【数学】3-2《简单的三角恒等变换》课件(新人教A版必修4)
高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
(3)sin
1π2-
3cos
π 12.
解
方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β
=
.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β
2014年人教A版必修四课件 3.2 简单的三角恒等变换
(三) 构造变换 补充例1. 已知 sina sin b 1 , cosa cos b 1 , 3 2 求 cos(a b) 的值.
解: 将已知两式分别平方得 sin 2 a sin 2 b 2sina sin b 1 , 9 cos2 a cos2 b 2cosa cos b 1 , 4 将两式相加得 , 22(sina sinbcosa cosb) 13 36 即 22cos(a b) 13 ,
于是可以根据第 (1) 题求证.
(二) 和差角公式的变换使用 例2. 求证: (1) sina cos b 1 [sin(a b ) sin(a b )]; 2 (2) sin sin 2sin cos . 2 2 a , b, (2) 证明: 令 2 2 则 a b , a b , 2sin cos 2sina cos b 2 2 sin(a b ) sin(a b ) ( (1)结论 ) sin s知 sina sin b 1 , cosa cos b 1 , 3 2 求 cos(a b) 的值. 分析: ∵cos(a b) sina sinbcosa cosb, 考虑需要的sina sinb 和cosa cosb从哪里来, 将已知中的两式分别平方就有了.
. 得 cos (a b) 59 72
36
(构造和 (差) 角形式)
(三) 构造变换 补充例2. 求证: cos 2a 1 tana . 1 sin2a 1 tana 分析: 等式的左边是二倍角, 右边是单角, 思想: 用二倍角公式化为单角,
问题: cos2a 化成哪一个? 不妨把右边切化弦观察, 1 sina 右边 cosa cosa sina , 1 sina cosa sina cosa 若分子乘以cosa sina 就得cos2a sin2a,
数学人教A版4课前引导3.2简单的三角恒等变换(二)含解析
3。
2 简单的三角恒等变换(二)课前导引问题导入某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m,求割出的长方形桌面的最大面积(如右图)思路分析:如右图连OC ,设∠COB=θ,则0°<θ<45°,OC=1, ∵AB=OB—OA=cosθ—AD=cosθ-sinθ, ∴S 矩形ABCD =AB·BC=(cosθ—sinθ)·sinθ =-sin 2θ+sinθcosθ=—21(1—cos2θ)+21sin2θ=21(sin2θ+cos2θ)—21=22cos (2θ—4π)—21。
当2θ—4π=0,即θ=8π时,S max =212-(m 2). ∴割出的长方形桌面的最大面积为212-(m 2)。
知识预览1。
两角和(差)的余弦:cos(α±β)=cosαcosβ sinαsinβ. 2.两角和(差)的正弦:sin (α±β)=sinαcosβ±cosαsinβ. 3。
两角和(差)的正切:tan(α±β)=βαβαtan tan 1tan tan ±±。
4.二倍角余弦公式:cos2α=cos 2α—sin 2α=2cos 2α-1=1-2sin 2α。
常见变形:cos 2α=22cos 1α+,sin 2α=22cos 1α-。
5.二倍角正弦公式:sin2α=2sinαcosα.常见变形:sinα=ααcos 22sin ,cosα=ααsin 22sin 。
6.二倍角正切公式:tan2α=αα2tan 1tan 2-。
7.半角正弦公式:sin 2α=±2cos 1α-。
常见变形:sin 22α=2cos 1α-.前者用于求半角的正弦值,后者用于降幂使用. 半角余弦公式:cos 2α=±2cos 1α+. 常见变形:cos 22α=2cos 1α+.半角正切公式:tan 2α=±ααααααsin cos 1cos 1sin cos 1cos 1-=+=+-。
人教a版必修4学案:3.2简单的三角恒等变换(含答案)
3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。
人教A版高中数学:三角恒等变换【精品课件】
B.-171
7 C.13
D.-173
解析:tan(α+β)=1t-antαan+αttaannββ=1-4+4×3 3=-171. 答案:B
4.已知 sin α+cos β=1,cos α+sin β=0,则 sin(α+β)= ________.
解析:由 sin α+cos β=1 与 cos α+sin β=0 分别平方相加得 sin2α+2sin αcos β+cos2β+cos2α+2cos αsin β+sin2β=1, 即 2+2sin αcos β+2cos αsin β=1, 所以 sin(α+β)=-12. 答案:-12
跟踪训练 2 已知 α,β∈0,π2,且 sin α=45,cos(α+β)=-1665, 求 cos β 的值.
解析:因为 α,β∈0,2π,所以 0<α+β<π, 由 cos(α+β)=-1665,得 sin(α+β)=6635, 又 sin α=45,所以 cos α=35, 所以 cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α= -1665×35+6635×45=322054.
知识点一 两角和的余弦公式
cos(α+β)=_c_o_s_α_c_o_s__β_-__s_in__α_s_in__β_,简记为__C_(_α_+_β)__,使用的 条件为__α_,__β_为__任__意 ___角___.
