADB ′ ,2ACB α∠=,连接B C ′,B C ′平分ACB ∠,则AB D ′∠的度数是( )A. 602α°+ B. 60α°+ C. 902α°− D. 90α°−【答案】D【解析】【分析】此题考查了全等三角形判定与性质,角平分线的性质,等边三角形的的判定与性质,叠的性质.连接BB ′,过B ′作B E BC ′⊥于点E ,B F AC ′⊥于点F ,由折叠性质可得AB AB ′=,的30BAD B AD ′∠=∠=°,BD B D ′=,从而证明BAB ′ 是等边三角形,证明()HL AFB BEB ′′ ≌,可证()AAS ACB BCB ′′ ≌,最后根据全等三角形的性质即可求解.【详解】如图,连接BB ′,过B ′作B E BC ′⊥于点E ,B F AC ′⊥于点F ,∵B C ′平分ACB ∠,∴B E B F ′′=,由折叠性质可知AB AB ′=,30BAD B AD ′∠=∠=°,BD B D ′=,∴60BAB ′∠=°,∴BAB ′ 是等边三角形,∴BB AB ,60BB A ′∠=°,∴()HL AFB BEB ′′ ≌,∴B AC B BC ′′∠=∠,∵B C ′平分ACB ∠, ∴122BCB ACB αα′′∠=∠=×=, 又∵BB AB ,∴()AAS ACB BCB ′′ ≌, ∴3603606015022AB B AB C BB C ′°−∠°−°′′∠=∠===°, ∴18030B AC B BC AB C ACB α′′′′∠=∠=°−∠−∠=°−,∴30DBB DB B B AC α′∠′=∠==′∠°−,∴603090AB D AB B BB D αα′′′∠=∠+∠=°+°−=°−,故选:D .二、填空题8. 如图,在锐角△ABC 中,BC =4,∠ABC =30°,∠ABD =15°,直线BD 交边AC 于点D ,点P 、Q 分别在线段BD 、BC 上运动,则PQ +PC 的最小值是__________.【答案】2【解析】【分析】作点Q 关于BD 的对称点M ,连接CM ,当C M A B ⊥时.此时PQ +PC 取得最小值.【详解】解:∵∠ABC =30°,∠ABD =15°,∴BD 是∠ABC 的平分线,作点Q 关于BD 的对称点M ,连接PM 、CM ,由对称的性质可知,PQ PM =,15QBP MBP ∠=∠=° ∴PQ PC PM PC CM +=+≥,∵15QBP MBP ∠=∠=°, ∴30QBP MBP∠+∠=°, ∵30ABC ∠=°,∴M 在AB 上,由垂线段最短可知:当C M A B ⊥时.CM 取得最小值,∴此时PQ +PC 也取得最小值.∵C M A B ⊥,∴90BMC ∠=°,∵30ABC ∠=°, ∴122CM BC ==,∴PQ +PC 的最小值为:2.故答案为:2.【点睛】本题考查了轴对称-最短路径问题、30°直角三角形的性质等知识,解题的关键是学会利用轴对称解决最短路径问题.9. 等腰三角形的两边长分别为3和6,则这个三角形的周长为___________.【答案】15【解析】【分析】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论并利用三角形三边关系判断是否能组成三角形.分3是腰长与底边长两种情况讨论求解.【详解】解:①3是腰长时,三角形的三边分别为3、3、6,336+= ,∴不能组成三角形,②3是底边时,三角形的三边分别为6、6、3,能组成三角形,周长66315=++=.综上所述,这个等腰三角形的周长为15.故答案为:15.10. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】3【解析】【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,的选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为3.考点:概率公式;轴对称图形.11. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.【答案】108°##108度【解析】【分析】本题考查了等边对等角、三角形外角定义及性质、三角形内角和定理,由等边对等角得出ABC ACB BAD ∠=∠=∠,结合三角形外角的定义及性质得出2CAD CDA ABD ∠=∠=∠,再由三角形内角和定理计算得出36ABC ACB BAD ∠=∠=∠=°,从而推出272DAC BAD ∠=∠=°,即可得解.【详解】解:∵AD BD =,∴ABD BAD ∠=∠,∵AB AC CD ==,∴A ABC CB =∠∠,CAD CDA ∠=∠,∴ABC ACB BAD ∠=∠=∠,∵2CDA BAD ABD ABD ∠=∠+∠=∠,∴2CAD CDA ABD ∠=∠=∠,∵225180CAD CDA ACD ABD ABD ACD ABD ∠+∠+∠∠+∠+∠∠°,∴36ABC ACB BAD ∠=∠=∠=°,∴272DAC BAD ∠=∠=°,∴108BAC DAC BAD ∠=∠+∠=°,故答案为:108°.12. 如图,在ABC 中,AB 的垂直平分线分别交AB 和BC 于点D 和点E ,若ABC 的周长30cm,的AEC △的周长21cm ,则AB 的长为_______cm .【答案】9【解析】【分析】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段垂直平分线的性质得到EA EB =,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 的垂直平分线,∴EA EB =,∵ABC 的周长30cm ,∴30cm AB AC BC ++=,∵AEC △的周长21cm ,∴21cm AC CE EA AC CE EB AC BC ++=++=+=,∴()30219cm AB =−=,故答案为:9.13. 如图,在ABC 中,BO 平分ABC ∠,OD BC ⊥于点D ,连接OA ,若3OD =,12AB =,则AOB 的面积是 _____.【答案】18【解析】【分析】本题主要考查了角平分线的性质,过点O 作OE AB ⊥于点E ,根据BO 平分ABC ∠,OD BC ⊥,得到3OEOD ==,根据面积公式求出三角形的面积,熟练掌握角平分线上的点到角的两边距离相等是解题的关键.【详解】解:如图,过点O 作OE AB ⊥于点E ,∵BO 平分ABC ∠,OD BC ⊥,∴3OE OD ==,∴AOB 的面积111231822AB OE =×=××=, 故答案为:18.14. 如图,在ABC 中,AB AC =,DE 垂直平分AB .若BE AC ⊥,AFBC ⊥,垂足分别为点E ,F ,连接EF ,则∠=EFC ________.【答案】45°##45度【解析】【分析】本题考查了线段垂直平分线性质,等腰三角形的性质与判定,根据三线合一证明,直角三角形斜边中线性质,运用等腰三角形三线合一证明是解题关键.根据题意可证ABE 是等腰直角三角形,45BAC ∠=°,根据等腰三角形三线合一可得22.5CAF ∠=°,根据同角的余角相等可得22.5CBE ∠=°,根据直角三角形斜边中线性质可证BFE △是等腰三角形,进而求出其外角EFC ∠的度数.【详解】解:∵DE 垂直平分AB ,BE AC ⊥,∴BE AE =,ABE 是等腰直角三角形,∴45BAE ABE ∠=∠=°.∵AB AC =,AF BC ⊥,∴22.5CAF ∠=°,BF CF =,∵在直角AFC 和直角BEC 中,CAF ∠和CBE ∠都和C ∠互余,∴22.5CBE CAF ∠=∠=°,∵12BF CF BC ==, ∴点F 是BC 中点,EF 是直角BEC 的中线, ∴12EF BC =, ∴BF EF =,∴22.5BEF CBE ∠=∠=°,∴22.522.545EFC CBE BEF ∠=∠+∠=°+°=°.故答案为:45°.15. 如图,ABC 中40ABC ∠=°,动点D 在直线BC 上,当ABD △为等腰三角形,ADB =∠__________.【答案】20°或40°或70°或100°【解析】【分析】画出图形,分四种情况分别求解.【详解】解:若AB AD =,则40ADB ABC ∠=∠=°;若AD BD =,则40DAB DBA ∠=∠=°,∴180240100ADB ∠=°−×°=°;若AB BD =,且三角形是锐角三角形,则()1180702ADB BAD ABC ∠=∠=°−∠=°;若AB BD =,且三角形是钝角三角形, 则1202BAD BDA ABC ∠=∠=∠=°.综上:ADB ∠的度数为20°或40°或70°或100°,故答案为:20°或40°或70°或100°.【点睛】本题考查了等腰三角形的性质,外角的性质,解题的关键是找齐所有情况,分类讨论. 16. 如图,在ABC 中,60ABC ∠=°,AAAA 平分BAC ∠交BC 于点D ,CCCC 平分ACB ∠交AAAA 于点E ,AD CE 、交于点F .则下列说法正确的有______.①120AFC ∠=°;②ABD S = ;③若2AB AE =,则CE AB ⊥;④CD AE AC +=.【答案】①③④【解析】【分析】本题考查了三角形全等的性质和判定,角平分线的定义,三角形的中线,等角对等边,①根据三角形内角和定理可得可得120ACB CAB ∠+∠=°,然后根据AAAA 平分BAC ∠,CCCC 平分ACB ∠,可得12FCA ACB ∠=∠,12FAC CAB ∠=∠,再根据三角形内角和定理即可进行判断;②当AAAA 是ABC 的中线时, ABD ADC S S = ,进而可以进行判断;③延长CCCC 至G ,使GE CE =,连接BG ,根据2AB AE =,证明()SAS ACE BGE ≌得ACE G ∠=∠,然后根据等角对等边进而可以进行判断;④作AFC ∠的平分线交AC 于点H ,可得60AFH CFH AFE ∠=∠=∠=°,证明()ASA AEF AHF ≌,()ASA CDF CHF ≌,可得AE AH =,CD CH =进而可以判断;熟练掌握知识点的应用是解题的关键.【详解】①在ABC 中, 60ABC ∠=°,∴120ACB CAB ∠+∠=°,∵AAAA 平分BAC ∠,CCCC 平分ACB ∠, ∴12FCA ACB ∠=∠,12FAC CAB ∠=∠, ∴()()11801801202AFC FCA FAC ACB CAB ∠=−∠+∠=−∠+∠=° ,故①正确; ②当AAAA 是ABC 的中线时,ABD ADC S S = ,而AAAA 平分BAC ∠, 故②错误;③如图,延长CCCC 至G ,使GE CE =,连接BG ,∵2AB AE =,∴AE BE =,∵AEC BEG ∠=∠,∴()SAS ACE BGE ≌,∴ACE G ∠=∠,CE GE =,∵CCCC 为角平分线,∴ACE BCE ∠=∠,∴BCE G ∠=∠,∴BC BG =,∵CE GE =,∴BE CE ⊥,故③正确;④如图,作ABC ∠的平分线交AC 于点H ,由①得120AFC ∠=°,∴60AFH CFH ∠=∠=°,∵18060AFE AFC ∠=°−∠=°,∴60AFH CFH AFE ∠=∠=∠=°,∴EAF HAF ∠=∠,DCF HCF ∠=∠, ∴()ASA AEF AHF ≌,()ASA CDF CHF ≌,∴AE AH =,CD CH =,∴CD AE CH AH AC +=+=,故④正确;综上:①③④正确,故答案为:①③④.三、解答题17. 下列四个图都是由16个相同的小正方形拼成的正方形网格,其中的两个小正方形被涂黑.请在各图中再将两个空白的小正方形涂黑使各图中涂黑部分组成的图形成为轴对称图形(另两个被涂黑的小正方形的位置必须全不相同)【答案】见解析【解析】【分析】本题主要考查了轴对称图形的作法,解题的关键是熟练掌握轴对称图形的性质,沿一条直线对折直线两旁部分完全重合.先找到合适的对称轴,然后再涂黑两个小正方形即可.【详解】解∶如图,18. 如图,在每个小正方形的边长为1的网格中,ABC 的三个顶点均在格点上,直线EF 经过网格格点.请完成下列各题:(1)画出ABC 关于直线EF 的对称的A B C ′′′ ;(2)ABC 的面积等于 .(3)利用网格,在直线EF 上画出点P ,使PA PB =.同时,在直线EF 上画出点Q ,使QA QB +的值最小.【答案】(1)画图见解析(2)14(3)画图见解析【解析】【分析】本题考查了两点之间线段最短,运用网格求三角形面积,垂直平分线的性质,轴对称作图,正确掌握相关性质内容是解题的关键.(1)分别作出点A B C ′′′,,,再依次连接,即可作答. (2)运用割补法求三角形面积,即可作答.(3)结合网格特征,作出线段AB 的垂直平分线,与直线EF 的交点,即为点P ,结合(1),连接A B ′,与直线EF 的交点,即为点Q ,即可作答.【小问1详解】解:A B C ′′′ 如图所示:【小问2详解】 解:1114824262814222ABC S =×−××−××−××= ; 【小问3详解】解:画AB 的垂直平分线交直线EF 于点P ,则PA PB =,如图所示:连接AB ′交直线EF 上于点Q ,则AQ BQ AQ B Q AB ′′+=+=,则QA QB +的值最小,如图所示:19. 已知:如图,ABC 中,D 是AB 中点,DE AC ⊥垂足为E ,DF BC ⊥垂足为F ,且ED FD =,求证:ABC 是等腰三角形.【答案】见解析【解析】【分析】本题考查的知识点是全等三角形的判定和性质、等腰三角形的判定,解题关键是熟练掌握全等三角形的判定和性质.由点D 是AB 中点,可得AD BD =,再证明Rt Rt ADE BDF ≌ 可得A B ∠=∠,然后根据等角对等边可得即可证明结论.【详解】证明:∵D 是AB 中点,∴AD BD =,,DE AC DF BC ⊥⊥ ,在Rt ADE 和Rt BDF △中,ED FD AD BD= = , ∴()Rt Rt ADE BDF HL ≌,∴A B ∠=∠,∴AC BC =,即ABC 是等腰三角形.20. 已知:如图,B ,D ,E ,C 在同一直线上,AB AC AD AE ==,.求证:BD CE =.【答案】见解析【解析】【分析】本题主要考查了等腰三角形三线合一,如图所示,过点A 作AFBC ⊥于F ,由三线合一定理得到BF CF =,DF EF =,再由线段的和差关系即可证明BD CE =.【详解】证明:如图所示,过点A 作AFBC ⊥于F ,∵AB AC =(已知), ∴BF CF =,又∵AD AE =(已知), ∴DF EF =,∴BF DF CF EF −=−,即BD CE =(等式的性质).21. 如图,90B C ∠=∠=°,AE 平分BAD ∠,DE 平分CDA ∠,且AE 与DE 交BC 于E .求证:(1)BE CE =;(2)AE DE ⊥.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查角平分线的性质,全等三角形的判定和性质:(1)过点E 作EF AD ⊥,根据角平分线的性质,即可得出结论;(2)分别证明DCE DFE ≌, ≌ABE AFE ,得到,CED FED AEB AEF ∠=∠∠=∠,根据平角的定义,得到90AED ∠=°,即可.【小问1详解】解:过点E 作EF AD ⊥,∵AE 平分BAD ∠,DE 平分CDA ∠,90B C ∠=∠=°, ∴CE EF =,BE EF =,∴BE CE =;【小问2详解】证明:在Rt ECD △和Rt EFD 中,DE DE EF CE = =, ∴Rt Rt ECD EFD ≌,∴CED FED ∠=∠, 同理:Rt Rt EBA EFA ≌,∴AEB AEF ∠=∠,∵180CED FED AEB AEF ∠+∠+∠+∠=°,∴()2180FED AEF ∠+∠=°,∴180FED AEF ∠+∠=°,即:90AED ∠=°,∴AE DE ⊥22. 如图,在ABC 中,90BAC ∠>°,AB 的垂直平分线分别交AB ,BC 于点E ,F ,AC 的垂直平分线分别交AC ,BC 于点M ,N ,直线EF ,MN 交于点P .(1)求证:点P 在线段BC 的垂直平分线上;(2)已知56FAN ∠=°,求FPN ∠的度数.【答案】(1)证明见解析;(2)62FPN ∠=°.【解析】【分析】(1)连接BP ,AP ,PB PA PC ==,从而证明结论即可;(2)先根据相等垂直平分线的性质证明FA FB =,NA NC =,90AEP AMP BEF CMN ∠=∠=∠=∠=°,再设B x ∠=,C y ∠=,然后根据三角形内角和定理,求出x y +,再根据直角三角形的性质求出BFE ∠和CNM ∠,再根据对顶角的性质求出PFN ∠,PNF ∠,最后利用三角形内角和定理求出答案即可.本题主要考查了线段的垂直平分线的性质,三角形内角和定理,直角三角形的性性质,对顶角相等,解题关键是熟练掌握知识点的应用.【小问1详解】证明:如图所示, 连接BP ,AP ,PC ,∵PE 垂直平分AB ,PM 垂直平分AC , ∴PA PB =,PA PC =,∴PB PC =,∴点P 在线段BC 的垂直平分线上;【小问2详解】解:∵PE 垂直平分AB ,PM 垂直平分AC , ∴FA FB =,NA NC =,90AEP AMP BEF CMN ∠=∠=∠=∠=°, ∴90B BFE C MNC ∠+∠=∠+∠=°,设B x ∠=,C y ∠=, ∴B BAF x ∠=∠=,C CAN y ∠=∠=,90BFE x ∠=°−, 90MNCy ∠=°−, ∴90PFN BFE x ∠=∠=°−,90PNF MNC y ∠=∠=°−, ∵180B C CAB ∠+∠+∠=°,56FAN =°,∴2256180x y ++°=°,即62x y +=°, ∵180PFN PNF FPN ∠+∠+∠=°,∴9090180x y FPN°−+°−+∠=°, ∴()18018062FPNx y ∠=°−°++=°. 23. 如图,在ABC 中,BD AC ⊥于点D ,CE AB ⊥于点E ,F 为BC 的中点,连接EF ,DF .(1)求证:EF DF =;(2)若60A ∠=°,6BC =.求DEF 的周长.【答案】(1)证明见解析.(2)9.【解析】【分析】本题考查了等边三角形的判定与性质、直角三角形斜边上的中线、等腰三角形的性质,利用等腰三角形的性质和三角形内角和定理求出是解题关键.(1)利用直角三角形斜边中线的性质即可解决问题.(2)由(1)可得EF DF BF CF ===,再可推导出60EFD ∠=°,再证明DEF 为等边三角形即可求解.【小问1详解】证明:∵BD AC ⊥于点D ,CE AB ⊥于点E ,∴BEC 与BDC 都为直角三角形,又∵F 为BC 的中点, ∴12EF BC =,12DF BC =, ∴EF DF =.【小问2详解】由(1)可知12EFDF BC ==, ∵F 为BC 的中点, ∴12BF FC BC ==, ∴3EF DF BF CF ====,∴FBE BEF ∠=∠,FCD CDF ∠=∠, ∵60A ∠=°,∴120ABF ACB ∠+∠=°,∴1801802BFE ABF BEF ABF ∠=°−∠−∠=°−∠,1801802CFD ACB CDF ACB ∠=°−∠−∠=°−∠,∴()36023602120120BFE CFD ABF ACB ∠+∠=°−∠+∠=°−×°=°, ∴18060EFD BFE CFD ∠=°−∠−∠=°,又∵EF FD =,∴EFD 为等边三角形,∴3EF FD ED ===,∴DEF 的周长为9EF FD ED ++=.24. 如图,ABC 中,点D 在边BC 延长线上,108ACB ∠=°,ABC ∠的平分线交AD 于点E ,过点E 作EH BD ⊥,垂足为H ,且54CEH ∠=°.(1)求ACE ∠的度数;(2)请判断AE 是否平分CAF ∠,并说明理由;(3)若10AC CD +=,6AB =,且15ACD S = ,求ABE 的面积.【答案】(1)36ACE ∠=°(2)AE 平分CAF ∠,理由见解析(3)ABE 的面积为9【解析】【分析】本题主要考查角平分线的判定与性质,三角形的内角和定理,三角形的面积.(1)由平角的定义可求解ACD ∠的度数,再利用三角形的内角和定理可求解36ECH ∠=°,进而可求解; (2)过E 点分别作EM BF ⊥于M ,EN AC ⊥与N ,根据角平分线的性质可证得EM EN =,进而可证明结论;(3)利用三角形的面积公式可求得EM 的长,再利用三角形的面积公式计算可求解.【小问1详解】解:108ACB ∠=° ,18010872ACD ∴∠=°−°=°,EH BD ⊥ ,90CHE ∴∠=°,54CEH ∠=°, 905436ECH ∴∠=°−°=°,723636ACE ∴∠=°−°=°;【小问2详解】解:AE 平分CAF ∠,理由如下:过E 点分别作EM BF ⊥于M ,EN AC ⊥与N ,BE 平分ABC ∠,EM EH ∴=,36ACE ECH ∠=∠=° ,CE ∴平分ACD ∠,EN EH ∴=,EM EN ∴=,AE ∴平分CAF ∠;【小问3详解】解:10AC CD += ,15ACD S = ,EMEN EH ==, 111()15222ACD ACE CED S S S AC EN CD EH AC CD EM ∴=+=⋅+⋅=+⋅= , 即110152EM ×⋅=, 解得3EM =,6AB = ,1163922ABE S AB EM ∴=⋅=××= . 25. 如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点(与A ,C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),连接PQ 交AB 于D .(1)设AP 的长为x ,则PC = ,QC = ;(2)当∠BQD =30°时,求AP 的长;(3)过点Q 作QF ⊥AB 交AB 延长线于点F ,过点P 作PE ⊥AB 交AB 延长线于点E ,则EP ,QF 有怎样的关系?说明理由;(4)在运动过程中,线段ED 的长是否发生变化?如果不变,求出线段ED 的长【答案】(1)6x −,6x + ;(2)2;(3)EP FQ =,//QF PE ;(4)不变,3ED =.【解析】【分析】(1)由线段和差关系即可得出答案;(2)由直角三角形中30°角所对的直角边等于斜边的一半可列方程()626x x +=−解方程即可得出答案;(3)作QF AB ⊥的延长线于点F ,利用AAS 证明AEP BFQ ≌,即可得出答案;(4)作QF AB ⊥的延长线于点F ,连接,EQ PF ,由全等三角形的性质可证AB EF =,由题意可证四边形PEQF 是平行四边形,可得12DEDF EF ==,即可得出答案. 