Flash pyrolysis of coals - behaviour of three coals in a 20 kg h-1 fluidized-bed pyrolyser
参考文献格式修改
参考文献[1] 罗资琴. 石油及其产品中硫危害的分析. 宁夏石油化工, 2003,3:8-10.[2] 王宗贤,阙国和,梁文杰. 孤岛减压渣油加氢处理过程中硫类型的变化. 石油学报(石油加工), 1997,13(2):23-27.[3]王宗贤,阙国和,梁文杰. 孤岛减压渣油加氢处理过程中硫类型的变化. 石油学报(石油加工),1999,151:17-20.[4] 阙国和. 石油组成与转化化学. 北京:石油工业出版社,2000.[5] 林世雄. 石油炼制工程. 山东东营:中国石油大学出版社, 2008.[6] Martin R. J et al, Anal. Chem, Distribution of sulfur compound in crude oil. 1965, 37(4):649-652.[7] 刘长久, 张广林. 石油和石油产品中的非烃化合物. 北京:中国石化出版社,1991:46-48.[8] Waldo, G. S., Carlson, J. E., Moldowan, J. M., et al. Sulfur Speciation in Heavy Petroleums:Information from X-Ray Absorption Wear-Edge Structure. Geochim Cosmochim Acta, 1991, 55(3):801-805.[9] Gorbaty M L, George G N, Kelemen S R. Direct Determination and Quantification of SulfurForms in Heavy Petroleum and Coals. Fuel, 1990, 69(8):945-950.[10]Ngassoum M B, Faure R, Ruiz J M, et al. S NMR: Tool for Analysis of Petroleum Oils. Fuel,1986, 65(2):142-143.[11] 林彦,凌凤香,王少军. 渣油中硫化物的测定方法研究进展. 广东化工,2007,34(12):56-58.[12] 刘淑藩. 石油非烃化学. 北京:石油大学出版社, 1988.[13] Cherylin Willey, Masatomo Iwao, Raymond N Caatle,and Milton L Lee. Determination ofSulfur Heterocycles in Coal Liquids and Shale Oils. Analytical Chemistry,1981,53:400-407.[14]Payzant J D,Mojelskyt W,Strausz O P. Improved Method Forthes Elective Isolation of theSulfide and Thiophenic Classes Compounds from Petroleu.Energy&Fuels,1989,3:449-454. [15] 周永昌,赵锁奇. 渣油超临界萃取馏分中硫化物的分离富集研究. 燃料化学学报,2005,33(3):304-307.[16] 王宗贤,阙国和,梁文杰. 选择性氧化结合红外光谱定量分析减压渣油中的硫醚硫. 石油大学学报, 1996,23(4):425-428.[17] 梁文杰. 重质油化学. 东营:石油大学出版社, 2000.[18]Green J B,Yu SK–T,Pearson C D,et al.Analysis of Sulfur Compound Types inAsphalt[J].Energy&Fuels,1993,7(1):119-123.[19] 王宗贤,李希方,阙国和,等. 胜利和孤岛减压渣油中硫醚硫和噻吩硫的测定. 燃料化学学报, 1995,23(4):425-428.[20]刘文钦,王宗贤,李希昉. 四乙酸铅电位滴定法测定渣油中硫醚硫的研究.石油炼制与化工, 1995,26(5):59-62.[21] 吕志凤,战风涛. 催化裂化柴油中硫醚测定. 石油与天然气化工,2000,29(4):205-206.[22] 刘文钦,王宗贤,李希方. 电生溴库仑滴定法直接测定渣油中硫醚硫的研究. 分析实验室, 1995,14(6):71-73.[23] RONALD L, MARTIN. Determination of Thiophenic Compounds by Types in PetroleumSamples.Analytical Chemistry,1965,37(6): 649-652.[24] 赵锁奇. 渣油中硫化物类型分布与化学转化性能. 2002,18(1):18-23.[25] Gorbaty M L, George G N, Kelemen S R. Direct Determination and Quantification of SulfurForms in Heavy Petroleum and Coals.Fuel,1990,69(8):945-949.[26]Waldo G S,Mullins O C. Determination of the Chemical Environment of Sulphur inPetroleum Asphaltenes by X-ray Absorption Spectroscopy[J]. Fuel,1992,71(1):53-57.[27] Green. Identification and Characterization of Sulfur Compound in Arab Petroleum, Anal,Chemm.,1983, 55:856-859.[28] Jean-Michel Rulz. Dertermination of Sulfur in Asphalts by Selective Oxidation andPhotoelectron Spectroscopy for Chemical Analusis, Anal. Chem., 1982, 54(4): 688-691. [29] 荆门炼油厂研究所. 气相色谱-微库仑法测定石油中噻吩硫的类型. 石油炼制,1980,6(5):53-54.[30] Kinya Sakanishi. Determination of Sulfur Compounds in Non-polar Fraction of Vacuum GasOil, Fuel, 1997, 76(4): 329-339.[31] 傅若农,顾峻岭. 近代色谱分析. 北京:国防工业出版社, 1998.[32] 高茜,向能军. Py-GC/MS分析技术与其在烟用中草药添加剂中的应用. 光谱实验室.2008,25(5):1015-1018.[33] 张心正. 裂解色谱简介. 化学世界, 1980,(9):286-289.[34] 刘虎威. 气相色谱方法及应用. 北京:化学工业出版社, 2000.[35] 孙永革,盛国英,傅家谟. 我国主要含煤油气盆地中煤系源岩PY-GC热解产物组成及意义. 沉积学报, 1995,13(2):120-127.[36] 贾望鲁,彭平安. 塔里木盆地烃源岩干酪根的分子结构:Py-GC-MS和甲基化Py-GC-MS研究. 中国科学D辑地球科学, 2004,34(1):35-44.[37] Strautsz, Sinninghe Damste J S. Characterization of Organically Bound Sulfur inHigh-molecular-weight, Sedimentary Organic Matter Using Flash Pyrolysis and Raney Ni Desulfurization, in: Geochemistry of Sulfur in Fossil Fuels, edited by W L Orr and C M White, ACS Symposium Series 429. American Chemical Society, Washington, D.C, 1990. [38] Damste.PY-GC-MS和LC-MS技术在褐煤结构研究中的应用. 煤炭转化, 1994,17(4):86-98.[39]Masaharuhai Nishioka,David G,Whiting,Robert M Campbell. Supercritical FluidFractionation and Detailed Characterization of the Sulfur Heterocycles in a Catalytically Cracked Petroleum Vacum Residue. Anal. Chem., 1986, 58: 2251-2255.[40] 吴烈钧. 气相色谱检测方法. 北京:化学工业出版社, 2000.[41] Cherylyn Willey, Masatomo Iwao. Determination of Sulfur Heterocycles in Coal Liquidsand Shale Oils, Anal. Chem., 1981, 53: 401-405.[42] Robert C,Kong, Milton L Lee, Masatomo Iwao et al. Determination of Sulphur Heterocyclesin Selected Synfuels, Fuel, 1984, 63(5): 702-708.[43] Jaap S, Sinninghe Damste, Jan W de Leeuw. Molecular Analysis of Sulphur-rich BrownCoals Flash Pyrolysis-gas Chromatography-mass Spectrometry, Journal of Chromatography, 1992, 607: 361-376.[44] 金熹高,黄俐研. 裂解气相色谱方法及应用. 北京:化学工业出版社, 2009.[45] 秦匡宗,郭绍辉. 石油沥青质. 北京:石油工业出版社, 2002.[46] 杨永坛. 催化裂化汽油中硫化物类型分布的气相色谱硫化学发光检测的方法研究. 色谱, 2007,17(4):86-98.[47] 刘玉新,许志明,赵锁奇,等. 哈萨克斯坦及俄罗斯渣油馏分中的硫化物裂解色谱分析.燃料化学学报, 2008,36(6):712-718.。
典型气流床煤气化炉气化过程的建模
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第8期·2426·化 工 进 展典型气流床煤气化炉气化过程的建模东赫1,刘金昌1,2,解强1,党钾涛1 ,王新1(1中国矿业大学(北京) 化学与环境工程学院,北京 100083;2九州大学电子和材料应用科学系,日本 福冈春日 816-8580 )摘要:利用Aspen Plus 、基于热力学平衡模型对GSP 煤粉气化炉、GE 水煤浆气化炉及四喷嘴对置式水煤浆气化炉的气化过程建模。
根据煤颗粒热转化的历程,将煤气化过程划分为热解、挥发分燃烧、半焦裂解及气化反应4个阶段,利用David Merrick 模型计算热解过程,采用Beath 模型校正压力对热解过程的影响,选用化学计量反应器模拟挥发分燃烧反应,编制Fortran 程序计算半焦裂解产物收率,最后基于Gibbs 自由能最小化方法计算气化反应。
结果表明,采用建立的气流床气化过程模型模拟工业气化过程的结果与生产数据基本吻合,对GSP 煤粉气化炉、GE 水煤浆气化炉及四喷嘴对置式水煤浆气化炉等3种气化炉有效气成分(CO+H 2)体积分数模拟结果的误差均不超过2%,建立模型的可靠性得到验证。
关键词:气流床气化炉;热力学平衡模型;Aspen Plus中图分类号:TQ 546 文献标志码:A 文章编号:1000–6613(2016)08–2426–06 DOI :10.16085/j.issn.1000-6613.2016.08.19Modeling of coal gasification reaction in typical entrained-flow coalgasifiersDONG He 1,LIU Jinchang 1,2,XIE Qiang 1,DANG Jiatao 1,WANG Xin 1(1School of Chemical and Environmental Engineering ,China University of Mining and Technology (Beijing ),Beijing 100083,China ;2Department of Applied Science for Electronics and Materials ,Kyushu University ,6-1 Kasuga-Koen ,Kasuga ,Fukuoka 816-8580,Japan )Abstract :This paper presents a modeling method for the coal gasification process proceeding in GSP pulverized coal gasification ,GE coal-water slurry gasification and Opposed Multiple-Burner gasification based on the thermodynamic equilibrium with the aid of Aspen Plus. In the light of thermal conversion procedure of fine coal particles ,the coal gasification was interpreted as consisting of four stages including pyrolysis ,volatile combustion ,char decomposition and gasification reaction. Then ,the pyrolysis stage was calculated by the David Merrick model and the effect of pressure on the coal pyrolysis was corrected by means of Beath model. The volatile combustion stage was simulated by using Rstoic reactor and the yield of char decomposition products was calculated via compiling Fortran program. And finally ,the gasification reaction stage was simulated based on the Gibbs free energy minimization. The results revealed that the simulated values from the developed simulation model of gasification processes were in good consistent with the industrial field data. The deviation of simulated results of volume fraction of the effective gas (CO+H 2) of these three typical entrained-flow gasifiers were all less than 2%,which can validate the reliability of the coal gasification model.第一作者:东赫(1991—),女,硕士研究生。
闪式提取法提取枣果皮中多酚的工艺研究_张迪_王勇_王彦兵_刘绣华
网络出版时间:2012-10-22 11:28网络出版地址:/kcms/detail/11.1759.TS.20121022.1128.006.html闪式提取法提取枣果皮中多酚的工艺研究张迪1,王勇1,王彦兵1,3,刘绣华1,2*(1.河南大学化学化工学院环境与分析科学研究所,河南开封,475004;2.河南大学化学生物学研究所,河南省天然药物与免疫工程重点实验室,河南开封,4750043.河南福森药业有限公司,河南淅川,474405)摘要:利用闪式提取法提取枣果皮中的多酚。
考察了乙醇体积分数、料液比、提取时间和提取次数对枣果皮中多酚得率的影响,根据考察结果运用正交实验方法对影响多酚得率的条件进行优化,然后进行验证实验。
结果表明,最佳提取工艺条件为:乙醇体积分数为60%,料液比1∶35(g/mL),提取时间为2min,提取3次,在此条件下,多酚得率达到13.62mg/g。
该工艺与超声波提取相比,简单,迅速,得率高,可用于枣果皮中多酚的提取。
关键词:枣果皮,多酚,闪式提取法,正交实验Study on extraction of polyphenolics from Zizyphus Jujube peel by flashextractionZHANG Di1, WANG Yong1, WANG Yan-bing1,3 , LIU Xiu-hua1,2*(1. Institute of Environmental and Analytial Science , College of Chemistry and Chemical Engineering, HenanUniversity, Kaifeng 475004, China;2. Institute of Chemical Biology of Henan University, Key Laboratory of Natural Medicine andImmuno-Engineering of Henan Province, Kaifeng 475004, China;3. Henan Fusen Pharmaceutical Co., Ltd., Xichuan 474405, China)Abstract: The flash extraction method was employed to extract polyphenolics from Zizyphus jujube peel. The effects of single factor of ethanol volume fraction, ratio of raw material to liquid, extraction time, extraction times on the extract rate of polyphenolics were investigated. The orthogonal experiment was conducted on the base of the single factor experiment, and then the verification test and comparative experiments were also conducted. The results showed that the optimum extraction conditions were as follows: volume fraction of ethanol of 60%, ratio of raw material to liquid of 1∶35 (g/mL), extracting three times, and each for 2min. Under such conditions, the yield of polyphenolics was 13.62 mg/g. Compared with the ultrasonic extraction, the proposed method is simple and fast with high extraction efficiency, which can be used to extract polyphenolics from Zizyphus jujube peel.Key words: Zizyphus jujube peel; polyphenolics; flash extraction; orthogonal experiment中图分类号:TS201.1献标识码:A 文章编号:枣(Zizyphus jujube dates),又名大枣、华枣,是鼠李科枣属植物枣树的果实[1],在我国已有四千多年的种植历史。
由煤炭制取芳烃技术进展
第49卷第11期 当 代 化 工 Vol.49,No.11 2020年11月 Contemporary Chemical Industry November,2020基金项目:国家重点研发计划资助项目(项目编号:2018YFB0604803)。
收稿日期:2020-07-06作者简介:黄晓凡(1983-),男,安徽省合肥市人,高级工程师,工学硕士,研究方向:现代煤化工、C 1化学和工业催化等。
E -mail:************************。
由煤炭制取芳烃技术进展黄晓凡,汤效平,崔宇,王兹尧,王彤(华电电力科学研究院有限公司,杭州 310030)摘 要: 介绍国内外煤炭低温热解、煤炭加氢液化、合成气制芳烃、煤基甲醇芳构化、甲苯甲醇烷基化等几种由煤炭转化制取芳烃的技术路线。
比较各种技术路线的原料转化、产物组成和目标产物收率等差异。
从大规模工业化的角度出发,分析各种技术存在的问题,并对未来重点研发方向提出建议。
指出煤炭制取芳烃产品,应走绿色、清洁、高效的转化路线,以高附加值化学品为终端产物,甲醇制芳烃技术具有甲醇转化率高、芳烃收率高的优点,是目前适合大型工业化的技术路线。
关 键 词:芳烃;煤制芳烃;甲醇制芳烃;合成气制芳烃;加氢液化;烷基化中图分类号:TQ536 文献标识码: A 文章编号: 1671-0460(2020)11-2615-06Advances in Coal to Aromatics TechnologyHUANG Xiao-fan , TANG Xiao-ping , CUI Yu , WANG Zi-yao , WANG Tong(Huadian Electric Power Research Institute Co., Ltd., Hangzhou Zhejiang 310030, China )Abstract : Several domestic and foreign technical routes of coal to aromatics were introduced, such as low-temperature pyrolysis of coal, coal hydro-liquefaction, synthesis gas to aromatics, coal-based methanol aromatization, alkylation of toluene with methanol. The differences of raw material conversion, product composition and target product yield were compared. From the perspective of large-scale industrialization, the problems of these technologies were analyzed, and suggestions for the future research were put forward. It was pointed out that the conversion route of coal to aromatics should be green, clean and efficient, taking high value-added chemicals as the end product. The methanol to aromatics technology has the advantages of high conversion rate of methanol and high yield of aromatics, which is suitable for large-scale industrialization.Key words : Aromatics; Coal to aromatics; Methanol to aromatics; Syngas to aromatics; Hydro-liquefaction; Alkylation芳烃是一类含有苯环的碳氢化合物,是关系国计民生的重要有机化工原料,其中的“三苯”,即苯(B)、甲苯(T)、二甲苯(X),在医药、合成材料、印染、纺织等众多行业有着广泛应用,其生产规模仅次于乙烯和丙烯。
磨矿和浮选过程中黄铁矿电化学行为的研究进展
工程科学学报,第 43 卷,第 1 期:58−66,2021 年 1 月Chinese Journal of Engineering, Vol. 43, No. 1: 58−66, January 2021https:///10.13374/j.issn2095-9389.2020.06.29.001; 磨矿和浮选过程中黄铁矿电化学行为的研究进展龚志辉,戴惠新✉,路梦雨,武立伟,赵可可昆明理工大学国土资源工程学院,昆明 650093✉通信作者,E-mail:***************摘 要 综述了黄铁矿在选矿过程中有关的电化学行为及工作机理,重点讨论了黄铁矿结构特性、溶液中氧化、金属离子作用和抑制剂对黄铁矿电化学行为的影响;此外,还讨论了磨矿过程中电偶相互作用、研磨介质形状、介质材料和研磨气氛对研磨中黄铁矿电化学行为的影响.其中黄铁矿晶体结构的不同对黄铁矿表面的氧化具有较大影响,从而间接的影响黄铁矿的可浮性,半导体性质对黄铁矿的导电率具有显著的影响;同时适度的氧化有利于黄铁矿的无捕收剂浮选,而强烈的还原电位或氧化电位会抑制黄铁矿的浮选;电位的增加,对铜活化黄铁矿有不利影响,主要原因是电位增加导致活化Cu+的浓度降低,同时黄铁矿表面被铁氧化物覆盖阻碍了铜离子的吸附.抑制剂的加入可以直接参与捕收剂与黄铁矿之间的氧化还原反应,从而抑制黄铁矿的浮选;同时磨矿介质及气氛条件的不同也会影响黄铁矿电化学行为.关键词 选矿;黄铁矿;研磨;浮选;电化学分类号 TD952Research progress in the electrochemical behavior of pyrite during grinding and flotationGONG Zhi-hui,DAI Hui-xin✉,LU Meng-yu,WU Li-wei,ZHAO Ke-keFaculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China✉Correspondingauthor,E-mail:***************ABSTRACT Metal sulfides are highly desirable owing to their semiconductor properties promoting electrochemical reactions for sulfide flotation. As the most common sulfide mineral, pyrite is found in coal and can contain a small amount of gold. The potential of electrochemical reactions for the beneficiation of pyrite makes it necessary to study its electrochemical behavior. The present work focuses on the electrochemical behavior and working mechanisms of pyrite in mineral processing. The effects of the structural characteristics of pyrite, oxidation in solution, the presence of metal ions, and inhibitors on the electrochemical behavior of pyrite were discussed emphatically. The effects of galvanic interaction and grinding medium shape, material, and atmosphere on the electrochemistry of pyrite in grinding were also discussed. It has been shown that the different crystal structures and semiconductor properties of pyrite can greatly influence the oxidation of its surface, which indirectly affects its floatability. Moreover, moderate oxidation conditions are beneficial to the collector-free flotation of pyrite, whereas strong reduction or oxidation potentials inhibit its flotation. It has also been shown that increase in potential and iron oxide on the pyrite surface lead to the decrease in the concentration of copper (Cu+) ions, thereby adversely affecting the activation of pyrite by copper. Furthermore, inhibitors can directly participate in the redox reaction between the collector and pyrite, thus inhibiting the flotation of pyrite. Different grinding media and atmosphere conditions also affect the electrochemical behavior of pyrite.KEY WORDS mineral processing;pyrite;grinding;flotation;electrochemical收稿日期: 2020−06−29基金项目: 国家自然科学基金资助项目(51764023)黄铁矿(FeS 2)是自然界最常见的硫化矿物.