苏科版九年级下册单元试卷第7章锐角三角形
苏科版九年级数学下《第七章锐角三角函数》单元检测试卷有答案
2017-2018学年度第二学期苏科版九年级数学下册第七章锐角三角函数单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在中,,,,则A. B. C. D.2.如图,为了测量学校操场上旗杆的高度,在距旗杆米的处用测倾器测得旗杆顶部的仰角为,则旗杆的高度为()A.米B.米C.米D.米3.是锐角,且,则()A. B.C. D.4.如图,一艘海轮位于灯塔的北偏东方向,距离灯塔为海里的点处,如果海轮沿正南方向航行到灯塔的正东方向处,那么海轮航行的距离的长是()A.海里B.海里C.海里D.海里5.在中,,,那么等于()A. B. C. D.6.将一副直角三角板中的两块按如图摆放,连接,则的值为()A. B.C. D.7.水库大坝横断面是梯形,坝顶宽,坝高,斜坡的坡角是,斜坡的坡比,则坝底的长是.A. B.C. D.8.在中,,若,则的值是()A. B. C. D.9.如图所示,是平面镜,光线从点出发经上的点反射后到达点,若入射角为,,,垂足分别为,,且,,,则的值是()A. B. C. D.10.在离地面高度米处引两根拉线固定电线杆,两根拉线与电线杆在同一平面内,拉线与地面的夹角为,则两根拉线与地面的交点间的距离为()A.米B.米C.米D.米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,从点处观测点的仰角为,则从点处观测点的俯角为________.1 / 412.某厂家心开发的一种电动车如图,它的大灯射出的光线、与地面所夹的锐角分别是和.大灯离地面的距离为,则该车大灯照亮地面的宽度是________.(不考虑其他因素)(参考数据:,,,).13.如图,若某人在距离大厦底端处米远的地测得塔顶的仰角是,则塔高________米.(,精确到米)14.如图,在东西方向的马路处,测得草坪中的雕塑在北偏东方向上,在与相距米的马路处,测得在北偏东方向上,则到马路的距离________米(用根号表示).15.如图是某水库大坝的横断面,若坡面的坡度,则斜坡的坡角________度.16.从处测得处仰角,那么从处测得处的俯角________.17.中,,,则________.18.如图,在一张圆桌(圆心为点)的正上方点处吊着一盏照明灯,实践证明,桌子边沿处的光的亮度与灯距离桌面的高度有关,且当时,桌子边沿处点的光的亮度最大,设,则此时灯距离桌面的高度________(结果精确到)(参考数据:;;)19.国际田联钻石联赛美国尤金站比赛中,百米跨栏飞人刘翔以的成绩打破世界记录并轻松夺冠.、两镜头同时拍下了刘翔冲刺时的画面(如图),从镜头观测到刘翔的仰角为,从镜头观测到刘翔的仰角为,若冲刺时的身高大约为,请计算、两镜头之间的距离为________.(结果保留两位小数,,)20.如图,在某监测点处望见一艘正在作业的渔船在南偏西方向的出,若渔船沿北偏西方向以海里/小时的速度航行,航行半小时后到达处,在处观测到在的北偏东方向上,则、之间的距离为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:.22.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点,再在河这边沿河边取两点、,在点处测得在北偏东方向上,在点处测得点在西北方向上,量得长为米,请你求出该河段的宽度.(结果保留根号)23.如图是某一过街天桥的示意图,天桥高为米,坡道倾斜角为,在距点米处有一建筑物.为方便行人上下天桥,市政部门决定减少坡道的倾斜角,但要求建筑物与新坡角处之间地面要留出不少于米宽的人行道.2 / 4若将倾斜角改建为(即),则建筑物是否要拆除?()若不拆除建筑物,则倾斜角最小能改到多少度(精确到)?24.如图,某人在山坡坡脚处测得电视塔塔尖的仰角为,沿山坡走到处测得塔尖的仰角为,已知为米,山坡坡度,、、三点在同一直线上.求此人所在位置点的铅直高度.(结果保留根号形式)25.游艇在湖面上以千米/小时的速度向正东方向航行,在处看到灯塔在游艇北偏东方向上,航行小时到达处,此时看到灯塔在游艇北偏西方向上.求灯塔到航线的最短距离(答案可以含根号).26.山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角,量得树干倾斜角,大树被折断部分和坡面所成的角,.求的度数;求这棵大树折点到坡面的距离.(结果精确到个位,参考数据:,,)答案1.A2.A3.B4.C5.C6.C7.D8.D9.D10.B11.12.13.14.15.16.17.18.19.20.21.解:..3 / 422.解:过作于点,设,由题意得:,,∴,,∵米,∴,解得:,即河宽为米.23.解:当时,在中,∵,,∴,在中,∵,∴,∵,因此建筑物要拆除;若不拆除建筑物,则最长可以是,在中,∵,,∴,因此倾斜角最小能改到.24.此人所在位置点的铅直高度为米.25.灯塔到航线的最短距离为千米.26.折点距离坡面约为米.4 / 4。
苏科版九年级下《第七章锐角三角函数》单元检测试题(含答案)
2017-2018学年度第二学期苏科版九年级数学下册第七章锐角三角函数单元检测试题考试总分: 120 分考试时间: 120 分钟一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知锐角满足,则锐角的值为()A. B. C. D.2.直升飞机在离地面米的上空测得上海东方明珠底部的俯角为,此时直升飞机与上海东方明珠底部之间的距离是()A.米B.米C.米D.米3.已知,下列各式:、、由小到大排列为()A. B.C. D.4.在中,∠,,,且,则∠的度数为()A. B. C.′ D.′5.如图,小明为了测量其所在位置点到河对岸点之间的距离,沿着与垂直的方向走了米,到达点,测得∠,那么等于()A.米B.米C.米D.米6.数学活动课上,小敏、小颖分别画了和,数据如图,如果把小敏画的三角形面积记作,小颖画的三角形面积记作,那么你认为()A. B.C. D.不能确定7.如图,在中,∠,∠,,则的值为()A. B. C. D.8.一根竹竿长米,先像靠墙放置,与水平夹角为,为了减少占地空间,现将竹竿像′′放置,与水平夹角为,则竹竿让出多少水平空间()A. B.C. D.9.在中,∠,把∠的邻边与对边的比叫做∠的余切,记作.则下列关系式中不成立的是()A. B.C. D.10.如图,已知一商场自动扶梯的长为米,高度ℎ为米,自动扶梯与地面所成的夹角为,则的值等于()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,从点测得树的顶端的仰角为,米,则树高________米(结果精确到米).计算:________(结果保留根号).12.如图,在四边形中,∠,∠,∠,∠,.则的长________.13.如图,在中,是斜边上的中线,已知,,则的值是________.14.如图,小明要测量河内小岛到河边公路的距离,在点测得∠,在点测得∠,又测得米,则小岛到公路的距离为________米.15.新平县城在“旧城改造”中,计划在城内一块如图所示空地上,种植草皮美化环境,已知这种草皮每平米要元,买这种草皮至少需________元.16.如图,小刚同学在广场上观测新华书店楼房墙上的电子屏幕,点是小刚的眼睛,测得屏幕下端处的仰角为,然后他正对屏幕方向前进了到达处,又测得该屏幕上端处的仰角为,延长与楼房垂直相交于点,测得,则该屏幕上端与下端之间的距离为________.17.一棵树因雪灾于处折断,测得树梢触地点到树根处的距离为米,∠约,树干垂直于地面,那么此树在未折断之前的高度约为________米.(答案保留根号)18.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离为米,此时梯子的倾斜角为.若梯子底端距离地面的垂直距离为米,梯子的倾斜角为.则这间房子的宽是________米.19.如图是拦水坝的横断面,斜坡的水平宽度为米,斜面坡度为,则斜坡的长为________.20.如图所示,为了测量山的高度,在水平面处测得山顶的仰角为,自沿着方向向前走,到达处,又测得山顶的仰角为,则山高为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:如图,在中,∠,,,于点,求的长.22.如图,要测量点到河岸的距离,在点测得点在点的北偏东方向上,在点测得点在点的北偏西方向上,又测得.求点到河岸的距离.(结果保留整数)(参考数据:,)23.近年来,亚丁湾索马里海域海盗猖獗,严重威胁过往船只的安全,经联合国授权,中国派舰队前往护航.某日,在处的“武汉”号驱逐舰发现正北方向海里的处有一艘海盗船沿直线靠近一艘货船,测得在的南偏西的方向上,为在最短时间内堵截住海盗船,驱逐舰应沿什么方向航行?最少须行驶多少海里(精确到海里)?24.如图,拦水坝的横断面为梯形,坝高米.坝面宽米.根据条件求:斜坡的坡角;坝底宽和斜坡的长(精确列米).25.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时,箱底端点与墙角的距离为,∠.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时,箱底端点与墙角的距离为,∠.箱盖绕点转过的角度为________,点到墙面的距离为________;求箱子的宽(结果保留整数,可用科学计算器).(参考数据:,)26.如图,在直角梯形中,,,,,∠,等边(为固定点)的边长为,边在直线上,.将直角梯形绕点按逆时针方向旋转到①的位置,再绕点按逆时针方向旋转到②的位置,如此旋转下去.将直角梯形按此方法旋转四次,如果等边的边长为,求梯形与等边三角形的重叠部分的面积;将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是,求等边的边长的范围.将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边的边长.答案1.D2.C3.C4.B5.B6.C7.D8.A9.D10.A11.,.12.13.14.15.16.17.18.19.20.21.解:;∵在中,∠,,,∴,∴,∵,∴,∴.22.解:过点作于点,设.在中,∵∠,∠,∴.在中,∵∠,∠,∴.∵,∴,∴.即点到河岸的距离约为.23.解:过作,∵∠,∴∠,∴驱逐舰应沿北偏西方向航行.∵海里,∴(海里).∴最少须行驶海里.24.解:作于点,于点,∵∠,∴∠;∵坝高为米,∴,∵,′,∴,,∴米,,∴米,米.25.26.解:过点作,垂足为,∵,∠,∴∠,∴,,∴,又∵梯形为直角梯形,∴∠∠而∠,∴四边形为矩形,∴,∴,又∵,∴点与重合,∵,又∵,∴直角梯形与等边三角形的重叠部分即为整个直角梯形,.∴重叠部分过点作交于点,交于占,则为等边三角形,过点作,垂足为,在中∠,∠,∴∠∠,∴,∴,,∴,而,梯形重叠部分面积,∴梯形在中,∠,,∴,,,∴,∴等边的边长的范围为:,如图:,中,,∠,∴的面积为:,∴的面积的面积(梯形面积的一半),等边三角形的一边应落在与之间,如图所示,等边的边长为,面积为,∵,∴,∴,设,则,而四边形的面积为梯形的面积的一半,即,在中,,∠,∴,∴,∴,∴,∴(负值舍去),,即此时等边三角形的边长为:.。
苏科版九年级数学下册第七章锐角三角函数单元检测题及答案
11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.
14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为 ,且使关于x的不等式组 有解的概率为________.
三、解答题
15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:
A. B. C. D.
6.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()
A. B. C. D.
7.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()
(2)如果摸出的这两个小球上数字之和为9的概率是 ,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.