知识点二 两角和与差的正弦公式
名称 简记符号
公式
使用条件
两角和 的正弦
S(α+β)
解析:(1)cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin
30°= 22× 23+ 22×12=
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A必修4 (1)
类型二 逆用公式化简与求值
2 例2 (1)sin(70°-x)cos(25°-x)-cos(70°-x)sin(155°+x)= 2 .
解析 ∵(20°+x)+(70°-x)=90°, (25°-x)+(155°+x)=180°, ∴原式=cos(20°+x)cos(25°-x)-cos[90°-(20°+x)]·sin[180°
∴T=2ωπ=2π,值域[-2,2].
由-π2+2kπ≤x-π6≤π2+2kπ 得,递增区间[-π3+2kπ,23π+2kπ],k∈Z.
解析答案
类型三 公式的变形应用 例 3 已知 sin(α+β)=12,sin(α-β)=13,求ttaann αβ的值.
解 ∵sin(α+β)=12,∴sin αcos β+cos αsin β=12.
=
cos 20°
=cosc2o0s°s2i0n°30°=sin 30°=12.
重点难点 个个击破
解析答案
(2)若 sin34π+α=153,cosπ4-β=35,且 0<α<π4<β<34π,求 cos(α+β)的值. 解 ∵0<α<π4<β<34π, ∴34π<34π+α<π,-π2<π4-β<0.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 两角和的余弦公式
思考 如何由两角差的余弦公式得到两角和的余弦公式?
答 用-β代换cos(α-β)=cos αcos β+sin αsin β便可得到.
公式 简记符号
cos(α+β)=
cos αcos β-sin αsin β Cα+β
使用条件
方法一
原式=2cosπ3sin
人教A版高中数学必修四 3.2 《简单的三角恒等变换》示范教案
3.2 简单的三角恒等变换整体设计教学分析本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点.三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排2课时教学过程第1课时导入新课思路 1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点. 推进新课 新知探究 提出问题 ①α与2a有什么关系? ②如何建立cos α与sin22a之间的关系? ③sin 22a =2cos 1a -,cos 22a =2cos 1a +,tan 22a =aa cos 1cos 1+-这三个式子有什么共同特点?④通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?⑤证明(1)sin αcos β=21[sin(α+β)+sin(α-β)]; (2)sin θ+sin φ=2sin 2cos 2ϕθϕθ-+. 并观察这两个式子的左右两边在结构形式上有何不同?活动:教师引导学生联想关于余弦的二倍角公式cos α=1-2sin22a ,将公式中的α用2a代替,解出sin 22a 即可.教师对学生的讨论进行提问,学生可以发现:α是2a 的二倍角.在倍角公式cos2α=1-2sin 2α中,以α代替2α,以2a 代替α,即得cos α=1-2sin 22a , 所以sin 22a =2cos 1a -. ① 在倍角公式cos2α=2cos 2α-1中,以α代替2α,以2a 代替α,即得cos α=2cos 22a -1, 所以cos 22a =2cos 1a +. ② 将①②两个等式的左右两边分别相除,即得 tan22a =aa cos 1cos 1+-. ③ 教师引导学生观察上面的①②③式,可让学生总结出下列特点: (1)用单角的三角函数表示它们的一半即是半角的三角函数;(2)由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的).教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin2a =±2cos 1a -,cos 2a =±2cos 1a +,tan 2a =±aa cos 1cos 1+-,并称之为半角公式(不要求记忆),符号由2a所在象限决定. 教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的三角函数种类方面的差异.因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当公式,这是三角恒等变换的重要特点.代数式变换往往着眼于式子结构形式的变换.对于问题⑤:(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sin αcos β呢?想到sin(α+β)=sin αcos β+cos αsin β.从方程角度看这个等式,sin αcos β,cos αsin β分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sin αcos β的公式,列出sin(α-β)=sin αcos β-cos αsin β后,解相应的以sin αcos β,cos αsin β为未知数的二元一次方程组,就容易得到所需要的结果.(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别.只需做个变换,令α+β=θ,α-β=φ,则α=2ϕθ+,β=2ϕθ-,代入(1)式即得(2)式.证明:(1)因为sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 即sin αcos β=21[sin(α+β)+sin(α-β)]. (2)由(1),可得sin(α+β)+sin(α-β)=2sin αcos β.① 设α+β=θ,α-β=φ,那么α=2ϕθ+,β=2ϕθ-.把α,β的值代入①, 即得sin θ+sin φ=2sin2ϕθ+cos2ϕθ-.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sin αcos β看作x,cos αsin β看作y,把等式看作x,y 的方程,通过解方程求得x,这就是方程思想的体现.讨论结果:①α是2a的二倍角. ②sin 22a =1-cos 2cos 1a -.③④⑤略(见活动).应用示例思路1例1 化简:.cos sin 1cos sin 1xx xx ++-+.活动:此题考查公式的应用,利用倍角公式进行化简解题.教师提醒学生注意半角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系.解:原式=)2sin 2(cos 2cos 2)2cos 2(sin 2sin 22cos 2sin 22cos 22cos 2sin 22sin 222x x x x x x x x x x x x ++=++=tan 2x . 点评:本题是对基本知识的考查,重在让学生理解倍角公式与半角公式的内在联系.变式训练化简:sin50°(1+3解:原式=sin50°10cos )10sin 2310cos 21(250sin 10cos 10sin 31+∙=+ =2sin50°·10cos 10sin 30cos 10cos 30sin + =2cos40°·10cos 10cos 10cos 80sin 10cos 40sin ===1.例2 已知sinx-cosx=21,求sin 3x-cos 3x 的值. 活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a-b)3=a 3-3a 2b+3ab2-b 3=a 3-b 3-3ab(a-b),∴a 3-b 3=(a-b)3+3ab(a-b).