高中数学必修二第一章 空间几何体1.2.1 空间几何体的三视图(1课时)

合集下载

2014-2015学年高中数学(人教版必修二)课时训练第一章 1.2 1.2.1 空间几何体的三视图

2014-2015学年高中数学(人教版必修二)课时训练第一章 1.2 1.2.1 空间几何体的三视图


跟 踪 训 练
解析:①四边形 BFD′E 的四个顶点在底面 ABCD 内的投 影分别是点 B、C、D、A,故投影是正方形,正确;②设正方体 的棱长为 2,则 AE=1,取 D′D 的中点 G,则四边形 BFD′E 在面 A′D′DA 内的投影是四边形 AGD′E, 由 AE∥D′G, 且 AE=D′G, ∴四边形 AGD′E 是平行四边形, 但 AE=1, D′E = 5,故四边形 AGD′E 不是菱形.对于③,由②知是两个边 长分别相等的平行四边形,从而③正确. 答案:①③
答案:对.
练习 3: 水平放置的圆台的俯视图是一个与下底面大小相同的圆, 对吗?
答案:错. 是两个同心圆.

思 考 应 用
1.观察图中的投影过程,回答问题. (1)它们的投影过程有什么不同? (2)图②、③是平行投影,它们有什么不同? (3)中心投影和平行投影有什么不同?
栏 目 链 接
栏 目 链 接

题型二
画空间几何体的三视图
例2 画出如图所示几何体的三视图.
)

(5)两条相交直线的平行投影可能平行;(
)
(6)如果一个三角形的投影仍是三角形,那么它的中位线
的平行投影,一定是这个三角形的平行投影的中位线.(
解析:利用平行投影的概念和性质进行判断. 答案:(1)× (2)× (3)√ (4)× (5)× (6)√
)
栏 目 链 接
点评:平面图形经过平行投影后一般要改变形状,平 行直线的平行投影是平行或重合的直线.两条相交直线的平 行投影不可能平行.
栏 目 链 接

栏 目 链 接

题型一
投影的概念
例1 判断对错(对的在括号内打“√”,错的打“×”):

高一数学必修2全套教案(共62页)

高一数学必修2全套教案(共62页)

高中数学新人教版A必修二全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学必修2复习资料

高中数学必修2复习资料

必修2数学复习资料第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1、 三视图: 正视图:从前往后; 侧视图:从左往右; 俯视图:从上往下。

2、 画三视图的原则: 长对齐、高对齐、宽相等3、直观图:斜二测画法4、斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1、棱柱、棱锥的表面积: 各个面面积之和2、圆柱的表面积3、圆锥的表面积2r rl S ππ+=4、圆台的表面积22R Rl r rl S ππππ+++=5、球的表面积24R S π=(二)空间几何体的体积 1、柱体的体积 h S V ⨯=底2、锥体的体积 h S V ⨯=底313、台体的体积h S S S S V ⨯++=)31下下上上(4、球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11、平面含义:平面是无限延展的2、平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母γβα、、等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为ααα⊂⇒⎪⎪⎭⎪⎪⎬⎫∈∈∈∈L L B L A B A 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,222r rl S ππ+= D CBAαC · B· A·LA· α使.,,ααα∈∈∈C B A公理2作用:确定一个平面的依据。

人教版高中数学必修二全册课件PPT优质

人教版高中数学必修二全册课件PPT优质

解 正确.
由棱柱的定义可知,棱柱的侧棱互相平行且相等,且各侧面都是平
行四边形.
反思与感悟
解析答案
跟踪训练1 根据下列关于空间几何体的描述,说出几何体名称: (1)由6个平行四边形围成的几何体. 解 这是一个上、下底面是平行四边形,四个侧面也是平行四边形的 四棱柱. (2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是 平行四边形. 解 该几何体是六棱柱.
分类:①依据:由几棱锥截得 ②举例: 三棱台 (由三棱锥截得)、四棱台(由四棱锥截得)……
答案
返回
题型探究
重点难点 个个击破
类型一 棱柱的结构特征 例1 试判断下列说法是否正确:
(1)棱柱中互相平行的两个面叫做棱柱的底面;
解 错误.
如长方体中相对侧面互相平行.
(2)棱柱的侧棱都相等,侧面是平行四边形.
有一个公共 三角形
顶点
与底面相似
平行且相似的 全等的等腰相等且延长
正棱台