【详解】解:(1)∵6AP x AC BC ===,又P 和Q 速度相同∴AP QB = ∴66PC x AQ x =−=+, 故答案为:6x −,6x + .(2)∵60ACB ∠=°,30BQD ∠=°∴90QPC ∠=° ∴2QC PC =∴()626x x +=−解得:xx =2∴2AP = .(3)EP FQ =,//QF PE理由如下:作QF AB ⊥的延长线于点F如图,∵PE AB QF AB ⊥⊥,∴//QF PE∴AEP QFB ∠=∠ ∵P 和Q 速度相同∴AP BQ =∵ABC 是等边三角形∴60A ABC FBQ ∠=∠=∠=° 又ABC QBF ∠=∠ ∴A QBF ∠=∠ 在AEP 和BFQ 中AP BQ AEP QFB A QBF = ∠=∠ ∠=∠()AEP BFQ AAS ≌∴QF EP =.(4)AACC 的长度不变作QF AB ⊥的延长线于点F ,连接,EQ PF∵AEP BFQ ≌∴AE BF =∴BE AE BF BE +=+∴6AB EF ==∵PE EP QF AB ⊥⊥,∴//QF PE 且QF PE =∴四边形PEQF 是平行四边形 ∴132DE DF EF ===. 【点睛】本题考查的是等边三角形的性质、全等三角形的判定定理及平行四边形的判定与性质,熟练掌握全等三角形的判定是解决本题的关键.26. 小普同学在课外阅读时,读到了三角形内有一个特殊点“布洛卡点”,关于“布洛卡点”有很多重要的结论.小普同学对“布洛卡点”也很感兴趣,决定利用学过的知识和方法研究“布洛卡点”在一些特殊三角形中的性质.让我们尝试与小普同学一起来研究,完成以下问题的解答或有关的填空.【阅读定义】如图1,ABC 内有一点P ,满足PAB PBC PCA ∠=∠=∠,那么点P 称为ABC 的“布洛卡点”,其中∠PAB 、PBC ∠、PCA ∠被称为“布洛卡角”.如图2,当QAC QCB QBA ∠=∠=∠时,点Q 也是ABC 的“布洛卡点”.一般情况下,任意三角形会有两个“布洛卡点”.【解决问题】(说明:说理过程可以不写理由)问题1:等边三角形的“布洛卡点”有 个,“布洛卡角”的度数为 度;问题2:在等腰三角形ABC 中,已知AB AC =,点M 是ABC 的一个“布洛卡点”,MAC ∠是“布洛卡角”.(1)AMB ∠与ABC 的底角有怎样的数量关系?请在图3中,画出必要的点和线段,完成示意图后进行说理.(2)当90BAC ∠=°(如图4所示),5BM =时,求点C 到直线AM 的距离. 【答案】问题1:1,30;问题2:(1)2AMB ABC ∠=∠,(2)52, 【解析】【分析】问题1:根据等边三角形的性质和“布洛卡点”的定义即可知其“布洛卡点”个数和角度; 问题2:(1)根据等腰三角形的性质可得ABC ACB ∠=∠,结合题意可知MAC ABM ∠=∠,则有BAC ABM BAM ∠=∠+∠,利用三角形内角和定理可得ABC ACB AMB ∠+∠=∠,即可得到2AMB ABC ∠=∠; (2)过C 点作CD AM ⊥与D ,根据可得90ADC ∠=°,且45ABC ACB ∠=∠=°,由题意得MAC MCB ABM ∠=∠=∠,求得180AMB ABM BAM ∠=°−∠−∠90=°,180BMC MBC MCB ∠=°−∠−∠135=°,则有ADC BMA ∠=∠和45CMD MCD ∠=∠=°,MD CD =,继而证明ADC BMA ≌,则有AD BM =和CD AM =,即可得到2BM CD =,可得点C 到直线AM 的距离.【详解】解:问题1:由题意知三角形中有两个“布洛卡点”,∵等边三角形每个角为60°,∴两个“布洛卡点”重合为一个,且每个角为30°,故答案为:1,30.问题2:(1)2AMB ABC ∠=∠,理由如下:∵AB AC =,∴ABC ACB ∠=∠,∵M 是ABC 的“布洛卡点”,MAC ∠是“布洛卡角”,∴MAC ABM ∠=∠,∴MAC BAM ABM BAM ∠+∠=∠+∠,即BAC ABM BAM ∠=∠+∠,∵180ABC ACB BAC ∠°−∠−∠=∠,180ABM BAM AMB ∠+∠=°−∠,∴ABC ACB AMB ∠+∠=∠,∵ABC ACB ∠=∠,∴2AMB ABC ∠=∠,(2)过C 点作CD AM ⊥与D ,如图,则90ADC ∠=°,∵90BAC AB AC ∠=°=,,∴45ABC ACB ∠=∠=°,∵MAC MCB ABM ∠=∠=∠,∴180AMB ABM BAM ∠=°−∠−∠180MAC BAM =°−∠−∠180BAC =°−∠90=°,180BMC MBC MCB ∠=°−∠−∠180MBC ABM =°−∠−180ABC =°−∠135=°,∴45ADC BMA ∠=∠=°,45CMD MCD ∠=∠=°,∴MD CD =,在ADC △和BMA △中,ADC BMA CAD ABM AC BA∠=∠ ∠=∠ = , ∴()AAS ADC BMA ≌,∴AD BM =,CD AM =,∴2AD CD =,∴2BM CD =,∵5BM =,∴52CD =. 【点睛】本题主要考查新定义下的三角形角度理解,涉及等边三角形的性质、等腰三角形的性质、全等三角形的判定和性质和三角形内角的应用,解得的关键是对新定义的理解,以及角度之间的转化.27. 在四边形ABDE 中,C 是BD 边中点.(1)如图1,若AC 平分BAE ∠,90ACE ∠=°,则线段AE AB DE ,,满足数量关系是 ; (2)如图2,AC 平分BAE ∠,EC 平分AED ∠,若120ACE ∠=°,则线段AB ,BD ,DE ,AE 之间存在怎样的数量关系?写出结论并证明;(3)如图3,8BC =,3AB =,7DE =,若120ACE ∠=°,则线段AE 长度的最大值是 .【答案】(1)AE AB DE =+(2)12AE AB DE BD =++,证明见解析 (3)18【解析】【分析】(1)在AE 上取一点F AF AB =,即可以得出ACB ACF ≌,就可以得出BC FC =,ACB ACF ∠=∠,就可以得出CEF CED △≌△.就可以得出结论;(2)在AE 上取点F ,使AF AB =,连接CF ,在AE 上取点G ,使EG ED =,连接CG .可以求得CF CG =,CFG △是等边三角形,就有12FG CG BD ==,进而得出结论; (3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG .同(2)可得CFG △是等边三角形,则8FG FC CG BC ====.当A ,F ,G ,E 共线时,AE 有最大值AF FG GE =++,即可求解.【小问1详解】解:在AE 上取一点F ,使AF AB =,连接CF .如图(1),∵AC 平分BAE ∠,的∴BAC FAC ∠=∠. 在ACB △和ACF △中, AB AF BAC FAC AC AC = ∠=∠ =, ∴()SAS ACB ACF ≌, ∴BC FC =,ACB ACF ∠=∠. ∵C 是BD 边的中点. ∴BC CD =, ∴CF CD =. ∵90ACE ∠=°, ∴90ACB DCE ∠+∠=°,90ACF ECF ∠+∠=°, ∴ECF ECD ∠=∠. 在CEF △和CED △中, CF CD ECF ECD CE CE = ∠=∠ =, ∴()SAS CEF CED ≌, ∴EF ED =. ∵AE AF EF =+, ∴AE AB DE =+; 故答案为:AE AB DE =+.【小问2详解】 解:结论:12AE AB DE BD =++. 证明:在AE 上取一点F ,使AF AB =,连接CF ,在AE 上取点G ,使EG ED =,连接CG .如图(2),∵C 是BD 边的中点, ∴12CB CD BD ==. ∵AC 平分BAE ∠,∴BAC FAC ∠=∠.在ACB △和ACF △中,AB AF BAC FAC AC AC = ∠=∠ =, ∴()SAS ACB ACF ≌,∴CF CB =,ACB ACF ∠=∠.同理可证:CD CG =,DCE GCE ∠=∠.∵CB CD =,∴CG CF =,∵120ACE ∠=°,∴18012060BCA DCE ∠+∠=°−°=°.∴60FCA GCE ∠+∠=°.∴60FCG ∠=°,∴FGC △是等边三角形. ∴12FG FC CG BD ===, ∵AE AF EG FG =++, ∴12AE AB DE BD =++. 【小问3详解】解:将ABC 沿AC 翻折得AFC ,将ECD 沿EC 翻折得ECG ,连接FG ,如图3,由翻折可得3AF AB ==,7GEED ==,8FC BC ==,CG CD =,BAC FAC ∠=∠,DEC GEC =∠∠,∵C 是BD 边的中点,∴8CD CB ==,∴8CG CD ==∵120ACE ∠=°,由(2)可得FGC △等边三角形,∴8FG FC BC ===.∵AE AF FG GE ≤++当A ,F ,G ,E 共线时,AE 有最大值38718AF FG GE =++=++=.故答案为:18.【点睛】本题考查了角平分线的定义,全等三角形的判定及性质,等边三角形的判定与性质,折叠的性质,是。
广东佛山南海外国语学校2023-2024学年八年级上学期月考数学试题(解析版)
2023-2024学年第一学期八年级第二阶段数学学科核心素养综合评价一、选择题(本大题共10小题,每小题3分,共30分)1. 已知点M 的坐标为(23)−,,则点M 在哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.【详解】解:点M 的坐标为(23)−,,点M 的横坐标为正数,纵坐标为负数,所以点M 在第四象限. 故选:D .【点睛】此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.2. 下列各数中属于无理数的是( ) A25B. C. 0D.【答案】D 【解析】【分析】根据无理数的定义“无理数,也称为无限不循环小数,不能写作两整数之比”,即可求解.常见的无理数有:开方开不尽的数、π等. 【详解】解:A ,25是分数,属于有理数,不合题意; B,3=−,属于有理数,不合题意; C ,0是有理数,不合题意;D= 故选D .3. 水是生命之源,为了留导节约用水,随机抽取某小区7户家庭上个月家里的用水量情况(单位:吨)数据为:7,8,6,8,9,9,9.这组数据的众数是( ) A. 8 B. 6C. 9D. 7【答案】C.【解析】【分析】根据众数的定义求解可得.【详解】解:这组数据中9出现了3次,出现的次数最多, 所以众数为9, 故选:C .【点睛】此题考查了众数,解题关键在于掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4. 若点1(3,)A y −,2(1,)B y 都在直线62y x =−+上,则1y 与2y 的大小关系是( ) A. 12y y < B. 12y y =C. 12y y >D. 无法比较大小【答案】C 【解析】【分析】本题主要考查了一次函数的增减性,熟知对于一次函数(y kx b k =+为常数,0)k ≠,当0k >时,y 随x 增大而增大;当0k <时,y 随x 增大而减小是解题的关键.根据一次函数的增减性进行求解即可.【详解】解:∵一次函数解析式为62y x =−+,60k =−<,∴y 随x 增大而减小, ∵31−<, ∴12y y >, 故选:C .5. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185 180 方差 3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A. 甲 B. 乙C. 丙D. 丁【答案】A 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.详解】∵x 甲=x 丙>x 乙=x 丁, ∴从甲和丙中选择一人参加比赛, ∵2S 甲=2S 乙<2S 丙<2S 丁, ∴选择甲参赛, 故选A .【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.6. 下列各组数中,能作为直角三角形三边长的是() A. 2,3,4B. C. 4,6,8D. 5,12,15【答案】B 【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、222234,+≠三条线段不能组成直角三角形,故A 选项错误; B、221,+三条线段能组成直角三角形,故B 选项正确;C 、222468,+≠三条线段不能组成直角三角形,故C 选项错误;D 、22251215,+≠三条线段不能组成直角三角形,故D 选项错误; 故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算. 7. 下列计算正确的是( )A.B.C. D.3=−【答案】A 【解析】【分析】本题考查二次根式混合运算,涉及二次根式性质化简、同类二次根式、二次根式加减乘法运算等知识,熟记二次根式性质及相关运算法则逐项判断是解决问题的关键. 【详解】解:A、根据合并二次根式运算法则,()21=−=【BC 、根据二次根式乘法运算法则,233515=×=×=≠,该选项错误,不符合题意;D 33=−=,该选项错误,不符合题意;故选:A .8. 若点A (a ,3)与B (2,b )关于x 轴对称,则点M (a ,b )的坐标为( ) A. (﹣2,3) B. (2,3)C. (2,﹣3)D. (﹣2,﹣3)【答案】C 【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”求出a 、b 的值,从而得到点M 的坐标,再根据各象限内点的坐标特征解答.【详解】解:∵点A (a ,3)与B (2,b )关于x 轴对称, ∴a =2,b =﹣3,∴点M 坐标为(2,﹣3). 故选:C .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.9. 如图,在网格中,每个小正方形的边长均为1.点A 、B ,C 都在格点上,若BD 是 ABC 的高,则BD 的长为( )A.B.C.D.【答案】C 【解析】【分析】根据题意和题目中的数据,可以计算出ABC 的面积和AC 的长,然后即可计算出BD 的长. 【详解】解:由题意可得:212423344222ABC S ×××=×−−−=△,BD是ABC 的高,AC ,∴4ABC S =△,解得:BD =,故选:C .【点睛】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.10. 一次函数y mx n =+与y mnx =()0mn ≠,在同一平面直角坐标系的图像是( )A. B.C. D.【答案】C 【解析】【分析】分别讨论m 、n 系是解题的关键.【详解】解:①.当00m n >>,时,0mn >,一次函数y mx n =+的图像一、二、三象限, 正比例函数y mnx =的图像过一、三象限,无符合项; ②当00m n ><,时,0mn <,一次函数y mx n =+的图像一、三、四象限, 正比例函数y mnx =的图像过二、四象限,C 选项符合; ③当00m n <<,时,0mn >,一次函数y mx n =+的图像二、三、四象限, 正比例函数y mnx =的图像过一、三象限,无符合项; ④当00m n <,>时,0mn <,一次函数y mx n =+的图像一、二、四象限, 正比例函数y mnx =的图像过二、四象限,无符合项.故选:C .二、填空题(本大题共5小题,每小题3分,共15分)11. 比较大小:. 【答案】> 【解析】【分析】先将,再进行比较即可.【详解】解:∵==,∴. 故答案为:>【点睛】此题考查了两个无理数的比较大小,方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.12. 一组数据2,1,3,1,2的中位数是___________. 【答案】2 【解析】【分析】根据中位数的定义,进行判断即可. 【详解】解:将数据排序后,位于中间的数据是2, ∴中位数为2; 故答案为:2.【点睛】本题考查中位数.将一组数据排序后,位于中间一位(数据个数为奇数)或中间两位的平均数(数据个数为偶数)为这组数据的中位数.13. 点(2)A −,3关于原点对称的点的坐标是__________.【答案】(23)−,【解析】【分析】平面直角坐标系中任意一点()A x y ,,关于原点的对称点是()x y −−,,从而可得出答案. 【详解】解:根据中心对称的性质,得点(2)A −,3关于原点对称点的坐标是(23)−,. 故答案是:(23)−,. 【点睛】本题主要考查关于原点对称的点坐标的关系,解题的关键是掌握点关于原点对称的坐标规律.14. 如图,在Rt ABC △中,90C ∠=°,分别以各边为直径作半圆,图中阴影部分在数学史上被称为“希波克拉底月牙”.当8AC =,4BC =时,阴影部分的面积为______.【答案】16 【解析】【分析】根据勾股定理求得AB 的长度,再根据圆的面积公式分别计算三个半圆的面积,阴影部分的面积为:两个较小半圆的面积和减去以AB 为直径的半圆的面积,之后再加上ABC 的面积, 【详解】解:∵在Rt ABC △中,90C ∠=°,8AC =,4BC =,∴AB =,以AC 为直径半圆的面积:28282ππ=; 以BC 为直径半圆的面积:24222ππ=;以AB 为直径半圆的面积:22102ππ=; Rt ABC △的面积为:48162×=, ∴阴影部分的面积为:28101616πππ+−+=. 故答案为:16.【点睛】本题主要考查学生对图形的分解计算能力,先利用勾股定理求出AB 的值是解题的关键. 15. 如图,直线AB :12y x b =−+与坐标轴交于A 、B 两点,点C 为第一象限内一点,连接BC 且BC x ∥轴,交直线3x =于点E ,连接AC ,AE ,将ABC 沿着直线AB 翻折,得到ABD △,点D 正好落在直线3x =上,若26BDE ACE S S == ,那么点C 的坐标为______.【答案】()5,3 【解析】【分析】由直线12y x b =−+与坐标轴交于A 、B ,得()2,0A b ,()0,B b .设,()C t b ,则3BC t CE t ==−,,根据翻折可知BD BC t ==,从而DE =,又6BDE S = ,即得:1362×=,解得:5t =,则(5,)C b ,2CE =,再由26ACE S = ,即得出3b =,故(5,3)C .【详解】解:∵直线12y x b =−+与坐标轴交于A 、B 两点, ∴()2,0A b ,()0,B b , ∴2OA b OB b ==,.设,()C t b ,则3BC t CE t ==−,.∵将ABC 沿着直线AB ABD △, ∴BD BC t ==,∴DE . ∵6BDE S = ,∴162BE DB ⋅=,即1362×=, 解得:5t =或5t =− (C 在第一象限,舍去), ∴(5,)C b ,32CE t =−=.∵26BDE ACE S S == ,即3ACE S = , ∴132CE OB ⋅=,即1232b ××=,∴3b =, ∴(5,3)C . 故答案为:()5,3.【点睛】本题考查直角坐标系中的折叠问题,涉及勾股定理及三角形面积等知识,解题的关键是根据已知列出关于t的方程.三、解答题(一)(本大题共4小题,第16、17题各5分,第18题7分,19题7分,共24分)16.−+−.【答案】【解析】【分析】根据二次根式的化简,将每一项先化简,再进行加减计算即可解答.+−,=−,=.【点睛】本题考查了二次根式的加减计算,熟知二次根式化简的法则是解题的关键.17. 如图,湖的两岸有A,B两棵景观树,在与AB垂直的BC方向上取一点C,测得9BC=米,15AC=米.求两棵景观树之间的距离AB.【答案】两棵景观树之间距离是12米.【解析】【分析】根据勾股定理:在直角三角形中两直角边的平方和等于斜边的平方计算即可.【详解】解:在Rt ABC中,由勾股定理,得:22222215912AB AC BC=−=−=,12AB∴=(米).答:两棵景观树之间的距离是12米.【点睛】本题考查了勾股定理的实际应用,解题关键是熟练应用勾股定理.的18 如图:(1)写出A 、B 、C 三点的坐标.(2)若ABC 各顶点的横坐标不变,纵坐标都乘1−,请你在同一坐标系中描出对应的点A ′、B ′、C ′,并依次连接这三个点,所得的A B C ′′′ 与原ABC 有怎样的位置关系.【答案】(1)()34,,()12,,()51, (2)图见解析,A B C ′′′ 与原ABC 的位置关系是关于x 轴对称. 【解析】【分析】本题考查平面直角坐标系关于坐标轴成轴对称两点的坐标之间的关系,轴对称作图和点的坐标的确定,图对称图形的判定. (1)直接根据坐标系确定坐标即可;(2)先确定对称点,再顺次连接即可作图,利用坐标特征和图可知其关于x 轴对称. 【小问1详解】解:A 、B 、C 三点的坐标分别是()34,,()12,,()51,; 【小问2详解】解:∵ABC 各顶点的横坐标不变,纵坐标都乘1−,又由(1)知:A 、B 、C 三点的坐标分别是()34,,()12,,()51,, ∴A ′、B ′、C ′三点的坐标分别是()34,-,()12,-,()51,-, 如图,A B C ′′′ 即为所作,.的由坐标特征和图可知:A B C ′′′ 与原ABC 的位置关系是关于x 轴对称.19. 某城市居民用水实行阶梯收费,每户每月用水量如果未超过12吨,按每吨1.5元收费.如果超过12吨,未超过的部分仍按每吨1.5元收费,超过部分按每吨3元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水是未超过12吨和超过12吨时,y 与x 之间的函数表达式;(2)若该城市某用户6月份和7月份共用水30吨,且6月份的用水量不足12吨,两个月一共交水费60元,求该用户7月份用水多少吨?【答案】19. 012x <≤时, 1.5y x =;12x >时,318y x =− 20. 该用户7月份用水22吨 【解析】【分析】(1)根据每户每月用水量如果未超过12吨,按每吨1.5元收费.如果超过12吨,未超过的部分仍按每吨1.5元收费,超过部分按每吨3元收费,可以得到y 与x 的函数关系式; (2)根据题意结合第一问中的函数关系式,列出方程,解方程,即可求解. 