通常与闪锌矿、黄铜矿、方铅矿、金和煤等有价值的矿物共伴生[1−2]. 黄铁矿的经济价值低,通常被作为脉石矿物处理,黄铁矿进入有价值的精矿中会导致精矿品位降低,同时在冶炼过程中会产生大量的硫化气体,造成环境污染[3]. 天然黄铁矿在厌氧环境中是疏水的,因此常用浮选的方法选别.然而当黄铁矿长时间暴露于大气或水性条件下时,黄铁矿表面会被氧化从而降低其疏水性[4−5].大多数金属硫化物具有半导体特性,硫化矿物浮选取决于发生的电化学反应[6]. 黄铁矿浮选过程中发生的各种现象,如氧化引起的黄铁矿表面化学变化、黄铁矿与其他组分的相互作用、捕收剂的吸附和其他金属离子在黄铁矿表面的沉淀,通常都是由电化学机制引起的[7−9]. 影响电化学反应的主要因素是矿物/溶液界面的电化学势,该电位是一种混合电位,其中发生在矿物表面的阳极反应和阴极反应的速率完全相等,该电化学反应不仅控制着矿物在浮选过程中表面物种的形成,还抑制其表面物种的形成[10−11]. 因此电化学反应机理的研究对黄铁矿的浮选研究具有重要的意义. 本文综述了黄铁矿在选矿过程中有关的电化学行为及工作机理,重点讨论了黄铁矿结构、溶液氧化、离子活化和抑制剂对黄铁矿电化学行为的影响. 此外,还讨论了磨矿过程中研磨介质形状、介质材料和研磨气氛对研磨中黄铁矿电化学行为的影响. 并对今后的研究思路和方向进行了展望.1 黄铁矿晶体性质1.1 黄铁矿晶面特性黄铁矿的晶体类型众多,对黄铁矿晶体研究表明,大多数天然黄铁矿主要有三个解离面,分别为{100},{210}和{111},这三个晶面的比例为224∶42.8∶1[12−14]. 一些研究表明,黄铁矿的反应活性在晶体方向上是特定的. Zhu 等[15]研究了黄铁矿晶体结构对黄铁矿表面氧化的影响. 结果表明,在潮湿的空气中,黄铁矿{111}和{210}的初始氧化速率均大于黄铁矿{100};在干燥的空气中,黄铁矿{210}的初始氧化速率大于黄铁矿{111}的初始氧化速率;在潮湿的空气中,黄铁矿{111}的初始氧化速率最大;同时{111}是黄铁矿氧化最敏感的面. 黄铁矿氧化相关反应如图1所示. 这些研究的发现明确了黄铁矿的晶面与反应活性的关系,不仅对黄铁矿氧化机理有了新的认识,也为发生在矿物-水界面的其他界面反应提供参考.S O 42−S O 32−/S 2O 32−+H +S 22−Fe 3+Fe 2+O 2ee e+H 2OPyrite①①S 22−−e (to Fe 3+)+H 2O → S O 32−/S 2O 32−+H +S O 32−/S 2O 32−+O 2→S O 42−②②③③④④Oxidation routeFe 2+−e (to O 2) → Fe 3+H 2OFe 3++e (from S 22−) → Fe 2+H 2O 图 1 黄铁矿空气中氧化反应路线图Fig.1 Mechanisms of pyrite oxidation in airXian 等[16]对纯黄铁矿、砷取代黄铁矿、钴取代黄铁矿和晶间金黄铁矿四种类型的黄铁矿进行了浮选研究. 浮选结果表明,钴取代黄铁矿和晶间金黄铁矿的可浮性随矿浆充气时间的延长而增加,而纯黄铁矿和砷取代黄铁矿的可浮性随矿浆充气时间的延长而降低. 通过电子结构和能带结构研究发现黄铁矿的稳定性受晶格缺陷和电子结构的影响,所观察到的浮选行为差异是由于黄铁矿的稳定性和氧化强度不同所致.1.2 半导体特性黄铁矿具有高电子迁移率和高光吸收系数,是一种潜在的光伏吸收材料. 然而天然黄铁矿的半导体性质存在较大的差异,从而影响了黄铁矿的电化学反应[17]. Abratis 等[18]综合评述了黄铁矿的半导性,发现已报道的电导率相差四个数量级.根据地质条件的不同,天然黄铁矿既可以作为n 型半导体存在,也可以作为p 型半导体存在. 在较高温度下形成的黄铁矿通常具有n 型特征,而在较低温度下形成的黄铁矿通常为p 型. 使用n 型黄铁矿作为微电极在混合硫化物矿物矿浆中(不考虑动力学因素),具有较高静息电位的黄铁矿将成为阴极,而更具活性的硫化物将成为阳极.龚志辉等: 磨矿和浮选过程中黄铁矿电化学行为的研究进展· 59 ·但是,所产生的阳极硫化物优先溶解的速率将取决于由杂质或半导体类型引起的黄铁矿静止电位的变化.Savage 等[19]研究发现,杂质元素Co ,As 对黄铁矿半导性具有较大的影响. 富含Co 的黄铁矿是具有低电阻率和高载流子迁移率的n 型半导体,而砷黄铁矿倾向于p 型且具有较高的电阻率. 硫化矿物与捕收剂之间相互作用的差异是由矿物表面不同的半导体特性引起的. 与n 型半导体相比,p 型半导体对黄药的吸附更为有益.2 浮选中黄铁矿电化学行为2.1 黄铁矿在矿浆中的氧化黄铁矿在水溶液中通过电化学反应被氧化,氧化速率受溶液pH 、溶液电位值、氧化剂种类和浓度、粒径、温度、搅拌速度等多种因素的影响.由于铁硫比、晶体结构和表面形态不同,导致黄铁矿表现出不同的电化学反应活性. 黄铁矿在氧化过程中通常是不完全氧化,除亚铁离子和硫酸根离子外,还生成了单质硫. 亚铁离子进一步反应生成的氢氧化铁沉淀附着在黄铁矿表面,并抑制黄铁矿的进一步氧化[20−22].矿浆中溶解氧含量对矿浆电位变化和黄铁矿亲水性表面的生成有一定影响. Owusu 等[23]通过需氧量试验和泡沫浮选,研究了两种黄铁矿矿物的电化学反应活性及其对黄铜矿浮选的影响. 通过氧化还原电位(E h )、溶解氧(DO )、pH 等参数控制矿浆化学,可显著提高硫化矿物的浮选回收率、品位和选择性. 需氧量测试表明,不同黄铁矿的电化学反应活性有明显差异. 此外,矿浆的持续充气降低了黄铁矿的氧化速度. 溶液和表面分析结果表明,随着充气的进行,黄铁矿表面会形成氢氧化物表面涂层,防止或最大限度地减少黄铁矿进一步被氧化反应. 图2显示了25 ℃下黄铁矿电化学势与pH 的关系[24].S 2−2S 2−2S 2−n 硫的氧化行为的研究对于理解黄铁矿的氧化非常重要,但是在不同的溶液条件下,各种中间的硫氧化产物会使其复杂化. Chandra 和Gerson [25]研究表明在新鲜破碎的黄铁矿表面存在四种不同的硫:(体相)(4配位)、(表面)(3配位)、S 2−和S 0/(分别为缺金属硫化物和多硫化物).这些硫在破碎的黄铁矿表面呈不均匀分布. 当O 2解离和H 2O 分子吸附到存在高密度悬挂键的表面Fe 位时,开始氧化. 同时H 2O 可能会解离产生OH 自由基. 研究表明,Fe−O 键先于Fe−OH 键SO 2−4O 2−3S 2−3形成. S 的氧化是通过Fe 位上形成的OH 自由基的相互作用进行的,而的形成是通过S 2/中间体进行的. 从而进一步证明黄铁矿的氧化过程本质上是电化学的过程.S 2−n Tu 等[26]研究了黄铁矿在pH 为2的电解液中的电化学氧化机理. 研究表明在0.50 V 的低电位下,黄铁矿表面形成并覆盖一层富硫层(S 0)使得黄铁矿表面钝化,从而造成黄铁矿电化学氧化扩散受限. 当电位增加到0.60 V 时,由于无定形单质硫转化为晶态,黄铁矿氧化的扩散限制和表面钝化停止,导致先前被覆盖的活性位重新暴露,从而造成黄铁矿继续氧化. 在较高电位(0.70 V 和0.80 V )下,在黄铁矿表面形成并积累了较多的单质硫和多硫化物(),以及由Fe(OH)3、FeO 和Fe 2O 3组成的富铁层,这些产物导致了氧化速率降低. 表面粗糙度随氧化电位的增加而增加,黄铁矿表面的氧化是不均匀的. 这些发现进一步揭示了黄铁矿在电化学氧化过程中所经历的物理和化学变化.Tao 等[27]对表面氧化的黄铁矿进行了无捕收剂泡沫浮选试验. 在原位断裂电极上进行的计时安培分析表明,在pH 为9.2时,表面氧化的黄铁矿电位为−0.28 V (SHE ),在pH 为4.6时为0 V. 在稍高的正电势下进行初始氧化会生成疏水性富硫物质,最有可能是多硫化物或缺乏金属的硫化物,从而使黄铁矿表面具有疏水性. 无捕收剂的浮选试验结果表明,黄铁矿在表面氧化后具有较好的可浮性. 黄铁矿的无捕收剂浮选回收率取决于氧化过程中产生的多硫化物,可溶物和不溶物的相对量,这取决于溶液的pH 值和电位.2.2 不同金属离子对黄铁矿的影响2.2.1 铜离子对黄铁矿的影响活化是硫化物浮选过程中最常用的方式之一,SO 42−SO 42−Fe(OH)3Fe(OH)2Fe 2++2SFe 2++H 2SFe+H 2SFeS+H 2SFe+HS −FeS+HS −Fe FeS 2F e (O H )2+F e (O H )2+Fe 3+pH02468101214图 2 25 ℃下FeS 2–H 2O 体系E h –pH 图Fig.2 E h –pH diagram for the FeS 2–H 2O system at 25 ℃· 60 ·工程科学学报,第 43 卷,第 1 期在这个过程中金属离子沉淀或吸附在矿物表面,为捕收剂的吸附创造合适的位点. 在碱性溶液中黄铁矿可被铅离子和铜离子活化.Owusu 等[28]使用黄铜矿和黄铁矿组成的混合矿物体系,研究了黄铁矿对矿浆化学和黄铜矿回收率的影响. 浮选试验表明,随着黄铁矿含量的增加,黄铜矿的可浮性、回收率、品位和矿浆氧化电位降低,而黄铁矿回收率增加.Peng 等[29]在pH 值为9的条件下,以不同的电化学势测量了铜离子的浓度. 研究发现铜离子的浓度在很大程度上取决于电化学势. 在−185 mV 的电势下,溶液中几乎所有的铜都以亚铜离子的形式存在,而在−10 mV 的电势下,溶液的铜质量分数降低到28%;电位为+260 mV 时,溶液中亚铜离子不存在. 在−10 mV 和+260 mV 范围内,几乎所有的铜都以Cu(OH)2的形式析出;而在−185 mV 的电位下,只有少量铜以Cu(OH)2的形式析出. 因此,提高矿浆的电化学电位可以增加Cu(OH)2的生成,降低Cu +在黄铁矿表面的浓度. 由于铜离子活化黄铁矿强烈依赖于Cu(I)−硫化物的形成,因此在还原条件下更有利于黄铁矿活化.S 2−n S 2−2Chandra 等[30]用光发射电子显微镜(PEEM )分析研究了弱酸性条件下铜离子活化黄铁矿. 研究发现Cu 以Cu +形式吸附在黄铁矿表面. 与未活化黄铁矿相比,活化黄铁矿中存在较多的和S−OH ,较少的S 2−和. 这一现象是由于O 2/H 2O 的存在和铜离子在黄铁矿表面吸附而引起的氧化,并证实了离子交换、铜离子还原和硫氧化是同时进行的.综上,电势的增加对铜离子活化黄铁矿具有不利的影响. 主要有以下三个原因:一是电势的增加加快了Cu(I)到Cu(II)的氧化速率,结果导致用于活化的Cu(I)离子浓度降低;二是在高电势下,黄铁矿被氧化形成氧化铁/氢氧化物薄膜阻碍了亚铜离子与黄铁矿的作用;三是已经作用在黄铁矿表面的亚铜离子在高电势的作用下形成了亲水性碳酸铜/铜羟基物质影响了活化效果.2.2.2 铅离子对黄铁矿的影响在方铅矿和黄铁矿的电偶中,方铅矿充当阳极,黄铁矿充当阴极,通过电流作用将硫离子从方铅矿中氧化为元素硫,并将溶解的氧还原为氢氧根离子. 在没有捕收剂仅方铅矿存在的情况下,黄铁矿可表现出较强的可浮性. Peng 等[29]对铅活化黄铁矿进行了ζ电位测量,发现铅活化黄铁矿在不同的电化学电位下表现出相似的ζ电位性质. 铅活化的黄铁矿具有类似于氢氧化铅、氧化物或碳酸盐的等电点. 另一方面,在活化过程中加入的铅离子几乎都可以用乙二胺四乙酸溶液提取. 这些发现显然表明,铅对黄铁矿的活化主要是通过形成铅表面络合物如氢氧化物来实现的.2.2.3 铁离子对黄铁矿的影响铁离子和溶解氧在黄铁矿氧化过程中起着至关重要的作用,黄铁矿氧化过程可看作是黄铁矿,铁离子与氧之间的一系列反应. Liu 等[31]研究了Fe 3+对黄铁矿电化学行为的影响. 结果表明,三价铁在黄铁矿的溶解中起重要作用,黄铁矿电极的开路电势随Fe 3+浓度的增加而增加;Tafel 极化曲线表明,Fe 3+浓度的增加引起了黄铁矿电极极化电流的增加.黄铁矿的氧化是在黄铁矿电极和电解质界面发生的,并且在氧化过程中形成了由元素硫、多硫化物组成的钝化膜. 黄铁矿电极的极化电流随着Fe 3+浓度的增加而增加.2.2.4 金对黄铁矿的影响金常与黄铁矿伴生,以细小包裹体形式赋存于黄铁矿基质中,从而导致金不能被浸出剂浸出.为了使金能够被浸出剂浸出,通常需要通过氧化剂对黄铁矿基质进行强化氧化,然后释放出金颗粒.Huai 等[32]研究了金耦合对黄铁矿被铁离子氧化后的表面性能的影响. 研究表明,金可以催化三价铁还原,金的耦合显著促进了黄铁矿的氧化,在黄铁矿表面形成更多的铁氧化物. 同时,金的耦合还使黄铁矿的比表面积变的更粗糙、更大,从而提高黄铁矿氧化溶解的电化学活性.2.3 抑制剂对黄铁矿的影响2.3.1 无机抑制剂黄铁矿的无机抑制剂种类众多,通过电化学反应影响黄铁矿可浮性的主要有氰化物、硫化物和硫氧化物. 氰化物对黄铁矿浮选的抑制可能有以下几种机制[33−35]:在非离子活化条件下,当黄药存在时,主要是形成不溶性硫氰酸盐络合物取代了双黄药吸附位;当无捕收剂时,氰化物在黄铁矿表面的吸附导致形成不溶性的铁氰化物,使黄铁矿表面亲水性;在铜离子活化条件下,主要是通过降低矿浆铜离子含量,并形成铜氰化合物抑制黄药的吸附. Janetski 等[36]使用伏安法研究了氰化物抑制黄铁矿时对黄药的影响. 结果表明在黄原酸盐浓度和pH 恒定的情况下,氰化物离子浓度的增加会导致黄原酸盐的氧化电势向更正值移动. 氰化物离子对黄药的氧化过程具有抑制作用. 同时还发现在恒定的黄原酸酯浓度下,随着氰化物离龚志辉等: 磨矿和浮选过程中黄铁矿电化学行为的研究进展· 61 ·子浓度的增加,黄原酸酯氧化电位的阳极位移随着溶液pH 的降低而逐渐降低.由于氰化物有剧毒,硫化物作为替代物被广泛应用,硫化物、亚硫酸盐和硫酸盐的抑制机理主要是消耗溶液中的氧气,降低了溶液的混合电位,从而阻止了双黄药在黄铁矿表面的吸附. Janetski 等[36]通过伏安法研究了硫化钠如何抑制黄铁矿的浮选,并发现硫化钠的存在引入了新的阳极反应.相对于黄原酸盐氧化,新的阳极反应归因于溶解的硫化物(S 2−或HS −)在阴极电位下发生氧化. 硫化钠消耗了氧气并降低了混合电位,从而阻止了双黄药的生成和黄铁矿浮选. Khmeleva 等[37]研究了亚硫酸盐对黄铁矿浮选的影响. 结果发现,在有空气的情况下,黄铁矿表面上会形成多种氧化产物,亚硫酸盐可以在溶液中与黄铁矿和捕收剂相互作用. 亚硫酸盐的存在消耗了溶液中溶解的氧气,从而导致矿浆电位下降. 2.3.2 有机抑制剂无机抑制剂虽然有效,但对环境有害,并在处理过程中会造成额外费用. 有机抑制剂具有来源丰富、可生物降解和相对便宜等优点. 黄铁矿的有机抑制剂主要有羧甲基纤维素(CMC ),木质素磺酸盐. 由于聚合物结构复杂和矿物表面的非均质性,聚合物与矿物表面之间的相互作用非常复杂. 但可以简单的解释为有机抑制剂与黄铁矿矿物表面的吸附或结合,如图3所示[35]. 一是有机抑制剂与黄铁矿表面带相反电荷,二者之间存在静电吸引;二是有机抑制剂的非极性链段与矿物表面疏水区域之间的疏水相互作用驱动抑制剂聚集在矿物表面;三是羟基或羧基与矿物表面水合金属位点之间相互作用形成氢键,特别是在碱性pH 值下;四是阴离子官能团(如羧基或磺酸基团)与矿物表面的金属阳离子之间形成化学键驱动有机聚合物与矿物表面结合[38−39].(1) Electrochemical attraction(3) Hydrogen bonding(4) Chemical interaction(2) Hydrophobic interactionHydrophobic carbon chainHydrophobic sitesPyrite surfaceH HC C OHHO H HH H H OH OH O OO OH COOHOHHOH HHOMeMeMeMeC CC C C C C O OOH++图 3 有机聚合物与黄铁矿矿表面可能的相互作用机制:静电吸附(1),疏水相互作用(2),氢键(3)和化学相互作用(4)Fig.3 Possible interaction mechanisms of organic polymers with pyrite surface: electrochemical attraction (1), hydrophobic interaction (2), hydrogen bonding (3), and chemical interaction (4)羧甲基纤维素(CMC )是通过醚化过程产生的纤维素衍生物. 与天然多糖相比,CMC 结构中带负电荷的羧基和羟基的存在增加了CMC 的选择性. 与羟基不同的是,羧基能够与各种形式的金属物种相互作用,而羟基只能与金属羟基物种相互作用. Bicak 等[40]研究了高取代度和低取代度两种CMC 对黄铁矿的抑制效果. 研究表明,低取代度的CMC 比高取代度的CMC 抑制效果更好,主要是因为低取代度的CMC 自身负电荷较少,与黄铁矿表面的静电斥力较小,CMC 能更多的吸附在黄铁矿表面. 同时溶液中的pH 可以通过对羧基的解离、矿物表面羟基化及矿物表面电荷影响,从而影响CMC 在黄铁矿表面的吸附. 钙离子的存在可以增强CMC 在黄铁矿表面的吸附和抑制能力. 通过Zate 电位测定表明,Ca(OH)+在黄铁矿表面的吸附降低了黄铁矿表面的电负性,从而减小了CMC 与黄铁矿之间的静电排斥力. 除了静电作用外,黄铁矿表面的氢氧化物与CMC 的羟基和羧基之间形成氢键,从而抑制黄铁矿.木质素磺酸盐或磺化木质素可用作黄铁矿抑制剂. 对非活化黄铁矿浮选的电化学研究表明,生物聚合物吸附在黄铁矿表面后,使黄铁矿表面钝化,抑制了黄铁矿表面发生的电化学反应,包括黄铁矿自身的氧化还原反应和黄药在表面的氧化[35].Mu 等[41]比较了三种木质素磺酸盐聚合物(DP-1775,DP-1777和DP-1778)的抑制表现,研究表明生物· 62 ·工程科学学报,第 43 卷,第 1 期聚合物的分子量决定了其在黄铁矿表面的吸附密度,分子量越高,导致吸附能力越高,黄铁矿的抑制程度也更高.Mu等[42]通过电化学技术研究了在戊基黄原酸钾(PAX)和木质素磺酸盐类生物聚合物抑制剂(DP-1775)存在下黄铁矿表面性质的变化,对黄铁矿进行了电阻抗光谱法和循环伏安法测试.发现在不存在PAX的情况下,DP-1775不连续地分布在黄铁矿表面上并逐渐钝化黄铁矿表面;在PAX存在的情况下,预吸附的DP-1775降低了PAX的电化学氧化程度.3 研磨对黄铁矿电化学性能的影响3.1 电偶相互作用的影响磨矿对矿物/溶液界面的电化学势有很大影响,在磨矿过程中黄铁矿与磨矿介质之间存在电子相互流动,这种作用被称为电偶相互作用[29].不同电化学反应引起的电偶相互作用可以通过矿物的静息电位来预测,静息电位决定了不同硫化矿的电化学反应[43].在电偶相互作用中,黄铁矿由于具有较高的静息电位而表现出阴极的作用,从而导致其表面的氧还原和氢氧离子的产生.充当阳极的研磨介质被氧化并释放出亚铁离子.生成的亚铁离子进一步氧化成铁离子,然后与氢氧化物离子反应,以氢氧化铁的形式沉淀在黄铁矿表面,同时磨矿介质中产生的氧化铁物种对抑制黄铁矿浮选有重要作用[44],反应如下:阳极氧化:阴极还原:水解:Huang等[45]使用低碳钢作为磨矿介质研究了黄铁矿与介质的电偶作用及对浮选的影响.研究表明,低碳钢和黄铁矿之间的电流取决于极化行为、几何关系和研磨环境.低碳钢与黄铁矿的比表面积对低碳钢的电偶电流密度影响较大,同时溶解氧在电偶电流中起着显著的作用.研磨过程中研磨介质氧化产生的可被乙二胺四酸(EDTA)提取的铁含量与低碳钢上的电流密度成线性关系.电流与铁氧化物种的数量和黄铁矿的还原速率有关.溶解O2与硫化物反应、研磨介质的腐蚀和电相互作用降低了溶解的O2浓度.由于溶解O2的减少阻碍了黄药在硫化物矿物表面的吸附,从而抑制了这些矿物的浮选.3.2 研磨介质的形状及材料在矿石粉碎过程中会涉及到许多不同变量,例如研磨介质的形状和材料可能会对所产生颗粒的性质产生重大影响.研磨介质和硫化物矿物之间的电流相互作用产生的铁氧化物质对矿物浮选具有抑制作用.研磨介质形状主要有棒介质和球介质,材料类型主要有低碳钢、锻钢、低铬钢和高铬钢.Corin等[46]使用不同类型的磨矿介质研究其对金属硫化矿浮选的影响.结果表明,棒磨和球磨对金属硫化物的浮选影响差异不大,而研磨材料对金属硫化矿的矿浆化学和浮选性能有显著影响.Mu等[47]研究了锻钢、含铬15%(质量分数)的钢和含铬30%的钢3种磨矿介质材料在一定捕收剂(戊基黄药)浓度范围内分别在pH为5.0、7.0和8.5条件下对黄铁矿浮选的影响.结果表明,在pH值为5.0时,30%铬钢研磨的黄铁矿回收率最高,其次是使用15%铬钢和锻钢,磨矿介质中的铁污染和黄药氧化对黄铁矿浮选都有一定影响.黄铁矿表面的铁污染抑制了黄铁矿的浮选,黄药氧化可降低黄铁矿表面的铁污染.pH为7.0时,黄铁矿浮选主要受黄药浓度控制.黄药浓度较低时,阳极反应以黄铁矿氧化为主,黄药不能形成双黄药,浮选效果较差.当黄药浓度较高时,双黄药的形成占优势,有利于黄铁矿的浮选.pH为8.5时,黄铁矿的氧化作用超过黄药的氧化作用,矿浆电位在黄铁矿的浮选中起主要作用,高铬钢研磨介质产生的高矿浆电位促进了黄铁矿的氧化,而黄药的氧化降低,黄铁矿的浮选性能下降;锻钢研磨介质产生的低矿浆电位可使黄药氧化形成双黄药,从而促进了黄铁矿的浮选[48].3.3 研磨环境氧气在研磨过程的电流相互作用中起关键作用.氧气的存在会增加电流相互作用,因为氧气会在接受电子时形成羟基,从而促进研磨介质的氧化并增加矿物表面上氢氧化铁的浓度.在大多数硫化物系统中,这些电化学反应消耗氧气,导致矿浆电位降低[43].Huang和Grano[45]研究了在氮气、空气和氧气的不同气氛下,磨矿过程中黄铁矿的浮选回收率随原电池电流的变化.结果表明,氮气充入产生的龚志辉等:磨矿和浮选过程中黄铁矿电化学行为的研究进展· 63 ·。
!煤炭在超临界水中氧化(英文版)
Conversion and Kinetics of the Oxidation of Coal inSupercritical WaterTao Wang*and Xiaofeng ZhuDepartment of Chemical Engineering,Tsinghua University,Beijing100084,ChinaReceived April11,2004.Revised Manuscript Received June30,2004 The oxidation of coal in supercritical water was explored by using H2O2as the oxidant source in a bench-scale semicontinuous installation.The conversion and kinetics of coal oxidation in supercritical water(SCW)medium were investigated.The reaction parameter effects on the conversion and kinetics of coal supercritical water oxidation(SCWO)were determined.Increasing temperature,H2O2concentration,or the flow rate of H2O2solution enhances the oxidation of coal in SCW.The oxidation of coal in SCW is a pseudo-first-order process.1.IntroductionSupercritical water(SCW),which is water above itscritical temperature(374.0°C)and critical pressure(22.1MPa),has unique properties and environmentallying SCW as the medium for processing ofcoal has received increasing attention in the efforts to develop techniques for the clean and effective use of coal,1-10including hydrolysis and pyrolysis of coal in SCW,liquefaction of coal in SCW,extraction of coal with SCW and SCW mixtures,and desulfurization of coal with SCW.In our previous works,11,12we firstly explored the oxidation of coal using SCW as the reaction medium for developing a clean and effective coal combustion technique.The species in the gaseous and liquid ef-fluents of the coal SCWO has been identified for investigating the transformation of the key elements in coal during the SCWO.11,12It was disclosed that the sulfur and nitrogen contained in coal could be conversed into SO42-and N2,respectively,by the oxidation in SCW with H2O2as the oxidant source under suitable reaction conditions.11,12The information on the kinetics is neces-sary for further research and development of this novel coal SCWO process.In this work,the conversion and kinetics of coal solid during SCWO was investigated. The reaction parameter effects on the conversion and kinetics of coal SCWO were experimentally determined.2.Experimental Section2.1.Materials.Coal with the particle size0.5-1.0mm and the composition given in Table1was used for this study.The oxidant hydrogen peroxide was purchased as the30.0wt% aqueous solution from Beijing Chemicals Corp.