两个正多边形 梯形 后交于一点
与底面相似

平行且相似的
其他棱台
两个多边形
延长后交于 梯形
一点
与底面相似
返回
第2课时 圆柱、圆锥、圆台、球、简单组合体 的结构特征
观察下面的图片, 这些图片 中的物体具有怎样的形状?我们如 何描述它们的形状?
答案 (1)有两个面相互平行; (2)其余各面都是平行四边形; (3)每相邻两个四边形的公共边都互相平行.
答案
棱柱的定义、分类、图示及其表示
棱柱
图形及表示
定义:有两个面 互相平行,其余各面都是四边形,如图棱柱可记作:
并且每相邻两个四边形的公共边都 互相平行,由 棱柱 ABCDEF—

高中数学 1.2.2空间几何体的三视图(一)全册精品 新人教A版必修2

高中数学 1.2.2空间几何体的三视图(一)全册精品 新人教A版必修2

的形状各是什么样的?
正面看: 长方形 等腰三角形 圆
侧面看:
下面各图中物体形状分别可以看成什么样的 几何体?
圆柱
圆锥

从正面,侧面,上面看这些几何体,它们
的形状各是什么样的?
正面看: 长方形 等腰三角形 圆
侧面看: 长方形 等腰三角形 圆
下面各图中物体形状分别可以看成什么样的 几何体?
圆柱
圆锥

侧视图
俯视图
正视图 侧视图 俯视图
正视图
正视图
正视图 侧视图
正视图 侧视图
正视图 侧视图 俯视图
正视图 侧视图
俯视图 ·
正视图
正视图
正视图 侧视图
正视图 侧视图
正视图 侧视图 俯视图
正视图 侧视图 俯视图
练习 画出下列基本几何体的三视图
长方体
圆台
六棱锥
长方体
正视图 长方体
正视图 侧视图 长方体
俯视图
三视图的作图步骤
俯视图方向 侧视图方向
正视图方向
正视图
侧视图
俯视图
三视图的作图步骤
俯视图方向
1. 确定正视图方向;
侧视图方向
正视图方向
正视图
侧视图
俯视图
三视图的作图步骤
俯视图方向
1. 确定正视图方向;
2. 布置视图;
侧视图方向
正视图方向
正视图
侧视图
俯视图
三视图的作图步骤
俯视图方向
1. 确定正视图方向;
A
A
A
A
B
D
C
A
B
D
C
中心 投影
A
B

必修二1-1-2-1~2空间几何体的三视图

必修二1-1-2-1~2空间几何体的三视图
课前探究学习 课堂讲练互动 活页限时训练
3.画简单组合体三视图的注意事项 (1)画组合体的三视图时,一定要注意组合体由哪些简单几何体 组成,注意它们的组合方式,特别要注意它们的交线位置. (2)选择视图:一般以最能反映该组合体各部分形状和位置特征 的一个视图为正视图;选择的角度不同,画出的三视图可能不 同.结合三视图的一般画法,依次画出三视图,且分界线和可 见的轮廓线用实线画出,不可见的用虚线画出.
1.2 空间几何体的三视图和直观图 1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图
课前探究学习
课堂讲练互动
活页限时训练
【课标要求】 1.了解中心投影与平行投影. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的 简易组合)的三视图. 3.能识别柱、锥、台、球的三视图所表示的立体模型. 【核心扫描】 1.画出简单组合体的三视图,培养空间想象能力.(重点) 2.识别三视图所表示的空间几何体.(难点)
课前探究学习 课堂讲练互动 活页限时训练
[思路探索] 先根据平行投影的定义知投影线垂直于投影面,从 而确定四边形 BFD′E 四个顶点在各投影面的位置,再把各投 影点连线成图.
课前探究学习
课堂讲练互动
活页限时训练
解析 ①四边形 BFD′E 的四个顶点 B、F、D′、E 在底面 ABCD 内的投影分别是点 B、C、D、A,故投影是正方形,正 确. ②设正方体的边长为 2,则 AE=1,取 D′D 的中点 G,则四 边形 BFD′E 在面 A′D′DA 内的投影是四边形 AGD′E,由 AE∥D′G,且 AE=D′G,知四边形 AGD′E 是平行四边形, 但 AE=1,D′E= 5,故四边形 AGD′E 不是菱形,对于③, 由②知是两对边长分别相等的平行四边形,从而③正确. 答案 ①③