【小问1详解】解:当012x <≤时, 1.5y x =;当12x >时,()12 1.5123318y x x =×+−×=−.即012x <≤时, 1.5y x =;12x >时,318y x =−. 【小问2详解】解:设6月份的用水量为m 吨,7月份用水为()30m −吨,依题意可得:()1.53301860m m +−−=, 解得:8m =,3030822m −−,答:该用户7月份用水22吨.【点睛】本题考查函数的表达式,解题的关键是明确题意,列出相应的函数关系式,找出所求问题需要的条件.四、解答题(二)(本大题共3小题,每小题9分,共27分)20. 我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”,例如:9−,4−,1−6=,3=2=,其结果6,3,2都是整数,所以1−,4−,9−这三个数称为“完美组合数”.(1)18−,8−,2−这三个数是“完美组合数”吗?请说明理由,(2)若三个数3−,m ,12−是“完美组合数”,其中有两个数乘积的算术平方根为12.求m 的值. 【答案】(1)18−,8−,2−这三个数是“完美组合数”,理由见解析 (2)48m =− 【解析】【分析】本题主要考查了求一个数的算术平方根,熟知算术平方根的定义是解题的关键. (1)根据“完美组合数”的定义进行求解判断即可;(2)分3144m −=,12144m −=两种情况分别求出m 的值,再根据“完美组合数”的定义进行判断即可. 【小问1详解】解:18−,8−,2−这三个数是“完美组合数”,理由如下:12==4==6==,且4,6,12都是整数,∴18−,8−,2−这三个数是“完美组合数”; 【小问2详解】解:∵其中有两个数乘积的算术平方根为12, ∴这两个数的乘积为144, 当3144m −=时,则48m =−,∵()()24812481241212212−×−=×=××=×,24=,此时符合题意; 当12144m −=时,则12=−m 不符合题意;综上所述,48m =−.21. 如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于c 2,另一种是等于四个直角三角形与一个小正方形的面积之和,即12ab ×4+(b -a )2,从而得到等式c 2=12ab ×4+(b -a )2,化简便得结论a 2+b 2=c 2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题:(1)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =3,BC =4,求CD 的长度. (2)如图3,在△ABC 中,AD 是BC 边上的高,AB =4,AC =5,BC =6,设BD =x ,求x 的值. 【答案】(1)CD =125(2)94x = 【解析】【分析】(1)根据勾股定理先求出AB ,再根据“双求法”求出CD 的长度;(2)在Rt △ABD 和Rt △ADC 中,分别利用勾股定理表示出2AD ,然后得到关于x 的方程,解方程即可. 【小问1详解】解:在Rt △ABC 中,AB 5=, 由面积的两种算法可得:1134522CD ××=×⋅, 解得:CD =125; 【小问2详解】在Rt △ABD 中,2222416AD x x =−=−,在Rt △ADC 中,()2222225561112AD CD x x x =−=−−=−+−, 所以22161112x x x -=-+-,解得:94x =. 【点睛】此题主要考查的是勾股定理的应用,熟知直角三角形两直角边的平方和等于斜边的平方是解题的关键.22. 某学校调查九年级学生对“二十大”知识的了解情况,进行了“二十大”知识竞赛测试,从两班各随机抽取了10名学生的成绩,整理如下:(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤)九年级(1)班10名学生的成绩是:96,80,96,86,99,98,92,100,89,82. 九年级(2)班10名学生的成绩在C 组中的数据是:94,90,92. 通过数据分析,列表如下: 年级平均数 中位数 众数 方差 九年级(1)班 91.8 b c 52 九年级(2)班929310050.4九年级(1)班、(2)班抽取的学生竞赛成绩统计表 九年级(2)班学生成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出上述a 、b 、c 的值:=a ___________,b =___________,c =___________;(2)学校欲选派成绩更稳定的班级参加下一阶段的活动,根据表格中的数据,学校会选派___________班.(3)九年级两个班共120人参加了此次调查活动,估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是多少?【答案】22. 40;94;96 23. 九年级(2) 24. 78人 【解析】【分析】(1)将九年级(1)班10名学生的成绩按由小到大的顺序排列,再结合中位数和众数的定义即可求出b 和c 的值;由题意可知九年级(2)班C 组有3人,即可求出其所占百分比,最后用1−其它各组所占百分比即可求出a 的值;(2)直接比较两个班级的方差即可;(3)求出样本中两个班级成绩优秀的人数,再利用样本的百分率估计总体即可得到答案. 【小问1详解】解:九年级(1)班10名学生的成绩按由小到大的顺序排列为:80,82,86,89,92,96,96,98,99,100, ∴9296942b+=. ∵成绩为96(分)的学生有2名,最多, ∴96c =.九年级(2)班C 组有3人, ∴扇形统计图中C 组所占百分比为3100%30%10×=, ∴扇形统计图中D 组所占百分比为120%10%30%40%−−−=, ∴40a =. 【小问2详解】解:∵两个班的平均成绩九年级(2)班高0.2分,而九年级(1)班的方差为52,九年级(2)班的方差为50.4, 又∵50.452<,∴九年级(2)班成绩更平衡,更稳定, ∴学校会选派九年级(2)班. 【小问3详解】解:九年级(1)班10名学生的成绩为优秀的有6人 九年级(2)班D 组的人数为1040%4×=(人),∴九年级(2)班10名学生的成绩为优秀的有347+=(人). ∴估计参加此次调查活动成绩优秀()90x ≥的九年级学生人数是∶67120781010+×=+(人). 答:估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是78人.【点睛】本题考查的是扇形统计图,统计表,众数,中位数,方差的含义及应用,同时考查了利用样本估计总体,熟练掌握以上知识是解题的关键.五、解答题(三)(本大题共2小题,每小题12分,共24分)23. 如图直线27y x =−+与x 轴、y 轴分别交于点C 、B ,与直线32y x =交于点A .(1)求点A 的坐标;(2)如果在y 轴上存在一点P ,使OAP △是以OA 为底边的等腰三角形,则点P 的坐标是____; (3)点Q 在线段AB 上,使OAQ 的面积等于6,求点Q 的坐标. 【答案】(1)()2,3; (2)130,6; (3)245,77. 【解析】【分析】本题是一次函数的综合题,考查了交点的求法,等腰三角形的性质,三角形面积的求法等. (1)联立方程组,即可求得;(2)设P 点坐标是()0,y ,即可得到OP ,AP 的长,根据OAP △是以OA 为底边的等腰三角形,即OP PA =,可列出方程,解方程即可求得;(3)设点Q 的坐标是(),x y ,过点Q 作QD y ⊥轴于点D ,则QD x =,根据OBQOAB OAQ S S S =− 列出关于x 的方程求解即可. 【小问1详解】解方程组2732y x y x =−+=得23x y = = , ∴点A 的坐标为()2,3 【小问2详解】设P 点坐标是()0,y , ∵()0,0O ,()2,3A ,∴OP y =,()()2222203613AP y y y =−+−=−+ ∵OAP △是以OA 为底边的等腰三角形,, ∴OP PA =, 即22OP AP =, ∴22613y y y =−+, 解得136y =, ∴P 点坐标是130,6. 故答案为:130,6【小问3详解】∵直线27y x =−+与x 轴、y 轴分别交于点C 、B , ∴()0,7B ,7,02C, ∴17272AOB S =××= , 设点Q 的坐标是(),x y ,过点Q 作QD y ⊥轴于点D ,如图,则QD x =, ∴761OBQ OABOAQS S S=−=−=△△△,∴112OB QD ⋅=,即1271x ×=,∴27x =, 把27x =代入27y x =−+,得457y =,∴Q 的坐标是245,77. 24. 综合与实践 【问题情境】在平面直角坐标系中,有不重合的两点()11,A x y 和点()22,B x y ,若12x x =,则AB y ∥轴,且线段AB 的长度为12y y −:若12y y =,则AB x ∥轴,且线段AB 的长度为12x x −. 【知识应用】(1)若点()1,1A −,()2,1B ,则AB x ∥轴,AB 的长度为________; 【拓展延伸】我们规定:平面直角坐标系中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =−+−.例如:图1中,点()1,1M −与点()1,2N −之间的折线距离为()(),1112235d M N =−−+−−=+=.【问题解决】(2)如图2,已知()2,0E ,若()1,1F −−,则(),d E F =________; (3)如图2,已知()2,0E ,()1,G t ,若(),3d E G =,则t 的值为________;(4)如图3,已知()2,0E ,()0,2H ,点P 是EOH △的边上一点,若(),d E P =P 的坐标.【答案】(1)3;(2)4;(3)2或 2−;(4)()2−或 【解析】【分析】(1)根据线段AB 的长度为12x x −,代入数据即可得出结论; (2)根据两点之间的折线距离公式,代入数据即可得出结论;(3)根据两点之间的折线距离公式,可得2103t −+−=,即可求解; (4)分三种情况讨论,结合两点之间的折线距离公式,以及一次函数的图象和性质,即可得出结论.【详解】解:(1)AB 的长度为123−−=, 故答案为:3;(2)∵()2,0E ,()1,1F −−, ∴()()(),21014d E F −−+−−;故答案为:4;(3)∵()2,0E ,()1,G t ,(),3d E G =,∴2103t −+−=, 解得∶ 2t =± , 故答案为:2或 2−; (4)设点(),P a b , 当点P 在OH 上时,0a =,∵()2,0E ,(),d E P =∴200b −+−=解得:2b=−或2,此时点P 的坐标为()2; 当点P 在OE 上时,0b =,∵()2,0E ,(),d E P =∴200a −+−=解得:22a =+>(舍去)或20<(舍去); 当点P 在HE 上时,设直线HE 的解析式为y kx n =+,把点()2,0E ,()0,2H 代入得:202k n n +== , 解得:12k n =− =, ∴直线HE 的解析式为2y x =−+, ∴2b a =−+,∴此时点P 的坐标为(),2a a −+,∵()2,0E ,(),d E P =∴()202a a −+−−+=解得:2a +2(舍去),此时点P 的坐标为 + ;综上所述,点P 的坐标为()2−或 + .【点睛】本题考查了两点间的距离公式,一次函数的图象和性质,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.。
2019-2020学年江苏省常州市武进区湖塘实验中学八年级(上)第二次月考数学试卷 解析版
2019-2020学年江苏省常州市武进区湖塘实验中学八年级(上)第二次月考数学试卷一、选择题(每题3分,共24分)1.(3分)下列函数:(1)﹣y=x;(2)y=2x+1;(3)y=;(4)y=;(5)s=12t;(6)y=30﹣4x中,是一次函数的有()A.2个B.3个C.4个D.5个2.(3分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帅”的坐标为(﹣1,﹣2)“马”的坐标为(2,﹣2),则“兵”的坐标为()A.(﹣3,1)B.(﹣2,1)C.(﹣3,0)D.(﹣2,3)3.(3分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)5.(3分)已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.6.(3分)实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.7.(3分)已知一次函数y=kx+b的图象如图,则下列说法:①k<0,b>0;②x=m是方程kx+b=0的解;③若点A(x1,y1),B(x2,y2)是这个函数的图象上的两点,且x1<x2;则y1﹣y2>0;④当﹣1≤x≤2时,1≤y≤4,则b=2.其中正确的个数为()A.1B.2C.3D.48.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为()A.(,)B.(3,3)C.(,)D.(,)二、填空(每题2分,共20分)9.(2分)点A(1,2)与点B关于y轴对称,则点B的坐标是.10.(2分)点P(a+2,a﹣3)在x轴上,则P的坐标是.11.(2分)将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的图象函数关系式为.12.(2分)已知一次函数y=kx+b的图象过点(1,﹣2),且y随x增大而减小,请你写出一个符合条件的一次函数关系式.13.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m的值是.x﹣126y5﹣1m14.(2分)点(m,n)在直线y=3x﹣2上,则代数式2n﹣6m+1的值是.15.(2分)如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费元.16.(2分)如图,直线y=﹣x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则直线AM的解析式是.17.(2分)如图,在平面直角坐标系中,长方形OACB的顶点O在坐标原点,顶点A,B 分别在x轴,y轴的正半轴上,OA=2,OB=4,D为边OB的中点,E是边OA上的一个动点,当△CDE的周长最小时,点E的坐标为.18.(2分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1),一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围是.三、解答题(共56分)19.(6分)如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(,n).(1)则n=,k=,b=.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是.(3)求四边形AOCD的面积.20.(6分)如图,一次函数y=﹣x+b的图象与正比例函数y=x的图象相交于点A(2,a),与x轴相交于点B.(1)求a、b的值;(2)在y轴上存在点C,使得△AOC的面积等于△AOB的面积,求点C的坐标.21.(6分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(﹣1,2).(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;(2)画出与△A1B1C1关于y轴对称的△A2B2C2;(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为.22.(11分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.(9分)请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点;③连线.(2)观察图象,当x时,y随x的增大而增大;(3)根据图象,不等式|x|<x+的解集为.24.(8分)如图,一次函数y1=x+m与x轴,y轴分别交于点A,B,函数y1=x+m与y2=﹣2x的图象交于第四象限的点C,且点C的横坐标为1.(1)求m的值;(2)观察图象,当x满足时,y1<y2<0;(3)在x轴上有一点P(n,0),过点P作x轴的垂线,分别交函数y1=x+m和y2=﹣2x的图象于点D,E.若DE=3OB,求n的值.25.(10分)(1)问题解决:①如图1,在平面直角坐标系xOy中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B的坐标分别为A、B.②求①中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点D.请你借助小明的思路,求出点C的坐标;(2)类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标(0,﹣6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=﹣2x+2图象上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.2019-2020学年江苏省常州市武进区湖塘实验中学八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)下列函数:(1)﹣y=x;(2)y=2x+1;(3)y=;(4)y=;(5)s=12t;(6)y=30﹣4x中,是一次函数的有()A.2个B.3个C.4个D.5个【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.【解答】解:由题可得,是一次函数的有:(1)﹣y=x;(2)y=2x+1;(4)y=;(5)s=12t;(6)y=30﹣4x,共5个,故选:D.2.(3分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帅”的坐标为(﹣1,﹣2)“马”的坐标为(2,﹣2),则“兵”的坐标为()A.(﹣3,1)B.(﹣2,1)C.(﹣3,0)D.(﹣2,3)【分析】直接利用“帅”位于点(﹣1,﹣2),可得原点的位置,进而得出“兵”的坐标.【解答】解:如图所示:可得“炮”是原点,则“兵”位于点:(﹣3,1).故选:A.3.(3分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限的横坐标小于零,可得a的取值范围,根据第三象限内的点横坐标小于零,纵坐标小于零,可得答案.【解答】解:由点P(a,2)在第二象限,得a<0.由﹣3<0,a<0,得点Q(﹣3,a)在三象限,故选:C.4.(3分)如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:∵|3﹣a|+(b+5)2=0,∴3﹣a=0,b+5=0,解得:a=3,b=﹣5,∴点A(a,b)关于原点对称的点A′的坐标为:(﹣3,5).故选:C.5.(3分)已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.【分析】根据一次函数与系数的关系,由函数y=kx+b的图象位置可得k>0,b<0,然后根据系数的正负判断函数y=﹣bx+k的图象位置.【解答】解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.6.(3分)实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.7.(3分)已知一次函数y=kx+b的图象如图,则下列说法:①k<0,b>0;②x=m是方程kx+b=0的解;③若点A(x1,y1),B(x2,y2)是这个函数的图象上的两点,且x1<x2;则y1﹣y2>0;④当﹣1≤x≤2时,1≤y≤4,则b=2.其中正确的个数为()A.1B.2C.3D.4【分析】图象过第一,二,四象限,可得k<0,b>0,可判定①;根据增减性,可判断③④,由图象与x轴的交点可判定②.【解答】解:∵图象过第一,二,四象限,∴k<0,b>0;∴y随x增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0;当﹣1≤x≤2时,1≤y≤4,∴当x=﹣1时,y=4;x=2时,y=1,代入y=kx+b得,解得b=3;一次函数y=kx+b中,令y=0,则x=﹣,∴x=﹣是方程kx+b=0的解,故①③正确;②④错误,故选:B.8.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为()A.(,)B.(3,3)C.(,)D.(,)【分析】过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN =PM,PN=CM,设AD=a,求出DN=2a﹣1,得出2a﹣1=1,求出a=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴BN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,).故选:D.二、填空(每题2分,共20分)9.(2分)点A(1,2)与点B关于y轴对称,则点B的坐标是(﹣1,2).【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:点A与点B关于y轴对称,点A的坐标为(1,2),则点B的坐标是(﹣1,2).故答案为:(﹣1,2).10.(2分)点P(a+2,a﹣3)在x轴上,则P的坐标是(5,0).【分析】根据x轴上点的纵坐标为0,得出a﹣3=0,得出a的值,即可求出点P的坐标.【解答】解:∵点P(a+2,a﹣3)在x轴上,∴a﹣3=0,即a=3,∴a+2=5,∴P点的坐标为(5,0).故答案为:(5,0).11.(2分)将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的图象函数关系式为y=2x+2.