参考答案与解析
苏科版九年级下册数学 单元测试卷 第7章 锐角三角函数
的坡面距离是
()
A.4 5 米 B.2 5 米 C.4 米 D.2 3 米
7.如图,已知方格中每个小正方形的边长为 1,且△ABC 的三个顶点均在格点上,则 cos A 的值为 ()
A. 3 B. 5 C.2 3
35 3
D.2 5
5
8.如图,以点 O 为圆心的两个圆中,大圆的弦 AB 切小圆于点 C,OA 交小圆于点 D.若 OD=2,tan∠OAB=12,
5
10.D 【解析】 连接 BE,已知以点 B 为圆心、BC 为半径所画的弧交 AD 于点 E,得
BE=BC=5,∵AB=DC=3,BC=AD=5,∴AE= 2- 2= 52-32=4,∴DE=AD-AE=5-4=1,∴CE= 2 + 2= 32 + 12=
10.∵BC=BE,BF⊥CE,∴点 F 是 CE 的中
第 10 题图
10.如图,在矩形 ABCD 中,AB=3,BC=5,以点 B 为圆心、BC 为半径所画的弧交 AD 于点 E,连接 CE,作
BF⊥CE,垂足为点 F,则 tan∠FBC 的值为
()
A.1 B.2 C. 3 D.1
2 5 10 3
二、填空题(每小题 3 题,共 24 分)
11.在 Rt△ABC 中,cos A=1,那么 sin A 的值是
九年级下册数学苏科版单元测试卷
第 7 章 锐角三角函数
时间:90 分钟
满分:130 分
一、选择题(每小题 3 分,共 30 分)
1.sin 30°的相反数是
A. 3 B.-1 C.- 3 D.- 2
322
2
2.在 Rt△ABC 中,∠ACB=90°,AB=2,AC=1,则 cos A 的值是
苏科版九年级下第7章锐角三角函数及其应用单元测试含答案
< cos������ <
√3 2
< cos������ <
√2 2
如图,某渔船在海面上朝正东方向匀速航行,在 A 处观测到灯塔 M 在北偏东60∘ 方向上,航行半小时 后到达 B 处,此时观测到灯塔 M 在北偏东30∘ 方向 上,那么该船继续航行到达离灯塔距离最近的位置所需时间是( )
A. 10 分钟
第 2 页,共 9 页
若������������ = 16,������������ = 12, 12. 面积为 48 的四边形 ABCD 的对角线������������,������������交于点 O, 则∠������������������ = ______ 度. 13. 在������������ △ ������������������ 中,∠������ = 90∘,若������������ = 2������������ ,则tan������ = ______ . 14. 利用计算器求值(结果精确到0.001): sin55∘ ≈ ______ ; tan45∘ 23′ ≈ ______ . 三、解答题 15. 如图 1,是午休时老师们所用的一种折叠椅.把折叠椅完全平躺时如图 2,长度 B 是 CM 上一点, 现将躺椅如图 3 倾斜放置时, ������������ = 180厘米, ������������ = 50厘米, AM 与地面 ME 成45∘ 角,������������//������������,椅背 BC 与水平线成30∘ 角,其中 BP 是躺 椅的伸缩支架,其与地面的夹角不得小于30∘ . (1)若点 B 恰好是 MC 的黄金分割点(������������ > ������������),人躺在上面才会比较舒适,求 此时点 C 与地面的距离. (结果精确到 1 厘米) (2)午休结束后,老师会把 AM 和伸缩支架 BP 收起紧贴 AB,在(1)的条件下, 求伸缩支架 BP 可达到的最大值. (结果精确到 1 厘米)(参考数据:√2 ≈ 1.4, √3 ≈ 1.7,√5 ≈ 2.2)
苏科版九年级下第7章《锐角三角函数》提优测试卷含答案
(2) 通过计算判断此车是否超速 .(参考数据 : 2 1.41, 3 1.73, 5 2.24 )
22.(8 分 )如图,在一斜坡坡顶 A 处的同一水平线上有一古塔,为测量塔高
BC ,数学老师
带领同学在坡脚 P 处测得斜坡的坡角为
,且 tan
7 ,塔顶 C 处的仰角为 30°,
24
他们沿着斜坡攀行了 50 米 BC ,到达坡顶 A 处,在 A 处测得塔顶 C 的仰角为 60° .
.
13.(2015·杭州校级一模 ) 如图, 在四边形 ABCD 中, A 30 , C 90 , ADB 105 ,
3
si n BD C
, A D ,则4 DC 的长 =
.
2
14.如图,在 ABC 中,已知 AB AC , A 45 , BD AC 于点 D .根据该图可以求出
tan 22.5° =
21. (8 分 )根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速
40 千米 /时,已知交
警测速点 M 到该公路 A 点的距离为 10 2 米, MAB 45 , MBA 30 (如图所示 ),
现有一辆汽车由 A 往 B 方向匀速行驶,测得此车从 (1) 求测速点 M 到该公路的距离 ;
A 点行驶到 B 点所用的时间为 3 秒.
2.正方形网格中,
AOB 如图放置,则 cos
B. csin A a b
D. tan B c
AOB 的值为 ( )
1
2
3
3
A.
B.
C.
D.
2
2
2
3
3.如图, 1 的正切值为 ( )
1
A.
3
1
苏科版九年级数学下册 第七章 锐角三角函数 单元检测试题(有答案)
第七章锐角三角函数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在Rt△ABC中,∠C=90∘,AC=1,BC=3,则∠B的正切值为()A.3B.13C.√1010D.3√10102. 在Rt△ABC中,∠C=90∘,若sin A=35,则cos B的值是()A.4 5B.35C.34D.433. 若α=40∘,则α的正切值ℎ的范围是()A.1 2<ℎ<√22B.√33<ℎ<√32C.1<ℎ<√3D.√33<ℎ<√34. Rt△ABC中,∠C=90∘,若AB=4,∠A=θ,则AC的长为()A.4sinθB.4cosθC.4sinθD.4cosθ5. 已知α为锐角,sin(α−20∘)=√32,则α=()A.20∘B.40∘C.60∘D.80∘6. 在Rt△ABC中,∠C=90∘,下列式子中不一定成立的是()A.tan A=sin Acos AB.sin2A+sin2B=1C.sin2A+cos2A=1D.sin A=sin B7. 已知:在Rt△ABC中,∠C=90∘,sin A=34,则cos B的值为()A.√74B.34C.35D.458. 某市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境.已知这种草皮每平方米售价a元,则购买这种草皮至少需要()A.450√3a元B.225√3a元C.150√3a元D.300√3a9. 如图,已知△ABC中,∠B=90∘,AB=3,BC=√3,OA=OC=√6,则∠OAB的度数为()A.10∘B.15∘C.20∘D.25∘10. 如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为()A.a米B.a cotα米C.a cotβ米D.a(tanβ−tanα)米二、填空题(本题共计10 小题,每题3 分,共计30分,),那么AB=________.11. 在Rt△ABC中,∠C=90∘,BC=3,sin A=1612. 如图,在Rt△ABC中,∠C=90∘,AC=4,AB=5,则sin B=________.13. 如图,△ABC中,∠ACB=90∘,sin B=4,则tan A=________.514. 如图,有A、B两艘船在大海中航行,B船在A船的正东方向,且两船保持20海里的距离,某一时刻这两艘船同时测得在A的东北方向,B的北偏东15∘方向有另一艘船C,那么此时船C与船B的距离是________海里(结果保留根号).15. 如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是________m.16. 如图,小宁想知道校园内一棵大树的高度,已知树垂直于地面,他测得CB的长度为10m,∠ACB=50∘,请你帮他算出树高AB约为________m(参考数据:sin50∘≈0.77,cos50∘≈0.64,tan50∘≈1.2).17. 一名长跑运动员沿着斜角为30∘的斜坡,从B点跑至A点,已知AB=1000米,则运动员的高度下降了________米.18. 一艘船向东航行,上午8时到达B处,看到有一灯塔在它的北偏东60∘,距离为60海里的A处;上午9时到达C处,看到灯塔在它的正北方向.则这艘船航行的速度为________海里/时.19. 新平县城在“旧城改造”中,计划在城内一块如图所示空地上,种植草皮美化环境,已知这种草皮每平米要80元,买这种草皮至少需________元.20. 青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃,如图所示,一天,灰太狼在自家城堡顶部A 处测得懒羊羊所在地B 处的俯角为60∘,然后下到城堡的C 处,测得B 处的俯角为30∘.已知AC =40米,若灰太狼以5m/s 的速度从城堡底部D 处出发,则至少需________秒钟后能抓到懒羊羊.(结果精确到个位√3≈1.7321)三、 解答题 (本题共计 6 小题 ,共计60分 , ) 21. 计算: (1)cos 60∘−tan 45∘tan 60∘−2tan 45∘;(2)2cos 30∘−2sin 30∘+5tan 60∘;(3)12sin 60∘+√22cos 45∘+sin 30∘cos 30∘;(4)tan230∘+2sin60∘cos45∘+tan45∘−tan30∘−cos230∘.22. 已知:如图,CA⊥AO,E、F是AC上的两点,∠AOF>∠AOE.(1)求证:tan∠AOF>tan∠AOE;(2)锐角的正切函数值随角度的增大而________.23. 某学校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动,如图,她在山坡脚A处测得这座楼房顶B点的仰角为60∘,沿山坡向上走到C处再测得B点的仰角为45∘,已知OA=200m,山坡的坡度i=,且O、A、D在同一条直线上.求:√3(1)楼房OB的高度;(2)小红在山坡上走过的距离AC(结果保留根号)24. 在矩形ABCD中,点E,F在边DC上,EF=10米,点G在AB上,AG=52米,若∠EAB= 36∘,∠FGB=72∘,求BC的长(精确到个位).(参考数据:sin36∘≈0.59,cos36∘≈0.81,tan36∘≈0.73,sin72∘≈0.95,cos72∘≈0.31,tan72∘≈3.08)25. 如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方4m的C处出发,沿斜面坡度i=1:1的斜坡CD前进3√2m到达D处,在D处垂直地面放置测量仪DE,测得旗杆顶部A的仰角为30∘.测量仪DE的高为1.5m,求旗杆AB的高度.26. 某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边A点处,测得河的南岸边的点B在其南偏东45∘方向,然后向北走20米到达C点,测得点B在点C的南偏东33∘方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33∘≈0.54,cos33∘≈0.84,tan33∘≈0.65,√2≈1.41)参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:∵ 在Rt△ABC中,∠C=90∘,AC=1,BC=3,∵ ∠B的正切值为:ACBC =13.2.【答案】B【解答】解:在Rt△ABC中,∵ ∠C=90∘,∵ ∠A+∠B=90∘,∵ cos B=sin A.,∵ sin A=35.∵ cos B=35故选B.3.【答案】D【解答】解:∵ tan30∘=√3,tan60∘=√3,一个角的正切值随角的增大而增大,3∵ tan30∘<tan40∘<tan60∘,<ℎ<√3,即√33故选D.4.【答案】B解:Rt△ABC中,∠C=90∘,若AB=4,∠A=θ,cos A=AC,AB∵ AC=4cosθ.故选B.5.【答案】D【解答】∵ α为锐角,sin(α−20∘)=√3,2∵ α−20∘=60∘,∵ α=80∘,6.【答案】D【解答】,sin2A+cos2A=1,sin B=sin(90∘−∠A)=解:根据同角的三角函数的关系:tan A=sin Acos Acos A,可知只有D不正确.故选D.7.【答案】B【解答】解:在Rt△ABC中,∠C=90∘得∠B+∠A=90∘.由一个角的正弦等于它余角的余弦,得cos B=sin A=34,故选:B.8.【答案】C【解答】解:如图,作BD⊥AC于点D,在直角△ADB中,BD=AB⋅sin60∘=10√3,则△ABC的面积是12⋅AC⋅BD=12×30×10√3=150√3.因而购买这种草皮至少需要150√3a元.故选C.9.【答案】B【解答】解:∵ AC2=AB2+BC2=32+(√3)2=12,AO2+CO2=(√6)2+(√6)2=12,∵ AC2=AO2+OC2,∵ ∠O=90∘,∵ OA=OC,∵ ∠OAC=45∘,在Rt△ACB中,∵ tan∠BAC=√33,∵ ∠BAC=30∘,∵ ∠OAB=45∘−30∘=15∘,故选B.10.【答案】D【解答】作DE⊥AB于点E.在直角△AED中,ED=BC=a,∠ADE=α∵ tan∠ADE=AEDE,∵ AE=DE⋅tan∠ADE=a⋅tanα.同理AB=a⋅tanβ.∵ DC=BE=AB−AE=a⋅tanβ−a⋅tanα=a(tanβ−tanα).二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】18【解答】解:在Rt△ABC中,∵ ∠C=90∘,sin A=16=BCAB,∵ AB=3×6=18.故答案为:18.12.【答案】4【解答】解:∵ ∠C=90∘,AC=4,AB=5,∵ sin B=ACAB =45.故答案为:45.13.【答案】34【解答】解:∵ 在Rt△ABC中,∠C=90∘,∵ sin B=bc ,tan A=ab,a2+b2=c2.∵ sin B=45,设b=4x,则c=5x,a=3x.∵ tan A=ab =3x4x=34.14.【答案】20√2【解答】解:过点B作BD⊥AC于点D,由题意可知:∠BAC=45∘,∠ABC=90∘+15∘=105∘,则∠ACB =180∘−∠BAC −∠ABC =30∘,在Rt △ABD 中,BD =AB ⋅sin ∠BAD =20×√22=10√2, 在Rt △BCD 中,BC =BDsin ∠BCD =20√2.