高中数学必修2第一章课件112空间几何体的三视图

高中数学必修2第一章课件112空间几何体的三视图
光线照射下形成的投影,叫 平行投影。
C
?
?
C
?
?
C1
?
?1
?1
C1
?
?1
?1
(2)
(3)
正投影:投影方向垂直 斜投影:投影方向与投影
于投影面的投影 .
面倾斜的投影。
手影表演
手影表演
平行投影
平行投影的投影线互相平行.
斜投影
平 行 投 影 正投影
知识小结
投影
平行投影
中心投影
斜投影 正投影
空间几何体在平行投影与中心投影下有不同 的表现形式,要注意根据问题的实际情况,选择 不同的表现形式.
三视图的形成
主 视 图
侧视图
俯视图
三视图的特点
长度相等 高度相等
宽度相等
三视图表达的意义
从前面正对着物体观察,画出 主视图,主视图 反映了物体的长和高及前后两个面的实形.
从上向下正对着物体观察,画出 俯视图,布置 在主视图的正下方, 俯视图反映了物体的长和宽及 上下两个面的实形.
从左向右正对着物体观察,画出 左视图,布置 在主视图的正右方, 左视图反映了物体的宽和高及 左右两个面的实形 .

左 圆锥
球的三视图


球体
三视图有关概念
“视图”是将物体按正投影法向投影面投射时 所得到的投影图.
光线自物体的前面向后投影所得的投影图称 为“正视图” ,自左向右投影所得的投影图称为 “侧视图”,自上向下投影所得的投影图称为 “俯视图”.
用这三种视图即可刻划空间物体的几何结构, 这种图称之为“三视图”.即向三个互相垂直的 投影面分别投影,所得到的三个图形摊平在一个 平面上,则就是 三视图.

高一数学必修二 1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图

高一数学必修二 1.2.1  中心投影与平行投影  1.2.2  空间几何体的三视图

1. 位置 正视图 侧视图
俯视方向
俯视图
侧视方向
2.运用长对正、高平齐、宽
相等的原则画出其三视图.
正视图
侧视图
正视方向
俯视图
三视图表达的意义 从前面正对着物体观察,画出正视图,正视图 反映了物体的长和高及前后两个面的投影. 从上向下正对着物体观察,画出俯视图,布置在 正视图的正下方,俯视图反映了物体的长和宽及上下 两个面的投影. 从左向右正对着物体观察,画出侧视图,布置在 正视图的正右方,侧视图反映了物体的宽和高及左右 两个面的投影.
几何体的正视图、侧视图、俯视图统称为几何体的
三视图.
根据长方体的模型,请你画出它的三视图, 并观察三种图形之间有什么关系?
正视图 俯视图
高平齐
正视图
侧视图

视 图
长对正 长度
高度
宽相等
宽度
俯视图
一般地,一个几何体的正视图和侧视图的高度
一样,俯视图和正视图的长度一样,侧视图和俯
视图的宽度一样.
正侧等高, 俯正等长, 侧俯等宽。
例2 画出下面几何体的三视图.
正视图 俯视图
侧视图
【变式练习】 画出下面正三棱锥的三视图.