【分析】直接利用一次函数平移规律,即k不变,进而利用一次函数图象上的性质得出答案.【解答】解:设一次函数y=2x+3的图象平移后解析式为y=2x+3+b,将(1,4)代入可得:4=2×1+3+b,解得:b=﹣1.则平移后得到的图象函数关系式为:y=2x+2.故答案为:y=2x+2.12.(2分)已知一次函数y=kx+b的图象过点(1,﹣2),且y随x增大而减小,请你写出一个符合条件的一次函数关系式y=﹣x﹣1(答案不唯一).【分析】由一次函数的图象经过点(1,﹣2)可找出b=﹣2﹣k,由y随x增大而减小,利用一次函数的性质可得出k<0,取k=﹣1即可得出结论.【解答】解:∵一次函数y=kx+b的图象过点(1,﹣2),∴﹣2=k+b,∴b=﹣2﹣k.又∵y随x增大而减小,∴k<0,当k=﹣1时,b=﹣2﹣k=﹣1,此时一次函数关系式为y=﹣x﹣1.故答案为:y=﹣x﹣1(答案不唯一).13.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m的值是﹣9.x﹣126y5﹣1m【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣1,y=5;x=2时,y=﹣1代入即可得出k、b的值,故可得出一次函数的解析式,再把x=6代入即可求出m的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣1时y=5;x=2时y=﹣1,∴,解得,∴一次函数的解析式为y=﹣2x+3,∴当x=6时,y=﹣2×6+3=﹣9,即m=﹣9.故答案是:﹣9.14.(2分)点(m,n)在直线y=3x﹣2上,则代数式2n﹣6m+1的值是﹣3.【分析】直接把点(m,n)代入函数y=3x﹣2,得到n=3m﹣2,再代入解析式即可得出结论.【解答】解:∵点(m,n)在函数y=3x﹣2的图象上,∴n=3m﹣2,∴2n﹣6m+1=2(3m﹣2)﹣6m+1=﹣3,故答案为:﹣3.15.(2分)如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费 1.4元.【分析】由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.【解答】解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.4(元).答:每多行驶1km,要再付费1.4元.16.(2分)如图,直线y=﹣x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则直线AM的解析式是y=﹣+3.【分析】首先求出直线与坐标轴交点坐标,进而得出BO,AO的长,再利用勾股定理求出AB的长;根据翻折变换的性质得出MB=MC,AB=AC=10,然后根据勾股定理直接求出MO的长,即可得出M的坐标,再根据待定系数法求得直线AM的解析式即可.【解答】解:∵直线y=﹣x+8与x轴、y轴分别交于A、B两点,∴y=0时,x=6,则A点坐标为:(6,0),x=0时,y=8,则B点坐标为:(0,8);∴BO=8,AO=6,∴AB==10,∵直线AB沿AM折叠,点B恰好落在x轴上的点C处,∴AB=AC=10,MB=MC,∴OC=AC﹣OA=10﹣6=4.设MO=x,则MB=MC=8﹣x,在Rt△OMC中,OM2+OC2=CM2,∴x2+42=(8﹣x)2,解得:x=3,故M点坐标为:(0,3),设直线AM的解析式为y=kx+3,把A(6,0)代入得0=6k+3,解得k=﹣,∴直线AM的解析式是y=﹣+3.故答案为y=﹣+3.17.(2分)如图,在平面直角坐标系中,长方形OACB的顶点O在坐标原点,顶点A,B 分别在x轴,y轴的正半轴上,OA=2,OB=4,D为边OB的中点,E是边OA上的一个动点,当△CDE的周长最小时,点E的坐标为.【分析】由于C、D是定点,则CD是定值,如果△CDE的周长最小,即DE+CE有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时,△CDE的周长最小.【解答】解:∵OB=4,D为边OB的中点,∴OD=2,∴D(0,2),如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周长最小.∵在矩形OACB中,OA=2,OB=4,D为OB的中点,∴BC=2,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,∴,∴OE=,∴点E的坐标为(,0),故答案为:(,0).18.(2分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1),一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围是1<m<3.【分析】由点P的坐标结合点P在△AOB的内部,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:依题意,得:,解得:1<m<3.故答案为:1<m<3.三、解答题(共56分)19.(6分)如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(,n).(1)则n=,k=﹣2,b=4.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是x<.(3)求四边形AOCD的面积.【分析】(1)根据点D在函数y=x+2的图象上,即可求出n的值;再利用待定系数法求出k,b的值;(2)根据图象,直接判断即可;(3)用三角形OBC的面积减去三角形ABD的面积即可.【解答】解:(1)∵点D(,n)在直线y=x+2上,∴n=+2=,∵一次函数经过点B(0,4)、点D(,),∴,解得:,故答案为:,﹣2,4;(2)由图象可知,函数y=kx+b大于函数y=x+2时,图象在直线x=的左侧,∴x<,故答案为:x<,(3)直线y=﹣2x+4与x轴交于点C,∴令y=0,得:﹣2x+4=0,解得x=2,∴点C的坐标为(2,0),∵函数y=x+2的图象与y轴交于点A,∴令x=0,得:y=2,∴点A的坐标为(0,2),S△BOC=×2×4=4,S△BAD=×(4﹣2)×=,∴S四边形AOCD=S△BOC﹣S△BAD=4﹣=.20.(6分)如图,一次函数y=﹣x+b的图象与正比例函数y=x的图象相交于点A(2,a),与x轴相交于点B.(1)求a、b的值;(2)在y轴上存在点C,使得△AOC的面积等于△AOB的面积,求点C的坐标.【分析】(1)把点A(2,a)的坐标代入y=x,得到点A的坐标,把点A(2,1)的坐标代入y=﹣x+b,即可得到结论;(2)把y=0代入y=﹣x+b,得到点B的坐标为(4,0),根据三角形的面积公式列方程即可得到结论.【解答】解:(1)把点A(2,a)的坐标代入y=x,解得=1,把点A(2,1)的坐标代入y=﹣x+b,解得b=2,(2)把y=0代入y=﹣x+b,解得x=4,∴点B的坐标为(4,0),∴OB=4,∵S△AOC=S△AOB,∴×2•OC=×4×1,∴OC=2,∴点C的坐标为(0,2)或(0,﹣2).21.(6分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(﹣1,2).(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;(2)画出与△A1B1C1关于y轴对称的△A2B2C2;(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为(﹣a,b).【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于y轴对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)利用关于y轴对称的点的坐标特征求解.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)点P(a,b)关于y轴对称的点P2的坐标为(﹣a,b).故答案为(﹣a,b).22.(11分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60千米/时,t=3小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【分析】(1)根据速度=路程÷时间可求出乙车的速度,利用时间=路程÷速度可求出乙车到达A地的时间,结合图形以及甲车的速度不变,即可得出关于t的一元一次方程,解之即可得出结论;(2)分0≤x≤3、3≤x≤4、4≤x≤7三段,根据函数图象上点的坐标,利用待定系数法即可求出函数关系式;(3)找出乙车距它出发地的路程y与甲车出发的时间x的函数关系式,由两地间的距离﹣甲、乙行驶的路程和=±120,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)乙车的速度为60÷1=60(千米/时),乙车到达A地的时间为480÷60=8(小时),根据题意得:2t+1=8﹣1,解得:t=3.故答案为:60;3.(2)设甲车距它出发地的路程y与它出发的时间x的函数关系式为y=kx+b(k≠0),当0≤x≤3时,将(0,0)、(3,360)代入y=kx+b,得:,解得:,∴y=120x;当3≤x≤4时,y=360;当4≤x≤7时,将(4,360)、(7,0)代入y=kx+b,得:,解得:,∴y=﹣120x+840.综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为y=.(3)乙车距它出发地的路程y与甲车出发的时间x的函数关系式为y=60(x+1)=60x+60.当0≤x≤3时,有|480﹣(120x+60x+60)|=120,解得:x1=,x2=3;当3≤x≤4时,有|480﹣(360+60x+60)|=120,解得:x3=﹣1(舍去),x4=3;当4≤x≤7时,有|480﹣(﹣120x+840+60x+60)|=120,解得:x5=5,x6=9(舍去).∴x+1=、4或6.∴乙车出发小时、4小时、6小时后两车相距120千米.23.(9分)请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点;③连线.(2)观察图象,当x>0时,y随x的增大而增大;(3)根据图象,不等式|x|<x+的解集为﹣1<x<3.【分析】(1)根据函数值填表即可;(2)根据图象得出函数性质即可;(3)根据图象得出不等式的解集即可.【解答】解:(1)①填表正确x…﹣3﹣2﹣10123…y…3210123…②③画函数图象如图所示:(2)由图象可得:x>0时,y随x的增大而增大;(3)由图象可得:不等式|x|<x+的解集为﹣1<x<3;故答案为:>0;﹣1<x<324.(8分)如图,一次函数y1=x+m与x轴,y轴分别交于点A,B,函数y1=x+m与y2=﹣2x的图象交于第四象限的点C,且点C的横坐标为1.(1)求m的值;(2)观察图象,当x满足0<x<1时,y1<y2<0;(3)在x轴上有一点P(n,0),过点P作x轴的垂线,分别交函数y1=x+m和y2=﹣2x的图象于点D,E.若DE=3OB,求n的值.【分析】(1)将x=1代入y2=﹣2x,可得C(1,﹣2),再将C点代入y1=x+m,可求m =﹣3;(2)结合函数图象,在0<y1<y2时,有0<x<1;(3)P(n,0),则D(n,n﹣3),D(n,﹣2n),根据题意则有∴|n﹣3+2n|=3×3,解得即可.【解答】解:(1)将x=1代入y2=﹣2x得,y=﹣2,∴C(1,﹣2),再将C(1,﹣2)代入y1=x+m,∴m=﹣3;(2)0<x<1;(3)在函数y1=x﹣3上,令x=0,求得y=﹣3,∴B(0,﹣3),∴OB=3,∵在x轴上有一点P(n,0),过点P作x轴的垂线,分别交函数y1=x+m和y2=﹣2x 的图象于点D,E.∴D(n,n﹣3),D(n,﹣2n),∵DE=3OB,∴|n﹣3+2n|=3×3,∴n=4或n=﹣2.25.(10分)(1)问题解决:①如图1,在平面直角坐标系xOy中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B的坐标分别为A(﹣4,0)、B(0,1).②求①中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点D.请你借助小明的思路,求出点C的坐标;(2)类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标(0,﹣6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=﹣2x+2图象上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【分析】(1)利用坐标轴上点的特点建立方程求解,即可得出结论;(2)先构造出△AEC≌△BOA,求出AE,CE,即可得出结论;(3)同(2)的方法构造出△AFD≌△DGP(AAS),分两种情况,建立方程求解即可得出结论.【解答】解:(1)针对于一次函数y=x+1,令x=0,∴y=1,∴B(0,1),令y=0,∴x+1=0,∴x=﹣4,∴A(﹣4,0),故答案为(﹣4,0),(0,1);(2)如图1,由(1)知,A(﹣4,0),B(0,1),∴OA=4,OB=1,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∴∠CAE+∠ACE=90°,∵∠BAC=90°,∴∠CAE+∠BAO=90°,∴∠CAE=∠ABO,∵△ABC是等腰直角三角形,∴AC=AB,在△AEC和△BOA中,,∴△AEC≌△BOA(AAS),∴CE=OA=4,AE=OB=1,∴OE=OA+AE=5,∴C(﹣5,4);(3)如图2,∵过点D作DF⊥y轴于F,延长FD交BP于G,∴DF+DG=OB=8,∵点D在直线y=﹣2x+2上,∴设点D(m,﹣2m+2),∴F(0,﹣2m+2),∵BP⊥x轴,B(8,0),∴G(8,﹣2m+2),同(2)的方法得,△AFD≌△DGP(AAS),∴AF=DG,DF=PG,如图2,DF=m,∵DF+DG=DF+AF=8,∴m+|2m﹣8|=8,∴m=或m=0,∴D(0,2)或(,﹣),当m=0时,G(8,2),DF=0,∴PG=0,∴P(8,2),当m=时,G(8,﹣),DF=,∴BG=,∴P(8,﹣),即:D(0,2),P(8,2)或D(,﹣),P(8,﹣).。
安徽省淮北市北山中学2022-2023学年上学期八年级数学第二次月考测试题
安徽省淮北市北山中学2022-2023学年八年级数学上册第二次月考测试题(附答案)一、选择题(本大题共10小题,满分40分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.若点P的坐标为(﹣3,2022),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知一个三角形的两条边长分别为4和7,则第三条边的长度不能是()A.11B.9C.8D.74.将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为()A.y=﹣2(x﹣4)B.y=﹣2x+4C.y=﹣2(x+4)D.y=﹣2x﹣4 5.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是()A.AE=BF B.CE=DF C.∠ACE=∠BDF D.∠E=∠F6.如果一个三角形的两个内角都小于30°,那么这个三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥BD,垂足分别是E,F.则图中共有()对全等三角形.A.5B.6C.7D.88.一次函数y=﹣kx+k与正比例函数y=kx(k是常数,且k≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.9.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;⑤S△ABD:S△ACD=AB:AC,其中正确的有()A.5个B.4个C.3个D.2个10.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空(本大题共4小题,满分20分)11.正方形的对称轴有条.12.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD=.13.已知点P(t,0)和点Q(0,5)两点,且直线PQ与坐标轴围成的三角形的面积等于10,则t的值是.14.已知一次函数y=3x+4﹣2a.(1)若该函数图象与y轴的交点位于y轴的负半轴,则a的取值范围是;(2)当﹣2≤x≤3时,函数y有最大值﹣4,则a的值为.三、解答题(本大题共2小题,满分90分)15.在△ABC中,∠B=20°+∠A,∠C=∠B﹣10°,求∠A的度数.16.如图,在边长为1个单位长度的10×8小正方形网格中,给出了以格点(网格线的交点)为顶点的△ABC,点A,C的坐标分别为(﹣3,2),(﹣1,3),直线l在网格线上.(1)建立平面直角坐标系,画出△ABC关于直线l对称的△A1B1C1;(点A1,B1,C1分别为点A,B,C的对应点)(2)若点P(a,b)是△ABC内任意一点,其关于直线l的对称点是P1,则点P1的坐标是.17.已知正比例函数的图象经过点(3,﹣6).(1)求这个函数的解析式;(2)图象上有两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.18.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).19.如图,在△ABC中AD是BC边上的中线,过C作AB的平行线交AD的延长线于E点.(1)求证:AB=EC;(2)若AB=6,AC=2,试求中线AD的取值范围.20.如图,已知直线l的解析式为y=x+4,它与y轴交于点A,与x轴交于点B.(1)写出A,B两点的坐标;(2)若点C坐标为(﹣2,0),请在直线l上找一点P,使得OP+CP的值最小,求点P 的坐标.21.如图(1),已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF ⊥AC,且已知AB=CD.(1)试问DB平分EF能成立吗?请说明理由.(2)若△DEC的边EC沿AC方向移动,其余条件不变,如图(2),上述结论是否仍成立?请说明理由.22.如图,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,动点M从点A以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)将直线l向上平移4个单位后得到直线l',交y轴于点C.求直线l′的函数表达式;(3)在(2)的条件下,设点M的移动时间为t,当t为何值时,△COM≌△AOB,并求出此时点M的坐标.23.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).参考答案一、选择题(本大题共10小题,满分40分)1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:∵点(﹣3,2022)的横纵坐标小于0,纵坐标大于0,∴点在第二象限.故选:B.3.解:设第三边长为x,由三角形三边关系定理得:7﹣4<x<7+4,即3<x<11,故第三条边的长度不能是11.故选:A.4.解:由上加下减”的原则可知,将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为:y=﹣2x﹣4.故选:D.5.解:∵AE∥BF,∴∠A=∠FBD,∵AB=CD,∴AC=BD,当AE=BF时,根据SAS可以判定三角形全等,当CE=DF时,SSA不能判定三角形全等.当∠ACE=∠D时,根据ASA可以判定三角形全等.当∠E=∠F时,根据AAS可以判定三角形全等,故选:B.6.解:∵一个三角形有两个内角的度数都小于30°,∴第三个内角的度数>180°−30°−30°,即第三个内角的度数>120°,∴这个三角形是钝角三角形,故选:C.7.解:∵AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,∠BAC=∠DCA,在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),同理:△ABC≌△CDA(ASA);∴AB=CD,BC=DA,在△AOB和△COD中,,∴△AOB≌△COD(AAS),同理:△AOD≌△COB(AAS);∵AE⊥BD,CF⊥BD,∴∠AEB=∠AEO=∠CFD=∠CFO=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),同理:△AOE≌△COF(AAS),△ADE≌△CBF(AAS);图中共有7对全等三角形;故选:C.8.解:当k>0时,正比例函数y=kx的图象经过第一、三象限,一次函数y=﹣kx+k的图象经过第一、二、四象限;当k<0时,正比例函数y=kx的图象经过第二、四象限,一次函数y=﹣kx+k的图象经过第一、三、四象限.故选:D.9.解:①正确,因为角平分线上的点到两边的距离相等知;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④正确,因为由△ADC≌△ADE可知,∠ADC=∠ADE,所以AD平分∠CDE;⑤正确,因为CD=ED,△ABD和△ACD的高相等,所以S△ABD:S△ACD=AB:AC.所以正确的有五个,故选:A.10.解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.二、填空(本大题共4小题,满分20分)11.解:如图,正方形对称轴为经过对边中点的直线,两条对角线所在的直线,共4条.故答案为:4.12.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故答案为1.13.解:∵点P(t,0)和点Q(0,5),∴OP=|t|,OQ=5,∵直线PQ与坐标轴围成的三角形的面积等于10,∴×5×|t|=10,解得:t=±4,∴t=4或﹣4.