解完此题后,教师引导学生深挖本例的思想方法,由于sinx·cosx 与sinx±cosx 之间的转化.提升学生的运算.化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x-cos 3x=(sinx-cosx)3+3sinxcosx(sinx-cosx)=1611.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx-cosx=21,得(sinx-cosx)2=41,即1-2sinxcosx=41,∴sinxcosx=83.∴sin 3x-cos 3x=(sinx-cosx)(sin 2x+sinxcosx+cos 2x) =21(1+83)=1611.点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法.变式训练(2007年高考浙江卷,12) 已知sin θ+cos θ=51,且2π≤θ≤43π,则cos2θ的值是______________. 答案:257-例1 已知1sin sin cos cos :1sin sin cos cos 24242424=+=+ABA B B A B A 求证.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证明一:∵1sin sin cos cos 2424=+BAB A , ∴c os 4A·sin 2B+sin 4A·cos 2B=sin 2B·cos +B.∴cos 4A(1-cos 2B)+sin 4A·cos 2B=(1-cos 2B)cos 2B,即cos 4A-cos 2B(cos 4A-sin 4A)=cos 2B-cos 4B.∴cos 4A-2cos 2Acos 2B+cos 4B=0.∴(cos 2A-cos 2B)2=0.∴cos 2A=cos 2B.∴sin 2A=sin 2B.∴=+A B A B 2424sin sin cos cos cos 2B+sin 2B=1. 证明二:令BAa B A sin sin ,cos cos cos 22==sin α,则cos 2A=cosBcos α,sin 2A=sinBsin α.两式相加,得1=cosBcos α+sinBsin α,即cos(B-α)=1. ∴B -α=2k π(k∈Z ),即B=2k π+α(k∈Z ). ∴cos α=cosB,sin α=sinB.∴cos 2A=cosBcos α=cos 2B,sin 2A=sinBsin α=sin 2B.∴BB B B A B A B 24242424sin sin cos cos sin sin cos cos +=+=cos 2B+sin 2B=1.点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元. 变式训练在锐角三角形ABC 中,ABC 是它的三个内角,记S=BA tan 11tan 11+++,求证:S<1.证明:∵S=BA B A BA B A B A tan tan tan tan 1tan tan 1)tan 1)(tan 1(tan 1tan 1+++++=+++++又A+B>90°,∴90°>A>90°-B>0°. ∴tanA>tan(90°-B)=cotB>0, ∴tanA·tanB>1.∴S<1.思路2例1 证明x x cos sin 1+=tan(4π+2x).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x,三角函数的种类为正弦,余弦,右边是半角2x,三角函数的种类为正切.解:方法一:从右边入手,切化弦,得tan(4π+2x )=2sin2cos 2sin2cos 2sin 2sin 2cos 2cos 2sin 4cos 2cos 4sin )24cos()22sin(x x x x x x x x x x -+=-+=++ππππππ,由左右两边的角之间的关系,想到分子分母同乘以cos 2x +sin 2x,得x x x x x x x x cos sin 1)2sin 2)(cos 2sin 2(cos )2sin 2(cos 2+=-++ 方法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得2sin2cos 2sin2cos )2sin 2)(cos 2sin 2(cos )2sin 2(cos cos sin 12x x xx x x x x x x xx -+=-++=+ 由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos2x,得 2tan4tan 12tan 4tan 2tan 12tan1x xx x ππ-+=-+=tan(4π+2x ). 点评:本题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法.变式训练已知α,β∈(0,2π)且满足:3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求α+2β的值. 解法一:3sin 2α+2sin 2β=1⇒3sin 2α=1-2sin 2β,即3sin 2α=cos2β,①3sin2α-2sin2β=0⇒3sin αcos α=sin2β,② ①2+②2:9sin 4α+9sin 2αcos 2α=1,即9sin 2α(sin 2α+cos 2α)=1, ∴sin 2α=91.∵α∈(0,2π),∴sin α=31. ∴sin(α+2β)=sin αcos2β+cos αsin2β=sin α·3sin 2α+cos α·3sin αcos α=3sin α(sin 2α+cos 2α)=3×31=1. ∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法二:3sin 2α+2sin 2β=1⇒cos2β=1-2sin 2β=3sin 2α,3sin2α-2sin2β=0⇒sin2β=23sin2α=3sin αcos α, ∴cos(α+2β)=cos αcos2β-sin αsin2β=cos α·3sin 2α-sin α·3sin αcos α=0.∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法三:由已知3sin 2α=cos2β,23sin2α=sin2β, 两式相除,得tan α=cot2β,∴tan α=tan(2π-2β). ∵α∈(0,2π),∴tan α>0.∴tan(2π-2β)>0. 又∵β∈(0,2π),∴2π-<2π-2β<2π.结合tan(2π-2β)>0,得0<2π-2β<2π.∴由tan α=tan(2π-2β),得α=2π-2β,即α+2β=2π.例2 求证:αββαβαβ2222tan tan 1cos sin )sin()sin(-=-+a 活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法. 证明:证法一:左边=βαβαβαβαβ22cos sin )sin cos cos )(sin sin cos cos (sin -+ ==-=-=-a a a a 222222222222tan tan 1cos sin sin cos 1cos sin sin cos cos sin ββββββ=右边.∴原式成立. 证法二:右边=1-βββββ2222222222cos sin sin cos cos sin cos sin sin cos a a -==βββββ22cos sin )sin cos cos )(sin sin cos cos (sin a a a a -+=βββ22cos sin )sin()sin(++a a =左边.∴原式成立. 点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力. 变式训练1.求证:θθθθθθ2tan 14cos 4sin 1sin 24cos 4sin 1-++=-+. 