(Beijing,China) and diluted to the required concentrations with tridistilled water.2.2.Setup and Procedure.A bench-scale semicontinuous system,shown in Figure1,was used for the experiments involving SCWO of coal.H2O2aqueous solution in the reservoir(1)was continuously charged into the preheater(3)by a high-pressure pump(2) (LB-10C,Xingda Corp.,Beijing,China).In the preheaters(3 and4),H2O2decomposed and released O2to be dissolved in supercritical water.The coal sample was oxidized by O2 dissolved in supercritical water in the horizontal reactor(5), which is aΦ6×4Inconel625tube with an effective length of 230mm.The temperatures of the reactor and preheaters, which were both electrically heated,were measured with K type thermal couples and controlled with an accuracy of(1°C.The temperature of the reactor outlet was reported as the reaction temperature.The reaction pressure was controlled by a back-pressure regulator(BPR)(8)with an accuracy of (0.1MPa.After being passed through a filter(6),the super-critical water solution from the reactor was cooled in a cooler (7),depressurized to atmosphere pressure by BPR(8),and separated into gaseous and liquid effluents in the separator (9).*To whom correspondence should be addressed.Tel:+8610 62782748.Fax:+861062770304.E-mail:taowang@.(1)Aida,T.M.;Sato,T.;Sekiguchi,G.;Adschiri,T.;Arai,K. Extraction of Taiheiyao coal with supercritical water-phenol mixtures. Fuel2002,81,1453-1461.(2)Izumiya,F.;et al.Coal decomposition by supercritical water.Fuel Energy Abstr.2002,43,10-10.(3)Liu,X.;Li,B.;Miura,K.Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model.Fuel Process. Technol.2001,69,1-12.(4)Nakagawa,H.;et al.Upgrading of low rank coals by sub/ supercritical water treatment.Fuel Energy Abstr.2002,43,12-12.(5)Matsumura,Y.;Nonaka,H.;Yokura,H.;Tsutsumi,A.;Yoshida, K.Co-liquefaction of coal and biomass in supercritical water.Fuel1999, 78,1049-1056.(6)Sasaki,A.Study of coal treatment with supercritical water.Fuel Energy Abstr.1997,38,8-8.(7)Tsutsumi,A.Liquefaction of Ishikari coal using supercritical water.Fuel Energy Abstr.1995,36,253-253.(8)Adschiri,T.;Sato,T.;Shibuichi,H.;Fang,Z.;Okazaki,S.;Arai, K.Extraction of Taiheiyo coal with supercritical water-HCOOH mixture.Fuel2000,79,243-248.(9)Li,W.;Guo,S.Supercritical desulfurization of high rank coal with alcohol/water and alcohol/KOH.Fuel Process.Technol.1996,46, 143-155.(10)Timpe,R.C.;Mann,M.D.;Pavlish,J.H.;Louie,P.K.K. Organic sulfur and hap removal from coal using hydrothermal treat-ment.Fuel Process.Technol.2001,73,127-141.(11)Zhu,X.;Wang,T.Preliminary Exploration of Coal Oxidation in Supercritical Water.Chin.J.Process Eng.2002,2,177-180.(12)Wang,T.;Zhu,X.Sulfur Transformations during Supercritical Water Oxidation of a Chinese Coal.Fuel2003,82(18),2267-2272.position of the Coal Sample moisture(wt%)ash(wt%)volatilecomponents(wt%)nitrogen(wt%)sulfur(wt%)4.07.329.20.80.31569Energy&Fuels2004,18,1569-157210.1021/ef0499123CCC:$27.50©2004American Chemical SocietyPublished on Web08/04/2004To conduct the experiment,a1.5g coal sample was packed in the clean and dry reactor.Tridistilled water was introduced into the system by the high-pressure pump during heating and pressurizing.Once the desired temperature and pressure werereached,the H2O2aqueous solution replaced tridistilled water and was continuously pumped into the system.The reaction time was set to be zero at this point.After the desired reaction time,heating and pumping were shut down,and the system was quickly depressurized.The reactor was immediately taken away from the system and quenched in water.The solid residue inside the reactor was dried and weighted.The moisture in the sample of the coal and solid residue was determined by a standard test method(ASTM D3173-00).Each experiment was repeated three or more times,and the average result is reported with a standard deviation of less than(1.5%.3.Results and Discussion3.1.The Conversion of Coal SCWO.The conver-sion of coal was defined according to the weight loss of coal by SCWO asWhere x is the conversion of the coal by SCWO,W0is the initial moisture-free weight of coal sample(g),and W is the moisture-free weight of the solid sample(g). The conversion of coal was increased as reaction time increased.Under the experimental conditions at420°C, 25.0MPa,and5.0mL/min of5.0wt%H2O2solution, the conversion of coal was respectively26.7%,68.1%, and82.1%for the reaction times of5,15,and20min, as shown in Figure2.The conversion of coal was strongly dependent on the reaction temperature.The conversion of coal at different reaction temperatures is shown in Figure3for a coal sample of1.5g oxidized at25.0MPa with5mL/min of 5.0wt%H2O2solution for17.0min.As shown in Figure 3,the conversion increased as temperature increased. When the reaction temperature was higher than380°C,it went up rapidly with the temperature increase. Figure4represents the conversion for a coal sample of1.5g oxidized at25.0MPa and400°C with5.0mL/ min of different concentrations of H2O2solutions.The conversion depended on the H2O2concentration and was enhanced by using a higher concentration of H2O2 solution.The dependence of the conversion on the flow rate of H2O2solution is illustrated in Figure5.Obvi-ously,it increased as the flow rate of H2O2solution increased.It was experimentally verified that the conversion of the coal by SCWO was enhanced with high temperature, long reaction time,high concentration,and high flow rate of H2O2solution.The reaction temperature is the most significant parameter affecting the conversion of coal SCWO.3.2.The Kinetics of Coal SCWO.The coal SCWO was assumed to be a pseudo-first-order process.So that ThenFigure1.Schematic diagram of the bench setup forSCWOof coal.Figure2.Conversion of coal vs reaction time.P)25.0MPa, T)420°C,F)5.0mL min-1,C)5.0wt%.x)W-WW×100%(1)Figure3.Conversion of coal vs reaction temperature.P)25.0MPa,t)17min,F)5.0mL min-1,C)5.0wt%.Figure4.Conversion of coal vs concentration of H2O2.T)400°C,P)25.0MPa,t)17min,F)5.0mL min-1.d W/d t)-kW(2)ln W)-kt+ln W′(3)1570Energy&Fuels,Vol.18,No.5,2004Wang and Zhu1.储双氧水罐2.泵3.4.预热器5.反应器6.过滤器7.冷却器8.背压阀9.分离罐where W 0′is the moisture-free weight of solid residue at zero reaction time when the H 2O 2aqueous solution was continuously pumped into the system to replace the tridistilled water (g),W is the moisture-free weight of the solid sample (g),t is the reaction time (min),and k is the first-order rate constant (min -1).The plotting of ln W vs t is shown in Figure 6for different reaction temperatures at 25.0MPa with 5.0mL/min of 5.0wt %H 2O 2solution.The parameters in eq 3were found by fitting the experimental data and were listed in Table 2.The data in Figures 6-8have good linearity.This disclosed that coal SCWO is a pseudo-first-order process.As shown in Figure 6,the weight of the solid sample decreased more quickly at higher temperature.The rate constant of the coal SCOW,k ,listed in Table 2increased as the reaction temperature increased.These data evidenced that the rate of the coal SCWO increased as temperature increased.As shown in Tables 2-4,the fitted parameter W 0′coincides well with the experimentally determined one,which is denoted as W 0′E .The value of W 0′E indicates the conversion of coal during heating and pressurizing,in which the hydrolysis and pyrolysis of coal take place without the oxidation.The conversion of coal during heating and pressurizing,which could be calculated with W 0′and W 0according to eq 1,declined as the reaction temperature elevated.This conversion was 22.7%at 380°C but only 2.0%at 420°C.These values disclosed that the conversion contributed by the hy-drolysis and pyrolysis of coal taking place during heating and pressuring was small at thereactionFigure 5.Conversion of coal vs flow rate of H 2O 2solution.T )400°C,P )25.0MPa,t )17min,C )5.0wt%.Figure 6.ln W vs reaction time at different reaction tem-peratures.P )25.0MPa,F )5.0mL min -1,C )5.0wt %.Table 2.Kinetic Parameters of the Coal SCWO atDifferent Reaction Temperatures T (°C)W 0′E (g)W 0′(g)k (min -1)r 380 1.16 1.180.011590.996390 1.21 1.200.017420.993400 1.30 1.310.031390.989410 1.36 1.380.047360.9904201.471.480.059770.984Figure 7.ln k vs 1/T .P )25.0MPa,F )5.0mL min -1,C )5.0wt%.Figure 8.ln W vs reaction time at different concentrations of H 2O 2.T )400°C,P )25.0MPa,F )5.0mL min -1.Table 3.Kinetic Parameters of the Coal SCWO withDifferent H 2O 2Concentration C (wt %)W 0′E (g)W 0′(g)k (min -1)r 3.0 1.27 1.280.013170.9965.0 1.30 1.310.031390.9897.01.211.220.031620.986Table 4.Kinetic Parameters of the Coal SCWO withDifferent Flow Rates of H 2O 2Solution F (mL/min)W 0′E (g)W 0′(g)k (min -1)r 5.0 1.30 1.310.031390.9897.01.301.290.041070.991Oxidation of Coal in Supercritical Water Energy &Fuels,Vol.18,No.5,20041571temperature above 420°C,although it was significant at lower temperatures.The dependence of the rate constant on the temper-ature is shown in Figure 7and could be expressed by Arrhenius’relationship,with the activation energy being 154.65kJ/mol for the data at 25.0MPa and 5.0mL/min of 5.0wt %H 2O 2solution.The kinetics was also dependent on the H 2O 2concen-tration.As shown in Figure 8and Table 3,the rate constant increased as H 2O 2concentration increased.The flow rate of H 2O 2solution also affected the kinetics of coal SCWO.As shown in Figure 9and Table 4,the rate constant depended positively on the flow rate of H 2O 2solution.4.ConclusionUnder the experimental conditions,the conversion and kinetics of coal SCWO are strongly dependent on the temperature,H 2O 2concentration,and the flow rate of H 2O 2solution.Increasing any of those enhances the oxidation of coal in SCW.The oxidation of coal in SCW is a pseudo-first-order process with an activation energy of 154.65kJ/mol at 25MPa pressure.NomenclatureC )concentration of H 2O 2aqueous solution,wt %F )flow rate of H 2O 2aqueous solution,mL/min k )first-order rate constant,min -1P )reaction pressure,MPar )linear correlation coefficient T )reaction temperature,°C t )reaction time,minx )conversion of the coal by SCWOW )moisture-free weight of the solid sample,g W 0)initial moisture-free weight of coal sample,gW 0′)moisture-free weight of the solid when t is zero,determined by data fitting,gW 0′E )experimentally determined moisture-free weight of the solid when t is zero,gEF0499123Figure 9.ln W vs reaction time at different flow rates of H 2O 2solution.T )400°C,P )25.0MPa,C )5.0wt %.1572Energy &Fuels,Vol.18,No.5,2004Wang and Zhu。
Effect of pyrolysis temperature and
holding time on biochar propertiesBiochar is becoming an increasingly popular alternative to traditional methods for managing soil organic matter, improving soil fertility, and sequestering carbon by converting agricultural wastes into a stable and recalcitrant form of carbon. Pyrolysis, the thermal decomposition of organic matter in the absence of oxygen, is widely used to produce biochar. The pyrolysis temperature and holding time are two critical factors that influence the properties of biochar. This article aims to explore the effect of pyrolysis temperature and holding time on biochar properties and their implications for soil management.Pyrolysis temperaturePyrolysis temperature is a important factor that influences the physicochemical properties of biochar. It determines the degree of thermal degradation of the material, leading to the production of different biochar properties. The effect of pyrolysis temperature on biochar properties can be divided into three categories: chemical composition, physical characteristics, and adsorption properties.Chemical compositionPyrolysis temperature has a significant effect on the chemical composition of biochar, including carbon content, ash content, pH, and functional groups. Higher pyrolysis temperatures generally result in higher carbon content, lower ash content, and higher pH. As the temperature increases, volatile components are driven off, leaving behind a more stable and recalcitrant carbon structure. At the same time, the increase in temperature may cause some functional groups, such as carboxyl and hydroxyl groups, to be decomposed, leading to a decrease in surface functional groups and a corresponding increase in hydrophobicity of the biochar.Physical characteristicsPyrolysis temperature also affects the physical characteristics of biochar, including surface area, pore size distribution, and bulk density. High-temperature pyrolysis leads to the formation of a more open pore structure and a higher surface area. However, pore size distribution is affected by both pyrolysis temperature and the type of feedstock, with higher temperatures resulting in a shift towards smaller pore sizes. Meanwhile, an increase in pyrolysis temperature may cause a decrease in bulk density and an increase in particle size.Adsorption propertiesPyrolysis temperature affects the adsorption properties of biochar, including its ability to adsorb nutrients, heavy metals, and other pollutants. High-temperature pyrolysis generally results in biochar with a higher adsorption capacity due to its higher surface area and pore volume. At the same time, the decrease in functional groups may lead to a reduction in the biochar’s ability to adsorb certain types ofpollutants. The specific effect of pyrolysis temperature on the adsorption properties of biochar is determined by the type and concentration of the adsorbate, as well as the properties of the biochar