正视图
侧视图
正三棱锥
俯视图
例3 画下面几何体的三视图.
正视图
侧视图
俯视图
绘制三视图时,要注意: 1. 正、俯视图长对正;正、侧视图高平齐;俯、侧 视图宽相等,前后对应. 2. 在三视图中,需要画出所有的轮廓线,其中,看 见的轮廓线画实线,看不见的轮廓线画虚线.
3. 同一物体放置的位置不同,所画的三视图可能不 同. 4. 清楚简单组合体是由哪几个基本几何体组成的,并 注意它们的组成方式,特别是它们的交线位置.

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底31 3台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

高中数学人教A版必修2第一章1.2.2空间几何体的三视图课件

高中数学人教A版必修2第一章1.2.2空间几何体的三视图课件

教学重难点
重点
• 三视图的画法,及简单物体的三视图。
难点
• 辨认三视图所表示的空间几何体。
1:柱锥台球的三视图
正视图
ba
侧视图
c
俯视图
几何体的正视图、侧视图、俯视图统称为 几何体的三视图。
一个几何体的正视图和侧视图的高度一样, 俯视图和正视图的的长度一样,侧视图和俯视图 的宽度一样.
正视图
ba
前课测评:1.对照三种投影
平行投影
(a)中心投影 (b)斜投 (c)正投影 影
从 不 同 的 角 度 看 建 筑
思考:如果要建造房子,你是工程师,需要给施工员
提供哪几种图纸?
视察
礼品盒到底是什么样的呢?
把一个空间几何体投影到一个平面上,可 获得一个平面图形,但只从一个角度视察很难 把握几何体的全貌,因此需要从多个角度进行 投影,才能较好的把握几何体的形状和大小。 通常选择三种正投影:
正视图:光线从几何体的前面向后面正投影, 得到投影图。
侧视图:光线从几何体的左面向右面正投影,得 到投影图。
俯视图:光线从几何体的上面向下面正投影,得 到投影图。
找出飞机的正视图、侧视图、俯视图。
请你找出汽车的三 视图
1.2 空间几何体的三视图
教学目标
知识与能力
• 会画简单的空间几何体的三视图。 •过程与方法 •主要通过学生自己动手作图,体会三视图的作用 •情感态度与价值观 •培养学生的空间想象能力和空间思维能力。
俯视图 • 大小:长对正,高平齐,宽相等.
几何体
正视图
侧视图
俯视图
·
课堂练习
正视图
侧视图
1. 画出下图的三视图
俯视图

《空间几何体的三视图》人教版高中数学必修二PPT课件(第1.2.2课时)

《空间几何体的三视图》人教版高中数学必修二PPT课件(第1.2.2课时)

俯 六棱柱
左 六棱柱
新知探究
圆柱 俯


正视图
俯视图
侧视图
新知探究
还原成实物图: 右边三视图, 你能将其还原成实物模型吗?
正视图
侧视图
侧视图
新知探究
例3 根据三视图判断几何体
正视图
侧视图
俯视图

侧 圆台 正
新知探究
例4 根据三视图判断几何体
正视图 侧视图 俯视图
俯 正视图 侧视图
俯视图
新知探究
D A
C′ B′
C B
课堂探究
【思考2】 : 怎样画底面是正三角形,且顶点在底面上的投影是底面中心的三棱锥?
C
A
B
zS
y C
M
A
OB x
A
S C B
课堂探究
【思考3】 : 画棱柱、棱锥的直观图大致可分几个步骤进行?
画轴 → 画底面 →
画侧棱 →
成图
课堂探究
例3.已知几何体的三视图,用斜二测画法画出它的直观图 • 由三视图可知:该几何体是怎么的一个组合体?
感谢你的聆听
MENTAL HEALTH COUNSELING PPT
讲解人:XXX 时间:20XX.6.1
人教版高中数学必修二
第1章 空间集合体 1.2.3《空间几何体的直观图》
MENTAL HEALTH COUNSELING PPT
讲解人:XXX 时间:20XX.6.1
课前导入
这些图形给人以立体的感觉,怎么才能画出呢?
a(长)
新知探究
例1 (1)圆柱的三视图 正视图
俯视图
侧视图