分析:运用比例的基本性质,可以发现原式等价于θθθθθθ2tan 1tan 24cos 4sin 14cos 4sin 1-=++-+,此式右边就是tan2θ. 证明:原等式等价于θθθθθ2tan 4cos 4sin 14cos 4sin 1=++-+.而上式左边θθθθθθθθθθ2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22++=++-+=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 2θθθθθθ++==tan2θ右边.∴上式成立,即原等式得证.2.已知sin β=m·sin(2α+β),求证:tan(α+β)=mm-+11tan α. 分析:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理. 证明:由sin β=msin(2α+β)⇒sin[(α+β)-α]=msin[(α+β)+α]⇒sin(α+β)cos α-cos(α+β)sin α=m0[sin(α+β)cos α+cos(α+β)sin α]⇒(1-m)·sin(α+β)cos α=(1+m)·cos(α+β)sin α⇒tan(α+β)=mm-+11tan α. 知能训练1.若sin α=135,α在第二象限,则tan 2a 的值为( )A.5B.-5C.51D.51-2.设5π<θ<6π,cos 2θ=α,则sin 4θ等于( )A.21a + B.21a - C.21a +- D.21a-- 3.已知sin θ=53-,3π<θ<27π,则tan 2θ_________________.解答:1.A2.D3.-3 课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段. 作业课本习题3.2 B 组2.设计感想1.本节主要学习了怎样推导半角公式、积化和差、和差化积公式以及如何利用已有的公式进行简单的恒等变换.在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用,应用诱导公式时符号问题也是常出错的地方.考试大纲对本部分的具体要求是:用向量的数量积推导出两角差的余弦公式,体会向量方法的作用.从两角差的余弦公式进而推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换第2课时导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(4π+α)-(4π-α),4π+α=2π-(4π-α)等,你能总结出三角变换的哪些策略?由此探讨展开. 思路2.(复习导入)前面已经学过如何把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能. 推进新课 新知探究 提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少? ②函数y=asinx+bcosx 的变形与应用是怎样的? ③三角变换在几何问题中有什么应用? 活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2k π(k∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2k π(k∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是k π(k∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1]. 函数y=asinx+bcosx=22b a +(2222sin ba b x ba a +++cosx ),∵(sin ,cos 1)()(2222222222=+=+=+++ba b ba aba b ba a ϕ从而可令φ,则有asinx+bcosx=22b a +(sinxcos φ+cosxsin φ) =22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tan φ=ab.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题. 我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sinx,y=cosx 的周期是2k π(k∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1. ②—③(略)见活动. 应用示例思路1 例1 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠C OP=α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到: S=AB ·BC=(cos α33-sin α)sin α=sin αcos α-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系; (2)由得出的函数关系,求S 的最大值. 解:在Rt△OBC 中,BC=cos α,BC=sin α, 在Rt△OAD 中,OADA=tan60°=3, 所以OA=33DA=33BC=33sin α. 所以AB=OB-OA=cos α33-sin α. 设矩形ABCD 的面积为S,则 S=AB ·BC=(cos α33-sin α)sin α=sin αcos α33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63.由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63.因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠C OP=α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点. 变式训练 (2007年高考辽宁卷,19) 已知函数f(x)=sin(ωx+6π)+sin(ωx-6π)-2cos 22x ω,x∈R (其中ω(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2π,求函数y=f(x)的单调增区间. 解:(1)f(x)=23sin ωx+21cos ωx+23sin ωx-21cos ωx-(cos ωx+1)=2(23sin ωx-21cos ωx)-1=2sin(ωx-6π)-1.由-1≤sin(ωx-6π)≤1,得-3≤2sin(ωx-6π)-1≤1, 可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得ωπ2=π,即得ω=2.于是有f(x)=2sin(2x-6π)-1,再由2k π-2π≤2x -6π≤2k π+2π(k∈Z ),解得 k π-6π≤x≤k π+3π(k∈Z ). 所以y=f(x)的单调增区间为[k π-6π,k π+3π](k∈Z ). 点评:本题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间. 活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题. 解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin(2x-6π). 故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,3π],[65π,π].点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识变式训练已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期; (2)若x∈[0,2π],求f(x)的最大、最小值. 