itself.Holding timeHolding time is another important parameter in pyrolysis that affects the properties of biochar. The holding time is the duration of the pyrolysis process at a given temperature. It is an important factor that determines the final carbonization degree and the degree of thermal degradability of the feedstock. The effects of holding time on biochar properties include chemical composition, surface area, and adsorption properties.Chemical compositionIncreasing the holding time can promote the decomposition of organic matter and improve the carbonization degree of the biochar. However, excessive holding time can lead to excessive thermal degradation and a reduction in the carbon content of the final biochar. The chemical composition of biochar can be affected by the holding time either directly or indirectly. Longer holding times can result in greater efforts to remove moisture and volatile organic matter components from the feedstock, leading to higher carbon yield and lower ash content.Surface areaHolding time can also affect the specific surface area of biochar. As the holding time increases, the surface area of the biochar may increase due to an increase in the extent of decomposition and subsequent micropore formation. However, too long a holding time can also lead to a reduction in specific surface area due to excessive carbonization and vaporization of the volatile components.Adsorption propertiesHolding time can also affect the adsorption performance of biochar. An increase in holding time can result in a higher surface area and micropore volume, leading to a greater adsorption capacity for certain types of pollutants such as heavy metals. However, excessive holding times can reduce the number of surface functional groups responsible for adsorption, merely increasing the micropore density in the biochar, and reducing the potential for adsorption of some other pollutants.ConclusionIn conclusion, pyrolysis temperature and holding time are two crucial factors that influence the properties of biochar, which in turn determine its effectiveness in soil applications. High-temperature pyrolysis tends to result in biochar with higher carbon content, larger surface area, and higher adsorption capacity than low-temperature pyrolysis. Longer holding times can also modify biochar properties,although the extent depends on the conditions of the individual pyrolysis process. A well-designed pyrolysis process can thus be tailored to produce biochar with specific properties suitable for a wide range of soil applications, such as improving soil fertility, reducing greenhouse gas emissions, and remediating contaminated soils.。
煤热解反应热测定方法研究进展
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第2期·494·化工进展煤热解反应热测定方法研究进展何璐1,解强1,梁鼎成1,仝胜录2,郜丽娟2,姚金松2(1中国矿业大学(北京)化学与环境工程学院,北京 100083;2北京低碳清洁能源研究所,北京 102211)摘要:煤热解既是煤炭燃烧、气化、直接液化等工艺的初始反应和伴随过程,也是煤转化的主要工艺之一,而煤热解反应热是反应器设计、热解机理研究、建模及工艺能效评估等过程所需的重要热力学参数。
本文首先对煤及其他非均质有机物热解反应热测定方法和技术的研究现状做了综述性评介,分析比较了模型预测法(Merric 模型、Strezov模型)和实验测定法(热值法、电功率法、计算机辅助热分析法、差示扫描量热法等)方法的优势以及存在的问题,特别关注将这些方法应用于煤热解反应热测定过程中的适应性。
结果表明,在研究掌握测试参数影响煤热解反应热测定精度的规律、解决数据处理方法的前提下,基于TG-DSC同步联用法或可建立相对简单、易行、普适的煤热解反应热测定方法和技术。
关键词:煤;热解;反应热;测量中图分类号:TQ530.2 文献标志码:A 文章编号:1000–6613(2017)02–0494–08DOI:10.16085/j.issn.1000-6613.2017.02.013Measurement of reaction heat of coal pyrolysis:state-of-the-artHE Lu1,XIE Qiang1,LIANG Dingcheng1,TONG Shenglu2,GAO Lijuan2,YAO Jinsong2(1School of Chemical and Environmental Engineering,China University of Mining & Technology,Beijing 100083,China;2National Institute of Clean-and-Low-Carbon Energy,Beijing 102211,China)Abstract:In nature pyrolysis can be considered as the initial stage and/or paralleling part of coal combustion,gasification and direct liquefaction,and pyrolysis itself is also one of the fundamental technologies in coal conversion processes. Thus it is understandable that reaction heat of coal pyrolysis is of significance that it is the important thermodynamic parameter used in reactor design,mechanism study,and energy efficiency assessment. This paper presents a critical survey on the status of methods and techniques for measurement of pyrolysis reaction heat of coal and relevant heterogeneous organic matters,and a detailed analysis and comparison of these methods,such as model prediction methods (Merric model,Strezov model)and experimental measuring methods(heat value method,electricity power method,computer aided thermal analysis,and differential scanning calorimetry method)were conducted,in which especial attention was paid to the possibility of application of these methods in the measurement of pyrolysis reaction heat. Results show that an easy,but rational and considerable accurate method for measurement of coal pyrolysis heat on the basis of TG-DSC technique could be established under conditions that the effects of measuring parameters on measurement precision are thoroughly studied and elucidated,as well as the measurement data resolution process is constructed.Key words:coal;pyrolysis;reaction heat;measurement我国化石能源赋存具有“富煤、贫油、少气”的特点,石油、天然气资源的日渐短缺以及新能源技术发展的尚未完善也使得煤炭的地位和重要性收稿日期:2016-06-15;修改稿日期:2016-09-09。
含油污泥热解残渣的性质及资源化利用研究进展
山东化工SHANDONGCHEMICALINDUSTRY・126・2021年第50卷含油污泥热解残渣的性质及资源化利用研究进展冉雅郡,叶兆荣,王厚林(新中天环保工程(重庆)有限公司,重庆401147)摘要:热解技术对原油燃气回收率高、产生的污染物少,被认为是最有前景的含油污泥处理技术。
热解产生的残渣含有少量油类、重金属,有造成二次污染的风险,热解残渣的无害化处理已成为制约含油污泥热解技术推广应用的瓶颈。
本文以含油污泥热解残渣为研究对象,分析其基本性质及影响因素、资源化综合利用的研究现状,提出展望,供今后热解残渣的研究作参考°关键词:含油污泥;热解残渣;资源化利用中图分类号:X703文献标识码:A文章编号:1008-021X(2021)05-0126-02Research Process of the Characteristics and Comprehensive Utilizationof Oily Sludge5s Pyrolytic ResiCuesRan Yajun,Ye Zhaorong,Wang Houlin(Xin Zhong—an Environment Protection Engineering!Chongqing)Co.,Ltd.,Chongqing401147,China) Abstrach:Pyrolysis technology with a high recove—rate of crude oil and gas and less p—lutants produced,is considered to be the most promising oily sludge treatment technology-The residue produced by pyrolysis contains a small amount of oil and heavy metals,which may cause seconda—poVu—on.The harml—s treatment of pyrolysis residue has become a b——eneck resOic/ng the promotion and application of oily sludge pyrolysis technology-Thc paper analyzed the oily sludge pyrolysis residue's basic proper—es and in/uencing factors,and comprehensive uti/za—on—chnologies,and put for/ard prospects—r future research on py—lysis—sidues.Key words:oily sludge;py—gt—residues;comprehensive uti/za—on含油污泥是石油天然气钻井、开采、运输过程中产生的一种油、泥、砂混合物,含有重金属、氯酚类、烷桂类等有毒有害组分⑴,被列入《国家危险废物名录》HW08。
不连沟煤热解半焦燃烧特性研究
不连沟煤热解半焦燃烧特性研究薛新巧1,2,冯钰2,靳立军2,胡浩权2(1宁夏工商职业技术学院化工系,宁夏 银川750021;2大连理工大学化工学院,煤化工研究所精细化工国家重点实验室,辽宁 大连116024)摘要:煤热解产生具有高利用价值的煤气和焦油,并伴随产生大量的热解半焦,燃烧是半焦的主要利用途径之一。
本文采用非等温热重分析法研究了热解条件(热解温度和停留时间)、热解气氛和燃烧升温速率对热解半焦燃烧行为的影响,并利用Coats-Redfern 积分法对半焦燃烧过程进行动力学计算。
结果表明:热解温度对甲烷二氧化碳重整与煤热解耦合过程半焦的燃烧反应特性有重要影响。
随热解温度升高,半焦燃烧反应性呈下降趋势,反应活化能逐渐增加,这与半焦中较低的挥发分成正相关。
热解停留时间和热解气氛对半焦燃烧影响较小。
与在氮气中热解半焦相比,加氢热解和耦合热解半焦表现出几乎相同的燃烧特征和反应活化能。
燃烧升温速率显著影响半焦的燃烧特性,提高燃烧升温速率促使半焦燃烧反应在更高温度下进行。
关键词:半焦;燃烧特性;甲烷二氧化碳重整与煤热解;热重分析;动力学分析中图分类号:TQ536.1 文献标志码:A 文章编号:1000–6613(2017)09–3287–06 DOI :10.16085/j.issn.1000-6613.2017-0375Combustion characteristics of pyrolysis char of Buliangou coalXUE Xingqiao 1,2,FENG Yu 2,JIN Lijun 2,HU Haoquan 2(1 Department of Chemical Industry ,Ningxia V ocational Technical Collage of Industry and Commerce ,Yinchuan 750021,Ningxia ,China ;2Institute of Coal Chemical Engineering ,Department of Chemical Engineering ,DalianUniversity of Technology ,Dalian 116023,Liaoning ,China )Abstract :Coal pyrolysis is an effective and efficient method to produce coal gas ,tar and clean char. The char ,as the main product ,is always used for combustion. To investigate the combustion performances of pyrolysis char ,the non-isothermal thermal-gravity analysis was taken to study the effect of pyrolysis temperature ,holding time and atmosphere on combustion of the resultant pyrolysis char of Buliangou coal in this paper. And Coats-Redfern integrate method was used to kinetic analysis of char combustion. The results showed that the pyrolysis temperature obviously influenced the combustion of char prepared by the integrated process of CO 2 reforming of CH 4 with coal pyrolysis. The combustion performance of char decreased and activation energy gradually increased with increasing pyrolysis temperature ,which was positively related with low volatile in the char. Pyrolysis holding time and atmosphere had slight effect on char combustion. The char from hydropyrolysis and integrated process showed the similar combustion behaviors and activation energy as those obtained under N 2 atmosphere. The heating rate of combustion affected the char combustion characteristics. High heating rate resulted in combustion at high temperature.Key words :coal char ;combustion characteristics ;integrated process of CO 2 reforming of CH 4 with coal pyrolysis ;thermogravimetric analysis ;kinetics analysis甲烷催化转化制氢等研究工作。
Utilization of fly ash from coal-fired power plants in China
Cao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687681Utilization of fly ash from coal-fired power plants in ChinaDa-zuo CAO, Eva SELIC†, Jan-Dirk HERBELL(Waste Management Engineering, Department of Mechanical Engineering,University of Duisburg-Essen, Duisburg 47057, Germany)†E-mail: eva.selic@uni-due.deReceived July 20, 2007; revision accepted Jan. 14, 2008; published online Mar. 27, 2008Abstract: The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the ad-vantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Rea-sonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.Key words: Fly ash utilization, Aluminum recycling, Concrete, Chemical and physical analysesdoi:10.1631/jzus.A072163 Document code: A CLC number: X7INTRODUCTIONFly ash is the finely dispersed mineral residue resulting from the combustion of pulverised coal in power plants. It is the largest amount of industrial waste in the world. The main components of fly ash are α-quartz (SiO2), mullite (3Al2O3·2SiO2), hematite (Fe2O3), magnetite (Fe3O4), lime (CaO), and gypsum (CaSO4·2H2O) mainly in the form of spherical particles (White and Case, 1990; Giere et al., 2003).Even though many attempts have been made to find new application fields for fly ash, for example, such as environmental and agronomic amendment (Zhang et al., 2004; Garg et al., 2005), the production of inorganic polymers (Steveson and Sagoe-Crentsil, 2005), the filler in fly ash polymer composites (Chand and Vashishtha, 2000), and the production of nanostructure materials (Paul et al., 2007), the utilization in concrete and cement is still the most effective one, both from economic and ecologic point of view.The aim of this work is to investigate the quali-ties of Chinese fly ash for developing reutilization methods under the local conditions and demands. Four fly ash samples from a power plant in Northern China have been analyzed by chemical and physical analyses, with respect to composition and utilization in construction and building materials.ALUMINUM RECYCLING FROM FLY ASH The mass proportion of alumina (Al2O3) in fly ash ranges from 20% to 40%. Since long time ago, scientists have been focusing on aluminum recycling from fly ash due to the increasing costs of the primary metal caused by high energy consumption for its production. Many possible approaches were devel-oped, for example, Sintering-Alkalization Method (Xie and Tang, 1996), NH4F-Solubilization-Acidifi- cation Method with Lime (Liu and Li, 2006), Poly-acrylamide Dispersant Method to produce Al(OH)3 (Gui and Fang, 2004), and Solubilization by Micro-wave (Zhao and Tian, 2005).India, dealing with similar problems as China with respect to increasingly high amounts of fly ash,is deeply researching on alumina recyclingJournal of Zhejiang University SCIENCE AISSN 1673-565X (Print); ISSN 1862-1775 (Online) /jzus; E-mail: jzus@Cao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687 682(Balasubramanian et al., 2004; Bhattacharya et al., 2004). In contrast, Europe has lower interest in alu-mina recycling from fly ash, due to own bauxite sources and high energy consumption for the recovery processes. Energy consumption is also the reason that the above-mentioned methods on alumina recovery are only developed on lab scale. At the moment, the most promising method seems to be the substitution of aluminum by fly ash instead of its recycling, for ex-ample by “application in synthesizing low costs metal matrix composites for automotive and other applica-tions”, where aluminum is substituted by fly ash up to 10% (Rohatgi et al., 2006).Nevertheless, such special application will not be the solution to reduce the increasingly high amounts of Chinese fly ash. For an effective solution, the most reasonable way to recycle fly ash will be applied in construction and building materials industry.ADV ANTAGES OF USING FLY ASH IN CEMENT AND CONCRETEFly ash has a successful history of use in concrete around the world for over 50 years. In the United States of America more than 6×106 t, and in Europe more than 9×106 t are used annually in cement and concrete (Ian and Lindon, 2004). Fly ash is used in all sectors of the concrete industry, covering ready-mixed, precast, and on-site applications due to many advan-tages summarized below (Lutze and vom Berg, 2004):(1) Improvement of long-term strength per-formance and durability.