侧 圆柱 正

空间几何体的三视图和直观图第一课时教学设计教学内容

空间几何体的三视图和直观图第一课时教学设计教学内容

1.2空间几何体的三视图和直观图(第一课时)教学设计一、教学内容分析(一)教材地位和作用三视图是立体几何的基础之一,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间观念的基础和训练学生几何直观能力的有效手段。

在近几年的高考考查中,利用三视图求直观图体积或表面积的题型屡见不鲜,这种题型的本质即为由三视图还原直观图,所以要求学生掌握由三视图还原直观图这部分内容显得尤其重要。

三视图对部分对学生的逻辑思维能力和空间想象能力提出了较高的要求,使学生谈“图”色变。

本节课是普通高中新课程人教版《必修2》第一章第二节第一课时的内容,是在学习空间几何体的结构特征之后,直观图之前,尚未学习点、直线、平面位置关系的情况下教学的。

学生在义务教育阶段,已经初步接触了正方体、长方体的几何特征以及简单几何体的表面积、体积的计算,会从不同的方向看物体得到不同的视图的方法。

与初中教学内容相比较,本节增加学习了台体的有关内容,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。

通过本节知识的学习,为下一章点、直线、平面之间的位置关系学习打下基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣,体会数学的实用价值。

(二)教学内容及结构本章的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。

从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性;通过三视图和直观图的学习,进一步认识空间几何体的结构。

本节课教材从了解中心投影和平行投影出发介绍三视图是利用三个正投影来表示空间几何体的的方法,并给出三视图的概念及作图规则。

要求学生能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型。

在此基础上,学习画出简单组合体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并识别三视图所表示的简单组合体。

(三)教学重难点1、重点:(1)画出空间几何体及简单组合体的三视图,(2)给出三视图,还原或想象出原实际图的结构特征,体会三视图的作用。

必修2课件:1.2.1 空间几何体的三视图

必修2课件:1.2.1 空间几何体的三视图

三视图的形成
V
三视图的形成
W V
V正视图 H俯视图 W侧视图
H
三视图的形成
正 视 图
侧视图 俯视图
三视图的特点
长对正 高平齐 宽相等
三视图的对应规律
作三视图的原则: “长对正、高平齐、宽相等” 它是指:正视图和俯视图一样长:正视图和侧 视图一样高:俯视图和侧视图一样宽
对于基本几何体棱柱、棱锥、 对于基本几何体棱柱、棱锥、棱台以及圆 台的三视图是怎样的? 台的三视图是怎样的?
棱柱的三视图


六棱柱
棱锥的三视图



正三棱锥
棱锥的三视图


正四棱锥
棱台的三视图


正四棱台
圆台的三视图


圆台
圆台的三视图


圆台
由三视图想象几何体 下面是一些立体图形的三视图, 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称: 图说出立体图形的名称:
1.2.1 空间几何体的三视图
-基本几何体的三视图
平行投影 斜投影
中心投影
A
B C
D
正投影 长方体投影图
中心投影 投影线交于一点 投影 平行投影 投影线平行 正视图 侧视图 俯视图 斜投影 正投影
}
三视图
视图 直观图
斜二测画法
三视图有关概念 “视图”是将物体按正投影法向投影面投射 视图” 视图 时所得到的投影图. 时所得到的投影图. 光线自物体的前面向后正投影所得的投影 图称为“正视图” 图称为“正视图” ,自左向右正投影所得的投 影图称为“侧视图” 影图称为“侧视图”,自上向下正投影所得的 投影图称为“俯视图” 投影图称为“俯视图”. 用这三种视图即可刻划空间物体的几何结 这种图称之为“三视图” 构,这种图称之为“三视图”.即向三个互相 垂直的投影面分别正投影, 垂直的投影面分别正投影,所得到的三个图形 三视图. 摊平在一个平面上,则就是三视图 摊平在一个平面上,则就是三视图.