答:此时船C 与船B 的距离是20√2海里.故答案为20√2.15.【答案】 30【解答】解:作DF ⊥AB 于F ,交BC 于G .则四边形DEAF 是矩形,∵ DE =AF =10m ,∵ DF // AE ,∵ ∠BGF =∠BCA =60∘,∵ ∠BGF =∠GDB +∠GBD =60∘,∠GDB =30∘,∵ ∠GDB =∠GBD =30∘,∵ GD =GB ,在Rt △DCE 中,∵ CD =2DE ,∵ ∠DCE =30∘,∵ ∠DCB =90∘,在△DCG 和BFG 中,∵ {∠DGC =∠BGF ,∠DCG =∠BFG ,DG =BG ,∵ △DGC≅△BGF(AAS),∵ BF=DC=20m,∵ AB=20+10=30m,故答案为:30.16.【答案】12【解答】,解:由题意得出:tan C=ABBC,∵ tan50∘=AB10∵ AB=10×tan50∘=10×1.2=12(m),故答案为:12.17.【答案】500【解答】解:在Rt△ABC中,∵ AB=1000米,∠BAC=90∘,∵ BC=AB sin∠BAC=1000sin30∘=500(米).故答案为:500.18.【答案】30√3【解答】解:易得∠ABC=30∘,AB=60.∵ BC=AB×cos∠ABC=30√3(海里).∵ 这艘船航行的速度为30√3÷(9−8)=30√3(海里/时).19.【答案】30000【解答】解:作CD⊥AB交BA的延长线于D,∵ ∠BAC=150∘,∵ ∠CAD=30∘,∵ AC=50m,∵ CD=AB×sin30∘=25m,×30×25=375m2,∵ S△ABC=12∵ 所需费用为375×80=30000元,故答案为30000.20.【答案】7【解答】解:根据题意得:∠BCD=90∘−30∘=60∘,∠ABD=60∘,在Rt△BCD中,∵ ∠BCD=60∘,∵ 则BD=CD⋅tan60∘=√3CD,在Rt△ABD中,∵ ∠ABD=60∘,∵ ADBD=tan60∘,即√3CD=√3,解得:CD=20,∵ t=√3CD5≈355=7,∵ 约7秒钟后灰太狼能抓到懒羊羊.故答案为:7.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式=12−1√3−2=2+√32;(2)原式=2×√32−2×12+5√3=6√3−1;(3)原式=√34+12+√34=√3+12;(4)原式=13+√3×√22+1−√33−34=6√6−4√3+712.【解答】解:(1)原式=12−1 3−2=2+√32;(2)原式=2×√32−2×12+5√3=6√3−1;(3)原式=√34+12+√34=√3+12;(4)原式=13+√3×√22+1−√33−34=6√6−4√3+712.22.【答案】增大.【解答】解:(1)∵ CA⊥AO,∵ △FOA和△EOA均为直角三角形.∵ tan∠AOF=AFOA ,tan∠AOE=EAOA.∵ tan∠AOF>tan∠AOE.(2)由(1)可知锐角的正切函数值随角度的增大而增大.23.【答案】高楼OB的高度为200√3m,小玲在山坡上走过的距离AC为200(2√5−√15)m.【解答】解:(1)在Rt△ABO中,∠BAO=60∘,OA=200m.∵ tan60∘=OBOA,即OBOA=√3,∵ OB=√3OA=200√3(m).(2)如图,过点C作CE⊥BO于E,CH⊥OD于H.则OE=CH,EC=OH.根据题意,知i=CHAH =√3,可设CH=x,AH=√3x.在Rt△BEC中,∠BCE=45∘,∵ BE=CE,即OB−OE=OA+AH.∵ 200√3−x=200+√3x.解得x=200(2−√3).在Rt△ACH中,∵ AC2=AH2+CH2,∵ AC2=(2x)2+x2=5x2.∵ AC=√5x=√5×200(2−√3)=200(2√5−√15)(m).答:高楼OB的高度为200√3m,小玲在山坡上走过的距离AC为200(2√5−√15)m.24.【答案】BC的长约为40米.【解答】解:过点F作FM // AE,交AB于点M,过点F作FN⊥AB,垂足为点N,∵ 矩形ABCD,∵ AB // CD,∵ EF=10米,∵ AM=EF=10米,∵ AG=52米,∵ MG=42米,∵ ∠FMN=∠EAG=36∘,∠FGN=72∘,∵ ∠MFG=36∘,∵ FG=MG=42米,在△FGN中,BC=FN=42×sin72∘≈42×0.95≈40(米),25.【答案】解:延长ED交BC于F,过E作EG⊥AB于G,=1,∵ i=DFCF∵ DF=CF,设DF=CF=x,则2x2=(3√2)2,∵ x=3,∵ DF=CF=3(m),∵ BG=EF=3+1.5=4.5(m),GE=BF=4+3=7(m),在Rt△AGE中,AG=GE⋅tan30∘=7×√33=73√3(m),∵ AB=AG+BG=(4.5+7√33)m.【解答】解:延长ED交BC于F,过E作EG⊥AB于G,∵ i=DFCF=1,∵ DF=CF,设DF=CF=x,则2x2=(3√2)2,∵ x=3,∵ DF=CF=3(m),∵ BG=EF=3+1.5=4.5(m),GE=BF=4+3=7(m),在Rt△AGE中,AG=GE⋅tan30∘=7×√33=73√3(m),∵ AB=AG+BG=(4.5+7√33)m.26.【答案】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.由题意知,∠DAB=45∘,∠DCB=33∘,设AD=x米,则BD=x米,CD=(20+x)米,=tan∠DCB,在Rt△CDB中,DBCD≈0.65,∵ x20+x解得x≈37.答:这段河宽约为37m.【解答】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.由题意知,∠DAB=45∘,∠DCB=33∘,设AD=x米,则BD=x米,CD=(20+x)米,=tan∠DCB,在Rt△CDB中,DBCD≈0.65,∵ x20+x解得x≈37.答:这段河宽约为37m.。
2022-2023学年苏科版九年级数学下册《第7章锐角三角函数》单元达标测试题(附答案)
2022-2023学年苏科版九年级数学下册《第7章锐角三角函数》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.在Rt△ABC中,如果各边的长度同时扩大2倍,那么锐角A的正弦值和余弦值()A.都扩大2倍B.都缩小2倍C.都不变D.不能确定2.若∠A为锐角,且sin A=,则cos A等于()A.1B.C.D.3.如图,在△ABC中,∠C=90°,AC=3,BC=4,则tan A的值是()A.B.C.D.4.如图,在△ABC中,∠B=45°,AD⊥BC交BC于点D,若AB=4,tan∠CAD=,则BC=()A.6B.6C.7D.75.在△ABC中,BC=+1,∠B=45°,∠C=30°,则△ABC的面积为()A.B.+1C.D.+16.如图,AB表示一条跳台滑雪赛道,在点A处测得起点B的仰角为40°,底端点C与顶端点B的距离为50米,BC⊥AC于点C,则赛道AB的长度为()A.米B.米C.50sin40°米D.50cos40°米7.如图,河堤横断面迎水坡AB坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8B.16C.4D.48.如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则sin∠BAC的值是()A.B.C.D.二.填空题(共8小题,满分32分)9.比较大小:tan50°tan60°.10.若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是.11.如图所示的网格是正方形网格,点A,B,P是网格线交点,则tan∠P AB+tan∠PBA =.12.如图所示,某河提的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且AB边的坡度为,则河堤的高BE为米.13.如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,3),以点A 为圆心,AB的长为半径画弧,交x轴的负半轴于点C,连接BC,则∠C的正弦值为.14.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是.15.如图,在△ABC中,AH⊥BC于点H,在AH上取一点K,连接CK,使得∠HKC+∠HAC=90°,在CK上取一点N,使得CN=AC,连接BN,交AH于点M,若tan∠ABC =2,BN=15,则CH的长为.16.如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为.三.解答题(共7小题,满分56分)17.计算:﹣2(1+sin60°)18.(1)在△ABC中,∠C=90°.已知c=8,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sin A=,D为AC上一点,∠BDC=45°,CD =6.求AD的长.19.已知:如图,在△ABC中,AB=AC=15,tan A=.求:(1)S△ABC;(2)∠B的余弦值.20.如图,楼房AB后有一假山CD,CD的坡度为i=1:2,测得B与C的距离为24米,山坡坡面上E点处有一休息亭,与山脚C的距离CE=8米,小丽从楼房房顶A处测得E的俯角为45°.(1)求点E到水平地面的距离;(2)求楼房AB的高.21.某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A 处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:≈1.414,=1.732)22.如图,为测量某建筑物BC的高度,采用了如下方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD(坡度i=1:2.4)行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,底端B 的俯角为45°,点A、B、C、D、E在同一平面内.根据测量数据,计算出建筑物BC 的高度.(参考数据:)23.阅读以下材料,并解决相应问题:在学习了直角三角形的边角关系后,我们可以继续探究任意锐角三角形的边角关系,在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.如图1,过点A作AD⊥BC于点D,则根据定义得sin B=,sin C=,于是AD=c sin B,AD=b sin C,也就是c sin B =b sin C,即.同理有,,即最终得到.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)在锐角△ABC中,若∠B=30°,∠C=45°,AC=2,求AB.(2)仿照证明过程,借助图2或图3,证明和中的其中一个.参考答案一.选择题(共8小题,满分32分)1.解:∵锐角A的正弦值是对边和斜边的比,余弦值是邻边和斜边的比,∴边长同时扩大2倍对于锐角A的正弦值和余弦值没有影响,∴锐角A的正弦值和余弦值没有改变.故选:C.2.解:∵∠A为锐角,且sin A=,∴∠A=60°,∴cos A=cos60°=,故选:D.3.解:∵AC=3,BC=4,∠C=90°,∴tan A==,故选:D.4.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=4,∠B=45°,∴AD=AB sin45°=4×=4,BD=AB cos45°=4×=4,在Rt△ADC中,tan∠CAD=,∴CD=AD tan∠CAD=4×=3,∴BC=BD+DC=4+3=7,故选:C.5.解:过A点作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°=∠B,∴AD=BD,设BD=x,则AD=x,∵∠C=30°,∴tan C=,∴,∵BC=+1,∴x+x=+1,∴x=1,即AD=1,∴.故选:A.6.解:在Rt△ABC中,∵∠A=40°,BC=50米,∴sin40°=,∴AB==米,故选:A.7.解:Rt△ABC中,BC=4m,tan A=1:2;∴AC==8m,∴AB===4(m).故选:C.8.解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴sin∠BAC=.故选:A.二.填空题(共8小题,满分32分)9.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.10.解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.11.解:设小正方形的边长是a,∵tan∠P AB===,tan∠PBA===,∴tan∠P AB+tan∠PBA=+=.12.解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x米,则BE=12x米,在直角三角形AEB中,根据勾股定理得:132=5x2+(12x)2,即169x2=169,解得:x=1或x=﹣1(舍去),5x=5,12x=12即河堤高BE等于12米.故答案为:12.13.解:∵点A的坐标为(4,0),点B的坐标为(0,3),∴BO=3,AO=4,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴CO=5﹣4=1,BC==,∴sin∠C===,故答案为:.14.解:过点F作直线F A∥OG,交y轴于点A,过点G作GH⊥F A于点H,则∠F AE=90°,∵F A∥OG,∴∠FGO=∠HFG.∵∠EFG=90°,∴∠FEA+∠AFE=90°,∠HFG+∠AFE=90°,∴∠FEA=∠HFG=∠FGO,∵cos∠FGO=,∴cos∠FEA=,在Rt△AEF中,EF=10,∴AE=EF cos∠FEA=10×=6,∴根据勾股定理得,AF=8,∵∠F AE=90°,∠AOG=90°,∠GHA=90°,∴四边形OGHA为矩形,∴AH=OG,∵OG=17,∴AH=17,∴FH=17﹣8=9,∵在Rt△FGH中,=cos∠HFG=cos∠FGO=,∴FG=9÷=15,∴由勾股定理得:HG==12,∴F(8,12).故答案为:(8,12).15.解:如图,过点N作NJ⊥BC于J.设HJ=x.