(2) Reduction of permeability, which reduces shrinkage, creep and gives greater resistance to chlo-ride infiltration and sulphate attack.(3) Risk minimization of alkali silica reaction.(4) Reduction of temperature rise in thick sec-tions of construction elements (bulk concrete).(5) Increase of cohesion in concrete leading to reduced bleeding rate, easier compaction, better pumping properties, and improved surface finish.Besides the technical advantages, the reuse of fly ash in cement industry has also ecological benefits like an efficient reduction of greenhouse gases. The substitution of Portland cement by fly ash reduces not only the CO2 emission being generated during the production of clinker but also the high energy con-sumption necessary for the process. The replacement of 1 t of Portland cement reduces the overall CO2 emissions by approximately 1 t (Ehrenberg and Geisler, 1997). Additionally, natural resources such as gravel and sand are saved.FLY ASH PRODUCTION AND UTILIZATION IN CHINAIn China, the reutilization rate of fly ash is in-creasing, but still lower than 70%. Besides the reuse in concrete, Chinese industry is interested in recycling the high alumina content from fly ash. This belongs to the fact that 60% of the industrial Al2O3 needs to be imported which is about 10×106 t annually (Yang and Zhang, 2006).From early 1950s, China has pursued a policy of ash utilization technology, and supported research and development activities. The utilization rate of the ash remained on a low level at around 10% until the 1980s. However, during the 1990s, the utilization rate grew significantly and reached more than 53%, and according to the government statistics, the total ash production in China in 2002 was 150×106 t, of which about 100×106 t was utilized. The predicted amounts of coal-generated fly ash in 2010 and 2020 will be 320×106~380×106 t and 570×106~610×106 t, respec-tively (Ian and Lindon, 2004).In some developed areas, the situation is already better. In Nanjing City of Jiangsu Province, the utili-zation rate of fly ash was 100% in the past five years. In Shanghai City since 1997 the produced fly ash was also 100% reused, mostly in earthwork of road con-struction and wallboard materials (Wu and Zhang, 2005). In developing areas, the problem is also going to be solved. In Henan Province, the accumulated piled fly ash was 130×106 t until 2005, of which 34×106 t were produced in 2005. The reused rate of 2005 was 80%, and the half was used in cement production (CUBN, 2006).Due to new laws, clay solid bricks will be for-bidden in most of Chinese cities from 2007 on, in all urban area from 2011, and all over the country gradually (SCNPC, 1996; 2003). In 2004, the total production of bricks was 850 billion pieces, of which 500 billion pieces were solid clay bricks (Wei, 2006). The big gap caused by banning the use of solid clayCao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687 683bricks will be a new chance for solving fly ash dis-posal problems. A sharp increase in demand for ma-sonry materials and other construction units like pavement bricks containing fly ash is expected.CURRENT UTILIZATION OF FLY ASH IN GERMANYOn average, Germany produces 4.3×106 t of fly ash a year with increasing tendency. Bundesverband Kraftwerksnebenprodukte e.V . (BVK) is the federal association for marketing the by-products from power plants in Germany. The recent data collection from BVK is presented in Fig.1, showing the total amount and different utilisations in construction and building materials of marketed fly ash within Germany during the period of 1997~2005 (BVK, 2006). The figure indicates that in the last 8 years almost 100% of fly ash has been recycled with only small changes in the application areas.More than 50% of the reused fly ash is utilized for ready-mix concrete. The second largest applica-tion area with approximate 17% is mining and dry construction materials, followed by precast units with approximate 12%.The driving force for the high recycling quote is the German “Act for Promoting Closed Substance Cycle Waste Management and Ensuring Environ- mentally Compatible Waste Disposal” (KrW-/AbfG, 1994). German fly ash fulfills strong quality criteria guaranteed by extensive technology. Cements with fly ashes are classified according to European standardEN 197-1 (2000), allowing fly ash contents up to 35%. Altogether the organized marketers and producers in the BVK counted that in future a further stabilization of their sales will be obtained by purposeful utilization of the various material properties of their products. Close cooperation between producers and marketers as well as the continuously operated extension of ap-plications with strong focus on the changing demands of the market has been proved as substantial success factors for the utilization in high-quality construction and building materials guaranteeing high recycling rates for fly ash.EXPERIMENTALTo investigate the utilization possibilities of Chinese fly ash, four fly ash samples from a power plant in Northern China have been analysed.X-ray diffraction (XRD) and Inductive Coupled Plasma (ICP) analyses were done for checking the possibility of Al-recycling. XRD has been done on one fly ash sample using spectrometer SPECTRO XEPOS. Aluminium content has been quantified by ICP spectrometry (ICP-OES Vista AX, “Varian Deutschland GmbH”).To prove the application possibilities in the concrete and cement domain, several parameters have been determined according to European standards as follows: Loss on Ignition (LOI) and free CaO have been determined according to EN 196-2 (2005) and EN 451-1 (2005), respectively; Particle size has been analysed by air jet sieving (HOSOKAWA ALPINE).Water requirement property (EN 450), slump (EN 196-3), and particle density (EN 196-6) have been measured as well as compressive and bending strength after 28 d from mortar mixes of Chinese fly ash and cement. Bending and compressive strength have been tested with strength testing apparatus from“Toni Technik Baustoffprüfsysteme GmbH”. In addition, pavement bricks specimens made from Chinese fly ash have been prepared and their compressive strength has been measured.RESULTS AND DISCUSSIONThe XRD pattern in Fig.2 shows that the main crystalline phases of fly ash are mullite and quartz. Due to the rapid cooling at high temperature of fly ash,Ready-mix concrete Cement products Mining and dry construction materials Road construction and ground work Masonry units and ceramic products U t i l i z a t i o n r a t e s (%)YearFig.1 Utilization rates of fly ash in different applicationareas from 1997-2005Cao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687684glass accounted for a large proportion. The broad hump in the region between 10° and 25° indicates the presence of glassy phases. The structure of Al-O-Si is very tight in glassy phases. Regarding the idea of Al-recycling, high amount of energy would be nec-essary for breaking the SiO 2-Al 2O 3 bond.In Table 1 the average main composition of all fly ash samples determined by ICP analysis is pre-sented. The high alumina content of 44% of the ana-lyzed fly ash may give reasons for thinking of feasible recycling. Similar to aluminum recovery, alumina recycling out of an Al 2O 3-SiO 2-matrix like that in fly ash did not proceed beyond lab scale up to now for economic reasons. At present, Chinese government and industry should focus on using fly ash in the construction and building materials industry until new methods open more economic ways for recycling aluminum/alumina from fly ash in future.The high silicate content of the investigatedsamples of approximate 44% yields a good quality for puzzolanic reaction. The content of SO 3 in each sample is far lower than the upper limit value of 3% from both European Standards EN 450 (2005) and Chinese Standards GB 1596-79 (1979). Therefore,harmful Ettringite (Ca 6Al 2(SO 4)3(OH)12·26H 2O) formulation (Richard, 1987) is minimized. The results of the LOI and free CaO measure-ments as well as the particle size distribution deter-mined by sieving are listed in Table 2.LOI is a parameter that when done with fly ash mainly describes the carbon content in the substance (Richard, 1987). Carbon has a low density and can absorb significant amounts of water. This means that the maximum dry density and optimum moisture content of fly ash are influenced by the LOI. Higher LOI ash is lower in density, but has higher optimum moisture contents. Generally, the lower the carbon content and the finer the ash particles, the better prospects for ash utilization, principally in ce-ment-based formulations. When the ash is used in brick manufacturing, higher LOI is acceptable, oreven welcomed, since the carbon in the ash could be burnt during the calcination process, thereby saving energy. The LOI analysis of Sample 1 is about 2%; this result is very good for its utilization in cement re-ferred to EN 450 (2005). But the other three samples show an LOI of about 12%, which is too high to be used in cement or concrete production. Only Chinese Standards (GB 1596-79, 1979) still allows utilization in the lowest Class III. Free CaO is a recognized cause of unsoundness factor for concrete (Richard, 1987). The values of free CaO are all far less than 1%, which corresponds with EN 450 (2005). Fineness has long been recognized as one of the most important characteristics of fly ash. The meas-ured particle size distribution of the Chinese fly ash samples shows too high amounts of particles >45 μm according to EN 450 (2005), but corresponds to theTable 1 Average main composition of Chinese fly ashsamples determined by ICP analysisOxide Content (%)Al 2O 3 44.0 CaO 0.9 Fe 2O 3 3.5 K 2O 0.9 MgO 0.4Na 2O 0.3 SiO 2 43.7 TiO 2 1.5 SO 3 0.7 Table 2 LOI, free CaO and particle size distribution of fly ash samples from China (unit: %) Particle size SampleLOI Free CaO <20 μm <40 μm >200 μm 1 1.99<0.01031.2 50.5 2.5 2 12.4<0.10041.2 59.3 0.6 3 12.8<0.10039.4 62.1 0.3 4 12.8<0.10039.4 57.3 0.5600 800 100011 20 30 40 50 60 70 80 90 100400 200 02θ (°)L i n (C p s )Fig.2 X-ray diffraction pattern of one Chinese fly ashsampleCao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687685requirements of Chinese Standards GB 1596-79 (1979).Table 3 shows the results of measurements in water requirement, particle density, slump and compressive and bending strength after 28 d of cement-fly ash mortar mixtures with a ratio of 75%:25%, and of 100% cement as reference. The amount of water necessary for complete moistening of the cement, and a workable mixture with definite slump is reflected by the water requirement. Low water requirement is preferred yielding solid concrete due to low water/cement ratios.Plasticity of fresh batches of concrete is described by slump test. High slump increases the workability and is desired if the water/cement ratio remains low. Normally, the admixing of fly ash with applicable properties leads to reduced water re-quirement and increased slump, due to a fluidizing effect caused by the spherical form of the fly ash particles (ball-bearing effect).The water requirement of approximately 70% of the Chinese fly ash mortar mixtures is much higher than the typical required value of 20%~40% in Ger-many. A reason for this is the absorption of water by porous carbon particles as is indicated by high LOI values (Table 2). As a result, the slump testing value, in average 121 mm, is rather low compared to the reference cement sample whose value is 173 mm. In addition, the particle density of Chinese fly ash mor-tar mixtures being 2453 kg/m3 on average is higher than the typical value of 2250 kg/m3. Fly ash with lower particle density is preferred for usage in con-crete.The results indicate that the investigated Chi-nese fly ash cannot reach enough quality level to provide advantages in concrete fabrication according to European standards, even though the compressive and bending strengths are slightly better than the reference.The compressive strengths for the prepared pavement brick specimen using Chinese fly ash are presented in Table 4.Referring to the Chinese Standards JC446-91 (1991) the pavement bricks specimens have a good quality in pressure strength and fulfill the require-ments of Class I for sidewalk and Class II for driveway. However, the low frost resistance caused by high LOI of the investigated fly ash must be taken