故答案为:4或﹣4.14.解:(1)∵一次函数y=3x+4﹣2a的图象与y轴的交点位于y轴的负半轴,∴4﹣2a<0,解得:a>2.故a的取值范围是a>2.故答案为:a>2;(2)在一次函数y=3x+4﹣2a中,∵k=3>0,∴y随x的增大而增大,∴当﹣2≤x≤3时,函数y有最大值﹣4,∴当x=3时,y=﹣4,代入y=3x+4﹣2a得,﹣4=9+4﹣2a,解得:a=8.5.故a的值为8.5.故答案为:8.5.三、解答题(本大题共9小题,满分90分)15.解:设∠A=x°,则∠B=20°+x°,∠C=x°+20°﹣10°=x°+10°,∵在△ABC中,∠A+∠B+∠C=180°,∴x°+20°+x°+x°+10°=180°,解得x=50°,即∠A=50°.16.解:(1)如图,△A1B1C1为所作;(2)点P1的坐标是(﹣a+2,b).故答案为:(﹣a+2,b).17.解:(1)设正比例函数为y=kx(k≠0),将(3,﹣6)代入y=kx,得:﹣6=3k,解得:k=﹣2,∴这个函数的表达式为y=﹣2x;(2)∵k=﹣2<0,∴y随x的增大而减小,又∵x1>x2,∴y1<y2.18.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC+CE=BE+AD=7a=35,∴a=5,答:砌墙砖块的厚度a为5cm.19.(1)证明:∵AD是BC边上的中线,∴BD=CD.∵AB∥CE,∴∠BAD=∠E,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC;(2)解:由(1)得:△ABD≌△ECD,AB=EC=6,∴AD=DE,在△ACE中,CE﹣AC<AE<CE+AC,即6﹣2<2AD<6+2,∴4<2AD<8,∴2<AD<4.20.解:(1)把x=0代入y=x+4=4,∴A(0,4),把y=0代入y=x+4,解得:x=﹣4,∴B(﹣4,0);(2)作AO′∠y轴,A为垂足,作BO′∠y轴,B垂足,AO′与BO′交于点O′,∵A(0,4),B(﹣4,0),∴OA=OB=O′A=O′B=4,∴四边形AOBO′是正方形,∴O、O′关于直线l对称,O′(﹣4,4),连接O'C交l于点P,则OP+CP=O'P+CP=O'C==2为最小,设经过O'、C两点的直线解析式为y=mx+n,将O'(﹣4,4),(﹣2,0)分别代入,得,解得,∴y=﹣2x﹣4,联立,解得.所以点P的坐标为(﹣,).21.解:(1)DB平分EF,理由如下:∵AE=CF,∴AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BOF和△DOE中,,∴△BOF≌△DOE(AAS),∴EO=FO,∴DB平分EF.(2)DB平分EF,理由如下:∵AE=CF,∴AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BOF和△DOE中,,∴△BOF≌△DOE(AAS),∴EO=FO,∴DB平分EF.22.解:(1)对于直线l:y=﹣x+2,当x=0时,y=2;当y=0时,x=6,则A、B两点的坐标分别为A(6,0)、B(0,2);(2)设直线l′的函数表达式为y=kx+b,∵l′∥l,∴k=﹣,由题意l′经过点(0,6),∴b=6,∴l′的函数表达式为;(3)∵OC=OA=6,∠AOB=∠COM=90°,∴当点M在OA上时,OB=OM=2,则△COM≌△AOB,∴AM=AO﹣OM=4,∴t=4÷1=4,M(2,0).当M在x轴的负半轴上时,OM=OB=2,△COM≌△AOB,AM=8,∴t=8÷1=8,点M(﹣2,0).故当t=4或8时,△COM≌△AOB,此时M(2,0)或(﹣2,0).23.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.。
2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷+答案解析
2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在平面直角坐标系中,若点A的坐标是,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.函数中,自变量x的取值范围是()A. B. C. D.3.下列四个图形中,画出的边AB上的高的是()A. B.C. D.4.下面是雨伞在开合过程中某时刻的截面图,伞骨,点D、E分别是AB,AC的中点,DM、EM是连接弹簧和伞骨的支架,且,则判定“≌”的依据是()A.角边角B.角角边C.边边边D.边边角5.已知等腰三角形一腰上的中线将它的周长分成6cm和12cm两部分,则等腰三角形的腰长为()A.4cm或8cmB.4cmC.8cmD.2cm或10cm6.下列选项中,可以用来说明命题“若,则”是假命题的反例是()A.,B.,C.,D.,7.如图,在中,AD为高,AE平分,,,则的度数为()A.B.C.D.8.下列图中,表示一次函数与正比例函数其中a、b为常数,且的大致图象,其中表示正确的是()A. B.C. D.9.2023年5月21日,“锦绣太原激情太马”2023太原马拉松赛成功举行,万名选手沿汾河岸畔同场竞技,畅跑魅力并州.如图是甲、乙两人从起点出发一段时间内路程与时间的关系,则下列说法正确的是()A.在这段时间内,甲的平均速度为B.在这段时间内,乙的平均速度为C.在这段时间内,甲休息了D.出发时两人相遇10.如图所示,已知和都是等边三角形,且ABD三点在同一直线上.则下列结论:①;②;③;④BH平分;⑤其中正确的有()A.2个B.3个C.4个D.5个二、填空题:本题共4小题,每小题5分,共20分。
11.当时,一次函数的最小值为,则______.12.如图,直线与x轴、y轴分别交于A、B两点,点C是第二象限内一点,为等腰直角三角形且,则直线BC的解析式为______.13.如图,在中,,,,,则______.14.如图,在中,CE平分,BD平分,CE,BD相交于点O,点F是BE上一点,且满足若,,则______.若,,,则______.三、解答题:本题共9小题,共90分。
2018-2019学年安徽省合肥市中国科技大学附中八年级(上)第二次月考数学试卷解析版
2018-2019学年安徽省合肥市中国科技大学附中八年级(上)第二次月考数学试卷一、选择题(本题共10小题,共30分)1.(3分)下列各组所述几何图形中,一定全等的是()A.一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都是8cm的两个等腰三角形D.腰长相等的两个等腰直角三角形2.(3分)如图,已知∠ADB=∠ADC,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BAD=∠CAD3.(3分)如图所示,∠E=∠F,∠B=∠C,AE=AF,以下结论:①∠FAN=∠EAM;②EM=FN;③△ACN≌△ABM;④CD=DN.其中正确的有()A.1个B.2个C.3个D.4个4.(3分)如图,下列条件不能直接证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D5.(3分)三角形的三条中线的交点的位置为()A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上6.(3分)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°7.(3分)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114°B.122°C.123°D.132°8.(3分)如图,在△ABC中,AB=5,AC=3,则BC边上的中线AD的取值范围是()A.2<AD<8B.0<AD<8C.1<AD<4D.3<AD<59.(3分)下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个10.(3分)如图,正方形的网格中,∠1+∠2+∠3十∠4+∠5等于()A.175°B.180°C.210°D.225°二、填空题(本大题共5小题,共15.0分)11.(3分)如图,△ABD≌△EBC,AB=3cm,AC=8cm,则DE=cm.12.(3分)如图,BD是△ABC的中线,点E、F分别为BD、CE的中点,若△AEF的面积为3cm2,则△ABC的面积是cm2.13.(3分)如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE =AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).14.(3分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是.15.(3分)如图△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点.点P 在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为厘米/秒.三、解答题(本大题共5小题,共55.0分)16.(10分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.17.(10分)已知:如图,AB=AC,BD=CD,DE⊥AB,垂足为E,DF⊥AC,垂足为F.求证:DE=DF.18.(10分)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.19.(10分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.试猜想CE、BF的关系,并说明理由.20.(15分)(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.参考答案与试题解析一、选择题(本题共10小题,共30分)1.解:A、因为没有指出该角是顶角还是底角则无法判定其全等,故本选项错误;B、因为没有指出其边长相等,而全等三角形的判定必须有边的参与,故本选项错误;C、因为没有说明该角是顶角还是底角,故本选项错误.D、因为符合SAS,故本选项正确;故选:D.2.解:A、∵∠ADB=∠ADC,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;B、∵∠ADB=∠ADC,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);C、∵∠ADB=∠ADC,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠ADB=∠ADC,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:A.3.解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,∴∠FAN=∠EAM,∴①正确;在△AEM和△AFN中,,∴△AEM≌△AFN(ASA),∴EM=FN,AM=AN,∴②正确;在△ACN和△ABM中,,∴△ACN≌△ABM(AAS),∴③正确,④不正确;正确的结论有3个.故选:C.4.解:A、AB=DC,AC=DB,BC=CB,符合全等三角形的判定定理SSS,能推出△ABC≌△DCB,故本选项错误;B、AB=DC,∠ABC=∠DCB,BC=CB,符合全等三角形的判定定理SAS,能推出△ABC≌△DCB,故本选项错误;C、∵OB=OC,∴∠DBC=∠ACB,∵∠A=∠D,∴根据三角形内角和定理得出∠ABC=∠DCB,∠A=∠D,∠ABC=∠DCB,BC=BC,符合全等三角形的判定定理AAS,能推出△ABC≌△DCB,故本选项错误;D、AB=DC,BC=CB,∠A=∠D不符合全等三角形的判定定理,不能推出△ABC≌△DCB,故本选项正确;故选:D.5.解:三角形的三条中线的交点一定在三角形内.故选:A.6.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.7.解:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°﹣57°=123°,故选:C.8.解:延长AD到E,使AD=DE,连接BE,∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB﹣BE<AE<AB+BE,即5﹣3<2AD<5+3,∴1<AD<4,∴l的取值范围是1<l<4,故选:C.9.解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确; ③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D .10.解:∵∠1和∠5所在的三角形全等,∴∠1+∠5=90°,∵∠2和∠4所在的三角形全等,∴∠2+∠4=90°,而:∠3=45°,∴∠1+∠2+∠3十∠4+∠5=225°.故选:D .二、填空题(本大题共5小题,共15.0分)11.解:∵AB =3cm ,AC =8cm ,∴BC =8﹣3=5cm ,∵△ABD ≌△EBC ,∴BE =AB =3cm ,BD =BC =5cm ,∴DE =BD ﹣BE =5﹣3=2cm .故答案为:2.12.解:∵F 是CE 的中点,∴S △ACE =2S △AEF =6cm 2,∵E 是BD 的中点,∴S △ADE =S △ABE ,S △CDE =S △BCE ,∴S △ACE =S △ABC ,∴△ABC 的面积=12cm 2.故答案为:12.13.解:∵∠B +∠BAE =90°,∠C +∠CAF =90°,∠B =∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.14.解:在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,故①正确;又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC,故②正确;在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴AB+BE=AC﹣FC,∴AC﹣AB=BE+FC=2BE,即AC﹣AB=2BE,故④正确;由垂线段最短可得AE<AD,故③错误,综上所述,正确的是①②④.故答案为:①②④.15.解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=12cm,∵BD=PC,∴BP=16﹣12=4(cm),∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=4cm,∴v=4÷1=4厘米/秒;当BD=CQ时,△BDP≌△QCP,∵BD=12cm,PB=PC,∴QC=12cm,∵BC=16cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=12÷2=6厘米/秒.故答案为:4或6.三、解答题(本大题共5小题,共55.0分)16.证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.17.证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∵DE⊥AB,DF⊥AC,∴DE=DF(全等三角形对应边上的高相等).18.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在△CDF与△EDB中,∵,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12﹣x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在△ACD与△AED中,∵,∴△ACD≌△AED(HL),∴AC=AE,即8+x=12﹣x,解得x=2,即CF=2.19.解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,∵,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.20.证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.。
最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)
最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)时间:100分钟满分:120分学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.2. 在下列实数中,无理数是( )A. 0B. 14C. 5D. 6【答案】C【解析】试题分析:有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.因此,选项A、B、D的0、14、6都是有理数,选项C5C.3.在平面直角坐标系中,点M(﹣2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.4.下列四组线段中,可以构成直角三角形的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理逐项判断即可.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.5.当x=2时,函数112y x=+的值是()A. 3B. 2C. 1D. 0 【答案】B【解析】【分析】把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=12×2+1=1+1=2.故选B.【点睛】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.6.到△ABC的三条边距离相等的点是△ABC的().A. 三条中线的交点B. 三条边的垂直平分线的交点C. 三条高的交点D. 三条角平分线的交点【解析】【分析】根据角平分线的性质求解即可.【详解】到△ABC 的三条边距离相等的点是△ABC 的三条角平分线的交点故答案为:D .【点睛】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键. 7.等腰三角形的周长为80,腰长为 x ,底边长为y ,y 是x 的函数,则 x 的取值范围是( )A. x>0B. 020x <<C. 040x <<D. 2040x <<【答案】D【解析】【分析】根据已知列方程,化为函数关系式,再根据三角形三边的关系确定x 的取值范围即可.【详解】∵2x+y=80,∴y=80-2x ,∵y >0,∴80-2x >0,即x <40,∵两边之和大于第三边,∴2x >y ,即2x >80-2x,解得x >20,综上可得20<x <40,故选D.【点睛】本题考查了等腰三角形的性质及三角形三边关系,运用方程的思想列出关系式、根据三角形三边关系求得x 的取值范围是解答本题的关键.8.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A. 3B. 4C. 5D. 6【答案】A【解析】正确理解函数图象横纵坐标表示的意义.解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在AB段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故选A.理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题9.18的立方根是__.【答案】1 2【解析】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a 的一个立方根:∵31128⎛⎫=⎪⎝⎭,∴18的立方根是12.10.用四舍五入法把9.456精确到百分位,得到的近似值是.【答案】9.46【解析】试题分析:把千分位上的数字6进行四舍五入即可.解:9.456≈9.46(精确到百分位).故答案为9.46.考点:近似数与有效数字.11. 等腰三角形一个底角是30°,则它的顶角是__________.【答案】120°【解析】本题主要考查“等腰三角形的两底角相等”与“三角形的内角和定理”等腰三角形一个底角是30°,则它的另一个底角也是30°,则它的顶角是180°-30°-30°=120°12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.【答案】20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.13.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.x【答案】2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键. 14.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.15.一次函数1y x =+与3y ax =+的图象交于点P ,且点P 的横坐标为1,则关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是______. 【答案】12x y =⎧⎨=⎩【解析】【分析】把1x =代入1y x =+,得2y =,得出两直线的交点坐标为(1,2),从而得到方程组的解.【详解】解:把1x =代入1y x =+,得2y =,则函数1y x =+和3y ax =+的图象交于点(1,2)P ,即x=1,y=2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是1,2.x y =⎧⎨=⎩故答案为12x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.如图,在△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD翻折得到△AED,连接BE,CE.则CE=___________。