∵AH⊥BC,∴∠AHB=∠AHC=90°,∵tan∠ABH==2,∴可以假设BH=k,2k,∵∠HKC+∠HAC=90°,∠HKC+∠KCH=90°,∴∠HAC=∠KCH,∵NJ⊥BC,∴∠AHC=∠CJN=90°,∴△AHC∽△CJN,∴===2,∴CJ=k,∴CH=x+k,JN=(x+k),∴tan∠NBJ==,设NJ=y,BJ=2y,∵BN=15,∴5y2=152,∴y=3,∴NJ=3,∴CH=2NJ=6.16.解:连接CM,DN,由题意得:CM∥AB,∴∠APD=∠NCD,由题意得:CN2=12+12=2,DN2=32+32=18,CD2=22+42=20,∴CN2+DN2=CD2,∴△CND是直角三角形,∴tan∠NCD===3,∴∠APD的正切值为:3,故答案为:3.三.解答题(共7小题,满分56分)17.解:原式=﹣2(1+)=+﹣2﹣=﹣2.18.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∵tan A=,∴a=b tan A,∴a=4×=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sin A=,∴AB==10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.19.解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tan A==,∴设CD=4k,则AD=3k,∴AC===5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,∴S△ABC=AB•CD=×15×12=90,∴S△ABC=90;(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC===6,∴cos B===,∴∠B的余弦值为.20.解:(1)过点E作EF⊥BC,交BC的延长线于F,∵CD的坡度i=EF:CF=1:2,∴设EF=a米,则CF=2a米,在Rt△CEF中,根据勾股定理得:CE===a(米),∵CE=8米,∴a=8,∴a=8,∴EF=8米,CF=2a=16(米),∴点E到水平地面的距离为8米;(2)如图:延长FE交AG于点H,由题意得:∠HAE=45°,AH=BF=BC+CF=24+16=40(米),AB=FH,在Rt△AHE中,HE=AH•tan45°=40×1=40(米),∴AB=HF=HE+EF=40+8=48(米),∴楼房AB的高为48米.21.解:作AE⊥CD于E,∵∠ACB=180°﹣75°﹣30°=75°,∴∠ABC=∠ACB,∴AC=AB=10海里,∵向北的方向线是平行的,∴∠ACF=∠CAB=30°,∴∠ACD=60°,∴∠CAE=30°,∴CE=AC=5海里,AE=AC=5海里,∵∠DAC=180°﹣75°﹣30°=75°,∴∠DAE=75°﹣30°=45°,∴DE=AE=5海里,∴CD=5+5≈13.66(海里),轮船航行的速度为:13.66÷=27.3(海里/时),答:轮船航行的速度是27.3海里/时,22.解:如图,过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,∴BF=DH,在RtADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∴BF=DH=50米),在Rt△EFB中,∠BEF=45°,∴△EFB是等腰直角三角形,∴EF=BF=50(米),在Rt△EFC中,∠CEF=60°,tan∠CEF=tan60°==,∴CF=EF=50=86.6(米),∴BC=BF+CF=136.6(米).答:建筑物BC的高度约为136.6米.23.解:(1)根据阅读材料可知,,∵∠B=30°,∠C=45°,AC=2,∴=,∴AB==2;(2)证明.理由如下:如图,连接CO并延长交⊙O于D,连接AD、BD,则∠DAC=∠DBC=90°,∠BAC=∠BDC,∠ABC=∠ADC.在Rt△ADC中,sin∠ADC=,∴CD=.在Rt△BDC中,sin∠BDC=,∴CD=,∴=,∴=,即在△ABC中,.。
苏科版九年级数学下册第七章【锐角三角函数】单元测试卷及解析
苏科版九年级数学下册第七章【锐角三角函数】单元测试卷一、单选题(共10题;共29分)1.在△ABC中,∠A,∠B都是锐角,tanA=1,sinB= ,你认为△ABC最确切的判断是()A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形2.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB= =()A. B. C. D.3.游客上歌乐山山有两种方式:一种是如图,先从A沿登山步道走到B,再沿索道乘座缆车到C,另一种是沿着盘山公路开车上山到C,已知在A处观铡到C,得仰角∠CAD=3l°,且A、B的水平距离AE=430米,A、B的竖直距离BE=210米,索道BC的坡度i=1:1.5,CD⊥AD于D,BF⊥CD于F,则山篙CD为()米;(参考数据:tan31°≈0.6.cos3l°≈0.9)A. 680B. 690C. 686D. 6934.若α是锐角,tanα•tan50°=1,则α的值为()A. 20°B. 30°C. 40°D. 50°5.某地区准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面AC的长度为()A. 8B. 9C. 10D. 126.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M,N分别在AB,AD边上,若AM:MB=AN:ND=1:2,则sin∠MCN=()A. B. C. D. ﹣27.在Rt△ABC中,∠C=90°,若cosB=,则sinB的值得是()A. B. C. D.8.如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tan∠CAB=2,则k的值为()A. ﹣3B. ﹣6C. ﹣9D. ﹣129.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m ,测得仰角为60°,已知小敏同学身高(AB)为1.6m ,则这棵树的高度为()(结果精确到0.1m ,≈1.73).A. 3.5mB. 3.6mC. 4.3mD. 5.1m.10.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A. (﹣4,﹣2﹣)B. (﹣4,﹣2+ )C. (﹣2,﹣2+ )D. (﹣2,﹣2﹣)二、填空题(共10题;共30分)11.已知α、β均为锐角,且满足|sinα﹣|+ =0,则α+β=________.12.在Rt△ABC中,∠C=90°,a,b分别是∠A、∠B的对边,如果sinA:sinB=2:3,那么a:b等于________.13.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠ADC =________.14.在△ABC中,已知∠C=90°,sinA= ,则cosA= ________,tanB= ________.15.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.16.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为________(备用数据:tan31°=cot59°≈0.6,sin37°=cos53°≈0.6)17.已知菱形的边长为3,一个内角为60°,则该菱形的面积是________.18.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.19.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA= ,则PB+PC=________.20.(2017•贵港)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.三、解答题(共8题;共58分)21.计算.22.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)23.如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)24.如图,某湖心岛上有一亭子,在亭子的正东方向上的湖边有一棵树,在这个湖心岛的湖边处测得亭子在北偏西°方向上,测得树在北偏东°方向上,又测得、之间的距离等于米,求、之间的距离(结果精确到米).(参考数据:,°,°,°,°)25.某海船以海里/小时的速度向北偏东70°方向行驶,在A处看见灯塔B在海船的北偏东40°方向,5小时后船行驶到C处,发现此时灯塔B在海船的北偏西65°方向,求此时灯塔B到C处的距离。
苏科版九年级数学下第七章锐角三角函数单元检测题含答案解析初三数学
第七章 锐角三角函数 检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1. cos 60°的值等于( )133A B C D 32....2.在Rt △ABC 中,∠C =,BC =4,sin A =,则AC =( ) A.3 B.4 C.5 D.6 3.若∠A 是锐角,且sin A =,则( )A.<∠A <B.<∠A <C.<∠A <D.<∠A <4.(·杭州中考)在直角三角形ABC 中,已知90C ∠=︒,40A ∠=︒,3BC =, 则AC =( )A.3sin 40︒B.3sin 50︒C.3tan 40︒D.3tan 50︒ 5.在△ABC 中,∠A :∠B :∠C =1:1:2,则::=( )A.1:1:2B. 1:1:C. 1:1:D. 1:1: 6.在Rt △ABC 中,∠C =,则下列式子成立的是( )A.sin A =sin BB.sin A =cos BC.tan A =tan BD.cos A =tan B7.如图,一个小球由地面沿着坡度的坡面向上前进了10 m ,此时小球距离地面的高度为( )A. B.25 m C.45 m D.310m第8题图8.(·武汉中考)如图,P A ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交P A ,PB 于C ,D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A.13125B.512 C.1353D.13329.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣. 某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°, 若这位同学的第7题图目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A.350 m B.100 mC.150 mD.3100 m二、填空题(每小题3分,共24分)11.在Rt △ABC 中,∠C =90°,AB =5,AC =3,则sin B =_____. 12.在△ABC 中,若BC =2,AB =7,AC =3,则cos A =________. 13.如图所示,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B , 且BP =2,那么PP '的长为____________. (不取近似值. 以下数据供解题 使用:sin 15°=624-,cos 15°=624+) 14.如图所示,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.15.如图所示,机器人从A 点,沿着西南方向,行走了42个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________(结果保留根号). 16.如图,△ABC 的顶点都在方格纸的格点上,则_ . 17.在直角三角形ABC 中,∠A =90°,BC =13,AB =12,那么tan B =___________.18.根据图中所给的数据,求得避雷针CD 的长约为__m (结果精确到0.01 m ).(可用计算器求,也可用下列参考 数据求:sin ≈0.682 0,sin 40°≈0.642 8, cos 43°≈0.731 4,cos 40°≈0.766 0,tan 43° ≈0.932 5,tan 40°≈0.839 1)第13题图北甲北乙第14题图 xOAyB第15题图A40°52 m CDB43°第18题图三、解答题(共46分)19.(6分)计算:︒⋅︒-︒-︒+︒30tan 60tan 45cot 60cos 30sin .20.(6分)如图所示,在△ABC 中,AD 是BC 边上的高,DAC B ∠=cos tan . (1)求证:AC =BD ; (2)若121312sin ==BC C ,,求AD 的长.21.(6分)每年的5月15日是“世界助残日”.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过,已知此商场门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据)第20题图22.(7分)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC =20 m ,求树的高度AB .(参考数据:sin 370.60≈ ,cos 370.80≈ ,tan 370.75≈ )23.(7分)如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30°角,长为20 km ;BC 段与AB 、CD 段都垂直,长为10 km ;CD 段长为30 km ,求两高速公路间的距离(结果保留根号).第23题图24. (7分)如图,在小山的东侧处有一热气球,以每分钟的速度沿着仰角为60°的方向上升,20分钟后升到处,这时气球上的人发现在的正西方向俯角为45°的处有一着火点,求气球的升空点与着火点的距离.(结果保留根号)°°第24题图25.(7分)小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB 垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)参考答案一、选择题1.A 解析:应熟记特殊角的三角函数值:2.A 解析:在R t △ABC 中,∠C =90°.∵ BC =4,sin A =,∴ AB =BC ÷sin A =5,AC==3. 3.A 解析:∵ sin 30°=,,∴ 0°<∠A <30°.故选A .4.D 解析:在Rt △ABC 中,∵90C ∠=︒,40A ∠=︒,∴ 50∠B =︒,∴ tan tan 50ACB BC=︒=,∴ tan 503tan 50AC BC =︒=︒. 