into account.CONCLUSIONBesides an already high reutilization rate of fly ash in general, China is actually interested in recycling the aluminum content in fly ash from coal-fired power plants. ICP analysis of fly ash samples from power plants in Northern China, showing an alumina content of more than 40% supports this idea. However, actual aluminium recycling from fly ash is limited to lab scale due to uneconomic energy consumption and technical restrictions. Thus, the suggestion is to focus on using fly ash in construction and building material industry until there is a promising and more economic way for recycling of the aluminum content in future.Investigations on recycling potential of ChineseTable 3 Construction and building material properties of mortar mixes from Chinese fly ash and cementSample Water requirement(%)Slump(mm)Particle density(kg/m3)mortar testing by 28 d(N/mm2)mortar testing by 28 d(N/mm2)Cement 100% 31.1 173 −55.1 (100.0%) 8.3 (100.0%) Cement:fly ash 65.6 123 2440 56.7 (102.9%) 9.3 (112.0%) Cement:fly ash 72.0 129 2450 60.0 (108.9%) 9.5 (114.5%) Cement:fly ash 71.8 110 2470 54.7 (99.3%) 9.4 (113.3%) Table 4 Compressive strength of pavement bricks prepared from Chinese fly ashSpecimen Pressure area(mm2)Height (mm) Mass (kg)Density (kg/m3)Breaking load (kN)Compressive strength(N/mm2)1 7850 76.5 1.402 2335 405 51.62 7850 70.5 1.295 2339 441 56.23 7850 76.4 1.400 2334 398 50.7Cao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687 686fly ash in cement show a promising high silicate content of more than 40% yielding good puzzolanic reactions. Unfortunately, high LOI values of three from four samples, which all exceed 12%, restrict the chances of application. Moreover, the fineness was found to be quite coarse and just in the range of the acceptable limit. Most European standards for using fly ash in cement and concrete industry are not ful-filled.Chinese standards still support the utilization of fly ash in cement, concrete in Class III, and in wall bricks in Class II or III. However, with respect to the environment and regarding the fast increasing Chi-nese economy and globalisation, Chinese legislations and standards are proposed to be, and should be, more stringent in order to correspond with the standards in developed countries.Besides legislation, the operation of power plants in China should improve to actual state-of- the-art. Careful input control, efficient burn out, and an additional feed of suitable components to improve a high quality of fly ash with low LOI will ensure higher standards in the utilization of Chinese fly ash. For the time being, the best chance is to replace solid clay bricks which become banned from 2007 on. ReferencesBalasubramanian, G., Nimje, M.T., Kutumbarao, V.V., 2004.Recycling of Aluminum Industrial Waste into Alumino-borosilicate Glass-ceramic Tiles. Patent No. IN 2002MU00929, Indian Patent Application. Bhattacharya, A.K., Dasgupta, A.K., Pal, T.K., Chintaiah, P., 2004. Production of High Alumina Refractory BlocksUsing Beneficiated Fly Ash. Patent No. IN 191989, In-dian Patent Application.BVK (Bundesverband Kraftwerksnebenprodukte e.V.), 2006.Actual Information, German Coal Combustion ProductsAssociation (in German).Chand, N., Vashishtha, S.R., 2000. Development, structure and strength properties of PP/PMMA/FA blends. Bull. Mater.Sci., 23(2):103-107. [doi:10.1007/BF02706550]Chinese Standards GB 1596-79, 1979. Fly Ash for Cement and Concrete. Quality Standard for Raw Materials (in Chi-nese).Chinese Standards JC446-91, 1991. Formulation of Concrete Paving Units (in Chinese).CUBN (China Unburned Bricks Net), 2006. Current Situation for Fly Ash Utilization and Price in Henan Province (inChinese). /news/show-news.asp?id=294Ehrenberg, A., Geisler, J., 1997. Ökologische Eigenschaften von Hochofenzement—Lebenswegphase Produktion(Ecological Properties of Blast-furnace Cement—part ofLife Cycle: Production). Beton-Informationen (Concrete-Information), Nr. 4 (in German).EN 196-2, 3, 6, 2005. Methods of Testing Cement. German DIN-EN Standard. Beuth Verlag GmbH, Berlin.EN 197-1, 2000. Cement—Part 1: Composition, Specifica-tions and Conformity Criteria for Common Cements.German DIN-EN Standard. Beuth Verlag GmbH, Berlin.EN 450, 2005. Fly Ash for Concrete. German DIN-EN Stan-dard. Beuth Verlag GmbH, Berlin.EN 451-1, 2005. Testing Method for Fly Ash. German DIN-EN Standard. Beuth Verlag GmbH, Berlin.Garg, R.N., Pathak, H., Das, D.K., Tomar, R.K., 2005. Use of fly ash and biogas slurry for improving wheat yield andphysical properties of soil. Env. Monitoring and Assess-ment, 107(1-3):1-9. [doi:10.1007/s10661-005-2021-x] Giere, R., Carleton, L.E., Lumpkin, G.R., 2003. Micro- and nano-chemistry of fly ash from coal-fired power plant.Am. Mineral, 88:1853.Gui, Q., Fang, R., 2004. Production of nano-Al(OH)3 by using fly ash. Fly Ash, 2:20-22.Ian, B., Lindon, S., 2004. Ash Utilization from Coal-Based Power Plants. Report No. COAL, R274DTI/Pub, URN04/1915. /energy/sources/ renewables/publications/page19184.htmlKrW-/AbfG (Kreislaufwirtschafts- und Abfallgesetz), 1994.Act for Promoting Closed Substance Cycle WasteManagement and Ensuring Environmentally CompatibleWaste Disposal.Liu, Y., Li, L., 2006. Progress in research of alumina recycling from fly ash. Light Metal, 5:20-23 (in Chinese).SCNPC (the Standing Committee of the National People’s Congress), 1996. Law on Preventing and Control of En-vironmental Pollution Caused by Solid Waste of PRC (inChinese).SCNPC (the Standing Committee of the National People’s Congress), 2003. Law for Promotion of Cleaner Produc-tion of PRC (in Chinese).Lutze, D., vom Berg, W. (Eds.), 2004. Background of Produc-tion and Utilization. Manual Fly Ash in Concrete, Bauund Technik, Germany, p.22-27.Paul, K.T., Satpathy, S.K., Manna, I., Chakroborty, K.K., Nando, G.B., 2007. Preparation and characterization ofnano structured materials from fly ash: A waste fromthermal power stations, by high energy ball milling.Nanoscale Res. Lett., 2(8):397-404. [doi:10.1007/s11671-007-9074-4]Richard, H., 1987. Fly Ash in Cement and Concrete. Portland Cement Association, U.S.A.Rohatgi, P.K., Weiss, D., Gupta, N., 2006. Applications of fly ash in synthesizing low-cost MMCs for automotive andother applications. J. Minerals, Metals and Material Soc.,58(11):71-76.Steveson, M., Sagoe-Crentsil, K., 2005. Relationship between composition, structure and strength of inorganic polymers,part 2: fly ash-derived inorganic polymers. J. Mater. Sci.,40(16):4247-4259. [doi:10.1007/s10853-005-2794-x]Cao et al. / J Zhejiang Univ Sci A 2008 9(5):681-687687Wei, B., 2006. Calculating model for the demand of cement in China. China Cement, 5:30-33(in Chinese).White, S.C., Case, E.D., 1990. Characterization of fly ash from coal-fired power plants. J. Mater. Sci., 25(12):5215-5219.[doi:10.1007/BF00580153]Wu, F., Zhang, J., 2004. Fly Ash Reutilization Shows a Pro-spective Recycling Economy in Shanghai City (in Chi-nese). /2005-6/2005623213 539.htm.Xie, J., Tang, C., 1996. Recycling of alumina from fly ash.Protection and Utilization of the Resources, p.32 (inChinese).Yang, J., Zhang, L., 2006. Production of industrial alumina from fly ash and low quality aluminum ore. Chemical Minerals and Processing, 4:38 (in Chinese).Zhang, G.Y., Dou, Z., Toth, J.D., Ferguson, J., 2004. Use of fly ash as environmental and agronomic amendments. Env.Geochemistry and Health, 26(2):129-134. [doi:10.1023/B: EGAH.0000039575.85640.e8]Zhao, J., Tian, K., 2005. Microwave method for alumina re-cycling from fly ash. Inorganic Industry, 2:47-49.。
番石榴叶抑制酪氨酸酶作用机制研究
食品研究与开发F ood Research And DevelopmentDOI :10.12161/j.issn.1005-6521.2020.19.012番石榴叶抑制酪氨酸酶作用机制研究孙晓梦1,2,3,林东明1,杨弘1,王禕1,王凯晗1,王春丽1,2,3,*(1援华东理工大学药学院,上海200237;2.制药工程与过程化学教育部工程研究中心,上海200237;3.上海市新药设计重点实验室,上海200237)摘要:采用测定L-多巴被酪氨酸酶催化氧化速率的方法,研究番石榴叶粉乙醇提取液对酪氨酸酶活性的抑制作用。
研究表明,由番石榴叶水提物抑制酪氨酸酶的Lineweaver-Burk 双倒数直线图可知,番石榴叶水提物对酪氨酸酶的抑制作用类型为可逆、混合型。
关键词:酪氨酸酶;番石榴叶;抑制作用;黑色素Inhibitory Mechanism of Guava Leaves on TyrosinaseSUN Xiao-meng 1,2,3,LIN Dong-ming 1,YANG Hong 1,WANG Yi 1,WANG Kai-han 1,WANG Chun-li 1,2,3,*(1.School of Pharmacy ,East China University of Science and Technology ,Shanghai 200237,China ;2.Engineering Research Center of Pharmaceutical Process Chemistry ,Ministry of Education ,Shanghai200237,China ;3.Shanghai Key Laboratory of New Drug Design ,Shanghai 200237,China )Abstract :The inhibitory effect of ethanol extract of guava leaf powder on tyrosinase activity in vitro was studied by measuring the oxidation rate of L-dopa catalyzed by tyrosinase.The results analyzed by Lineweaver-Burk method showed that the inhibitory effect of the extract of guava leaf powder on tyrosinase was a reversible and mixed inhibitor.Key words :tyrosinase ;guava leaf ;inhibitory effect ;melanin引文格式:孙晓梦,林东明,杨弘,等.番石榴叶抑制酪氨酸酶作用机制研究[J].食品研究与开发,2020,41(19):64-68SUN Xiaomeng ,LIN Dongming ,YANG Hong ,et al.Inhibitory Mechanism of Guava Leaves on Tyrosinase [J].Food Researchand Development ,2020,41(19):64-68从酪氨酸和L-多巴代谢为真黑素和褐黑素,作为唯一明确的黑色素代谢酶,酪氨酸酶在黑色素形成过程的多个环节中,发挥着至关重要的限速作用[1]。
PPT 模版
3
Fast pyrolysis 快速热解 Char 焦炭 Biochar 生物炭 Activated
carbon 活性炭 Non-condensable gases 不凝性气体 Soil
amendment 土壤改良 Propose 提议
2
Introduction
Fast pyrolysis has gained attention for its potential as a costeffective method to decouple liquid fuel production from its utilization, in scale, time, and location. It has the promise to connect (conventional) agricultural business to (petro)chemical processes. In this approach, the existing assets (and related existing infrastrutcure) in existing refineries can be deployed as a very cost-effective tool to create “new” hybrid biorefineries.
The char and gas are often used to provide thermal energy to the
pyrolysis plant, although other applications have been proposed
如何写好中英文摘要
2019年12月如何写好中英文摘要1、文摘应包含正文的要点。
一般来说,文摘应包含研究对象(目的),研究方法(所用的设备、材料),结果与结论。
2、文摘要尽量简短,尽可能删掉课题研究的背景信息。
3、文摘中出现的数据应该是最重要、最关键的数据。
4、不需要自己标榜自己的研究成果。
5、二次文献信息应脱离原文而独立存在,因此文摘中不能出现图表参数。
6、文摘中的内容应在正文中出现,文摘不能对原文进行补充和修改。
7、文摘中的缩写名称在第一次出现时要有全称。
8、文摘句子应尽量简短。
DONG P W ,YUE J R ,GAO S Q ,et al.Influence of Thermal Pretreatment on Pyrolysis of Lignite [J].Journal of Fuel Chemistry and Technology ,2012,40(8):897-905.[20]邓一英.平朔煤的热解试验研究[J].洁净煤技术,2008,14(2):56-58,66.DENG Y Y.The Pyrolysis Experiment Study of Pingshuo Coal [J].Clean Coal Technology ,2008,14(2):56-58,66.[21]刘学智,逄进.甘肃天祝煤加压热解焦油组成与性质的研究[J].煤炭转化,1994,17(1):82-88.LIU X Z ,PANG J.Study on the TAR Structure and Nature of Pressurized Pyrolysis for Tianzhu Coal in Gansu[J].Coal Conversion ,1994,17(1):82-88.[22]杨海平,陈汉平,鞠付栋,等.热解条件及煤种对煤焦气化活性的影响[J].中国电机工程学报,2009,29(2):30-34.YANG H P ,CHEN H P ,JU F D ,et al.Influence of Py-rolysis Condition and Coal Type on Gasification Reactivity of Charcoal [J].Proceedings of the Chinese Society for Electrical Engineering ,2009,29(2):30-34.[23]李保庆.我国煤加氢热解研究Ⅲ.神府煤加氢、催化加氢及H 2-CH 4气氛下热解的研究[J].燃料化学学报,1995(2):192-197.LI B Q.Hydropyrolysis of Chinese Coals Ⅲ.Catalytic and Non-Catalyt ic Hydropyrolysis and Pyrolysis Under H 2-CH 4of Shenfu Bituminous Coal [J].Journal of Fuel Chemistry and Technology ,1995(2):192-197.[24]郭战英.汾西炼焦煤尾煤催化热解研究[D].北京:中国矿业大学,2012.[25]LI Y ,AMIN M N ,LU X M ,et al.Pyrolysis andCatalytic Upgrading of Low-rank Coal Using a NiO/MgO-Al 2O 3Catalyst [J].Chemical Engineering Science ,2016,155(22):194-200.Current Situation and Research Progress of Coal Pyrolysis TechnologyWu Jie 1,Di Zuoxing 1,Luo Mingsheng 1,Wang Yatao 2,3,Ding Xiaoxiao 2,3and Li Hongjuan 2,3(1.Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology of Beijing Institute of Petrochemical Technology,Beijing 102617,China;2.Coal Chemical R&D Center of Kailuan Group,Tangshan Hebei 063611,China;3.Hebei Provincial Engineering Technology Research Center of Coal-based Chemicals and Materials,Tangshan Hebei 063018,China)AbstractSeveral kinds of coal pyrolysis technologies developed in China were introduced,the advantages anddisadvantages of each technology were analyzed,and the mechanism of coal pyrolysis was briefly explained.At the same time,various influencing factors in coal pyrolysis process were summarized from the aspects of pyrolysis raw materials and pyrolytic reaction conditions,with the key analysis on the effect of catalyst addition on pyrolysis.Considering the coupling of pyrolysistechnology,it was expected to develop a new pyrolysis technology to improve the conversion of coal pyrolysis and tar yield.Key wordscoal pyrolysis,hydropyrolysis,catalytic pyrolysis,methane activation pyrolysis,copyrolysis of coal and cokeoven gas,mechanism,influence factor吴洁等:煤热解技术现状及研究进展51--。
煤中矿物质对热解过程N化物的影响