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二第1章空间几何体1.2.2空间几何体的三视图学案【要点梳理夯实基础】知识点1投影的概念阅读教材P11~P12第二行内容,完成下列问题.1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[思考辨析学练结合]判断(正确的打“√”,错误的打“×”)(1)矩形的平行投影一定是矩形.()(2)平行四边形的平行投影可能是正方形.()(3)两条相交直线的平行投影可能平行.()(4)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()【解析】利用平行投影的概念和性质进行判断.【答案】(1)×(2)√(3)×(4)√知识点2三视图阅读教材P12第三行~P14内容,完成下列问题.1.三视图的有关概念空间几何体的三视图是用正投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.正视图:光线从几何体的前面向后面正投影得到的投影图。

侧视图:光线从几何体的左面向右面正投影得到的投影图。

俯视图:光线从几何体的上面向下面正投影得到的投影图。

规律:一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样。

2.三视图的画法(1)画三视图时,重叠的线只画一条,挡住的线要画成虚线;(2)三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图;(3)观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.3.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.[思考辨析学练结合]1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台[解析][先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.][答案] D2. 判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)球的任何截面都是圆.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()[答案](1)×(2)×(3)×3.下列命题中正确的是()A.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.正方形的直观图是正方形[解析]B[用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;平行四边形的直观图是平行四边形;有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱;正方形的直观图是平行四边形,故选B.][答案]B【合作探究析疑解难】考点1 中心投影与平行投影[典例1]如图,点E,F分别是正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把可能的序号都填上)[点拨]利用点B,F,D1,E在正方体各面上的正投影的位置来判断.[解答]其中(2)可以是四边形BFD1E在正方体的面ABCD或在面A1B1C1D1上的投影.(3)可以是四边形BFD1E在正方体的面BCC1B1上的投影.[答案](2)(3)[解法总结]画投影图的关键及常用方法1.关键:画一个图形在一个投影面上的投影的关键是确定该图形的关键点(如顶点,端点等)及这些关键点的投影,再依次连接就可得到图形在投影面上的投影.2.常用方法:投影问题与垂直关系紧密联系,投影图形的形状与投影线和投射图形有关系,在解决有些投影问题时,常借助于正方体模型寻求解题方法.1.在正方体ABCD-A′B′C′D′中,E、F分别是A′A、C′C的中点,则下列判断正确的是________.图1-2-3①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.[解析]①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的边长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形.但AE=1,D′E =5,故四边形AGD′E不是菱形;对于③,由②知是两个边长分别相等的平行四边形,从而③正确.[答案]①③考点2 画空间几何体的三视图[典例2]画出下列几何体的三视图.(1)(2)(3)[点拨]确定正前方→画正视图→画侧视图→画俯视图[解答]三视图如图(1)(2)(3)所示.画三视图的注意事项1.务必做到长对正,宽相等,高平齐.2.三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.3.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.2.画出如图所示几何体的三视图.解:图①为正六棱柱,正视图和侧视图都是矩形,正视图中有两条竖线,侧视图中有一条竖线,俯视图是正六边形.图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.三视图如图所示.考点3 由三视图还原空间几何体探究1如图是一个立体图形的三视图,请观察三视图,由三视图,你能知道该几何体是什么吗?并试着画出图形.[提示]由三视图可知,该几何体为正四棱锥,如图所示.探究2若某空间几何体的正视图和侧视图均为正三角形,请探究该几何体的形状.[提示]若该几何体的正视图和侧视图均为正三角形,则该几何体为轴截面为等边三角形的圆锥,如图所示.[典例3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[点拨]由正视图、侧视图确定几何体为锥体,再结合俯视图确定其是四棱锥,由俯视图可知其底面形状,再结合正视图、侧视图所给信息画直观图.[解答]由俯视图知,该几何体的底面是一直角梯形;再由正视图和侧视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.[解法总结]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.3.如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体?()[解析]由俯视图可知该几何体为旋转体,由正视图、侧视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D【学习检测巩固提高】1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点[解析]当直线与平面垂直时,其正投影为点,其他位置时其正投影均为直线,故选D.[答案] D2.已知某物体的三视图如图所示,那么这个物体的形状是()A.长方体B.圆柱C.立方体D.圆锥[解析]俯视图是圆,所以为旋转体,可排除A、C,又正、侧视图为矩形,所以不是圆锥,排除D.故选B.[答案] B3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析][由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.][答案] A4.如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④[解析][P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][答案] B5.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析][由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.][答案] B6.水平放置的下列几何体,正视图是长方形的是______(填序号).①②③④[解析]①③④的正视图为长方形,②的正视图为等腰三角形.[答案]①③④7.一物体及其正视图如图所示:①②③④则它的侧视图与俯视图分别是图形中的________.[解析]侧视图是矩形中间有条实线,应选③;俯视图为矩形中间有两条实线,且为上下方向,应选②.[答案]③②8.如图所示的三视图表示的几何体是什么?画出物体的形状.[解]该三视图表示的是一个四棱台,如图.[解题反思]已知三视图,判断几何体的技巧①一般情况下,根据主视图、俯视图确定是柱体、锥体还是组合体.②根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置.③综合三视图特别是在俯视图的基础上想象判断几何体.④一定要熟记常见几何体的三视图!。

