八年级数学上册13.3全等三角形的判定教案6(新版)冀教版
2024-2025学年初中数学八年级上册(冀教版)教案第13章全等三角形
第十三章全等三角形13.1 命题与证明(1(2题教学反思例1 判断下列命题的真假,写出逆命题,并判断逆命题的真假:(1)如果两条直线相交,那么它们只有一个交点;(2)如果a >b ,那么a 2>b 2;(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab <0,那么a >0,b <0. 教师引导,学生分析:可以先把原命题的条件和结论写出来,然后调换条件和结论即可得逆命题,最后判断真假性.教师提示:写逆命题并不是简简单单地把条件和结论互换即可,还要使命题的语句具有逻辑性. 解:(1)命题是真命题.逆命题为:如果两条直线只有一个交点,那么它们相交.是真命题.(2)是假命题.逆命题为:如果a 2>b 2,那么a >b ,是假命题.(3)是真命题.逆命题为:如果两个数的和为零,那么它们互为相反数,是真命题.(4)是假命题.逆命题为:如果a >0,b <0,那么ab <0.是真命题. 练习:请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除. (4)已知两数a ,b .如果a +b >0,那么a -b <0. 学生独立完成,教师点评:(1)原命题是真命题,逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.逆命题也为真命题.(2)原命题是真命题,逆命题为:如果两个角相等,那么这两个角是对顶角. 逆命题为假命题.(3)原命题是假命题,逆命题为:如果一个数能被6整除,那么这个数也能被3整除.逆命题为真命题.(4)原命题是假命题,逆命题为:如果a -b <0,那么a +b >0.逆命题为假命题. 2.证明教师提问:刚才你们是怎么判断一个命题是假命题的? 学生:举反例推翻这个命题.教师:那怎么判断一个命题是真命题呢?也用举例吗?仅仅举几个例子足以说明它是真命题吗?命题有真命题,也有假命题,要说明一个命题是假命题,只要举出反例即可;要说明一个命题是真命题,则需要进行推理论证,即证明.定义:要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明. 例2 证明:平行于同一条直线的两条直线平行.已知:如图 ,直线a ,b ,c ,a ∥c , b ∥c . 求证: a ∥b .证明:如图,作直线d ,分别与直线 a ,b ,c 相交∵ a ∥c (已知),∴ ∠1=∠2(两直线平行,同位角相等). ∵ b ∥c (已知), 教学反思A BDCE∴ ∠2=∠3(两直线平行,同位角相等). ∴ ∠1=∠3(等量代换). ∴ a ∥b (同位角相等,两直线平行). 即平行于同一条直线的两条直线平行.教师:通过这个题,如何做证明题?(学生讨论) 证明的步骤:第一步:根据题意画图,将文字语言转换为符号(图形)语言; 第二步:根据条件、结论、 图形写出已知、求证; 第三步:根据基本事实、已有定理等进行证明.定义:如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理..练习:已知:如图,点O 在直线AB 上,OD ,OE 分别是BOC AOC ∠∠,的平分线. 求证:OD ⊥OE .学生独立完成,教师点评:证明:∵ 点O 在直线AB 上,∴ ∠AOC +∠BOC =180°(平角的定义). ∵ OD ,OE 分别是∠AOC ,∠BOC 的平分线,∴ ∠DOC =21∠AOC ,∠EOC = 21∠BOC (角平分线的定义), ∴ ∠DOC +∠EOC =21(∠AOC +∠BOC )=21×180°=90°.∴ OD ⊥OE .课堂练习1.命题“如果a =b ,那么3a =3b ”的逆命题是______________________.2.写出下列命题的逆命题:(1)如果两直线都和第三条直线垂直,那么这两直线平行; (2)若a +b >0,则a >0,b >0; (3)等腰三角形的两个底角相等.3.已知:如图,直线a ,b 被直线c 所截,∠1与∠2互补. 求证:a ∥b.参考答案1.如果3a =3b ,那么a =b.2.解: (1)如果两直线平行,那么这两直线都和第三条直线垂直.(2)若a >0,b >0,则a +b >0.(3)有两个角相等的三角形是等腰三角形.3.证明:∵ ∠1和∠3是对顶角,教学反思O∴ ∠1=∠3.又∵ ∠1与∠2互补,∴ ∠1+∠2=180°.