当代化工研究Modern Chemical Research Q/ 2020・08基础研究煤中矿物质对热解过程N化物的影响*王云飞I邹影I杨阳I宁海荣1王凤I冀茂荣1田继兰2*(1•鄂尔多斯应用技术学院化学工程系内蒙古0170102•鄂尔多斯应用技术学院科技处内蒙古017010)摘耍:通过介绍煤中N的赋存形态以及热解过程中产生的主要含氮气相物,详细的分析了矿物质对氮化物在热解过程中的作用,以及对NH r HCN和其他氮化物释放含量的影响,从而总结出矿物质铁在热解过程中对氮化物的影响起到积极作用.关键词:煤热解;矿物质;NH3;HCN中图分类号:TQ423.2文献标识码:AEffect of Minerals in Coal on N-Compounds During PyrolysisWang Yunfei1,Zou Ying1,Yang Yang1,Ning Hairong1,Wang Feng1,Ji Maorong1,Tian Jilan2*(1.College of Chemical Engineering,Ordos Institute of Technology,Inner Mongolia,0170102.Department of Science and Technology,Ordos Institute of Technology,Inner Mongolia,017010)Abstract:Through the introduction of the combined f orms of N in the coal produced in the process of the pyrolysis and the main nitrogen containing p hase on the J unction of n itrogen compounds in the p yrolysis p rocess,and other nitrogen release ofNH y HCN and content,the influence of which sums up the iron minerals in the p yrolysis p rocess will exert p ositive effects on the influence of n itrogen.Key words z coal p yrolysis\mineral substance;NH,HCN据国家能源局官方网站显示,当前以及今后相当长的一段时间内,作为能源的重要组成部分,煤炭仍将是我国最主要的能源利用对象。
半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响
DOI: 10.1016/S1872-5813(21)60164-0半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响孔 娇1,2,王 欢1,2,于彦旭1,2,程亚楠1,2,王美君1,2,*,常丽萍1,2 ,鲍卫仁1,2(1. 太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024;2. 太原理工大学 煤科学与技术教育部重点实验室,山西 太原 030024)摘 要:本研究采用实验室自制的热解气化一体化反应器,考察了气化合成气对煤热解焦油产率和品质的影响。
结果表明,淖毛湖煤热解焦油产率在600 ℃时达到最大,气化合成气对提高低温(550–600 ℃)煤焦油的产率更有利,其中,550 ℃时焦油产率较N 2下提高了4.4%。
气化合成气气氛下,高温(650–800 ℃)焦油的产率较N 2低,但650–700 ℃热解焦油的品质明显改善,其中,轻质组分的产率有明显提升;低于600 ℃热解挥发分中脂肪烃和含氧化合物的裂解反应加剧,使焦油中其含量降低,而苯系和萘系化合物的生成量增加;650 ℃以上的热解挥发分中酚类化合物的二次裂解反应会加剧,导致焦油中其生成量降低;对800 ℃热解挥发分中多环芳烃二次裂解反应的发生更有利,但对提高低于700°热解焦油中多环芳烃的生成量则更加有利。
关键词:淖毛湖煤;气化合成气;煤热解;煤焦油;焦油品质中图分类号: TQ530.2 文献标识码: AEffects of syngas from semi-coke in-situ gasification on yield and quality of tar frompyrolysis of Naomaohu coalKONG Jiao 1,2,WANG Huan 1,2,YU Yan-xu 1,2,CHEN Ya-nan 1,2,WANG Mei-jun 1,2,* ,CHANG Li-ping 1,2 ,BAO Wei-ren1,2(1. State Key Laboratory of Clean and Efficient Coal Utilization , Taiyuan University of Technology , Taiyuan 030024, China ;2. Key Laboratory of Coal Science and Technology (Taiyuan University of Technology ), Ministry of Education , Taiyuan030024, China )Abstract: Pyrolysis atmosphere has significant effect on yield and composition of coal tar. A pyrolysis and gasification integrated reactor in laboratory was used to investigate effects of gasification syngas on yield and composition of coal tar. The results show that tar yield of Naomaohu coal reaches the maximum at 600 ℃, and gasification syngas (G-gas) is more beneficial to improve the tar yield at low temperature (550–600 ℃). Especially,550 ℃ tar yield increases by 4.4% compared with that under N 2. With the introduction of G-gas, the yield of tar obtained at high temperature (650–800 ℃) decreases, but the quality of tar obtained at 650–700 ℃ is improved obviously due to the increase of light components. The cracking reaction of aliphatic hydrocarbons and oxygen-containing compounds in volatiles from pyrolysis at 550 and 600 ℃ is intensified by G-gas, thus substituted benzene and naphthalene compounds in coal tar increase. For the volatiles obtained above 650 ℃, the secondary cracking reaction of phenolic compounds is enhanced with the introduction of G-gas, which results in a decrease of phenolic compounds in tar. G-gas is also favorable for the secondary cracking reaction of polycyclic aromatic hydrocarbons in volatiles from pyrolysis at 800 ℃, but more favorable for generation of which in the tar obtained below 700 ℃.Key words: Naomaohu coal ;gasification gas ;pyrolysis ;coal tar ;tar quality中国煤炭资源储量丰富,其中,低阶煤约占55%[1],由于其高挥发分、高水含量、高氧含量、低灰低硫的特点,直接用于燃烧或者气化会造成资源的浪费,不利于低阶煤的高值化利用。
二噁英生成机理及减排方法研究进展
第3期刘明等:废水中有机污染物催化分解的物理场协同效应·909·Hazardous Materials,2015,287:421-428.[91] CHEN Y,XIE Y,YANG J,et al. Reaction mechanism and metal iontransformation in photocatalytic ozonation of phenol and oxalic acidwith Ag+/TiO2[J]. Journal of Environmental Sciences (China),2014,26(3):662-672.[92] PARRINO F,CAMERA-RODA G,LODDO V,et al. Combinationof ozonation and photocatalysis for purification of aqueous effluentscontaining formic acid as probe pollutant and bromide ion[J]. WaterResearch,2014,50:189-199.[93] MAHDI-AHMED M,CHIRON S. Ciprofloxacin oxidation by UV-Cactivated peroxymonosulfate in wastewater[J]. Journal of HazardousMaterials,2014,265:41-46.[94] WU J T,WU C H,LIU C Y,et al. Photo-degradation of sulfonamideantimicrobial compounds (sulfadiazine,sulfamethizole,sulfamethoxazole and sulfathiazole) in various UV/oxidant systems[J].Water Research and Technology,2015,71(3):412-417. [95] LIU X,GAROMA T,CHEN Z,et al. SMX degradation by ozonationand UV radiation:a kinetic study[J]. Chemosphere,2012,87(10):1134-1140.[96] WOLS B A,HOFMAN-CARIS C H M. Review of photochemicalreaction constants of organic micropollutants required for UV advanced oxidation processes in water[J]. Water Research,2012,46(9):2815-2827.[97] GONG P,YUAN H,ZHAI P,et al. Degradation of organic ultravioletfilter diethylamino hydroxybenzoyl hexyl benzoate in aqueous solution by UV/H2O2[J]. Environmental Science and Pollution Research,2015,22(13):1-7.[98] HE X,ARMAH A,OSHEA K E,et al. Kinetics and mechanisms ofcylindrospermopsin destruction by sulfate radical-based advanced oxidation processes[J]. Water Research,2014,63:168-178. [99] YANG S,WANG P,YANG X,et al. Degradation efficiencies of azodye Acid Orange 7 by the interaction of heat,UV and anions withcommon oxidants:persulfate,peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials,2010,179(1/2/3):552-558.[100] TANG W Z,ZHANG Z,AN H,et al. TiO2/UV photodegradation of azo dyes in aqueous solutions[J]. Environmental Technology,1997,18(1):1-12.[101] KHAN J A,HE X,KHAN H M,et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+,UV/S2O82−/Fe2+ andUV/HSO5−/Fe2+ processes:a comparative study[J]. ChemicalEngineering Journal,2013,218:376-383.[102] LUCAS M S,PERES J A,PUMA G L. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3,O3/UVand O3/UV/H2O2) in a pilot-scale bubble column reactor and processeconomics[J]. Separation and Purification Technology,2010,72(3):235-241.[103] DE L C N,ESQUIUS L,GRANDJEAN D,et al. Degradation of emergent contaminants by UV,UV/H2O2 and neutral photo-Fenton atpilot scale in a domestic wastewater treatment plant[J]. Water Research,2013,47(15):5836-5845.[104] QIU M,HUANG C. A comparative study of degradation of the azo dye CI. Acid Blue 9 by Fenton and photo-Fenton oxidation[J].Desalination and Water Treatment,2010,24(1/2/3):273-277. [105] LU L A,MA Y S,DAVEREY A,et al. Optimization of photo-Fenton process parameters on carbofuran degradation using central composite design[J]. Journal of Environmental Science and HealthPart B,2012,47(6):553-561.[106] 王芬. Fenton试剂协同二氧化钛光催化氧化降解三氯乙酸及协同机理研究[D]. 青岛:青岛理工大学,2014:86.[107] XIAO S,PENG J,SONG Y,et al. Degradation of biologically treated landfill leachate by using electrochemical process combined with UVirradiation[J]. Separation and Purification Technology,2013,117:24-29.[108] WU Z L,ONDRUSCHKA B,CRAVOTTO G. Degradation of phenol under combined irradiation of microwaves and ultrasound[J].Environmental Science & Technology,2008,42(21):8083-8087. [109] 蔡丽楠,殷进,张桐,等. 微波超声协同处理废弃印刷线路板中非金属[J]. 环境工程学报,2015(9):4509-4513.[110] 杨一明. 磁场和超声波对污水的联合净化作用[J]. 中国科技信息,2007(23):24-25.[111] 王忠兴. Ag/TiO2复合材料的制备及其在磁场中光催化降解有机染料的研究[D]. 沈阳:辽宁大学,2012:57.[112] 李阳,陈永铎,赵红杰,等. 窄前沿高压脉冲放电等离子体降解水中苯胺[J]. 环境工程学报,2014(12):5361-5366.[113] WANG H J,CHEN X Y. Kinetic analysis and energy efficiency of phenol degradation in a plasma-photocatalysis system[J]. Journal ofHazardous Materials,2011,186(2/3):1888-1892.[114] BUTHIYAPPAN A,AZIZ A,RAMAN A,et al. Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments[J]. Reviews in Chemical Engineering,2015,31(3):263-302.CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第3期·910·化 工 进 展二英生成机理及减排方法研究进展罗阿群1,刘少光2,3,林文松1,谷东亮3,陈成武3(1上海工程技术大学材料工程学院,上海 201620;2浙江大学材料科学与工程学院,浙江 杭州 310027;3上海瀚昱环保材料有限公司,上海 201699)摘要:二英作为一种具有剧毒并且对生态环境和人类健康有着巨大危害的持久性有机污染物,引起了国际社会的广泛关注,为了减少二英对生态环境以及人类健康产生的潜在威胁,世界各国的学者对二英理化性质以及生成机理进行了深入的研究。
KO_tBu促进的有机叠氮和末端炔烃的环加成反应改进研究
KO tBu 促进的有机叠氮和末端炔烃的环加成反应改进研究吴禄勇,陈昱学,宋鑫明,阮超飞,陈光英,宋小平(海南师范大学 化学化工学院 海南省热带药用植物化学省部共建教育部重点实验室,海南 海口 571158)KO t Bu-promoted Cycloaddition Reaction from Azides and Terminal Alkynesfor Synthesis of 1,5-diaryl 1,2,3-triazolesWu Luyong, Chen Yuxue, Song Xinming, Ruan Chaofei, Chen Guangying, Son g Xi a o pin g(Key Laboratory of Tropical Medicinal Plant C hemistry of Ministry of Educatio, College of Chemistry and Chemical Engineeingr, HainnanNormal University , Haikou 571158, China)Abstract: The reaction of phenyl azide and phenylacetylene was investigated promoted by KO t Bu in DMF. Under 1.0 equiv. of KO t Bu, the best result wa s given, and corresponding 1,5-diaryl-1,2,3-triazoles was generated. Others aromatic azides and aromatic acetylenes were suitable in the cycloaddition to construct 1,5-diaromatic 1,2,3-triazoles in good to excellent yields.Keywords: alkynes ;azides ;cycloaddition ;1,2,3-triazoles ;KO t Bu1,2,3-三氮唑化合物是一类重要的的杂环化合物,其在农药、 医药、染料等方面都有广泛的用途[1]。
Coal Pyrolysis
2020/12/12
Thank YOU
2020/12/12
2020/12/12
2020/12/12
Occidental flash pyrolysis process
2020/12/12
2020/12/12
2020/12/12
2020/12/12
2020/12/12
2020/12/12
2020/12/12
2020/12/12
2020/12/12
Many Problems
1 Rate of coal conversion is low 2 Conversion condition is harsh 3 Process is simple 4 Catalysis is low efficiency 5 Mechanism of conversion is vague 6 Coal is very complicated
2020/12/12
2020/12/12
2020/12/12
1. 煤提升管;2. 焦仓;3. 混合器;4. 低温干馏炉;5. 半焦提升管;6.
焦仓;7. 流化床锅炉;8.旋风分离器;9.洗涤器;10.气液分离器;11.焦油
罐;12. 脱硫箱
2020/12/12
大连理工大学DG工艺流程示意图
中国科学院过程工程研究所“煤拔头”工艺(BT工艺)
爱情,亲情,友情,让人无法割舍。 20.12. 12202 0年12 月12日 星期六 11时4 3分42 秒20.1 2.12
谢谢大家!
1.煤仓; 2.混合器; 3.料阀; 4.下行床反应器; 5.快速气固分离器; 6.快速冷凝器; 7.返料阀; 8.流化床燃烧室; 9.旋风分离器; 10.灰仓; 11.焦油泵
纤维素热裂解过程中活性纤维素的生成和演变机理_刘倩
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .,2008,24(11):1957-1963November Received:July 4,2008;Revised:August 1,2008;Published on Web:September 22,2008.English edition available online at *Corresponding author.Email:srwang@;Tel:+86571-87952801.国家自然科学基金(50676085,50476057)及国家重点基础研究发展计划项目(2007CB210200)资助鬁Editorial office of Acta Physico -Chimica Sinica纤维素热裂解过程中活性纤维素的生成和演变机理刘倩王树荣*王凯歌郭秀娟骆仲泱岑可法(浙江大学能源清洁利用国家重点实验室,杭州310027)摘要:在辐射加热闪速热裂解实验台上获取了一种可溶性的黄色固体中间产物,在两个不同辐射热流下其产量随着反应的进行均呈现升高-稳定-再升高的变化趋势.高效液相色谱分析发现,其主要成分包括低聚糖、葡萄糖、左旋葡聚糖、丙酮醛等.将其中的纤维二糖、纤维三糖等低聚糖,以及葡萄糖等单糖的混合物归为活性纤维素.在高热流下,活性纤维素的相对产量呈现先升后降的趋势,在可溶性产物中的含量可高达68%(w ,质量分数),且聚合度较高的低聚糖占主导地位.在低热流下活性纤维素产量相对较低,最高达到约57%(w ),更多地由聚合度较低的糖类组成.在高温下活性纤维素极不稳定,易降解生成聚合度更低的糖类,甚至焦炭、挥发份和气体产物.最后提出了一个改进的机理模型,描述了活性纤维素的生成和演变的反应路径.关键词:纤维素;热裂解;活性纤维素;低聚糖;单糖中图分类号:O642Mechanism of Formation and Consequent Evolution of Active Cellulose during Cellulose PyrolysisLIU QianWANG Shu -Rong *WANG Kai -GeGUO Xiu -JuanLUO Zhong -Yang CEN Ke -Fa(State Key Laboratory of Clean Energy Utilization,Zhejiang University,Hangzhou 310027,P.R.China )Abstract :An intermediate product that was yellow,soluble,and solid was obtained in a high -radiation flashpyrolysis reactor.Under two different radiant heat fluxes,the yields tended to both increase initially until achieving a steady state,and then increase again with the progress of reaction.The compositional analysis of the yellow product was performed on high performance liquid chromatography (HPLC).It was indicated that the product mainly consisted of oligosaccharides,glucose,levoglucosan,methylglyoxal and so on.The compounds including oligosaccharides such as cellobiose and cellotriose,and monosaccharides such as glucose were regarded as active cellulose.Under the higher heat flux,the relative yield of the active cellulose increased initially,followed by a decreasing trend,and achieved a maximum mass fraction of 68%(w )in the soluble yellow product.The oligosaccharides with higher degree of polymerization (DP)were the primary components.Under the lower heat flux the yield of active cellulose was relatively lower,achieving a maximum of about 57%(w ),and more saccharides with lower DP were contained.It was suggested that active cellulose was quite unstable at high temperature,and easily decomposed into saccharides with lower DP,even char,volatiles,and gaseous products.Finally an improved mechanism was proposed to describe the reaction route of formation and consequent evolution of active cellulose during cellulose pyrolysis.Key Words :Cellulose;Pyrolysis;Active cellulose;Oligosaccharide;Monosaccharide生物质热裂解技术可以用于制取液体燃料、合成气,以及高附加值的化学品[1,2].由于生物质成分的1957Acta Phys.-Chim.Sin.,2008Vol.24复杂性,常针对三大组分,即纤维素、半纤维素和木质素,来研究其热裂解行为[1,3].关于纤维素热裂解的反应途径,普遍认同的Broido-Shafizadeh(B-S)模型[4]提出在受热时纤维素将发生一系列复杂的初始反应,形成一种组分相对简单和聚合度较低的物质———活性纤维素.然而,迄今为止活性纤维素的生成过程、存在形式,以及后续演变机理尚未得到充分研究,使得对纤维素热裂解机理的理解存在分歧:一是支持活性纤维素的生成,认为其反应速度相当快,以至于在常规热裂解装置中无法检测[5];二则认为纤维素热裂解并未经历活性纤维素这一过程,而是直接进入生成生物油、气体和炭的历程[6,7].早在30几年前,瑞典林业产品研究室就提出,如果将纤维素加热到熔点,并迅速冷却,便可以控制其不发生明显的降解反应[8,9].Boutin等[10,11]通过闪速热裂解和急速降温收集到了一种介于纤维素和生物油之间的中间化合物,并认为该种物质可能就是活性纤维素.类似的现象在Piskorz等[12]的实验中也得到了证实,并且观察到在反应器内纤维素不只是表面层,而是整个颗粒都处于熔化状态.总之,在前人的研究中归为活性纤维素的中间产物在高温下是极不稳定的,存在时间极其短暂,其生成体现为不可控制的过程.为实现纤维素的瞬时加热,并控制反应进程,本文自行设计搭建了辐射加热闪速热裂解机理实验台.