5.B 解析:设∠A 、∠B 、∠C 的度数分别为、、2,则 =180°,解得=45°.∴ 2=90°.∴ ∠A 、∠B 、∠C 的度数分别为45°、45°、90°.∴ △ABC 是等腰直角三角形,∴ =1:1:.6.B 解析:A.sin A =,sin B =,sin A ≠sin B ,故错误; B. sin A =,cos B =,sin A =cos B ,故正确; C.tan A =,tan B =,tan A ≠tan B ,故错误; D.,tan B =,则≠tan B ,故错误.7. B 解析:设小球距离地面的高度为则小球水平移动的距离为 所以解得8.B 解析:如图,因为∠APB 所在的三角形不是直角三角形,所以考虑添加辅助线构造直角三角形.因此,连接OA ,连接BO 并延长交PA 的延长线于点F ,由切线长定理得P A =PB ,CA =CE ,DE =DB , 所以△PCD 的周长=PC +CD +PD =PC +CE +ED+PD = PC +CA +(DB +PD )=P A +PB =2P A =3r .在△BFP 与△AFO 中,因为∠F =∠F ,∠PBF =∠OAF =90°, 所以△BFP ∽△AFO ,所以3322rFB PB AF OA r ===,所以AF =23FB .在Rt △BPF 中,由勾股定理,得PF 2=PB 2+FB 2, 第8题答图 即32⎛⎝r +223FB ⎫⎪⎭=232r ⎛⎫ ⎪⎝⎭+FB 2,解得FB =185r ,所以 18125tan 352rFB APB PB r ∠===.9.B 解析:由于某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,则目高以上旗杆的高度h 1=12×tan 30°=4(米),旗杆的高度h =h 1+1.6=1.6+4≈8.5(米).故选B .10. D 解析:如图,作AE ⊥BC 于点E .∵ ∠EAB =30°,AB =100,∴ BE =50,AE =50.∵ BC =200,∴ CE =150.在Rt △ACE 中,根据勾股定理得:AC =100.即此时王英同学离A 地的距离是100m .二、填空题11. 解析:sin B ==.12. 解析:在△ABC 中,∵ AC =3,BC =,AB =,∴=, 即,∴ △ABC 是直角三角形,且∠B =90°.∴ cos A ==.13.62- 解析:连接PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD =15°,利用sin 15°=62-,先求出PD ,乘2即得PP '. 14.48 解析:根据两直线平行,内错角相等判断. 15.(0,4433+) 解析:过点B 作BC ⊥AO 于点C ,利用勾股定理或三角函数可分别求得AC 与OC 的长. 16.55 解析:利用网格,从C 点向AB 所在直线作垂线,利用勾股定理得,所以55. 17.125 解析:先根据勾股定理求得AC =5,再根据tan AC B AB=求出结果. 18.4.86 解析:利用正切函数分别求出BD ,BC 的长,再利用CD =BD -BC 求解.第10题答图三、解答题 19.解:-1.20.解:(1)在中,有BDADB =tan , 中,有AC AD DAC =∠cos ..cos tan BD AC ACADBD AD DAC B ==∴∠=,故, (2)由1312sin ==AC AD C ,可设x BD AC x AD 1312===,, 由勾股定理求得x DC 5=,,1218,12==+∴=x DC BD BC 即32=x ,.83212=⨯=∴AD21.解:因为所以斜坡的坡角小于 , 故此商场能把台阶换成斜坡. 22. 解:因为tan 37°=ABBC≈0.75,BC =20 m ,所以AB ≈0.75×20=15(m ). 23. 解:如图,过点A 作AB 的垂线交DC 延长线于点E ,过点E 作1l 的垂线与1l ,2l 分别交于点H ,F ,则HF ⊥2l .由题意知AB ⊥BC ,BC ⊥CD ,又AE ⊥AB , ∴ 四边形ABCE 为矩形,∴ AE =BC ,AB =EC . ∴ DE =DC +CE =DC +AB =30+20=50(km).又AB 与1l 成30°角,∴ ∠EDF =30°,∠EAH =60°. 在Rt △DEF 中,EF =DE sin 30°=50×12=25(km),在Rt △AEH 中,EH =AE,所以HF =EF +HE=25+,即两高速公路间的距离为(25+km.24.解:过作于点,则. 因为∠,3003 m ,所以300(3-1)即气球的升空点与着火点的距离为300(3-1)第23题答图25. 解:⑴过点O作OD⊥AB于点D,交A′C于点E.根据题意可知EC=DB=OO′=2,ED=BC,∴∠A′ED=∠ADO=90°.在Rt△AOD中,∵ cos A=,OA=10,∴AD=6,∴OD==8.在Rt△A′OE中,∵ sin A′=,OA′=10.∴OE=5.∴BC=ED=OD-OE=8-5=3.⑵在Rt△A′OE中,A′E==5.∴B′C=A′C-A′B′=A′E+CE-AB=A′E+CE-(AD+BD)=5+2-(6+2)=5-6.答:此重物在水平方向移动的距离BC是3米,此重物在竖直方向移动的距离B′C是(5-6)米.。
2021年苏科版九年级下册第七章锐角三角函数(中档题)单元测试(一)
2021年苏科版九年级下册第七章锐角三角函数(中档题)单元测试(一)2021九下第七章《锐角三角函数》(中档题)单元测试(一)班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30分)1. 在Rt △ABC 中,∠C =90,cosA =1213,BC =10,则AB 的长为( ) A. 12 B. 13 C. 24 D. 262. 在直角坐标平面内有一点P(3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是( )A. tanα=43;B. cotα=45;C. sinα=35;D. cosα=54. 3. 如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A. 12B. 34C. √32 D. 454. 如图,∠AOB =45°,点M ,N 在边OA 上,OM =3,ON =7,点P 是直线OB 上的点,要使点P ,M ,N 构成等腰三角形的点P 有( )个.A. 1B. 2C. 3D. 45.如图,⊙O的半径OD⊥AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则cos∠OCE为()A. 35B. 3√1313C. 23D. 2√13136.在如图网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点O,则∠AOC的正切值是()A. 23B. 32C. 35D. 537.如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=?5和x轴上的动点,CF=10,点D是线段CF 的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,sin∠BAD的值是()A. 817B. 717C. 4√213D. 7√2268.如图,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D 外,那么r可以取()A. 2B. 3C. 4D. 59.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连接DF,则下列四个结论中,错误的是()A. △AEF∽△CABB. CF=2AFC. DF=DCD. tan∠CAD=3410.如图,△ABC内接于⊙O,半径为6,CD⊥AB于点D,sin∠ACD=2,则BC的长为()3A. 2√5B. 4√5C. 3√2D. 5√3二、填空题(本大题共8小题,共24分)11.如图,已知正方形ABCD的边长为1.如果将对角线BD绕着点B旋转后,点D落在CB的延长线上的D′点处,联结AD′,那么cot∠BAD′=.12.如图,在6x6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是______.13.如图,正三角形ABC内接于⊙O,其边长为2√3,则⊙O面积为____.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8,则cosB的值是.15.如图:在△ABC中,∠ACB=90°,CD⊥AB于D点,若AC=2√3,tan∠BCD=√2,2则AB=______.16.如图,河岸EF//MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD=10米,则河的宽度为________米.17.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴,y轴分别交于A,B两点,点B坐标为(0,2√3),OC与⊙D交于点C,∠OCA=30°,则圆中阴影部分的面积为________.18.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=√3,∠ADC=60°,则劣弧CD?的长为____.三、解答题(本大题共7小题,共96分)19.如图,在矩形方格纸ABCD中,点E,F均为格点(注:组成方格纸的小正方形顶点称为格点).(1)直接写出sin∠EAF的值;(2)按下列要求画出图形:①在方格纸中找一格点P,使AP平分∠EAF,画出线段AP;②在CD边上找一格点Q,使FQ⊥AP,画出线段FQ.20.小强和小明同学在学习了“平面镜反射原理后,”自己用一个小平面镜MN做实验.他们先将平面镜放在平面上,如图,用一束与平面成30°角的光线照射平面镜上的A处,使光影正好落在对面墙面上一幅画的底边C点,他们不改变光线的角度,原地将平面镜转动了7.5°角,即∠MAM′=7.5°,使光影落在C点正上方的D 点,测得CD=10cm,求平面镜放置点与墙面的距离AB.(√3≈1.73,结果精确到0.1).21.如图,AB=AC,⊙O是△ABC的内切圆,切点为D、E、F,连接DE、CD交⊙O于G,连接EG并延长交BC于H.(1)求证:DE//BC;(2)连接AG,若EH⊥BC,求sin∠DAG的值.22.如图,以⊙O的弦AB为斜边作Rt△AB C,C点在圆内,边BC经过圆心O,过A点作⊙O的切线AD.(1)求证:∠DAC=2∠B;(2)若sinB=3,AC=6,求⊙O的半径.523.图1是一台实物投影仪,图2是它的示意图,折线O?A?B?C 表示支架,支架的一部分O?A?B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC//OM,CD=8cm.将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′//OM,AD′=16cm,求点B 到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)24.如图,AB是⊙O的直径,P是BA延长线上一点,过点P作⊙O的切线,切点为D,连接BD,过点B作射线PD的垂线,垂足为C.(1)求证:BD平分∠ABC;(2)如果AB=6,sin∠CBD=1,求PD的长.325.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2√5DE,求tan∠ABD的值.答案和解析1.D解:Rt△ABC中,∠C=90,∵cosA=ACAB =1213,∴可以假设AC=12k,AB=13k,∴BC=5k=10,∴k=2,∴AB=26,2.A3.C解:如图,作直径OE,连接CE,则OE=10,根据圆周角定理得:∠E=∠B,∵OE为直径,∴∠OCE=90°,∵C(0,5),∴OC=5,根据勾股定理CE=√OE2?OC2=√102?52=5√3,,4.C解:过M作MM′⊥OB于M′,过N作NN′⊥OB于N′,∵OM=3,ON=7,∠AOB=45°,∴MN=4,MM′=OM×sin45°=32√2<4,NN′=ON×sin45°=72√2>4,MH=M′N′=4×sin45°=2√2<4,所以只有两种情况:①以M为圆心,以4为半径画弧,交直线OB 于P1、P2,此时△NP1M 和△NMP2都是等腰三角形;②作线段MN的垂直平分线,交直线PB于P3,此时△MNP3是等腰三角形,即有3个点P符合,5.B解:如图,过点E作EH⊥DO交DO的延长线于H,设OA=r.∵OD⊥AB,∴AC=BC=4,在Rt△ACO中,∵∠ACO=90°,∴r2=42+(r?2)2,解得r=5,∴OA=OE=5,OC=3,∵∠H=∠ACO,∠EOH=∠AOC,AO=EO,∴△EOH≌△AOC(AAS),∴EH =AC =4,OH =OC =3,CH =6,∴EC =√EH 2+CH 2=2√13,∴cos∠OCE =CH EC =62√13=3√1313, 6. A解:如图取格点K ,连接BK ,则CD//BK .过点K 作KH ⊥AB 于H .∵S △ABK =12?AK ?4=12AB ?KH ,AB =√42+72=√65,∴HK =20√65=4√6513,∵BH =√BK 2?HK 2=√20?(4√6513)2=6√6513,∵CD//BK ,∴∠AOC =∠ABK ,∴tan∠AOC =tan∠ABK =HK BH =4√65136√6513=23, 7. D解:如图,设直线x =?5交x 轴于K.由题意KD =12CF =5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆,∴当直线AD 与⊙K 相切时,△ABE 的面积最小,∵AD 是切线,点D 是切点,∴AD ⊥KD ,∵AK =13,DK =5,∴AD =12,∵tan∠EAO =OE OA =DK AD ,∴OE 8=512,∴OE =103,∴AE =√OE 2+OA 2=263,作EH ⊥AB 于H .∵S △ABE =12?AB ?EH =S △AOB ?S △AOE ,∴EH =7√23,∴sin∠BAD =EH AE=7√23263=7√226.8. B解:如图,过点A 作AF ⊥BC 于点F ,连接CD 交AF 于点G ,∵AB =AC ,BC =4,∴BF =CF =2,∵tanB =2,∴AFBF =2,即AF =4,∴AB =√22+42=2√5,∵D 为AB 的中点,∴BD =√5,G 是△ABC 的重心,∴GF =13AF =43,∴CG =√(43)2+22=2√133,∴CD =32CG =√13,∵点B 在⊙D 内,点C 在⊙D 外,∴√5<√13,<="" p="">9.D解:如图,作DK//BE交BC于K,交AC于H.