解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π), 所以,f(x)的最小正周期T=22π=π. (2)因为x∈[0,2π],所以2x+4π∈[4π,45π].当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1. 所以,在[0,2π]上的最大值为1,最小值为-2.思路2例1 已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(43π,0)对称,且在区间[0,2π]上是单调函数,求φ和ω的值. 活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(43π,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练.解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cos φsin ωx=cos φsin ωx 对任意x 都成立. 又ω>0,所以,得cos φ=0.依题设0≤φ≤π,所以,解得φ=2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x). 取x=0,得f(43π)=-f(43π),所以f(43π)=0.∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+k π,k=0,1,2,….∴ω=32(2k+1),k=0,1,2,….当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数;当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数; 当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数.所以,综合得ω=32或ω=2. 点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题. 变式训练已知如图2的Rt△ABC 中,∠A=90°,a 为斜边,∠B、∠C 的内角平分线BD 、CE 的长分别为m 、n,且a 2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cos θ-sin θ=4(cos2C B +-cos 2CB -)成立?若能,找出这样的角θ;若不能,请说明理由. 解:在Rt△BAD 中,m AB =cos 2B,在Rt△B AC 中,a AB =sinC,∴mcos 2B=asinC.图2同理,ncos 2C=asinB. ∴mncos 2B cos 2C =a 2sinBsinC.而a 2=2mn, ∴cos2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =81.积化和差,得4(cos 2C B +-cos 2CB -)=-1, 若存在θ使等式cos θ-sin θ=4(cos 2C B +-cos 2C B -)成立,则2cos(θ+4π)=-1,∴cos(θ+4π)=22.而π<θ≤2π, ∴45π<θ+4π≤29π.∴这样的θ不存在. 点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例2 已知tan(α-β)=21,tan β=71-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=21,∴tan2(α-β)=)(tan 1)tan(22βαβα---=34.从而tan(2α-β)=tan [2(α-β)+β]=713417134tan )(2tan 1tan )(2tan ⨯+-=--+-ββαββα=121252125=.又∵tan α=tan [(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π. 又tan β=71-<0,且β∈(0,π), ∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-.点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cos α;若α∈(2π-,2π),则求sin α等.变式训练若α,β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π. 证明:已知两个等式可化为3sin 2α=cos2β, ① 3sin αcos α=sin2β, ②①÷②,得a a cos sin =ββ2sin 2cos ,即cos αcos2β-sin αsin2β=0, ∴cos(α+2β)=0.∵0<α<2π,0<β<2π,∴0<α+2β<23π.∴α+2β=2π.知能训练课本本节练习4. 解答:4.(1)y=21sin4x.最小正周期为2π,递增区间为[28,28ππππk k ++-](k∈Z ),最大值为21; (2)y=cosx+2.最小正周期为2π,递增区间为[π+2k π,2π+2k π](k∈Z ),最大值为3; (3)y=2sin(4x+3π).最小正周期为2π,递增区间为[224,2245ππππk k ++-](k∈Z ),最大值为2.课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学. 作业课本复习参考题A 组10、11、12.设计感想1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个基本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.2.在三角恒等变化中,首先是掌握利用向量的数量积推导出两角差的余弦公式,并由此导出角和与差的正弦、余弦、正切公式,二倍角公式和积化差、和差化积及半角公式,以此作为基本训练.其次要搞清楚各公式之间的内在联系,自己画出知识结构图.第三就是在三角恒等变换中,要结合第一章的三角函数关系、诱导公式等基础知识,对三角知识有整体的把握.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.对三角函数综合应用的考查,估计仍然以三角与数列、不等式、平面向量、解析几何、三角与解三角形的实际应用为主,题型主要是选择题、填空题,也可能以解答题形式出现,难度不会太大.应注意新情景立意下的三角综合应用也是考试的热点.。
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A版必修4
2
2
(2) 3 sin x cos x.
解:(1)1 cos x 3 sin x (2) 3 sin x cos x
2
2
sin 30 cos x cos 30 sin x
2( 3 sin x 1 cos x)
2
2
sin(30 x);
2(sin x cos 30 cos x sin 30 )
解:原式 sin(72 18 ) sin 90 1.
第十三页,共31页。
例1 已知 sin 3 , 是第四象限角,求 sin( ),
5
4
cos( )的值.
4
解:由sin=-
3 5
,
是第四象限角,得
cos 1 sin2 1 ( 3)2 4 , 55
于是有sin( ) sin cos cos sin
第七页,共31页。
探究(tànjiū)二:两角和与差的正弦公式
1.利用哪些公式可以实现正弦(zhèngxián)、余弦的互 化?
提示(tíshìs)i:n cos( ) 2
sin(
)
cos
2
(
)
第八页,共31页。
2.由两角和与差的余弦公式如何推导两角和与 差的正弦(zhèngxián)公式?
(2) 2 cos x 6 sin x.
解:(1)原式 (2 2 sin x 2 cos x)
2
2
2sin(x ).
4
(2)原式 2 (2 1 cos x 3 sin x)
2
2
2 2 sin( x).