通过对所获取的中间产物的深入分析证明在纤维素热裂解过程中活性纤维素作为中间产物的真实存在,进而得出其生成和演变规律.1辐射加热闪速热裂解机理实验台的建立和样品的准备1.1辐射加热闪速热裂解机理实验台实验装置如图1所示,采用一个功率范围在1.8-3.0kW的高压短弧氙灯作为辐射源,将其发光点放置在椭球反光镜的第一焦点处,光线经椭球反光镜反射后在第二焦点处会聚于一个圆形区域.如图2所示,采用光学软件Tracepro对光路进行模拟,得到焦点处的辐照度分布.氙灯功率为3.0kW时,在近光轴中心的直径约5mm的区域,平均辐照度(辐射热流密度)约为6.5×106W·m-2.在两个焦点图1辐射加热闪速热裂解机理实验台Fig.1High radiation flash pyrolysis mechanism apparatus(a)heating and optical system;(b)cooling and controlling system图2功率3.0kW氙灯焦点处的辐照图Fig.2Irradiance map for incident flux of a3.0kW xenon lamp 1958No.11刘倩等:纤维素热裂解过程中活性纤维素的生成和演变机理之间设置一个45°放置的平面反光镜,以改变光路方向,实现对样品的辐射加热.取少量纤维素样品(约20mg)平铺于直径约5mm 的石英玻璃容器中,并置于焦点处.样品的加热时间通过快门来控制,同时在焦点处设置一个灵敏度为0.01s 的光电池,准确测定焦点处的通光时间.在加热结束的瞬间,液氮迅速喷至样品表面将其冷却.整个系统的运行以及各个阀门和快门的开关通过一个PLC(programmable logic controller)可编程控制器控制.1.2实验样品实验材料是FMC 公司提供的微晶纤维素Avicel PH105,其平均粒径为20μm,平均聚合度为220.纯净的纤维素是高反射材料,反射率约为86%.为提高纤维素对辐射热流的吸收率,在样品中均匀添加5%(w )的石墨粉,其反射率降为46%.热重分析表明,石墨并未对纤维素的热裂解产生催化影响[13].假设样品内部的导热速度非常快,而不存在温度梯度,根据两种氙灯功率下的辐射热流密度估算样品的升温速率,结果如表1所示.其中A 表示样品对辐射热流的吸收率,P 表示氙灯功率,q a 表示样品有效吸收的热流密度,P a 表示有效利用的氙灯功率,β为样品的升温速率.实际上,在短暂的实验过程中,仅表层样品因直接吸收外部辐射热流发生热裂解,其升温速率远远高于表1中的数据.下层样品的升温靠热传导实现,在短时间内很大部分未能达到反应温度.随着加热时间的延长,反应逐渐向下层传播,且各层样品的反应程度均逐渐增强.2活性纤维素的生成和演变实验研究在3.0kW 氙灯的强辐射热流下,光照时间约为0.09s 时,样品表面开始变黄.随着加热时间的延长,样品反应区域逐渐扩大,且颜色逐渐加深,最后表面出现块状的棕色物质.在1.8kW 氙灯的低辐射热流下,光照时间为0.53s 时样品表面才开始变黄,延长光照时间出现相同的变化趋势.SEM 扫描电镜分析显示,微晶纤维素颗粒在热裂解初期经历了一个熔化和相互粘结的状态[13].本文在两种辐射强度下分别进行了一系列不同光照时间下的纤维素热裂解实验.对每一光照时间下的反应重复进行8次,将反应后的样品聚集于25mL 烧杯中,加入去离子水,并过滤石墨粉、未反应的微晶纤维素及反应生成的焦炭,然后在40℃下蒸干滤液,从而得到可溶性的中间产物.图3为在低热流下经历不同光照时间获取的产物图片,在烧杯底部及壁面可观察到少量黄色固体物质的存在,且在长光照时间下较为明显,其产量可通过计算实验前后烧杯的增重得到.每次称量均在相同的环境下重复进行,将误差控制在±0.0002g.2.1黄色物质产量随热流密度和光照时间的变化黄色物质产量在两种辐射热流(q a ,见表1)下随光照时间的变化如图4所示.在高热流下,加热0.09s 时样品表面略微变黄,此时收集到的黄色物质量仅0.001g.随着加热时间的延长,样品反应范围逐渐扩大,反应程度不断加深,黄色物质的产量明显增加.加热时间为0.53s 时,其产量增加到0.014g,随后趋于平衡,直至反应进行到0.86s,产量又持续增加.在低热流下,随着光照时间的增加,黄色物质的产量变化具有一致的趋势,但是相对平缓.在加热时间为1.15s 时,其产量仅为0.006g,远远低于高热流下平台期的产量.反应进行到1.64s 以后,产量再表1估算样品在两种热流密度(q a )下的升温速率aTable 1Estimated heating rates of cellulose sampleunder two different heat fluxes (q a )aa)Estimated for the whole sample,in case there is not temperaturegradient.A refers to the absorption of radiant flux,P represents the power of the xenon lamp,q a corresponds to the effectively absorbed heat flux by the sample,P a is the effective power of the xenon lamp,and βis the heating rate of the sample.SampleAP /kW 10-6q a /(W ·m -2)P a /W β/(K ·s -1)cellulose+5%C 54%3.0 3.568.715401.82.141.2923图3低热流不同光照时间下的黄色固体产物Fig.3Yellow solid product generated at various flash times under the lower heatflux1959Acta Phys.-Chim.Sin.,2008Vol.24次稳定增加.随着反应时间的延长,反应逐层向下传播,黄色物质产量并未线性增加,而是呈现升高→稳定→再升高的变化趋势,说明在纤维素热裂解的不同阶段,不同的反应处于主导地位,因而产物的成分必定存在差异.为掌握纤维素热裂解的反应途径,对该黄色物质成分的深入分析至关重要.2.2黄色物质的成分分析将不同辐射强度和光照时间下获取的黄色物质分别溶于水,得到颜色深浅不同的黄色溶液.采用安捷伦1100HPLC 高效液相色谱检测系统测定溶液成分.以Shodex Sugar KS -802糖柱配以蒸发光散射检测器(ELSD:Evaporative Light Scattering Detector),进样量为20μL,流速为1mL ·min -1,柱温为30℃,蒸发压为3.8MPa,同时采用GPC 软件定量测量各产物的分子量和峰面积.为了对产物准确定性,选取D -葡萄糖(分析纯,纯度>99%),纤维二糖(分析纯,纯度≥98%),左旋葡聚糖(Fluka 公司,purum,纯度≥98%),丙酮醛(分析纯,40%溶液)作为标样,在相同的实验条件下分别得到其HPLC 色谱图.图5选取了几个代表性反应条件下获取的黄色物质的HPLC 谱图,横坐标t R 均为保留时间,纵坐标h 为峰高.图5(a)为高热流下加热0.09s 时产物的成分分布,其中1号峰对应一种未知混合物,平均分子量约为2200,结合β-D -葡萄糖聚合单元分子量为162,推断该处对应于平均聚合度在14左右的多糖,为纤维素热裂解初期解聚反应的产物.而强度相对较弱的2号峰对应于丙酮醛.当反应时间延长到0.53s,如图5(b)所示,有大量糖类物质生成.其中3号、4号和5号峰分别对应于纤维二糖、葡萄糖和左旋葡聚糖,另外可能有少量的果糖作为葡萄糖的同分异构体存在.限于KS -802糖柱对低聚糖的分离效果,谱图中2号和3号峰相互重叠,根据糖苷键断裂的随机性,2号峰其实是纤维三糖、四糖、五糖等低聚糖的杂合峰.当反应进行到1.45s,如图5(c)所示,产物种类未发生明显改变,但是纤维二糖、三糖、葡萄糖等对应峰的强度明显降低,说明其在高温下的不稳定性.相反地,丙酮醛对应的6号峰的强度大大增强,说明低聚糖与丙酮醛的生成必定存在某种竞争或者连续反应的关系.对比低热流下黄色物质的成分分布,与高热流下基本一致,主要包括低聚糖、葡萄糖、左旋葡聚糖、丙酮醛,但是低聚糖的种类存在差异.图5(d)为低热流下加热1.45s 时的产物成分分布.其中2号峰跨度较宽,将其归为纤维二糖、三糖等低聚糖的杂合峰.而停留时间6.5min 左右没有峰出现,说明此时生成的低聚糖聚合度相对较低.在相同的反应时间下(1.45s),由于低热流下反应进行相对缓慢,不稳定的低聚糖进一步发生裂解反应,生成分子量更低的物质.研究者们在研究纤维素的热裂解时也得到了类似的产物.Pouwels 等[14]在居里点热裂解仪上获得了一种水溶性冷凝物,证实了低聚糖存在于纤维素热裂解的过程中.Lede 等[15]通过闪速热裂解和急速降温收集到的中间产物主要为包含少量左旋葡聚糖和纤维二糖的低聚糖酐,并认为该种物质可能就是活性纤维素.Piskorz 等[12]通过纯净纤维素的解聚反应生产包含少量(2-7个)葡萄糖单元的低聚糖酐,产量可高达44%(相对于纤维素原料).Wooten 等[16]通过13C NMR 检测微晶纤维素在不同温度加热不同时间形成的焦炭成分,观察到低聚合度的无定形纤维素的存在,并将其归为活性纤维素,提出它是包含D -图4黄色物质产量随光照时间的变化Fig.4Yellow product yield and flash time profiles10-6q a /(W ·m -2):(a)3.5;(b)2.11960No.11刘倩等:纤维素热裂解过程中活性纤维素的生成和演变机理葡萄糖低聚物的复杂混合物.在实验研究的基础上,本文将纤维素热裂解过程中获取的高温下易分解,室温下稳定存在的纤维二糖、纤维三糖等低聚糖,以及葡萄糖等单糖的混合物归为活性纤维素.2.3活性纤维素产量随热流密度和光照时间的变化由HPLC 色谱结合GPC 软件分析可得到各个析出峰的峰面积,从而得出各成分在黄色产物中的百分含量.图6为两种辐射热流下活性纤维素及其低聚糖、单糖组分在纤维素热裂解过程中的相对产量的变化.在高热流下,活性纤维素的生成始于约0.09s,随后活性纤维素的产量迅速增加,在可溶性产物中的含量可高达68%(w ).在此之前生成活性纤维素的反应速度大大快于其消耗反应的速度,而之后消耗反应成为主导,使得活性纤维素的含量持续降低.另外,葡萄糖等单糖在可溶性产物中仅占10%(w )左右,在整个反应进程中产量几乎保持不变,而纤维二糖、三糖等低聚糖,尤其是聚合度较高的低聚糖占主导地位,其生成和演变反映出活性纤维素的变化规律.在低热流下,活性纤维素的相对产量也呈现先升后降的趋势,但是后期由于传热和传质速率的限制,降低的趋势趋于缓和.与高热流下相比,其活性纤维素产量相对较低,最高达到约57%(w ),图5黄色物质成分的高效液相色谱分析Fig.5High performance liquid chromatography (HPLC)analysis of the yellow product(a)higher heat flux,0.09s;(b)higher heat flux,0.53s;(c)higher heat flux,1.45s;(d)lower heat flux,1.45s;h :peak height,t R :retention time图6活性纤维素相对产量随光照时间的变化Fig.6Relative yield of active cellulose and flash timeprofiles1961Acta Phys.-Chim.Sin.,2008Vol.24并且更多地由聚合度较低的糖类组成.糖类成分分布的不同说明在高辐射热流及瞬时冷却的过程中,一定程度上抑制了低聚糖的二次裂解,获取了较高含量的低聚糖产物.而在低辐射热流下,反应持续时间相对较长,一系列低聚糖在生成后不能立即得到冷却,在高温下进一步降解生成了聚合度更低的糖类,甚至小分子的焦炭、挥发份和气体产物.这也证实了活性纤维素在高温下的不稳定性,体现了其生成和进一步演变的规律.3活性纤维素的生成和演变机理以上实验和分析结果证实了活性纤维素作为中间产物确实存在于纤维素热裂解过程中,为B -S 机理模型提供了又一有力依据.基于活性纤维素在闪速和快速热裂解中的生成和演变规律,本文提出了一个改进的机理模型,如图7所示.在热裂解过程中,首先纤维素长链发生解聚反应,形成聚合度较低的大分子,后续两个平行竞争反应:其中一个反应是因脱羰或脱水反应而发生环断裂,生成丙酮醛等物质,高温有利于此反应的发生[17];另一个反应则在低温下易于进行,即在转糖苷作用下进一步发生解聚反应生成纤维二糖、纤维三糖、葡萄糖、果糖等糖类物质,其进一步降解生成左旋葡聚糖等,最终由于糖苷键和一些碳碳键的断裂生成焦炭、气体产物及挥发份产物[18].该反应路径与Piskorz 等[19]提出的机理模型较为吻合,进一步明确了活性纤维素的生成过程和存在形式,并且提出存在一个与其平行的生成挥发份的竞争反应.B -S 模型曾提出纤维素热裂解由开始到生成活性纤维素是一个不失重的过程.而Agrawal [20]认为在生成活性纤维素的同时有焦油产生.Wooten 等[16]在研究中发现,从原始纤维素到中间态活性纤维素的过程中存在着一定量的失重,并且认为是从纤维素直接生成挥发份的过程导致了失重的发生.本文的研究得到了类似的结果,在热解初始阶段,没有观察到活性纤维素,但是已有少量丙酮醛生成,显然丙酮醛可以由低聚合度的纤维素直接生成;随着反应的进行,活性纤维素的生成成为控制反应,大量低聚糖和单糖成为主要产物;其消耗反应则逐渐增强,最终占据主导地位,在此过程中丙酮醛的产量显著增加.由此可见,活性纤维素和丙酮醛的生成存在着平行竞争和连续反应的双重关系.4结论针对当前纤维素热裂解研究领域中存在的理论难题,开展了活性纤维素生成及其演变的机理研究.在辐射加热闪速热裂解实验台上获取了一种可溶于水、高温下易分解、室温下呈固态且稳定存在的黄色物质,其产量随着反应的进行呈现升高→稳定→再升高的变化趋势,主要成分包括低聚糖、葡萄糖、左旋葡聚糖、丙酮醛等.通过对各成分产量变化的分析,将其中的纤维二糖、纤维三糖等低聚糖,以及葡萄糖等单糖的混合物归为活性纤维素.在高热流下,活性纤维素的相对产量呈现先升后降的趋势,在可溶性产物中的含量最高可达68%(w ),且聚合度较高的低聚糖占主导地位.在低热流下活性纤维素产量相对较低,最高达到约57%(w ),并且更多地由聚合度较低的糖类组成.由此证明活性纤维素在高温下极不稳定,易降解生成聚合度更低的糖类,甚至焦炭、挥发份和气体产物.最后提出了一个改进的机理模型,整体描述了活性纤维素生成和进一步演变的反应路径.References1Liu,Q.;Wang,S.;Zheng,Y.;Luo,Z.;Cen,K.J.Anal.Appl.Pyrolysis ,2008,82:1702Chen,H.X.;Liu,N.A.;Fan,W.C.Acta Phys.-Chim.Sin.,2006,22:786[陈海翔,刘乃安,范维澄.物理化学学报,2006,22:786]3Yang,H.;Yan,R.;Chen,H.;Zheng,C.;Lee,D.H.;Liang,D.T.Energy Fuels ,2006,20:3884Bradbury,A.G.W.;Sakai,Y.;Shafizadeh,F.J.Anal.Appl.图7纤维素热裂解机理Fig.7Mechanism of cellulosepyrolysis1962No.11刘倩等:纤维素热裂解过程中活性纤维素的生成和演变机理Pyrolysis,1979,23:32715Demirbas,A.Energy Convers.Manage.,2000,41:6336Varhegyi,G.;Antal,M.J.;Szekely,T.Energy Fuels,1989,3:329 7Antal,M.J.;Varhegyi,G.Ind.Eng.Chem.Res.,1995,34:7038Nordin,S.;Nyren,J.;Back,E.Svensk Papperstidning,1973,76: 6099Nordin,S.;Nyren,J.;Back,E.Text.Res.J.,1974,44:15210Boutin,O.;Ferrer,M.;Lede,J.J.Anal.Appl.Pyrolysis,1998,47: 1311Boutin,O.;Ferrer,M.;Lede,J.Chem.Eng.Sci.,2002,57:1512Piskorz,J.;Majerski,P.;Radlein,D.;Vladars-Usas,A.;Scott,D.S.J.Anal.Appl.Pyrolysis,2000,56:14513Liu,Q.;Wang,Q.;Wang,J.;Wang,S.R.;Luo,Z.Y.;Cen,K.F.Journal of Engineering Thermophysics,2007,28:897[刘倩,王琦,王健,王树荣,骆仲泱,岑可法.工程热物理学报,2007,28:897]14Pouwels,A.D.;Eijkel,G.B.;Arisz,P.W.;Boon,J.J.J.Anal.Appl.Pyrolysis,1989,15:7115Lede,J.;Blanchard,F.;Boutin,O.Fuel,2002,81:126916Wooten,J.B.;Seeman,J.I.;Hajaligol,M.R.Energy Fuels,2004, 18:117Blasi,C.D.Prog.Energy Combust.Sci.,2008,34:4718Wang,S.;Liu,Q.;Liao,Y.;Luo,Z.;Cen,K.Korean J.Chem.Eng.,2007,24:33619Piskorz,J.;Radlein,D.;Scott,D.S.;Czernik,S.Liquid products from the fast pyrolysis of wood and cellulose.In:Bridgwater,A.V.;Kuester,J.L.Ed.Research in thermochemical biomass conversion.London,New York:Elsevier Applied Science,1988:557-57120Agrawal,R.K.Can.J.Chem.Eng.,1988,66:4131963。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
James H. Edwards and Ian W. Smith
CSIRO Division of Process Technology, P.O. Box 136, North Ryde, NSW, Australia (Received August 1979; revised 11 April 19801 2113
Flash pyrolysis of Loy Yang brown coal, and Liddell and Millmerran bituminous coals has been studied using a fluidized-bed reactor with a nominal throughput of 20 kg h-‘. The apparatus and its performance are described. The yields of tar and hydrocarbon gasesare reported for each coal in relation to pyrolysis temperature, as also are analytical data on the pyrolysis products. The peak tar yields for the dry, ash-free Loy Yang and Millmerran coals were respectively 23% wt/wt (at ~580’C) and 35% wt/wt (at =6OO”C). The tar yield from Liddell coal was 31% wt/wt at ~580’C. Hydrocarbon gaseswere produced in notable quantities during flash pyrolysis; e.g. Millmerran coal at 810°C gave 6% wt/wt (daf) methane, 0.9% wt/wt ethane, 6% wt/wt ethylene, and 2.5% wt/wt propylene. The atomic H/C ratios and the absolute levels of hydrogen in product tars and chars decreased steadily with increasing pyrolysis temperature.
674
FUEL,
1980,
Vol 59, October
Flash pyrolysis
of coals in a 20 kg h-’
reactor:
J. H. Edwards
and I. W. Smith
F
Y
Figure 7
uu
GAS
fl”lOlllNG
Australia has a strong and growing need for liquid fuels’ and a rapidly diminishing supply of indigenous oil’,‘, but abundant coal reserves*. The CSIRO is therefore carrying out a programme of research into the production of oil from coal. The main emphasis of this programme at present is on the flash pyrolysis technique, the object being to determine the technical and economic feasibility of the technique for converting coal to oil. Details of the project have been given elsewhere3,4. In brief, flash pyrolysis of coal gives char, gas, and an appreciable quantity of tar which is subsequently hydrogenated to a range of liquid fuels. In the course of the project various pyrolysers have been operated. In particular a 1 g h-l fluidized-bed pyrolyser has been used to determine the flash pyrolysis behaviour of a range of Australian and other coals5.6. The data have given insight into the chemistry of flash pyrolysis, and have provided the basis for calculations of the performance of conceptual oil-from-coal processes3. Rapid, or flash, pyrolysis of coal has been carried out by other workers, using various types of reactors including fluidized beds. Reviews of this work are available7.8. The relation between process conditions and tar yields has been considered by Sitnai and Smith’. However, little information is available on the thermal decomposition of pulverized coal in fluidized beds of coarse sand, with short (i.e. = 1 s) vapour contact times - the conditions of the experiments described here. This paper describes experiments with a fluidized-bed pyrolyser with a nominal coal input of 20 kg h-‘. The objectives were to check the effect of scale-up on yields found for the I g h-’ pyrolyser5,“, and to provide adequate quantities of tar and char for further testing. Results from the pyrolysis of three coals, Loy Yang brown coal (Victoria), and bituminous coals from Liddell (New South Wales) and Millmerran (Queensland), are reported.
0016-2361 @ 1980 I801 100694-0752.00 I PC Business Press
The data include the yield of tar and hydrocarbon gases in relation to unit quantity of dry, ash-free (daf) coal over the temperature range 460-810°C.
EXPERIMENTAL
Reuction system
The reaction system is illustrated in Figure 1. It has three main sections: a coal feeder, the reactor containing a fluidized bed of sand, and a product recovery system; each appropriately instrumented and equipped for safety, control and monitoring. The coal feeder vessel (0.51 m diameter, 1.63 m high) holds 200 kg of dried coal in the fluidized state. It is mounted on load cells, the output from which is recorded. The coal is fluidized with metered streams of nitrogen,chnique of Huff et al. lo. The vessel is pressurized by throttling the vent nitrogen, and coal is fed to the reactor through 3 mm bore lines. The coal offtake system is based on that developed by Hamor and Smith (Figure 3~ of Reference 11); two offtake lines are used, one is opened automatically for 150 s whilst the other is shut for cleaning by automatic purges. The out-ofphase on-off cycling and cleaning of the lines ensures steady coal feeding. The hot gas for fluidizing the sand bed in the reactor and transporting the reaction products is supplied in one of two ways. It can be generated by combustion of LPG and air in a burner chamber, with addition of cold nitrogen to the combustion products if necessary for temperature moderation, or the gas can consist mainly of nitrogen which is brought to temperature in an electrical preheater, and further heated, if necessary, by injection of combustion products from an acetylene-air burner. Both the acetylene and LPG burners are operated slightly gas-