∴ ∠2+∠3=180°,∴ ∠1=∠3(等角的补角相等). ∴ a ∥b (同旁内角互补,两直线平行).课堂小结(学生总结,教师点评) 1.互逆命题 2.证明证明的一般步骤:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证. 第三步,根据基本事实、已有定理等进行证明.布置作业完成教材第34页习题第1,2,3题.板书设计 13.1 命题与证明教学反思一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.命题与证明互逆命题命题与证明要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.第十三章全等三角形13.2 全等图形教学目标1.理解全等图形,了解全等图形的对应点、对应边和对应角.2.理解全等三角形的概念,能识别全等三角形的对应边、对应角.3.知道全等三角形的性质.教学重难点重点:了解全等图形的对应点、对应边和对应角;知道全等三角形的性质.难点:理解全等三角形的概念,能识别全等三角形的对应边、对应角.教学过程导入新课观察思考:(学生观察,教师引导)问题:如图,观察给出的五组图形.(1)每组图形中,两个图形的形状和大小各有怎样的关系?(2)先在半透明纸上画出同样大小的图形,再将每组中的一个图形叠放到另一个图形上,观察它们是否能够完全重合.(4)探究新知1.全等图形同桌两人合作完成,学生回答,教师评价.实验发现:(1)(2)(3)组中的两个图形能够完全重合,(4)(5)组中的两个图形不能完全重合.定义:能够完全重合的两个图形叫做全等图形.考考你对全等图形的理解:观察下面三组图形,它们是不是全等图形?(1)(2)(3)教师归纳:全等图形的性质:全等图形的形状和大小都相同.有关的概念:对应点当两个全等的图形重合时,互相重合的点叫对应点.如图,△ABC与△A′B′C′是两个全等三角形,点A和点A′,点B和点B′,点C和点C′分别是对应点.教学反思对应边当两个全等的图形重合时,互相重合的边叫对应边.如AB和A′B′,CB和C′B′,AC和A′C′.对应角当两个全等的图形重合时,互相重合的角叫对应角.如∠A和∠A′,∠B和∠B′, ∠C和∠C′.2.全等三角形全等的表示方法“全等”用符号“≌”表示,读作“全等于”.如△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,读作三角形ABC全等于三角形A′B′C′.(教师提示:书写时应把对应顶点写在对应的位置上)3.全等三角形的性质根据以下几个问题归纳全等三角形有哪些性质?(教师引导,学生讨论)1.两个能够完全重合的线段有什么关系?2.两个能够完全重合的角有什么关系?3.两个全等三角形的对应边之间有什么关系?对应角之间有什么关系?师生共同归纳:全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:(学生完成填空)如图,∵△ABC≌△A′B′C′,∴AB=____,AC=____,BC=_____(全等三角形对应边_____),∠A=_____,∠B=_____,∠C=_____(全等三角形对应角_____).练习:如图1,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个全等三角形的对应角.教师引导,学生分析:找对对应点是解决此题的关键(△BOD与△COE中,B-C,D-E,O-O;△ADO与△AEO中A-A,D-E,O-O)解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.图1图2例已知:如图2,△ABC≌△DEF,∠A=78°,∠B=35°,BC=18.(1)写出△ABC和△DEF的对应边和对应角.(2)求∠F的度数和边EF的长.(学生独立完成,教师评价)解:(1)边AB和边DE,边BC和边EF,边AC和边DF分别是对应边;教学反思AB CE DF∠A 和∠D , ∠B 和∠DEF , ∠ACB 和∠F 分别是对应角. (2)在△ABC 中,∵ ∠A +∠B +∠ACB =180°(三角形内角和定理), ∴ ∠ACB =180°-∠A -∠B =180°-78°-35°=67°. ∵ △ABC ≌△DEF ,∴ ∠F =∠ACB = 67°,EF =BC =18. 拓展:(1)全等三角形的对应元素相等.其中,对应元素包括对应边、对应角、对应中线、对应高、对应角平分线、对应周长、对应面积等;(2)全等三角形的性质是证明线段相等、角相等的常用依据.课堂练习1.