6
第二十一页,共31页。
1.(2015·四川高考)下列函数中,最小正周期为π且图象关
高一数学必修4课件:3-2-2三角恒等式的应用
与三角函数图像与性质有关的问题,可先利用二倍角公式和 辅助角公式求f(x),化简成Asin(ωx+φ)+b的形式,然后利用 性质求解.
第三章
3.2 3.2.2
成才之路 ·数学 ·人教A版 · 必修4
[解析]
(1)∵f(x)=cos2x-sin2x+2 3sinxcosx+1.
∴f(x)=cos2x+ 3sin2x+1 =2sin(2x+φ)+1 b 3 ∵tanφ=a= 3 ,且点( 3,1)在第一象限, π π ∴φ= ,故f(x)=2sin(2x+ )+1 6 6 2π ∴T= 2 =π.
第三章
三角恒等变换
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习 随堂应用练习 思路方法技巧 课后强化作业 名师辨误做答
第三章
3.2 3.2.2
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习
第三章
3.2 3.2.2
成才之路 ·数学 ·人教A版 · 必修4
温故知新 π 1.函数y=cos (x+ ),x∈R( 4
π π π (2)令2kπ- ≤2x- ≤2kπ+ (k∈Z), 2 4 2 π 3π 整理得kπ-8≤x≤kπ+ 8 (k∈Z);
π 3π 0, ,则0≤x≤ . 又x∈ 2 8 3π ∴f(x)的单调增区间是0, 8 .
第三章
3.2 3.2.2
成才之路 ·数学 ·人教A版 · 必修4
f(x)=Asin(ωx+φ)的形式后求出最小值;(2)利用(1)求出函数
π f(x)在R上的单调增区间,再与0,2取交集.
第三章
3.2 3.2.2
成才之路 ·数学 ·人教A版 · 必修4
[解析]
高中数学必修四课件§3-2 简单的三角恒等变换课件
号决定,φ 与点(a,b)同象限.( √ )
3.sin x+ 3cos x=2sinx+π6.( × )
提示
sin x+
3cos
x=212sin
x+
3 2 cos
x=2sinx+π3.
2 题型探究
PART TWO
题型一 应用半角公式求值
例1
已知 sin θ=45,52π<θ<3π,求 cos
2θ和 tan
要证原式,可以证明11+ +ssiinn
4θ-cos 4θ+cos
44θθ=1-2tatnanθ2θ.
∵左边=sin sin
4θ+1-cos 4θ+1+cos
4θ= 2sin 4θ 2sin
2θcos 2θcos
2θ+2sin22θ 2θ+2cos22θ
= 2sin 2cos
2θcos 2θsin
2θ+sin 2θ+cos
知识点二 辅助角公式
辅助角公式:
asin x+bcos x=
a2+b2sin(x+θ).其中tan
θ=ba
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
1.若 α≠kπ,k∈Z,则 tan
α2=1+sicnoαs
1-cos α
= α
sin α
恒成立.(
√
)
2.辅助角公式 asin x+bcos x= a2+b2sin(x+φ),其中 φ 所在的象限由 a,b 的符
跟踪训练 2
1-sin 化简:
α-cos
αsin
α2+cos
α 2(-π<α<0).
2-2cos α
解
第四节 简单的三角恒等变换 课件(共106张PPT)
2.给值求值问题的解题策略 已知某些角的三角函数值,求另外一些角的三角函数值. 解题关键:把“所求角”用“已知角”表示. (1)当“已知角”有两个时, “所求角”一般表示为两个“已知角”的和或差 的形式或者和或差的二倍形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和、差或 倍数关系,然后应用诱导公式、和差公式、倍角公式求解.
(2)cos 40°+cos 60°+cos 80°+cos 160°=________.
[解析]
解法一:cos
20°cos
40°·cos
80°=sin
20°cos
20°cos 40°cos sin 20°
80°
1
=2sin
40°cos 40°cos sin 20°
80°
=14sins8in0°2c0o°s 80°
θ .
cos2
cos2
∵0<θ<π,∴0<2θ<π2,∴cos2θ>0,∴原式=-cos θ.
2.证明:cos θ-cos φ=-2sin
θ+φ 2 sin
θ-φ 2.
[证明] 因为θ=θ+2 φ+θ-2 φ,φ=θ+2 φ-θ-2 φ,
所以cos θ-cos φ
=cosθ+2 φ+θ-2 φ-cosθ+2 φ-θ-2 φ
第四章 三角函数 解三角形
第四节 简单的三角恒等变换
[复习要点] 能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、 余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但 对这三组公式不要求记忆).