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,点 P 在长方形 OABC 的边 OA 上,连接 BP ,过点 P 作 BP 的垂线,交射线 OC 于 点 Q ,在点 P 从点 A 出发沿 AO 方向运动到点 O 的过程中,设 AP=x ,OQ=y ,则下列说法正 确的是( )A .y 随 x 的增大而增大B .y 随 x 的增大而减小C .随 x 的增大,y 先增大后减小D .随 x 的增大,y 先减小后增大2.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是 2 倍D .如果一个多边形的每个内角是120,那么它是十边形.3.下列四组数,可作为直角三角形三边长的是4cm 、5cm 、6cm 2cm 、3cm 、4cm B .1cm 、2cm 、3cm A . C . D .1cm 、2cm 、3cm4.下列说法正确的是( ) =±4A .(﹣3) 的平方根是 3B . 16 2C .1 的平方根是 1D .4 的算术平方根是 25.在下列黑体大写英文字母中,不是轴对称图形的是(A .B .C .)D .6.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点 O , 按顺时针方向旋转到△A OB 处,此时线段 OB 与 AB 的交点 D 恰好为 AB 的中点,则线段 1 1 1 B D 的长度为( )11 A . cm23 D . cm2B .1cmC .2cm7.下列电视台的台标中,是轴对称图形的是( ) A .B .C .D .8.为了解我区八年级学生的身高情况,教育局抽查了1000 名学生的身高进行了统计分析 所抽查的 1000 名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量C 90 ,AC 4 3 cm ,点 D 、E 分别在 AC 、BC 9.如图,在 AB C 中, cm , BC ' A C ,则 AC长度的最小值 上,现将 D C E 沿 DE 翻折,使点 C 落在点C 处,连接( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm2x 510.若 在实数范围内有意义,则 x 的取值范围是()352552 5A .x >﹣B .x >﹣ 且 x ≠0C .x ≥﹣D .x ≥﹣ 且 x ≠02 2二、填空题11.如图,在正方形 AB C D 的外侧,作等边三角形C D E ,连接 AE , BE,试确定AEB的度数.12.公元前 3 世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全 等的直角三角形(两直角边长分别为 a 、b 且 a <b )拼成的边长为 c 的大正方形,如果每个 直角三角形的面积都是 3,大正方形的边长是 13 ,那么 b -a =____.13.如图,在Rt△AB C中,B90A30,,DE垂直平分斜边A C,交AB于1,则AC的长是__________.,E是垂足,连接C D,若B D D14.已知一次函数y k x1的图像经过点P(1,0),则________.ky x m与直线y 2x4的交点在轴上,则my15.若直线_______.16.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范2211围是______.17.已知一次函数y=mx-3的图像与x轴的交点坐标为(x,0),且2≤x≤3,则m的取00值范围是________.18.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,-1),点C在同一坐标平面中,且△ABC是以AB为底的等腰三角形,若点C的坐标是(x,y),则x、y之间的关系为y=______(用含有x的代数式表示).19.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是_____.20.一次函数 y =2x -4 的图像与 x 轴的交点坐标为_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在 m 校内对“你最认可的四大新生事物”进行了调查,随机调查了 人(每名学生必选一种且只 能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.m n (1)根据图中信息求出 =___________, =_____________; (2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校 2000 名学生种,大约有多少人最认可“微信”这一 新生事物?22.如图,在四边形 AB C D 中,ABC 90,过点 作 B BE C D ,垂足为点 ,过点EA 作 AF ⊥BE,垂足为点 ,且 BE AF .F ABF BCE (1)求证: ; (2)连接 B D ,且 B D 平分ABE交 AF 于点G .求证:BCD 是等腰三角形. 23.如图,四边形 ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形 ABCD 的面积. yx b 1y 的图像与 轴 轴分别交于点 、点 ,函数 yx b,24.如图,一次函数 x A B 14 x 3与 y的图像交于第二象限的点C ,且点C 横坐标为3. 2(1)求b 的值;0 y y (2)当 时,直接写出 x 的取值范围; 1 24x yx b1(3)在直线 y上有一动点 ,过点 作 x 轴的平行线交直线 于点Q ,P P 3 214OC 当 P Q 时,求点 的坐标.P5 25.如图,有一个长方形花园,对角线 AC 是一条小路,现要在 AD 边上找一个位置建报亭 H ,使报亭 H 到小路两端点 A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭 H 的位置(不写作法,但需保留作图痕迹,交 代作图结果)(2)如果 AD =80m ,CD =40m ,求报亭 H 到小路端点 A 的距离.四、压轴题26.在平面直角坐标系 xOy 中,若 P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均 与某条坐标轴垂直,则称该矩形为点 P ,Q 的“相关矩形”.图 1 为点 P ,Q 的“相关矩 形”的示意图.已知点 A 的坐标为(1,2). (1)如图 2,点 B 的坐标为(b ,0).①若 b =﹣2,则点 A ,B 的“相关矩形”的面积是 ②若点 A ,B 的“相关矩形”的面积是 8,则 b 的值为; .(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).29.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰BAC 90,且每两l l l直角三角形的三个顶点分别落在三条等距的平行线,,上,123条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:l(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.1AC BAC 120,,且每(2)小林说:“我们可以改变AB C的形状.如图2,AB两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变AB C的形状,还能改变平行线之间的距离.如图3,等边l l l1l l1l l2三角形ABC三个顶点分别落在三条平行线,,上,且与之间的距离为1,与2323之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接B Q,由矩形的性质,设B C=A O=a,A B=O C=b,利用勾股定理得到PBP Q22BQ2,然后得到y与x的关系式,判断关系式,即可得到答案.解,如图,连接 B Q ,由题意可知,△OP Q ,△QP B ,△A BP 是直角三角形, 在矩形 A B C O 中,设 B C=A O =a ,A B=O C=b ,则 a x C Q , b y,O P= 由勾股定理,得:P Q y (a x ) , PB x b( ), B Qa b y ,2 2 2 2 2 2 22 2 PB BQ2,∵ P Q 22(a x) x b a (b y) ∴ y 2 2 2 2 2 2 , x ax 整理得:by , 21 a a2 (x ) ∴ y , 2 b2 4b 10 ∵ ,b a a 2y 时, 有最大值 ∴当 x ;2 4b∴随 x 的增大,y 先增大后减小; 故选择:C. 【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与 x 的关系式,从 而得到答案.2.D解析:D 【解析】 【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解. 【详解】A.四边形的内角和为 360°,外角和也为 360°,A 选项正确;B.根据四边形的内角和为 360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为(62)180 720,外角和为 360°,C 选项正确;(n 2)180120 6 10,D 选项错误.D.假设是 n 边形,解得n n【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键.3.D解析:D 【解析】 【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可. 【详解】A 、∵5 +4 ≠6 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2B 、1+2 ≠3 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 C 、∵2 +3≠4 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 3 ) ,∴此组数据能构成直角三角形,故本选项正确. 2 D 、∵1 +( ) =( 2 2 2 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足 a +b =c ,那么这2 2 2 个三角形就是直角三角形.4.D解析:D 【解析】 【分析】根据平方根和算术平方根的定义解答即可. 【详解】16=4,故该项错误;C 、1 的平方根是 A 、(﹣3) 的平方根是±3,故该项错误;B 、 2 ±1,故该项错误;D 、4 的算术平方根是 2,故该项正确.故选 D. 【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定 义.5.C解析:C 【解析】 【分析】根据轴对称图形的概念对各个大写字母判断即可得解. 【详解】A .“E ”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重 合.6.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出 AB =5cm ,再利用直角三角形斜边上的中线等于斜边1的一半得出 OD = AB =2.5cm .然后根据旋转的性质得到 OB =OB =4cm ,那么 B D =OB 21 1 1 ﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB = =5cm ,O A 2 O B 2 ∵点 D 为 AB 的中点,1 ∴OD = AB =2.5cm . 2∵将△AOB 绕顶点 O ,按顺时针方向旋转到△A OB 处, 1 1∴OB =OB =4cm , 1∴B D =OB ﹣OD =1.5cm . 1 1故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边 上的中线等于斜边的一半”是解题的关键.7.A解析:A【解析】【详解】B,C,D 不是轴对称图形,A 是轴对称图形.故选 A.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.C解析:C【解析】【分析】当C′落在A B上,点B与E重合时,A C'长度的值最小,根据勾股定理得到A B=5cm,由折叠的性质知,BC′=B C=3c m,于是得到结论.【详解】解:当C′落在A B上,点B与E重合时,A C'长度的值最小,∵∠C=90°,A C=4c m,B C=3c m,∴A B=5c m,由折叠的性质知,BC′=B C=3c m,∴A C′=A B-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】5解:由题意得,2x+5≥0,解得x≥﹣,2故选:C.【点睛】a本题考查了二次根式有意义的条件,对于二次根式,当被开方数a时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】由正方形和等边三角形的性质得出∠A D E =150°,A D=D E,得出∠DE A=15°,同理可求出∠CE B=15°,即可得出∠AE B 的度数.【详解】解:∵在正方形中,,,在解析:AEB30【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】DC解:∵在正方形A B C D中,A D,AD C90,在等边三角形C D E中,C D D E ,C D E DE C60,∴ADE AD C CDE150A D D E,,A D E在等腰三角形中180ADE180150DEA152 2,同理得:BEC15,则AEB DEC DEA BE C60151530.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】观察图形可知,小正方形的面积=大正方形的面积- 4 个直角三角形的面积,利用已知 c 13 ,则大正方形的面积为 13,每个直角三角形的面积都是 3,可以得出小正方形的 面积,进而求出答案.【详解】解:根据题意,可知,1 3 ∵c 13 , ab , 21 (b a ) 4 ab c ∴ ∴2 2 ,c 2 13 , 2(b a )2 13 43 1, ∴b∵ a ∴b a 1; b ,即b a 0 ,a 1;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的 思想是解题的关键.13.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答 案为.解析: 2 3【解析】B 90 30 , A ACB 60.又∵ 解: ,∴ 垂直平分 D E C D A D 2 A C ,∴ C D AD ,AC D A 30 DCB .∵ 1,∴,∴ B D 1 2 3 .故答案为2 3 A 30 . A B 3 , , B C A C .由勾股定理可得 A C 2 14.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵ 一次函数y=kx+1的图象经过点P (-1,0),∴ 0=-k+1,解得k=1.故答案为1.【解析:1【分析】直接把点 P (-1,0)代入一次函数 y=kx+1,求出 k 的值即可.【详解】∵一次函数 y=kx+1 的图象经过点 P (-1,0),∴0=-k+1,解得 k=1.故答案为 1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此 函数的解析式是解答此题的关键.15.4【解析】【分析】先求出直线与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 (0,4)代入即可求出 m 的值.【详解】解:当 x=0 时,=4,则直线与 y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】 2x 4 先求出直线 与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 y (0,4)代入 y【详解】x m 即可求出 m 的值.解:当 x=0 时, =4,则直线 x m 得 m=4,y 2x 4 y 2x 4与 y 轴的交点坐标为(0,4), 把(0,4)代入 y 故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应 的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的 自变量系数相同,即 k 值相同. 16.−1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y>0,当 x<2 时,y>0,∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.解析: 1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y >0,1 当 x<2 时,y >0,2 ∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.2 1 故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的 y 值大于 0 17.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴ ,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】3 解析:1≤m≤ 2【解析】【分析】根据题意求得 x ,结合已知 2≤x ≤3,即可求得 m 的取值范围. 00 【详解】3x 当 ∴ 当 0时, ,y m 3 , x 0m 3 3时, 3 m , 1, mx 033 2 x 2 2 m ,当 时, , 0 m 3 m 的取值范围为:1≤m≤ 23 故答案为:1≤m≤ 2【点睛】本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围 求得 m 的取值范围是解题的关键. 18.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根 据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式 即可.【详解】解:设的中点为,过作的1 4 5 8解析: x 【解析】【分析】设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF ,通过待定系数法求出直线 AB 的函数 AB EF 表达式,根据 EF 可以得到直线 的 值,再求出 AB 中点坐标,用待定系数法求 k 出直线 EF 的函数表达式即可.【详解】解:设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF∵A(1,3),B(2,-1)设直线 的解析式为 AB y k x b ,把点 A 和 B 代入得: 1 1b 32k b 1解得: k 4 k 1 b 7 14x 7∴ y 31 1 2 ∵D 为 AB 中点,即 D( , ) 2 23 ∴D( ,1) 2y k x b 设直线 EF 的解析式为 2 2AB∵ EF k k 11 2∴ 1 ∴ k 2 4y k x b ∴把点 D 和 k 代入 可得: 2 2 21 3 1 b 42 25 ∴b 82 1 5 8x ∴ y 4 1 5 x 上 ∴点 C(x ,y)在直线 y 4 81 故答案为 x 4 5 8【点睛】本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根 据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.19.8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理 求得 AF 的长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作 AF⊥BC 于点 F ,作解析:8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理求得 AF 的 长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,1111∴S△ABC=AB•PC=BC•AF=×5CP=×6×42222得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,35支付宝的人数所占百分比n%=100100%=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,40微信对应的百分比为:100100%40%,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°, ∴∠ABE+∠BAF=90°. ∵∠ABC=90°, ∴∠ABE+∠EBC=90°, ∴∠BAF=∠EBC . 在 ΔABF 和 ΔBCE 中,∵∠AFB=∠BEC ,AF=BE ,∠BAF=∠EBC , ∴ΔABF ≌ΔBCE . (2)∵∠ABC=90°, ∴∠ABD+∠DBC=90°. ∵∠BED=90°, ∴∠DBE+∠BDE=90°. ∵BD 分∠ABE , ∴∠ABD=∠DBE , ∴∠DBC=∠BDE , ∴BC=CD ,即 ΔBCD 是等腰三角形. 【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明 ΔABF ≌ΔBCE .23.(1)∠D 是直角.理由见解析;(2)234. 【解析】 【分析】(1)连接 AC ,先根据勾股定理求得 AC 的长,再根据勾股定理的逆定理,求得∠D=90°即 可;(2)根据△ACD 和△ACB 的面积之和等于四边形 ABCD 的面积,进行计算即可. 【详解】(1)∠D 是直角.理由如下: 连接 AC .