如图1,△ABC ≌△BAD ,如果AB =6 cm , BD =4 cm ,AD =5 cm ,那么BC 的长是( )A .7 cmB .5 cmC .4 cmD .无法确定2.如图2,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°3.如图3,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列选项不正确的是( ) A.AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =CD4.如图4,△ABC ≌ △ADE ,若∠D =∠B , ∠C = ∠AED ,则∠DAE =__________.5.如图5,△ABC ≌△DEF ,且B ,C ,F ,E 在同一直线上,判断AC 与DF 的位置关系,并证明.参考答案1.B2. B3.D4.∠BAC5.解:AC ∥DF . 理由如下:∵ △ABC ≌△DEF ,∴ ∠ACB =∠DFE , ∴ 180°-∠ACB =180°-∠DFE , 即∠ACF =∠DFC ,∴ AC ∥DF .教学反思A DB C A BC DE F图1 图2 图3 图4 AB C DE 图5课堂小结13.2全等图形布置作业完成教材第37页习题A组、B组.板书设计1.全等图形及相关的概念;2.全等三角形的表示方法及性质.教学反思全等图形:能够完全重合的两个图形叫做全等图形全等图形全等三角形:能够完全重合的两个三角形叫做全等三角形全等三角形的性质全等三角形的对应边相等全等三角形的对应角相等第十三章 全等三角形13.3 全等三角形的判定第1课时 边边边教学目标1.进行三角形全等条件的探索,积累数学活动经验;2.掌握基本事实一,利用基本事实一证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握基本事实一,利用基本事实一证明两个三角形全等;难点:会利用三角形全等证明线段相等、角相等.教学过程 导入新课1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.如图,已知△ABC ≌△DEF①AB =DE,② BC =EF ,③CA =FD ;④∠A =∠D , ⑤∠B =∠E ,⑥∠C =∠F .探究新知 一、探究互动一 思考1:满足上述六个条件可以保证△ABC ≌△DEF 吗?思考2:可以用较少的条件判定△ABC ≌△DEF 吗?在以上六个条件中,能否选择其中部分条件,简捷地判定两个三角形全等呢?教师引导,学生探究(小组合作)探究1 只给一个条件,可以分哪几种情况?能够判断两个三角形全等吗?两个三角形不全等;两个三角形不全等; 结论:一个条件不能够判断两个三角形全等.探究2 只给两个条件.①两条边对应相等:若AB =DE ,AC =DF ,但两个三角形不全等;教学反思②一条边和一个角对应相等:若AB =DE ,∠A = ∠D ,但两个三角形不全等;③两个角对应相等:若∠A = ∠D ,∠C = ∠AFE ,但两个三角形不全等.结论:两个条件也不能够判断两个三角形全等.探究3 给出三个条件.⎧⎪⎪⎨⎪⎪⎩①三角对应相等;②三边对应相等;三个条件③两边一角对应相等;④两角一边对应相等.问题 有三个角对应相等的两个三角形全等吗?结论:不一定全等.小亮认为,剩下的三种情况才有可能判断两个三角形全等,你赞同他的说法吗?二、探究互动二——基本事实一问题1:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,折成一个边长分别是3 cm ,4 cm ,6 cm 的三角形. 把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?问题2:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,余下 1 cm ,用其余部分折成边长分别是3 cm ,4 cm ,5 cm 的三角形. 再和同学做出的三角形进行比较,它们能重合吗? 小组互动,教师指导. 归纳:基本事实一:如果两个三角形的三边对应相等,那么这两个三角形全等(可简记为“_______”或“_____”).几何语言:如图,在△ABC 和△ DEF 中,,,,AB CA BC ⎧⎪⎨⎪⎩= = = ∴ △ABC ≌△ DEF ( ).例1 如图1,已知点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB .求证:△ABC ≌△FDE . 