理清教材•巩固基础
知识点 半角公式(不要求记忆)
1-cos α 1.sin α2=_±_______2____;
高中数学第三章三角恒等变换3.2简单的三角恒等变换3.2.1倍角公式导学案新人教A版必修4【精选】.doc
13.2.1二倍角公式教学目标: 12能用上述公式进行简单的求值、化简、恒等证明教学重点:二倍角公式的推导 教学过程sin15cos15×o o 的求值问题?一、复习引入复习两角和与差的正弦、余弦、正切公式:),(,sin cos cos sin )sin(R R ∈∈+=+βαβαβαβα )(βα+S=+)sin(αα),(,sin sin cos cos )cos(R R ∈∈-=+βαβαβαβα )(βα+C =+)cos(αα ),2,,(,tan tan 1tan tan )tan(Z k k ∈+≠+-+=+ππβαβαβαβαβα)(βα+T=+)tan(αα二、讲解新课(一) 二倍角公式的推导在公式)(βα+S ,)(βα+C ,)(βα+T 中,当βα=时,得到相应的一组公式: sin 2________________α= 简记为_____________.cos 2________________α=简记为_____________又可写成________________.________________.=⎧⎨=⎩tan 2________________α= 简记为_____________.(二)公式的变形应用21sin 2_______________(_________).α±==1cos 2_______;1cos 2_______.αα+=-= 22sin _______.cos _______.αα⇒==(三)相对2倍角(倍角的相对性)sin 2________________α=cos 2________________α=sin α= cos α= (利用2α表示) cos4α= __________________ cos3_________.α=(利用32α表示). sin2α=__________________ (22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用)例1不查表.求下列各式的值(公式的逆用) (1) 15cos 15sin ; (2)8sin 8cos 22ππ-;(3)5.22tan 15.22tan 22-; (4)75sin 212-. (5)22cos 112π-= (6)求cos 20cos 40cos60cos80o o o o 的值例2求值(1))125cos 125)(sin 125cos 125(sin ππππ-+(2)2sin 2cos 44αα- (3)ααtan 11tan 11+-- (4)θθ2cos cos 212-+例3若tan θ = 3,求sin2θ- cos2θ的值三、课后提升1、已知12cos13α=,)2,0(πα∈,求sin2α,cos2α,tan2α的值 ?2、已知5tan12α=,3(,)2παπ∈,求tan2α的值。
简单的三角恒等变换-人教版高中数学
知识图谱-三角恒等变换的应用三角恒等变换公式三角函数式的化简和求解第02讲_简单的三角恒等变换错题回顾三角恒等变换的应用知识精讲一.三角函数式的化简辅助角公式:,二.用三角函数解决问题设函数1.求最小正周期2.求单调性(方法:脱衣服)单调递增区间的求法,设,解得的范围即为的单调递增区间;单调递减区间的求法,设,解得的范围即为的单调递减区间.3. 求对称轴(方法:脱衣服)设,解得的的范围即为的对称轴.4. 求值域(方法:穿衣服)已知的取值范围,求得的范围,根据三角函数图像求出的范围,进而求得的范围,即为的值域.三点剖析一.注意事项:1. 运用辅助角公式求解的时候,一定要注意取值范围,2. 关于求值域和求单调性,一个是穿衣服,一个是脱衣服,不要记反了.二.必备公式题模精讲题模一三角恒等变换公式例1.1、函数f(x)=sin(x+φ)-2sinφcosx的最大值为____.例1.2、函数y=sin2x+2sin 2x 最小正周期T为____.例 1.3、函数f (x )=sin (sin -cos )的最小正周期为____.题模二 三角函数式的化简和求解例2.1、sin15°+cos15°的值为( )A 、B 、C 、D 、例2.2、若函数为偶函数,则( )A 、 f (x )的最小正周期为π,且在上为增函数B 、 f (x )的最小正周期为,且在上为增函数C 、 f (x )的最小正周期为,且在上为减函数D 、 f (x )的最小正周期为π,且在上为减函数例2.3、已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.随堂练习随练1.1、函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为____.随练1.2、函数f(x)=sinax+cosax(a>0)的最小正周期为π,最大值为b,则log a b=____.随练1.3、函数y=sin(x+15°)+cos(x+60°)的最大值____.随练1.4、设函数f(x)=sin(ωx+φ)-cos(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且f(-x)=f(x),则()A、f(x)在(0,)单调递减B、f(x)在()单调递减C、f(x)在(0,)单调递增D、f(x)在()单调递增随练1.5、关于函数f(x)=2sin2x+2cos2x,下面结论正确的是()A 、在区间单调递减B 、在区间单调递增C 、在区间单调递减D 、在区间单调递增随练1.6、已知函数f (x )=4cosxsin (x+)-1.(1)求f (x )的最小正周期;(2)求f (x )在区间[-,]上的最大值和最小值.自我总结 课后作业作业1、化简:cos(+α)+sin(+α)=____.作业2、设函数f (x )=sin (2x+φ)+cos (2x+φ)(|φ|<),且其图像关于直线x=0对称,则( )A 、y=f (x )的最小正周期为π,且在(0,)上为增函数B 、y=f (x )的最小正周期为,且在(0,)上为增函数C 、y=f (x )的最小正周期为π,且在(0,)上为减函数D 、y=f (x )的最小正周期为,且在(0,)上为减函数作业3、函数y=的单调递增区间是 .作业4、若f (x )=sin (ωx+φ)+cos (ωx+φ)(ω>0)的最小正周期为π,f (0)=,则( )A 、f (x )在单调递增B 、f (x )在单调递减C 、f (x )在单调递增D 、f (x )在单调递减作业5、已知函数f(x)=cos 2-sin cos -.(Ⅰ)求函数f (x )的最小正周期和值域;(Ⅱ)若f(α)=,求sin2α的值.作业6、已知函数f (x )=-sin 2x+sinxcosx .(Ⅰ)求f()的值;(Ⅱ)设α∈(0,π),f()=-,求sinα的值.作业7、已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.作业8、设函数f(x)=cos(2x+)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+)=g(x),且当x∈[0,]时,g(x)=-f(x),求g(x)在区间[-π,0]上的解析式.作业9、已知=(5cosx,cosx),=(sinx,2cosx),设函数f(x)=•+||2+.(Ⅰ)当x∈[,],求函数f(x)的值域;(Ⅱ)当x∈[,]时,若f(x)=8,求函数f(x-)的值.。
人教版高中数学必修1《简单的三角恒等变换》PPT课件
α2,cos
α2,tan
α 2
的值;
1-sin (2)化简:
α-2c-os2αcossiαnα2+cosα2(-π<α<0).