∵AB=20,BC=15,∠B=90°,∴由勾股定理得 AC =20 +15 =625.2 又∵CD=7,AD=24, ∴CD +AD =625, 2 2 2 2 ∴AC =CD +AD , 2 2 2 ∴∠D=90°.1 1 1 1(2)四边形 ABCD 的面积= AD•DC+ AB•BC= ×24×7+ ×20×15=234.2 2 2 2【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆 定理.通过作辅助线,将四边形问题转化为三角形问题是关键.7 7 x 3 (3,4) (9,12) (3)点 坐标为 或24.(1)b 【解析】(2) P【分析】4xy x b1(1)将点 横坐标代入 y 求得点 C 的纵坐标为 4,再把(-3,4)代入C 32求出 b 即可;0 y y (2)求出点 A 坐标,结合点 C 坐标即可判断出当 时, x 的取值范围; 1 2 4 3 4 47 3 a 7a , 7 a a (3)设 P (a,- ),可求出 Q ( ),即可得 PQ= ,再求出 3 314OC OC=5,根据 P Q 求出 a 的值即可得出结论.5【详解】43(1)把 x 代入 y x , 324 得 y .∴C (-3,4) 把点C(3,4)代入 yx b 1,7 得b . (2)∵b=7 ∴y=x+7,当 y=0 时,x=-7,x=-3 时,y=4, 0 yy 7 3.∴当 时,x 124x (3) 点 为直线 y 上一动点,P 3 4( , ) 设点 坐标为 a a. P 3∵P Q / /x 轴,44把 y y x7 4 ,得 a .7a 代入x 3 3 4a 7,a 点Q 坐标为 , 334 7P Q a a 7 a 73 3 (3,4 ) 又 点 坐标为 C, OC 3 4 52 2 14PQ OC 1457a 7 14 33 a 9或 .解之,得a (3,4) (9,12) 或 .点 坐标为 P 【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长. 25.(1)详见解析;(2)报亭到小路端点 A 的距离 50m . 【解析】 【分析】(1)作 AC 的垂直平分线交 AD 与点 H ,进而得出答案; (2)利用勾股定理以及线段垂直平分线的性质得出即可. 【详解】(1)如图所示:H 点即为所求;(2)根据作图可知: H H ,A = C设 AH =xm ,则 DH =(80﹣x )m ,HC =xm , 在 Rt △DHC 中,D H 2 C D 2 HC 2 ,(80﹣x)40 x2 ,∴ 2 2 解得:x =50,答:报亭到小路端点 A 的距离 50m . 【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得 出 H H ,进而利用勾股定理得出是解题关键.A = C四、压轴题26.(1)①6;②5 或﹣3;(2)直线 AC 的表达式为:y =﹣x+3 或 y =x+1;(3)m 的 取值范围为﹣3≤m ≤﹣2+ 3 或 2﹣ 3 ≤m ≤3. 【解析】 【分析】(1)①由矩形的性质即可得出结果; ②由矩形的性质即可得出结果;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3 求出正方形 AGCH 的 边长为 3,分两种情况求出直线 AC 的表达式即可;1(3)由题意得出点 M 在直线 y =2 上,由等边三角形的性质和题意得出OD =OE = DE =23 OD= 3 ,分两种情况:1,EF =DF =DE =2,得出 OF = ①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的 坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形,则 3 3或 2﹣点 M 的坐标为(﹣2+ ,2);得出 m 的取值范围为﹣3≤m ≤﹣2+ 3 ≤m ≤1;②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3≤m ≤3 或 2﹣则点 M 的坐标为(2﹣ ,2);得出 m 的取值范围为 2﹣ 3 ≤m ≤1;即可得出结论. 【详解】解:(1)①∵b =﹣2,∴点 B 的坐标为(﹣2,0),如图 2﹣1 所示: ∵点 A 的坐标为(1,2),∴由矩形的性质可得:点 A ,B 的“相关矩形”的面积=(1+2)×2=6, 故答案为:6; ②如图 2﹣2 所示:由矩形的性质可得:点 A ,B 的“相关矩形”的面积=|b ﹣1|×2=8, ∴|b ﹣1|=4, ∴b =5 或 b =﹣3, 故答案为:5 或﹣3;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3, ∵点 C 在直线 y =﹣1 上,点 A ,C 的“相关矩形”AGCH 是正方形, ∴正方形 AGCH 的边长为 3,当点 C 在直线 x =1 右侧时,如图 3﹣1 所示: CG =3,则 C (4,﹣1),设直线 AC 的表达式为:y =kx+a ,2 k a则,, 1 4k ak 1解得;a 3∴直线 AC 的表达式为:y =﹣x+3;当点 C 在直线 x =1 左侧时,如图 3﹣2 所示: CG =3,则 C (﹣2,﹣1),设直线 AC 的表达式为:y =k ′x+b ,2 kb则,1 2k bk 1 解得:, b 1∴直线 AC 的表达式为:y =x+1,综上所述,直线 AC 的表达式为:y =﹣x+3 或 y =x+1; (3)∵点 M 的坐标为(m ,2), ∴点 M 在直线 y =2 上,∵△DEF 是等边三角形,顶点 F 在 y 轴的正半轴上,点 D 的坐标为(1,0), 1∴OD =OE = DE =1,EF =DF =DE =2,2 3 OD= 3 ,∴OF =分两种情况:如图 4 所示:①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3 则点 M 的坐标为(﹣2+ ,2)或(2﹣ ,2);3 3 m 1≤ ≤ ;∴m 的取值范围为﹣3≤m ≤﹣2+ 或 2﹣ ②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 22+ 3 2 , );则点 M 的坐标为(2﹣ , )或(﹣ 3 m 3 2+ 3 1 m ∴m 的取值范围为 2﹣ ≤ ≤ 或﹣ ≤ ≤﹣ ; 3 或 2﹣≤ ≤ .3 m 3综上所述,m 的取值范围为﹣3≤m ≤﹣2+【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD x 轴于D,BE⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD x 轴于D,BE x 轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,111∴S△ABC=S 梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;222(2)作CH // x 轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和 定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角 形, 【解析】 【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF ≌ED C (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD ≌DCE(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】即可得解; 即可得解;(1)如下图,数量关系:AD =DE.证明:∵ABC是等边三角形∴AB =BC ,B =BAC =BCA =60∵DF ∥AC BF D =BAC ∴ ∴ ,∠BDF =∠BCAB =BF D =B D F =60是等边三角形,AFD =120∴BDF ∴DF =BD∵点 D 是 BC 的中点 ∴BD =CD ∴DF =CD∵CE 是等边ABC 的外角平分线DCE =120=AF D∴ ∵ABC是等边三角形,点 D 是 BC 的中点∴AD ⊥BC AD C =90 ∴ ∵ ∴ 在 BDF =ADE =60ADF =ED C =30 EDC ADF 与 中A F D =EC D=C DDFADF =ED CADF ≌ED C(ASA)∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC是等边三角形∴AB=BC ,B =BAC =BCA=60∵DF∥ACBF D =BAC ,BDF =BC AB =BF D =B D F=60∴∴是等边三角形,AFD=120∴BDF∴BF=BD∴AF=DC∵CE 是等边ABC的外角平分线DCE=120=AF D∴ABD∵∠ADC是的外角AD C =B +FA D=60+FA D∴∵AD C =ADE +C DE=60+C D E ∴∠FAD=∠CDEDCE在AFD与中A F D =DCE=C DAFFAD =ED CAFD ≌DCE(ASA)∴∴AD=DE;(3)如下图,A D E是等边三角形.。
2021-2022学年河南省南阳十三中八年级(上)第二次月考数学试卷(解析版)
2021-2022学年河南省南阳十三中八年级第一学期第二次月考数学试卷一、填空:(每小题3分,共30分)1.下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.同旁内角互补2.满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=3:4:5C.b2=a2﹣c2D.∠A=∠B﹣∠C3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去4.三角形的三边长分别为a,b,c,且满足a4﹣b4+b2c2﹣a2c2=0,则该三角形的形状是()A.任意等腰三角形B.等腰直角三角形C.等腰三角形或直角三角形D.任意直角三角形5.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交6.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.267.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距()A.12海里B.13海里C.14海里D.15海里8.如图,在△ABC中,分别以点A和B为圆心,大于和长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ABC的周长为17,AB=7,则△ADC的周长是()A.7B.10C.15D.179.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°10.如图,在△ABC中,AB=AC,∠B=∠C=45°,D、E是斜边BC上两点,且∠DAE =45°,过点A作AF⊥AD,垂足是A,过点C作CF⊥BC,垂足是C.交AF于点F,连接EF,下列结论:①△ABD≌△ACF;②DE=EF;③若S△ADE=10,S△CEF=4.则S△ABC=24;④BD+CE=DE.其中正确的是()A.①②B.②③C.①②③D.①③④二、填空(每小题3分,共15分)11.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=°.12.在Rt△ABC中,AB=5,BC=4,则AC的长是.13.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为m2.14.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP与△DCE全等.15.如图所示,在△ABC中,AB=AC,直线EF是AB的垂直平分线,D是BC的中点,M 是EF上一个动点,△ABC的面积为12,BC=4,则△BDM周长的最小值是.三、解答题:(共75分)16.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,根据下列各边的长度,判断各三角形是否为直角三角形,并指出哪一个角是直角.(1)a=2,b=,c=3;(2)a=2n,b=n2﹣1,c=n2+1;(n>1)17.已知∠MAN.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作∠MAN的平分线AE;②在AE上任取一点F,作AF的垂直平分线分别与AM、AN交于P、Q;(2)在(1)的条件下,线段AP与AQ有什么数量关系,请直接写出结论.18.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?19.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.20.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,将△ABC沿AD折叠,使点C 落在AB上的点E处,求DB的长.21.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE 交AD的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.22.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图①),后人称之为“赵爽弦图”,流传至今.如图①是用四个能够完全重合的直角三角形拼成的图形,其中直角边长分别为a,b,斜边长为c,用含a,b,c的代数式表示:(1)大正方形的面积为;小正方形的面积为;(2)四个直角三角形的面积和为,根据图中面积关系,可列出a,b,c之间的关系式为;(3)如图②,以直角三角形的三边为直径,分别向外部作半圆,则S1,S2,S3满足的关系是;(4)如图③直角三角形的两条直角边长分别为3、5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积和为.23.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是;线段DE与DF的位置关系是.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且BE=AF,上述结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且BE=AF=AB=2,请直接写出△DEF的面积.参考答案一、填空:(每小题3分,共30分)1.下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.同旁内角互补【分析】利用对顶角的性质、线段的性质及平行线的性质分别判断后即可确定正确的选项.解:A、对顶角相等,正确,是真命题,符合题意;B、两点之间,线段最短,故原命题错误,是假命题,不符合题意;C、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;D、两直线平行,同旁内角互补,故原命题错误,是假命题,不符合题意.故选:A.2.满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=3:4:5C.b2=a2﹣c2D.∠A=∠B﹣∠C【分析】利用三角形内角和定理和勾股定理逆定理进行计算可得答案.解:A、∵∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∴3x+4x+5x=180°,∴x=15°,∴∠A=3x=45°,∠B=4x=60°,∠C=5x=75°,∴△ABC不是直角三角形,符合题意.B、∵a:b:c=3:4:5,∴32+42=52,∴△ABC为直角三角形.不符合题意;C、∵b2=a2﹣c2,∴b2+c2=a2,∴△ABC为直角三角形.不符合题意;D、∵∠A=∠B﹣∠C,∴∠B﹣∠C+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC为直角三角形.不符合题意.故选:A.3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.4.三角形的三边长分别为a,b,c,且满足a4﹣b4+b2c2﹣a2c2=0,则该三角形的形状是()A.任意等腰三角形B.等腰直角三角形C.等腰三角形或直角三角形D.任意直角三角形【分析】先将已知等式左边因式分解后判定三角形形状.解:∵a4﹣b4+b2c2﹣a2c2=0.∴(a2﹣b2)(a2+b2)﹣c2(a2﹣b2)=0.∴(a2﹣b2)(a2+b2﹣c2)=0.∴(a﹣b)(a+b)(a2+b2﹣c2)=0.∵三角形的三边长分别为a,b,c.∴a+b>0.∴a﹣b=0或a2+b2=c2.∴该三角形是等腰三角形或直角三角形.故选:C.5.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交【分析】用反证法解题时,要假设结论不成立,即假设a与b不平行,即a与b相交.解:∵原命题“在同一平面内,若a⊥c,b⊥c,则a∥b”,用反证法时应假设结论不成立,即假设“a与b相交”.故选:D.6.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.26【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的矩形长度增加而宽度不变,求出新矩形的对角线长即可.解:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24,连接AC,∵四边形ABCD是长方形,AB=24,宽AD=10,∴AC====26,∴蚂蚁从A点爬到C点,它至少要走26的路程.故选:D.7.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距()A.12海里B.13海里C.14海里D.15海里【分析】根据题意得出∠AOB=90°,根据勾股定理即可得到结论.解:由题意可得:BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,∴AB==15(海里),答:甲、乙两渔船相距15海里,故选:D.8.如图,在△ABC中,分别以点A和B为圆心,大于和长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ABC的周长为17,AB=7,则△ADC的周长是()A.7B.10C.15D.17【分析】先根据题意得出MN是线段AB的垂直平分线,故可得出AD=BD,据此可得出结论.解:∵根据题意得出MN是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BC.∵△ABC的周长为17,AB=7,∴△ADC的周长=AC+BC=△ABC的周长﹣AB=17﹣7=10.故选:B.9.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=75°,即可求出∠ODC的度数,进而求出∠CDE的度数.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.10.如图,在△ABC中,AB=AC,∠B=∠C=45°,D、E是斜边BC上两点,且∠DAE =45°,过点A作AF⊥AD,垂足是A,过点C作CF⊥BC,垂足是C.交AF于点F,连接EF,下列结论:①△ABD≌△ACF;②DE=EF;③若S△ADE=10,S△CEF=4.则S△ABC=24;④BD+CE=DE.其中正确的是()A.①②B.②③C.①②③D.①③④【分析】只要证明△ABD≌△ACF,△AED≌△AEF即可解决问题;解:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AF⊥AD,BC⊥CF,∴∠DAF=∠BAC=∠ECF=90°,∴∠BAD=∠CAF,∠B=∠ACF=45°,∴△ABD≌△ACF,故①正确∴AD=AF,BD=CF,∵AE=AE,∠EAD=∠EAF=45°,AD=AF,∴△AED≌△AEF,∴DE=DF,故②正确,∵若S△ADE=10,S△CEF=4.∴S△ABD+S△AEC=14,∴S△ABC=14+10=24,故③正确,∵EC+CF>EF,∴BD+CE>DE,故④错误,故选:C.二、填空(每小题3分,共15分)11.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=50°.【分析】易证△ABC和△ADC均为直角三角形,即可证明RT△ABC≌RT△ADC,可得∠1=∠CAD,即可解题.解:∵∠B=∠D=90°,∴△ABC和△ADC均为直角三角形,在RT△ABC和RT△ADC中,,∴RT△ABC≌RT△ADC(HL),∴∠1=∠CAD,∴∠2=90°﹣∠CAD=50°.故答案为50°.12.在Rt△ABC中,AB=5,BC=4,则AC的长是3或.【分析】分两种情况,①AB=5为直角边,②AB=5为斜边,然后根据勾股定理即可得到结论.解:①当AB=5为直角边时,根据勾股定理得,AC===;②当AB=5为斜边时,AC===3,综上所述,AC的长是3或,故答案为:3或.13.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为96m2.【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,那么△ABC的面积减去△ACD的面积就是所求的面积.解:如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×15×20﹣×9×12=96(平方米).故答案为:96.14.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为1或7秒时,△ABP与△DCE全等.【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当时.