∵四边形ABCD是矩形,∴∠ABC=90°,AD//BC,∴∠EAF=∠ACB,∵BE⊥AC,∴∠AFE=∠ABC=90°,∴△AEF∽△CAB,故A正确,∵BE//DK,∵DE//BK,∴四边形BEDK是平行四边形,∴DE=BK,∵AE=DE,AD=BC,∴BK=KC,∵KH//BF,∴CH=FH,∵AE=DE,EF//DH,∴AF=FH,∴CF=2AF,故B正确,∵FH=CH,DH⊥CF,∴DF=DC,故C正确,10.B解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴sin∠EBC=sin∠ACD=2 3,∴CEBE =23,∵BE=12,∴CE=8,∴BC=√BE2?CE2=4√5.11.√22∵四边形ABCD是正方形,AB=1,∴BD=√AB2+AD2=√12+12=√2,∵BD绕着点B旋转后,点D落在CB的延长线上的D′点处,∴D′B=BD=√2,∴cot∠BAD′=ABD′B =√2=√22.12.45解:如图,过点B作BD⊥AC于D.∵AB=√32+42=5,在Rt△ABD中,cos∠BAC=ADAB =45,解:连接OC,作OH⊥AC于H,则CH=HA=12AC=√3,∵△ABC是正三角形,∴∠OCH=30°,∴OC=CHcos30=2,∴⊙O的面积为:4π.14.35解:如图,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,且∠B=∠D,在Rt△ACD中,AD=5×2=10,AC=8,由勾股定理得CD=6,∴cosD=CDAD =610=35,∴cosB=cosD=35,解:∵CD⊥AB,∴∠B+∠BCD=90°;∵∠ACB=90°,∴∠B+∠A=90,∴∠A=∠BCD.在Rt△ABC中,tanA=BCAC,∴BC=AC?tanA=√6,∴AB=√AC2+BC2=3√2.16.(30+10√3)解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK?AB=x?30,∴HD=x?30+10=x?20,在RT△BHD中,∵∠BHD=90°,∠HBD=30°,∴tan30°=HDHB,∴√33=x?20x,解得:x=30+10√3.故答案为(30+10√3)米.17.解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2√3,=2,AB=AO÷sin30°=4,即圆的半∴OA=OBtan∠ABO=OBtan30°=2√3×√33径为2,.π18.43解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2√3,在Rt△FCD中,CF=CDcos30°=2√3√32=4,∴⊙O的半径=2,∴劣弧CD?的长19.解:(1)sin∠EAF=45,(2)如图所示:20.解:作AE⊥M′N′,设AB=x米,∵∠PAE=∠DAE,∴∠N′AD=∠M′AP=7.5°+30°= 37.5°,∴∠DAB=37.5°+7.5°=45°,∴在Rt△ABD中,DB=AB=x,又∵在Rt△ABC中,BC=AB?tan∠CAB=x?√33=√33x,∴x?√33x=10,解得,x=5(3+√3)≈23.7(米),答:平面镜放置点与墙面的距离AB是23.7米.21.(1)证明:∵AB=AC,∴∠B=∠ACB,∵AB,AC切⊙O于D,E,∴AD=AE,∴∠ADE=∠AED,∵2∠ADE+∠DAE=180°,2∠B+∠BAC=180°,∴∠ADE=∠B,∴DE//BC.(2)解:∵EH⊥BC,DE//BC,∴EH⊥DE,∴DG是⊙O的直径,∵CF,CE是⊙O的切线,CF=CE,∠DCF=∠DCE,∵∠EDC=∠DCF,∴∠EDC=∠ECD,∴DE=EC=CF,同法可证:BD=BF=CE=DE,∵DE//BC,DE=12BC,∴DE是△ABC的中位线,∴AD=BD=BF=CF,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ACB=60°,∴∠ECG=∠CEG=∠EDC=30°,∴GE=GC,设GE=GC=m,则DG=2m,CD=3m,AD=√3m,∴AG=√AD2+DG2=√(√3m)2+(2m)2=√7m,∴sin∠DAG=DGAG =√72.。
苏科版九年级数学下册 第七章 锐角三角函数 单元测试题
5.
在
△
������������������中,∠������
=
90
∘
,������������������������
=
3
5,那么������������������������的值等于(
)
3
4
3
4
A.5
B.5
C.4
D.3
6. 一斜坡长10������,它的高为6������,将重物从斜坡起点推到坡上4������处停下,则停下地点的
(1)求∠������������������的度数; (2)求这棵大树折断前的高度? (结果精确到个位,参考数据: 2 = 1.4, 3 = 1.7, 6 = 2.4).
留根号)
20. 某学校的教学大楼和行政办公大楼相对而立,如图所示:两楼间的距离������������ = 10������������, 某学生在教学大楼底������处测得行政办公大楼顶������处的仰角为45 ∘ ,随后他又到行政办公大 楼������处测得教学大楼顶������处的仰角为60 ∘ ,那么教学大楼比行政办公楼高________������.(精 确到0.1,参考数据: 2 ≈ 1.414, 3 ≈ 1.732)
么救援船航行的速度为________.
16.
在������������
△
������������������中,
∠������
=
90
∘
,������������������������
=
1
2,若������������
=
1,则������������边的长是________.
17. 如图,现测量河宽������������(假设河的两岸平行),在点������测得∠������������������ = 30 ∘ ,在点������测得 ∠������������������ = 45 ∘ .若������������ = 60������,则河宽������������为________������(结果保留根号).
苏科版九年级数学下册《第七章锐角三角函数》单元评估检测试卷(有答案)
苏科版九年级数学下册第七章锐角三角函数单元评估检测试卷一、单选题(共10题;共30分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A. B. C. D.2.在中,∠°, ∠°,AB=5,则BC的长为( )A. 5tan40°B. 5cos40°C. 5sin40°D.°3.在△ABC中,若|sinA-|+(cosB-)2=0,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4.已知Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A. B. C. D.5.若,则锐角等于()A. 15°B. 30°C. 45°D. 60°6.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A. B. 1 C. D.7.已知,在Rt△ABC中,∠C=90°,BC=12,AC=5,则cosA的值是()A. B. C. D.8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=2,BC=1,则sin∠ACD=()A. B. C.D.9.已知等腰△ABC的周长为36cm,底边BC上的高12cm,则cosB的值为( )A. B. C. D.10.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1B,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为( )A. (16,0)B. (12,0)C. (8,0)D. (32,0)二、填空题(共10题;共30分)11.在Rt△ABC中,∠C=90°,sinA= ,那么cosA=________.12.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为________米.(°,°)13.如图,若点A的坐标为,,则sin∠1=________.14.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为________ m(结果保留根号).15.如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC= ,AC=6,则BD的长是________.16.如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75°方向20米处,点C在点A南偏西15°方向20米处,则点B与点C的距离为________ 米.17.在Rt△ABC中,∠C=90°,BC=2,AC=1,现给出下列结论:①sinA=;②cosB=;③tanA=2;④sinB=,其中正确的是________18.在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=2 ,则AB=________.19.如图,在5×5的正方形网格中,△ABC的三个顶点A,B,C均在格点上,则tanA的值为________20.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点A n的纵坐标是________.三、解答题(共8题;共60分)21.计算:°°.22.如图,为了求某条河的宽度,在它的对岸岸边任意取一点A,再在河的这边沿河边取两点B、C,使得∠ABC=45°,∠ACB=30°,量得BC的长为40m,求河的宽度(结果保留根号).23.图1是一辆吊车的实物图,图2是其工作示意图,是可以伸缩的起重臂,其转动点离地面的高度为.当起重臂长度为,张角∠为时,求操作平台离地面的高度(结果保留小数点后一位;参考数据:,,).24.如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75,≈1.732,结果精确到0.1m)25.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)26.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)27.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)28.(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】B6.【答案】A7.【答案】C8.【答案】B9.【答案】D10.【答案】A二、填空题11.【答案】12.【答案】6013.【答案】14.【答案】10 +115.【答案】216.【答案】2017.【答案】②③18.【答案】419.【答案】20.【答案】()n﹣1三、解答题21.【答案】解:°°,= ,= .22.【答案】解:作AD⊥BC,垂足为D.设AD= xm,∵∠ABC=45°,∴BD=AD= xm,∵∠ACB=30°,∴DC==xm,°∵AD+DC=BC ,且BC=40m,∴,解得,,答:则河的宽度为m23.【答案】如图,过点C作CE⊥DH交于点E,过点A作AF⊥CE交于点F,又∵AH⊥BD,∴四边形AFEH是矩形,∴∠HAF=90°,EF=AH=3.4m,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵AC=9m,∠CAF=28°,∴CF=AC·sin∠CAF=9×sin28°≈9×0.47=4.23(m),∴CE=CF+EF=4.23+3.4≈7.6(m).答:操作平台离地面的高度为7.6m.24.【答案】解:延长CD交AH于点E,如图所示:根据题意得:CE⊥AH,设DE=xm,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°= ,tan60°= ,∴AE= ,BE= ,∵AE﹣BE=AB,∴﹣=10,即﹣=10,解得:x≈5.8,∴DE=5.8m,∴GH=CE=CD+DE=2m+5.8m=7.8m.答:GH的长为7.8m.25.【答案】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈37(cm).答:AB的长度为37cm26.【答案】解:过点D作DF⊥AB于点F,过点C作CG⊥AB于点G,∵ED⊥CD,CD∥AB,∴D、E、F三点共线,∴四边形CDFG是矩形,∴CD=GF,DF=CG.在Rt△ACG中,∵坡度为1:2,∴CG:AG=1:2,∴AG:AC=2:.∵AC=20米,∴AG=8 米,CG=4 米.在Rt△CDE中,∠ECD=76°,设CD=x米,则ED=CD•tan76°≈4.01x(米).在Rt△EAF中,∵∠EAF=45°,∴EF=AF,即ED+DF=AG+GF,∴4.01x+4 =8 +x,∴x=2.99,∴ED=4.01×2.99=12(米).答:大树ED的高约为12米.27.【答案】解:如图,在Rt△BDF中,∵∠DBF=60°,BD=4km,∴BF==8km,°∵AB=20km,∴AF=12km,∵∠AEB=∠BDF,∠AFE=∠BFD,∴△AEF∽△BDF,∴= ,∴AE=6km,在Rt△AEF中,CE=AE•tan74°≈20.9km.故这艘轮船的航行路程CE的长度是20.9km.。
Y_苏科版九年级数学下《第七章锐角三角函数》单元检测试卷有答案
考试总分: 120 分 考试时间: 120 分钟 学校:__________ 班级:__________ 姓名:__________ 考号:__________
3 A.5
4 B.5
3 C.4
4 D.3
6.将一副直角三角板中的两块按如图摆放,连接������������,则������������������∠������������������的值为( )
6
������������������8 ∘ = 25 ������������������8 ∘ = 7 ������������是________������. (不考虑其他因素) (参考数据: , , ������������������10 ∘ = 25
9
4
1
.