高中数学必修二课时安排

高中数学必修二课时安排

中学数学必修②第一章空间几何体(需8课时)1.1空间几何体的结构(共2课时)1.1.1柱、锥、台、球的结构特征(1课时)1.1.2简洁几何体的结构特征(1课时)1.2空间几何体的三视图和直观图(共2课时)1.2.1空间几何体的三视图(1课时)1.2.2空间几何体的直观图(1课时)1.3空间几何体的表面积与体积(共2课时)1.3.1柱体、锥体、台体的表面积与体积(1课时)1.3.2球的体积与表面积(1课时)实习作业(共1课时)小结(共1课时)其次章点、直线、平面之间的位置关系(需11课时)2.1空间点、直线、平面之间的位置关系(共4课时)2.1.1平面(1课时)2.1.2空间中直线与直线之间的位置关系(1课时)2.1.3空间中直线与平面之间的位置关系(1课时)2.1.4平面与平面之间的位置关系(1课时)2.2直线、平面平行的判定及性质(共3课时)2.2.1直线与平面平行的判定(1课时)2.2.2平面与平面平行的判定(1课时)2.2.3 直线、平面平行的性质与2.2.4平面与平面平行的性质(1课时)2.3直线、平面垂直的判定及性质(共3课时)2.3.1直线与平面垂直的判定(1课时)2.3.2平面与平面垂直的判定(1课时)2.3.3 直线、平面垂直的性质与2.3.4平面与平面垂直的性质(1课时)小结(共1课时)第三章直线与方程(需9课时)3.1直线的倾斜角与斜率(共2课时)3.1.1倾斜角与斜率(1课时)3.1.2两条直线平行与垂直的判定(1课时)3.2直线的方程(共3课时)3.2.1直线的点斜式方程(1课时)3.2.2直线的两点式方程(1课时)3.2.3 直线的一般方程(1课时)3.3直线的交点坐标与距离公式(共3课时)3.3.1两条直线的交点坐标(1课时)3.3.2两点间的距离(1课时)3.3.3 点到直线的距离(1课时)小结(共1课时)第四章圆与方程(需9课时)4.1圆的方程(共2课时)4.1.1圆的标准方程(1课时)4.1.2圆的一般方程(1课时)4.2直线、圆的位置关系(共4课时)4.2.1直线与圆的位置关系(1课时)4.2.2圆与圆的位置关系(1课时)4.2.3直线与圆的方程的应用(2课时)4.3空间直角坐标系(共2课时)4.3.1空间直角坐标系(1课时)4.3.2空间两点间的距离(1课时)小结(共1课时)。