[解] (1)∵sin α=-187,π<α<32π,∴cos α=-1157.
∵cos2α=1-2sin2α2=2cos2α2-1,又π2<α2<34π,
∴sin α2=
1-cos 2
6 A. 3
B.-
6 3
C.±
6 3
解析:∵cos θ=13,且 θ∈(0,π),
D.±
3 3
∴θ2∈0,π2,∴cosθ2>0,
∴cos θ2=
cos2θ2=
1+cos 2
θ=
1+2 13= 36.
答案:A
()
3.已知 cos α=45,α∈32π,2π,则 sin α2等于
A.-
10 10
10 B. 10
【学透用活】
[典例 2] (1)求证:1+2cos2θ-cos 2θ=2;
(2)求证:
sin
x+cos
2sin xcos x-1sin
x x-cos
x+1=1+sincoxs
x .
[证明] (1)左边=1+2cos2θ-cos 2θ=1+2×1+c2os 2θ-cos 2θ=2=右边,
所以原等式成立.
• (一)教材梳理填空 • 1.半角公式:
半角公式
正弦 sinα2= ±
1-cos α 2
余弦 cosα2= ±
1+cos α 2
续表
正切 tan α2=±
1-cos 1+cos
αα,tanα2=1+sincoαs
= α
高一数学必修4课件:3-2-1三角恒等变换
2- 6 1 1 2 =-2 8-4 3=-2 6- 2 = 2 .
第三章
3.2 3.2.1
成才之路 ·数学 ·人教A版 · 必修4
α 1-cosα 解法二:(用tan = 来处理) 2 sinα ∵α为第四象限的角,∴sinα<0. ∴sinα=- 1-cos α=-
2
1 6 1-3=- 3 .
α ∴cos = 2
第三章
3.2 3.2.1
成才之路 ·数学 ·人教A版 · 必修4
5 2 α 已知sinα= 5 ,cosα=5 5,则tan2等于( A.2- 5 C. 5-2 B.2+ 5 D.± 5-2) (
)
[答案] C
第三章
3.2 3.2.1
成才之路 ·数学 ·人教A版 · 必修4
α α α 2 sin 2sin sin 1- 5 2 2 2 1-cosα 5 α [解析] tan = = = = = 5 2 α α α sinα 5 cos2 2sin2cos2 5 -2.
[答案] B
第三章
3.2 3.2.1
成才之路 ·数学 ·人教A版 · 必修4
2.在△ABC中,若sinAsinB=cos 2 ,则△ABC是( A.等边三角形 C.不等边三角形 B.等腰三角形 D.直角三角形
2C
)
[答案] B
第三章
3.2 3.2.1
成才之路 ·数学 ·人教A版 · 必修4
cosC+1 1-cosA+B [解析] sinAsinB=cos = = ,展开 2 2 2
第三章
3.2 3.2.1
成才之路 ·数学 ·人教A版 · 必修4
(2)和差化积公式(不要求记忆和应用) x+y x-y sinx+siny=2sin 2 cos 2 , x+y x-y sinx-siny=2cos 2 sin 2 , x+y x-y cosx+cosy=2cos 2 cos 2 , x+y x-y cosx-cosy=-2sin sin . 2 2
高中数学第三章三角恒等变换3.2简单的三角恒等变换知识巧解学案新人教A版必修04
,π<2α< ,求 tanα.
13
2
3
3
解: ∵π<2α< ,∴ <α< .
2
2
4
由 cos 2
1 sin 2
5
1 ( 12 ) 2
5 ,得 tan
1 cos2
1 13
3
13
13
sin 2
12 2
13
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
或 tan 或 tan
或 tan
2 1 cos
2 sin
可避开符号的讨论 .
③若角α的倍角 2α是特殊角,则可用半角公式求α的函数值,以α为桥梁,可把
的函数值连在一起 .
知识点二 积化和差公式的应用
例 4 求下列各式的值:
5 (1) cos sin ; (2)2cos50° cos70° -cos20° .
12 12
5
15
1
3
.
2
24
(2)原式 =cos(50° +70° )+cos(50°-70° )-cos20°
1
=cos120°+cos20° -cos20° =cos120°=-cos60° = .
2
31
例 5 求证: (1)sin80°cos40° =
sin 40 ;
42
11
(2)sin37.5° sin22.5° = + cos15° .
( 2 3) .
例 2 求 cos , tan 的值 . 8 12
2
解: 由于 cos2
1 cos 1
4
2
1