19.国际田联钻石联赛美国尤金站比赛中,百米跨栏飞人刘翔以12.87������的成绩打破世 界记录并轻松夺冠.������、������两镜头同时拍下了刘翔冲刺时的画面(如图) ,从镜头������观 ∘ ∘ 60 ������ 30 测到刘翔的仰角为 ,从镜头 观测到刘翔的仰角为 ,若冲刺时的身高大约为 1.88������,请计算������、������两镜头之间的距离为________. (结果保留两位小数, 2 ≈ 1.414, 3 ≈ 1.732) ∘ 20.如图,在某监测点������处望见一艘正在作业的渔船在南偏西15 方向的������出,若渔船 ∘ 沿北偏西75 方向以60海里/小时的速度航行,航行半小时后到达������处,在������处观测到 ������在������的北偏东60 ∘ 方向上,则������、������之间的距离为________. 三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 ) ∘ ∘ 2014 + ������������������60 ∘ . 21.计算:|������������������30 ‒ 1| + ( ‒ ������������������45 )
苏科版九年级数学下《第七章锐角三角函数》单元检测试卷有答案.docx
2017-2018学年度第二学期苏科版九年级数学下册第七章锐角三角函数单元检测试卷考试总分:120分考试吋间:120分钟学校: ______ 班级: ________ 姓名: _______ 考号: ________一、选择题(共10小题,每小题3分,共30分)1 •在Rt 中,乙4 = 乙,AC = 6, BC = 8,贝iJcosB =()AU C.| D.| 4 5 4 52•如图,为了测量学校操场上旗杆BC 的高度,在距旗杆24米的M 处用测倾器测得旗 杆顶部的仰角为30。
,则旗杆的高度为()3・口是锐角,且cosa =贝ij () 4 A. 0° V a V 30° B .30° V a V 45° C.45° < a < 60° D.60° V a V 90°4•如图,一艘海轮位于灯塔P 的北偏东50。
方向,距离灯塔P 为10海里的点4处,如果 海轮沿正南方向航行到灯塔的正东方向B 处,那么海轮航行的距离的长是()北 .人A /• • • ♦…工 ......P\ BA.10 海里B.10sin50° 海里C.10cos50° 海里D.10tan50° 海里5•在△4BC 中,乙C = 90°, cos?l = f,那么cot4等于()B.12箱米C.16苗米D.24苗米A.8V3 米D.-6•将一副直角三角板中的两块按如图摆放,连接力C,贝iJtanzD/lC 的值为()A 逑3 C 些13 7. 水库大坝横断面是梯形ABCD,坝顶宽AD = 6m,坝高DE = 24m,斜坡血的坡角是45°,斜坡CD 的坡比i = l:2,则坝底BC 的长是()m ・A.30 + 8A /3B.30 + 24並C.42D.788•在中,ZC = 90°,若COS B=£,则tam4的值是()5 5 4 39.如图所示,CD 是平面镜,光线从力点出发经CD 上的E 点反射后到达E 点,若入射角 为a, AC 丄 CD, BD 丄 CD,垂足分别为C, D,且AC = 3, BD = 6, CD = 11,贝lj tana 的值是()3 11 119 B 3+希 • 3 D.込 310・在离地面高度8米处引两根拉线固定电线杆,两根拉线与电线杆在同一平面内, 拉线与地面的夹角为60。
度第二学期苏科版九年级数学下册_第七章_锐角三角函数_单元评估测试卷
度第二学期苏科版九年级数学下册_第七章_锐角三角函数_单元评估测试卷第七章锐角三角函数单元评估测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在△AAA中,AA=90∘,AA、AA、AA所对边长分别为A、A、A,则A3cos A+A3cos A等于()A.AAAB.(A+A)A2C.A3D.AA22.计算4sin60∘−3tan30∘的结果是()A.1B.0C.√3D.−√33.在AA△AAA中,AA=90∘,如果cos A=45,那么tan A的值是()A.35B.53C.34D.434.如图,从位于六和塔的观测点A测得两建筑物底部A,A的俯角分别为45∘和60∘.若此观测点离地面的高度AA为30米,A,A两点在AA的两侧,且点A,A,A在同一水平直线上,则A,A之间的距离为()米.A.30+10√3B.40√3C.45D.30+15√35.当AA+AA=90∘时,下列结论错误的是()A.cos A=sin A B.sin A=cos AC.sin A=cos(90∘−A)D.sin(90∘−A)=sin A6.如图,在AA△AAA中,AA=90∘,AA=AA=8√6,点A为AA的中点,点A在底边AA上,且AA⊥AA,则△AAA的面积是()A.16B.18C.6√6D.7√67.一船向正北方向匀速行驶,看见正西方两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60∘方向上,另一灯塔在南偏西75∘方向上,则该船的速度应该是()A.10海里/小时B.10√3海里/小时C.5海里/小时D.5√3海里/小时8.如图,在一次台风中,一棵大树在离地面若干米处折断倒下,A为折断处最高点,树顶A落在距树根A点6米处,测得AAAA=60∘,则树原来的高度()A.12+6√3米B.12√3+6√3米C.12+3√3米D.12√3+6米9.甲、乙、丙三人放风筝,各人放出的风筝线长分别为60A、50A、40A,线与地平面所成的角分别为30∘、45∘、60∘,假设风筝线近似看作是拉直的,则所放风筝最高的是()A.甲B.乙C.丙D.不能确定10.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是6米,测第1页/共4页得斜坡的坡度为1:2.4,则斜坡上相邻两树间的坡面距离是()A.6.2米B.6.4米C.6.5米D.7.2米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,在△AAA中,AA=90∘,AA=8,cos=34,则AA的长是________.12.在AA△AAA中,AA=90度.若sin=√22,则sin A=________.13.如图,登山队员在山脚A点测得山顶A点的仰角为AAAA=45∘,当沿倾斜角为30∘的斜坡前进100A到达A点以后,又在A点测得山顶A点的仰角为60∘,山的高度A=________.(精确到1米)14.如图,要测量河内小岛A到河边公路A的距离,在A点测得AAAA= 30∘,在A点测得AAAA=60∘,又测得AA=40米,则小岛A到公路A的距离为________米.15.在AA△AAA中,AA=90∘,AA:AA=3:4,则cos A=________.16.计算:sin248∘+sin242∘−tan44∘⋅tan45∘⋅tan46∘=________.17.在数学活动课上,老师带领学生去测量河两岸A、A两处之间的距离,先从A处出发与AA垂直的方向向前走了10米到A处,在A处测得AAAA= 60∘,(如图所示),那么A,A之间的距离约为________米(参考数据:√3=1.732…,√2=1.414,计算结果到米).18.如图,为了测量河宽AA(假设河的两岸平行),测得AAAA=30∘,AAAA=60∘,AA=60A,则河宽AA为________A(结果保留根号).19.如图,修建抽水站时,沿着倾斜角为30∘的斜坡铺设管道,若量得水管AA的长度为80米,那么点A离水平面的高度AA的长为________米.20.如图,在斜坡的顶部有一铁塔AA,在阳光的照射下,塔影AA留在坡面上,已知铁塔底座宽AA=12A,塔影长AA=27A,小明和小华的身高都是1.6A,小明站在点A处,影子也在斜坡面上,小华站在沿AA方向的坡脚下,影子在平地上,两人的影长分别为3A和1.5A,那么塔高AA=________A.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:2sin30∘2sin60∘−tan45∘−32cos60∘.22.如图,热气球上的自动探测仪显示:从热气球的吊篮A观测一栋高楼的顶部A的俯角为30∘,观测这栋高楼的底部的俯角为60∘,热气球的吊篮A 此时的高度为180米,求这栋高楼的高度.23.如图,我东海舰队的一艘军舰在海面A处巡逻时发现一艘不明国籍的船只在A处游弋,立即通知在A处的另一艘军舰一起向其包抄,此时A在A的南偏西30∘方向,我两艘军舰分别测得A在A的南偏东75∘方向和A在A的北偏东75∘方向,已知A、A之间的距离是30海里,求此刻我两艘军舰所在地A、A与A的距离.(结果保留根号)24.如图,某拦河坝横截面原设计方案为梯形AAAA,其中AA // AA,AAAA=72∘,为了提高拦河坝的安全性,现将坝顶宽度水平缩短10A,坝底宽度水平增加4A,使AAA=45∘,请你计算这个拦河大坝的高度.(参考数据:sin72∘≈1213,cos72∘≈513,tan72∘≈125)25.“国际保护鲸鱼组织”准备派遣三艘护卫船在南极进行阻止“日本捕鲸船”的“护鲸行动”.在雷达显示图上,标明了三艘护卫船的坐标为A(0, 0)、A(40, 0)、A(40, 30),三艘护卫船安装有相同的探测雷达,雷达的有效探测范围是半径为A的圆形区域(只考虑在海平面上的探测).(1)某时刻海面上出现一艘日本捕鲸船A,在护卫船A测得点A位于东南方向上,同时在护卫船A测得A位于北偏东60∘方向上,求护卫船A到捕鲸船的距离(精确到0.1);(2)若在三艘护卫船组成的△AAA区域内没有探测盲点,求雷达的最小有效探测半径A.26.冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼前面15米处要盖一栋高20米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29∘.(参考数据:sin29∘≈0.48;cos29∘≈0.87;tan29∘≈0.55)(1)中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市采光不受影响,两楼应至少相距多少米?(结果保留整数)答案1.A2.C3.C4.A5.D6.A7.A8.A9.B10.C11.612.√2213.137第3页/共4页14.20√3 15.4516.0 17.17 18.30√3 19.40 20.20.8 21.解:原式=2×122×√32−1−32×12=√3+12−34 =√32−14.22.这栋大楼的高为120米.23.我两艘军舰所在地A 、A 与A 的距离分别为30√2海里、(15√2+15√6)海里.24.拦河大坝的高度为24A .25.解:(1)如图,作出点A 的位置,由题意得,AA =30,AA =45∘,AA =60∘,过点A 作AA ⊥AA 于点A ,设AA =A ,则AA =30−A ,易知AA =AA =A ,在AA △AA 中,tan 60∘=AAAA , 则A =45−15√3.故易求AA =30√3−30≈22.0.(2)如图:若在三艘护卫船组成的△AAA 区域内恰好没有探测盲点, 三个圆相交于一点,这个点到三顶点的距离相等,则A =12AA =12×√302+402=25.26.解:(1)沿着光线作射线A 交AA 于点A ,过点A 作AA ⊥AA 于点A , 由题意,在AA △AAA 中,AA =AA =15,AAAA =29∘, ∴AA =AA ⋅tan 29∘=15×0.55=8.25米, ∴A =AA =20−8.25=11.75米, ∴11.75>6, ∴居民住房会受影响;(2)沿着光线作射线A 交直线AA 于点A .由题意,在AA △AAA 中,AA =20,AAAA =29∘, ∴AA =AA tan 29∘=200.55≈36.4≈37米,∴至少要相距37米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
○……○…………装……○……学校:___________姓_________班级:__………内……○…………订…○…………线………绝密★启用前 苏科版九年级下册单元试卷 第7章锐角三角形 温馨提示:亲爱的同学,你好!今天是展示你才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点相信自己的实力!可要注意喽,本试卷共有23道题,总分150分,考试时间为120分钟,不能用计算器。