[2020高中数学]新课标人教A版高中数学必修2教案完整版

[2020高中数学]新课标人教A版高中数学必修2教案完整版

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征. (2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察.根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥.2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果.在此基础上得出棱柱的主要结构特征.(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行.概括出棱柱的概念.4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示.5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示.7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示.8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括.9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体.10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考.1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题.4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用.3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得.作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图.3.三视图与几何体之间的相互转化.(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法.4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流.(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图.2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图.1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点.2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.3.情感态度与价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图.三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程.2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画.2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容.(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评.画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.强调斜二测画法的步骤.练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查.2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点.教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法.3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图.教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事.(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图.教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系.4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点.5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系.(3)培养学生空间想象能力和思维能力. 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状.(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系. 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响.从而增强学习的积极性. 二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算 难点:台体体积公式的推导 三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标.2、教学用具:实物几何体,投影仪 四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类.(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容.2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评. 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系.(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解.如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系.(s ’,s 分别我上下底面面积,h 为台柱高) 4、例题分析讲解(课本)例1、 例2、 例3 5、巩固深化、反馈矫正 教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 . (答案:m a ππ332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积. (答案:2325cm 3)6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式.用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握. 7、评价设计习题1.3 A 组1.3§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能错误!未找到引用源。

高一数学必修二第一章(1.2-1投影与三视图)

高一数学必修二第一章(1.2-1投影与三视图)

正视图
侧视图
俯视图
理论迁移
例 如图是一个倒置的四棱柱的两种 摆放,试分别画出其三视图,并比较它 们的异同.
正视
正视
正视
正视图
侧视图
俯视图
正视图
侧视图
正视
俯视图
能看见的轮廓线和棱用实线表示, 不能看见的轮廓线和棱用虚线表示.
如图所示,将一个长方体截去一部分, 这个几何体的三视图是什么?
正视
正视图
侧视图
俯视图
思考3:观察下列两个实物体,它们的结 构特征如何?你能画出它们的三视图吗?
正视图 侧视图 俯视图
正视图 侧视图 俯视图
思考4:如图,桌子上放着一个长方体和 一个圆柱,若把它们看作一个整体,你 能画出它们的三视图吗?
正视
正视图
侧视图
俯视图
思考2:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并作适当描述.
正视图
侧视图
俯视图
正视图
侧视图
俯视图
例2 将一个长方体挖去两个小长方体 后剩余的部分如图所示,试画出这个组 合体的三视图.
正视图
侧视图
俯视图
例3 说出下面的三视图表示的几何体 的结构特征.
正视图 侧视图 俯视图
1.2 空间几何体的三视图和直观图 第一课时 投影与三视图
知识探究(一):中心投影与平行投影
光是直线传播的,一个不透明物体在光的照射下,在 物体后面的屏幕上会留下这个物体的影子,这种现象叫做 投影.其中的光线叫做投影线,留下物体影子的屏幕叫做 投影面. 思考2:我们把光由一点向外散射形成的投影叫做中心投影, 把在一束平行光线照射下形成的投影叫做平行投影,那么 用灯泡照射物体和用手电筒照射物体形成的投影分别是哪
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二第一章空间几何体
1.2.1 空间几何体的三视图(1课时)
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习
课本P12 练习1、2 P18习题1.2 A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2 空间几何体的直观图(1课时)
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观
(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。

强调斜二测画法的步骤。

练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。

教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17 练习第5题
2.课外思考课本P16,探究(1)(2)。

相关文档
最新文档