△ABP和△DCE全等.故答案为:1或7.15.如图所示,在△ABC中,AB=AC,直线EF是AB的垂直平分线,D是BC的中点,M 是EF上一个动点,△ABC的面积为12,BC=4,则△BDM周长的最小值是8.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8.故答案为:8.三、解答题:(共75分)16.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,根据下列各边的长度,判断各三角形是否为直角三角形,并指出哪一个角是直角.(1)a=2,b=,c=3;(2)a=2n,b=n2﹣1,c=n2+1;(n>1)【分析】(1)根据a、b、c的值,可以计算出a2+c2和b2的值,然后即可判断该三角形是否为直角三角形;(2)根据a、b、c的值,可以计算出a2+b2和c2的值,然后即可判断该三角形是否为直角三角形.解:(1)∵a=2,b=,c=3,∴a2+c2=13,b2=13,∴a2+c2=b2,∴△ABC是直角三角形,∠B是直角;(2)∵a=2n,b=n2﹣1,c=n2+1,∴a2+b2=(2n)2+(n2﹣1)2=n4+2n2+1,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,∴△ABC是直角三角形,∠C是直角.17.已知∠MAN.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作∠MAN的平分线AE;②在AE上任取一点F,作AF的垂直平分线分别与AM、AN交于P、Q;(2)在(1)的条件下,线段AP与AQ有什么数量关系,请直接写出结论.【分析】(1)①利用角平分线的作法得出即可;②利用垂直平分线的作法得出即可;(2)利用垂直平分线的性质得出∠PGA=∠QGA,进而得出△PAG≌△QAG(ASA),则AP=AQ,即可得出答案.解:(1)如图所示:①AE为所求作的角平分线;②PQ为所求作的垂直平分线;(2)AP=AQ.证明:∵PQ是AF的垂直平分线,∴∠PGA=∠QGA=90°,∵AE是∠MAN的平分线,∴∠PAG=∠QAG,在△PAG和△QAG中,,∴△PAG≌△QAG(ASA),∴AP=AQ.18.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据勾股定理即可得到结论.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM===10,∴BC﹣BM=7,∴他应该往回收线7米.19.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.【分析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.20.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,将△ABC沿AD折叠,使点C 落在AB上的点E处,求DB的长.【分析】根据折叠的性质得到AE=AC=5,DC=DE,∠AED=∠BED=∠C=90°,根据勾股定理即可得到结论.解:根据题意,得AE=AC=5,DC=DE,∠AED=∠BED=∠C=90°.设DC=x,则DE=x,BD=12﹣x.在Rt△BDE中,由勾股定理,得x2+(13﹣5)2=(12﹣x)2,解得,∴CD=,∴BD=12﹣x=,故DB的长为.21.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE 交AD的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.22.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图①),后人称之为“赵爽弦图”,流传至今.如图①是用四个能够完全重合的直角三角形拼成的图形,其中直角边长分别为a,b,斜边长为c,用含a,b,c的代数式表示:(1)大正方形的面积为(a+b)2;小正方形的面积为c2;(2)四个直角三角形的面积和为2ab,根据图中面积关系,可列出a,b,c之间的关系式为a2+b2=c2;(3)如图②,以直角三角形的三边为直径,分别向外部作半圆,则S1,S2,S3满足的关系是S1+S2=S3;(4)如图③直角三角形的两条直角边长分别为3、5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积和为7.5.【分析】(1)根据正方形的面积公式即可得到结论;(2)根据三角形的面积公式和勾股定理即可得到结论;(3)根据勾股定理和圆的面积公式解答即可.(4)根据勾股定理和圆的面积公式解答即可.解:(1)大正方形的面积为(a+b)2;小正方形的面积为c2;故答案为:(a+b)2,c2;(2)四个直角三角形的面积和=4×ab=2ab,∵4×ab+c2=(a+b)2,∴a2+b2=c2,故a,b,c之间的关系式为a2+b2=c2,故答案为:2ab,a2+b2=c2;(3)S1,S2,S3满足的关系是S1+S2=S3,∵S1+S2=π()2+π()2,S3=π()2,∵a2+b2=c2.∴S1+S2=S3.故答案为:S1+S2=S3;(4)图中两个月形图案(阴影部分)的面积和:S1+S2=π()2+π()2+S3﹣π()2=S△ABC=×3×5=7.5,故答案为:7.5.23.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是DE=DF;线段DE与DF的位置关系是DE⊥DF.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且BE=AF,上述结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且BE=AF=AB=2,请直接写出△DEF的面积.【分析】(1)由三角形中位线定理可得∴,,DF∥AB,DE∥AC,由等腰直角三角形的性质可得结论;(2)由“SAS”可证△BDE≌△ADF,可得DE=DF,∠BDE=∠ADF,由余角的性质可得∠EDF=90°,可得结论;(3)由“SAS”可证△BDE≌△ADF,可得DE=DF,∠BDE=∠ADF,由余角的性质可得∠EDF=90°,由勾股定理可求EF的长,即可求解.解:(1)∵点E、F、D分别是AB、AC、BC的中点,∴,,DF∥AB,DE∥AC,∴∠ABC=∠FDC,∠ACB=∠EDB,∵AB=AC,∠A=90°,∴DE=DF,∠BDE=∠FDC=∠C=45°,∴∠EDF=90°,即DE⊥DF,故答案为:DE=DF;DE⊥DF;(2)结论仍然成立,理由如下:如图②,连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴,∠BAC=∠CAD=45°=∠B=∠C,又∵BE=AF,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴,∠BAC=∠CAD=45°=∠B=∠C,∴∠DAF=∠DBE=135°,又∵BE=AF,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△DEF是等腰直角三角形,∵BE=AF=AB=2,∴AB=6,AE=8,∴EF===2,∴DE=DF==,∴S△DEF=×DE=DF=17.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)第二次月考数学试卷解析版 一、选择题 1.下列各点中在第四象限的是( ) A .()2,3-- B .()2,3- C .()3,2- D .()3,22.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13-3.下列根式中是最简二次根式的是( )A .23B .3C .9D .124.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m < 5.计算021( 3.14)()2π--+=( ) A .5 B .-3 C .54 D .14- 6.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .107.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-8.下列以a 、b 、c 为边的三角形中,是直角三角形的是( )A .a =4,b =5,c =6B .a =5,b =6,c =8C .a =12,b =13,c =5D .a =1,b =1,c =3 9.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题11.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.12.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;13.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.14.若分式293x x --的值为0,则x 的值为_______. 15.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.16.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.17.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.18.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.19.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.20.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题21.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.22.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标.23.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是25的整数部分,求2a b c +-的平方根.24.如图,四边形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =10,OC =8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.(1)求CE 的长;(2)求点D 的坐标.25.如图,四边形ABCD 中,CD ∥AB ,E 是AD 中点,CE 交BA 延长线于点F .(1)试说明:CD =AF ;(2)若BC =BF ,试说明:BE ⊥CF .四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.27.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.29.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE于点M ,若=3AC MC ,请直接写出DB BC的值.30.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可.【详解】解:A .(-2,-3)在第三象限;B .(-2,3)在第二象限;C .(3,-2)在第四象限;D .(3,2)在第一象限;故选:C .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.2.A解析:A 【解析】【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=,∴13AP AB ==∴132PC =,∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:132)132-=;故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.3.B解析:B【解析】【分析】【详解】A 236B 3C ,故此选项错误;D =故选B .考点:最简二次根式.4.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.5.A解析:A【解析】【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】021( 3.14)()1452π--+=+= 故选:A【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.6.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.7.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.8.C解析:C【解析】【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可.【详解】解:A 、因为42+52=41≠62,所以以a 、b 、c 为边的三角形不是直角三角形;B 、因为52+62≠82,所以以a 、b 、c 为边的三角形不是直角三角形;C 、因为122+52=132,所以以a 、b 、c 为边的三角形是直角三角形;D 、因为12+12≠)2,所以以a 、b 、c 为边的三角形不是直角三角形;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P 所在的象限.解答:解:∵点P 的横坐标为正,纵坐标为负,∴点P (2,-3)所在象限为第四象限.故选D .10.D解析:D【解析】【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题11.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x 的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.12.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 13.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到解析:0【解析】根据题意,由36x =时,代入3y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.14.-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩, 解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.17.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.18.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:3【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出:BC=22EC BE -=2242-=23,∴菱形的面积=AE •BC=83.故答案为:83.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.19.15【解析】【分析】延长AD 到点E ,使DE=AD=6,连接CE ,可证明△ABD≌△CED,所以CE=AB ,再利用勾股定理的逆定理证明△CDE 是直角三角形,即△ABD 为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD 到点E ,使DE =AD =6,连接CE ,可证明△ABD ≌△CED ,所以CE =AB ,再利用勾股定理的逆定理证明△CDE 是直角三角形,即△ABD 为直角三角形,进而可求出△ABD 的面积.【详解】解:延长AD 到点E ,使DE =AD =6,连接CE ,∵AD 是BC 边上的中线,∴BD =CD ,在△ABD 和△CED 中,BD CD ADB EDC AD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CED (SAS ),∴CE =AB =5,∠BAD =∠E ,∵AE =2AD =12,CE =5,AC =13,∴CE 2+AE 2=AC 2,∴∠E =90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.20.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题21.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD =∠DBE ,∴∠DBC =∠BDE ,∴BC =CD ,即ΔBCD 是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF ≌ΔBCE .22.(1)94 ;(2)P(1.5,0) 或 (-4.5,0) 【解析】【分析】(1)分别求直线与x,y 轴交点坐标,再求面积.(2)利用面积,可求得P 点距离A 点的距离,求出P 点坐标.【详解】(1) 由x=0得:y=3,即:B (0,3).由y=0得:2x+3=0,解得:32x =-∴OA =32,OB =3 . ∴△AOB 的面积:1393224⨯⨯=. (2) ∵△ABP 的面积是92, OB =3 3922AP ∴= ∴AP =3∴P (1.5,0) 或 (-4.5,0)【点睛】本题考查了一次函数图象上点的坐标特征.23.【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵25=20,又4205<<,∴25的整数部分为4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:5±.【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.24.(1)4 (2)(0,5)【解析】【分析】(1)根据轴对称的性质以及勾股定理即可求出线段C 的长;(2)在Rt △DCE 中,由DE =OD 及勾股定理可求出OD 的长,进而得出D 点坐标.【详解】解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在Rt △ABE 中,AE =AO =10,AB =8,∴BE =22221086AE AB -=-=,∴CE =BC ﹣BE =4;(2)在Rt △DCE 中,DC 2+CE 2=DE 2,又∵DE =OD ,∴()22284OD OD -+=,∴OD =5, ∴()05D ,.【点睛】本题主要考查勾股定理及轴对称的性质,关键是根据轴对称的性质得到线段的等量关系,然后利用勾股定理求解即可.25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)由CD ∥AB ,可得∠CDE =∠FAE ,而E 是AD 中点,因此有DE =AE ,再有∠AEF =∠DEC ,所以利用ASA 可证△CDE ≌△FAE ,再利用全等三角形的性质,可得CD =AF ; (2)先利用(1)中的三角形的全等,可得CE =FE ,再根据BC =BF ,利用等腰三角形三线合一的性质,可证BE ⊥CF .【详解】证明:(1)∵CD ∥AB ,∴∠CDE =∠FAE ,又∵E 是AD 中点,∴DE =AE ,又∵∠AEF =∠DEC ,∴△CDE ≌△FAE , ∴CD =AF ;(2)∵BC =BF ,∴△BCF 是等腰三角形,又∵△CDE ≌△FAE ,∴CE =FE ,∴BE ⊥CF (等腰三角形底边上的中线与底边上的高相互重合).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明△CDE ≌△FAE 是正确解答本题的关键.四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫-⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒,∵CD 平分ACB ∠,∴45ECD ∠=︒,∴CDE △是等腰直角三角形,∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒,∴MEC NDE ∠=∠,在DNE △和EMC △中,NDE MEC DNE EMC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS ≅,设DN EM x ==,EN CM y ==,根据图象列式:DO DN CM EN EM CO +=⎧⎨+=⎩,即232x y x y ⎧+=⎪⎨⎪+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴43EN CM ==, ∴44,33E ⎛⎫- ⎪⎝⎭;②如图,CDE ∠是直角,过点E 作EG x ⊥轴于点G ,同理CDE △是等腰直角三角形,且可以证得()CDO DEG AAS ≅,∴2DG CO ==,23EG DO ==, ∴28233GO GD DO =+=+=, ∴82,33E ⎛⎫- ⎪⎝⎭,综上:44,33E ⎛⎫-⎪⎝⎭,82,33E ⎛⎫- ⎪⎝⎭. 【点睛】 本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠,11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.29.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.30.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.。