1.(本题4分)如图,在Rt △ABC 中,∠C=90°,AC=4,tanA=2,则BC 的长度为( ) A. 2 B. 8 C. 2.(本题4分)在正方形网格中,∠AOB 如图放置,则tan ∠AOB 的值为( ) A. 2 B. 123.(本题4分)在Rt △ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,下列各式中正确的是() A. cos a b A =⋅; B. sin c a A =⋅; C. cot a A b ⋅=; D. tan a A b ⋅=. 4.(本题4分)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =12BA ,则tan DAC ∠的值为()○…………外……○………………○………………○…………※※请※※在※※装※※订※※线※※题※※……○……线………○A. 12 D. 25.(本题4分)计算:22sin45cos45︒+︒的值为()12C. 1D.6.(本题4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是()A.35B.45C.127.(本题4分)如图,在由边长为1的小正方形组成的网格中,点A,B,C都在小正方形的顶点上.则cos A∠的值为()2128.(本题4分)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端25米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.25tanα米 B. 25sinα米 C. 25tanα米 D. 25cosα米9.(本题4分)如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=3:2,顶宽是7米,路基高是6米,则路基的下底宽是()A. 7米B. 11米C. 15米D. 17米外…………○…………装………○………………线………学校:___________姓名______班级:________○…………装…………○…………订………………线…………○……………○…………装10.(本题4分)如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点C 为圆心,OA 的长为直径作半圆交CE 于点D .若OA=4,则图中阴影部分的面积为() A. 3π3π-53π-53π- 二、填空题(计20分) 11.(本题5分)已知锐角α,满足tan α=2,则sin α=__________. 12.(本题5分)如图,角α的一边在x 轴上,另一边为射线OP .则tan α=________________. 13.(本题5分)如图,在平行四边形ABCD 中,AE ⊥BC ,垂足为E ,如果AB =5,BC =8,sinB=45,那么CDE S ∆=_______. 14.(本题5分)在正方形网格中,∠AOB 的位置如图所示,则tan ∠AOB 的值为______. 三、解答题(计90分) 15.(本题8分)计算:cos30cot45sin30tan60cos60︒-︒︒⋅︒+︒.………装………请※※不※※要※※在※※………16.(本题8分)计算:()1001320172sin303π-⎛⎫-+--+ ⎪⎝⎭.17.(本题8分)如图,为了求某条河的宽度,在它的对岸岸边任意取一点A ,再在河的这边沿河边取两点B 、C ,使得∠ABC =45°,∠ACB =30°,量得BC 的长为40m ,求河的宽度(结果保留根号).………装………………线……__________姓名:_______…………订…………○………内…………○………… 18.(本题8分)如图,△ABC 中,∠ABC =60°,AB =2,BC =3,AD ⊥BC 垂足为D .求AC 长.19.(本题10分)如图,在Rt △ABC 中,∠C =90°,点D 是BC 边的中点,BD =2,tan B =34. (1)求AD 和AB 的长; (2)求sin ∠BAD 的值.………装…………○…………线……请※※不※※要※※在※※装※…………○… 20.(本题10分)济南市地铁R3线施工,某路口设立了交通路况显示牌(如图).已知立杆AB 的高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌的高度BC .221.(本题12分)如图,AB 是长为10m ,倾斜角为37°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)…………装…………○…………校:___________姓名:___________ ○…………订…………○……○…………内……… 22.(本题12分)如图,建筑物的高CD 为17. 32米.在其楼顶C ,测得旗杆底部B 的俯角α为60︒,旗杆顶部A 的仰角β为20︒,请你计算旗杆的高度.(sin200.342︒≈,tan200.364︒≈,cos200.940︒≈ 1.732≈,结果精确到0.1米)23.(本题14分)如图,把一张直角三角形卡片ABC 放在每格宽度为12mm 的横格纸中,三个顶点恰好都落在横格线上,已知∠BAC=90°,∠α=36°,求直角三角形卡片ABC 的面积(精确到1mm ).(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)参考答案1.A【解析】试题解析:∵在Rt △ABC 中, 904C AC ∠== ,,1tan 24BC BC A AC ∴===, ∴BC =2.故选A.2.A【解析】试题解析:如图,tan ∠AOB=CD DO=2, 故选A .3.C【解析】∵∠C=90°,∴cosA=b c ,sinA=a c ,tanA=a b ,cotA=b a, ∴c ·cosA=b ,c ·sinA=a ,b ·tanA=a ,a ·cotA=b ,∴只有选项C 正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.4.A【解析】试题解析:如图,∵在△ABC 中,AC ⊥BC ,∠ABC=30°,∴AB=2AC ,BC=30AC tan =︒. ∵BD=12BA ,∴DC=BD+BC=(AC ,∴tan ∠DAC=()DC AC AC AC= 故选A .5.C【解析】试题解析:22sin 45+45cos ︒︒=22+=11+22=1.故选C.6.A【解析】由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF=BA BF = 35, ∴cos ∠EFC= 35, 故选:A.点睛:本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变换,对应边和对应角相等时解题的关键.7.C【解析】解:如图,连接BD .∵22213AB =+=10,222112AD =+=,222228BD =+=,∴222AD BD AB +=,∴∠ADB =90°,在Rt △ADB 中,cos A =AD AB ==故选C .8.C【解析】首先根据题意可知,在Rt △ABO 中,BO =25米,∠ABO 为α,结合正切函数的定义得:tan α=AO BO,接下来再代值进行计算,即可求得树高OA 的长. 解:在Rt △ABO 中,∵BO =25米,∠ABO 为α,∴AO =BO ·tan α=25tan α(米).故选C.点睛:本题主要考查了解直角三角形的知识,熟练掌握锐角三角函数的定义是解决本题的关键.9.C【解析】可过上底的两个端点,分别作下底的垂线段,根据腰的坡度和梯形的高求出下底的长.解:如图所示 ,等腰梯形ABCD 是铁路路基的横断面,腰AB 、CD 的坡度为3: 2,BC =7米,BE =CF =6米.在Rt △ABE 中,tan A =32,BE =6米, ∴AE =tan BE A =4米, ∴DF =AE =4米,∴AD =AE +EF +FD =AE +BC +FD =4+7+4=15(米).故选C.10.D【解析】连接OE ,∵C 为OA 的中点,OC ⊥OA 且OA =4,∴OC =2,∴1cos 2OC EOC OE ∠== ,CE ==., ∴cos ∠COE=60°.∵∠AOB =90°,∴∠BOE =30°,∴=COE AOB ACD BOE S S S S S --- 阴影扇形扇形扇形222904902304123603603602πππ⨯⨯⨯=---⨯⨯443πππ=---53π=-故选D.点睛:本题考查了割补法求不规则图形面积,扇形面积公式.连接OE ,根据OC ⊥OA 且OA =4可以知道OC =2,故1cos 2OC EOC OE ∠==,由此可得出∠COE 的度数,进而得出∠BOE 的度数,根据=COE AOB ACD BOE S S S S S --- 阴影扇形扇形扇形,即可得出结论.11【解析】因为tan α=2,根据三角函数可设锐角α所对的边为2a ,邻边为a ,根据勾股定理可,根据正弦三角函数的定义可得sin α5=,故答案为:5.12【解析】解:过P 作PA ⊥x 轴于点A .∵P (2,,∴OA =2,PA =tan α=2PA OA ==点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键.13.10【解析】试题解析:在△ABE 中,AE ⊥BC ,AB=5,sinB=45AE AB =, ∴AE=4,∴=3,∴CE=BC-BE=8-3=5,∴S △CDE =12CE •AE=12×5×4=10; 故答案为:10.14.12【解析】解:如图,连接CD ,从图形可知:∠CDO =45°+45°=90°,设一个小网格的正方形边长是1,则CD OD Rt △CDO 中,tan ∠AOB =CD OD =12=.故答案为:12.点睛:本题考查了勾股定理,锐角三角函数的定义等知识点,解此题的关键是构造直角三角形.152 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=1122122--. 16.6【解析】试题分析:原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.试题解析:原式=3+1−1+3=6.17.()20m .【解析】如图,过A 作AD ⊥BC 于D ,设AD =x m ,通过锐角三角函数可知:BD =x m ,DCx m ;根据BC 的长为40m 即可建立方程,解之即可求出河宽.解:作AD ⊥BC,垂足为D .设AD = x m ,∵∠ABC =45°,∴BD =AD = x m ,∵∠ACB =30°,∴DC =tan30AD ︒m , ∵AD+DC=BC ,且BC =40m ,∴40x =,解得,20x =,答:则河的宽度为()20m.点睛:本题主要考查解直角三角形的实际应用. 通过添加辅助线构造直角三角形是解题的关键.18【解析】试题分析:先解直角三角形ABD ,求出BD 、AD 的值,再根据BC=3,得出CD=2,最后由勾股定理求出AC 的值即可.试题解析: AD BC ⊥,垂足为D∴90ADB ADC ∠=∠=︒在ABD ∆中,90,60,2ADB B AB ∠=︒∠=︒= ∴sin ,cos AD BD B B AB AB ==即1222AD BD ==解得:1AD BD ==BC=3∴ CD=2在Rt ADC ∆中,AC19.(1)AB=5,AD=13;(2)65. 【解析】试题分析:(1)由中点定义求BC=4,根据tanB=34得:AC=3,由勾股定理得:AB=5,(2)作高线DE ,证明△DEB ∽△ACB ,求DE 的长,再利用三角函数定义求结果. 试题解析:(1)∵D 是BC 的中点,CD=2,∴BD=DC=2,BC=4,在Rt △ACB 中,由 tanB=34AC CB =, ∴344AC =, ∴AC=3,由勾股定理得:;(2)过点D 作DE ⊥AB 于E ,∴∠C=∠DEB=90°,又∠B=∠B ,∴△DEB ∽△ACB , ∴DE DB AC AB=, ∴235DE =, ∴DE =65, ∴sin ∠BAD=6DE AD ==20.路况显示牌的高度BC为()3 米.【解析】试题分析:根据等腰直角三角形的性质得到3DA =,根据正切的定义求出CA ,计算即可.试题解析:在Rt ADB 中,453BDA AB m ∠=︒=,,3DA m ∴=,在Rt ADC ,60CDA ∠=︒, tan60CA AD∴︒=,CA ∴=,()3BC CA BA ∴=-=米,答:路况显示牌的高度BC为()3米. 21.大楼CE 的高度是27m .【解析】试题分析:作BF ⊥AE 于点F .则BF=DE ,在直角△ABF 中利用三角函数求得BF 的长,在直角△CDB 中利用三角函数求得CD 的长,则CE 即可求得.试题解析:过点B 作BF ⊥AE 于点F .则BF=DE .在Rt △ABF 中,sin ∠BAF=BF AB ∴BF=AB •sin ∠BAF=10×35=6(m ). 又在Rt △CDB 中,tan ∠CBD=CD BD ,∴CD=BD •tan65°=10×157≈21(m ) ∴CE=DE+CD=BF+CD=6+21=27(m ).答:大楼CE 的高度是27m .22.21.0m【解析】试题分析:在Rt △BCE 中,由正切的定义可求出CE 的长;在Rt △ACE 中,由正切的定义可求出AE 的长,由AB =AE +BE 即可得出结论.试题解析:解:根据题意,在Rt △BCE 中,∠BEC =90°,tan α=BECE ,∴CE =tan60BE ≈10m .根据题意,在Rt △ACE 中,∠AEC =90°,tan β=AE CE,∴AE =CE ·tan20°≈10×0.364=3.64m ,∴AB =AE +BE =17.32+3.64=20.96≈21.0m .答:旗杆的高约为21.0m .23.直角三角形卡片ABC 的面积约为1200mm 2【解析】试题分析:作BD ⊥l 于点D ,CE ⊥l 于点E ,∵∠α+∠CAE =180°﹣∠BAC =180°﹣90°=90°,∠ACE +∠CAE =90°∴∠ACE =∠α=36°;在Rt △ABD 中,可以解得AB 的长,在Rt △ACE 中,可以解得AC 的长,从而可求得三角形ABC 的面积.试题解析:解:作BD ⊥l 于点D ,CE ⊥l 于点E ,如下图所示:∵∠α+∠CAE =180°﹣∠BAC =180°﹣90°=90°,∠ACE +∠CAE =90°∴∠ACE =∠α=36°由已知得BD =24mm ,CE =48mm ,在Rt △ABD 中,sin α=BD AB ,∴AB =sin36BD ≈240.60=40mm ; 在Rt △ACE 中,cos ∠ACE =CE AC ,∴AC =cos36CE ≈480.80=60mm ∴ABC S =12AB •AC =12×40×60=1200(mm 2) 答:直角三角形卡片ABC 的面积约为1200mm 2.。