教师指导,学生分析:在两个三角形中分别找到对应的三条边,然后证明它们分别相等. 证明:∵ AD =FB ,∴ AD +DB =FB +DB ,即AB =FD .教学反思在△ABC 和△FDE 中,∵ ,,AC FE AB FD BC DE ⎧⎪⎨⎪⎩===,∴ △ABC ≌△FDE (SSS ).图1 图2例2 如图2,已知:AB =AC ,AD =AE ,BD =CE . 求证:∠BAC =∠DAE .证明:在△ABD 和△ACE 中,∵ AB AC AD AE BD CE =,=,=,⎧⎪⎨⎪⎩∴ △ABD ≌△ACE (SSS),∴ ∠BAD =∠CAE . ∴ ∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAC =∠DAE .练习:1.如图,下列三角形中,与△ABC 全等的是_______.2.已知:如图,AB =DE ,AC =DF ,BF =CE . 求证:(1)∠A =∠D ;(2)AB ∥DE . 学生独立完成,教师评价 1.③ 2.证明:(1) ∵ BF =CE ,∴ BF +FC =FC +CE ,即BC =EF .在△ABC 和△DEF 中, ∵,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴ △ABC ≌△DEF (SSS), ∴ ∠A =∠D .(2)由(1)△ABC ≌△DEF ,可得∠B =∠E ,∴ AB ∥DE .三、三角形的稳定性问题1 问题2:观察右面两组木架,如果分别扭动它们,会得到怎样的结果?教学反思教师归纳:教学反思三角形的特性:三角形木架的形状_________,也就是说三角形是具有_____的图形.四边形的特性:四边形木架的形状_______,也就是说四边形是_________的图形.理解“稳定性”只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.想一想:在我们日常生活中,还有哪些地方运用到了三角形的稳定性?你能举出例子来吗?课堂练习1.如图1,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对2.下列关于三角形稳定性和四边形不稳定性的说法中正确的是( )A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3.在生活中我们常常会看见如图2所示的情况加固电线杆,这是利用了三角形的________.4.如图3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A. 1个B. 2个C. 3个D. 4个5.如图4,D,F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件________ (填一个条件即可).6.如图5,AD=BC,AC=BD.求证:∠C=∠D .图1 图2 图3图4图5参考答案1.C2.C3.稳定性4.C5.BD=CF(答案不唯一)如果两个三角形的三边对应相等,那么这两个三角形全等(简写成“边边边”或“SSS”)内容解题思路应用边边边注意事项三角形的稳定性结合图形找隐含条件和现有条件,找出三边对应相等1.证明两三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中6.证明:连接AB(图略),在△ABD和△BAC中,,,, AD BC BD AC AB BA ⎧⎪⎨⎪⎩===∴△ABD≌△BAC(SSS),∴∠D=∠C.课堂小结1.基本事实一;2.基本事实一的应用;3.三角形的稳定性.布置作业完成教材第40页习题.板书设计13.3全等三角形的判定第1课时边边边教学反思第十三章全等三角形13.3 全等三角形的判定第2课时边角边教学目标教学反思1.探索并正确理解三角形全等的判定方法“SAS”;2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用;3.了解“SSA”不能作为两个三角形全等的条件.教学重难点重点:会用“SAS”判定方法证明两个三角形全等及进行简单的应用;难点:了解“SSA”不能作为两个三角形全等的条件.教学过程旧知回顾回顾基本事实一的内容.导入新课问题情境小明不小心将一块大脸猫的玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节课的内容吧!探究新知观察思考:问题1:画一个三角形,使它的两条边长分别是1.5cm,2.5cm,并且使长为1. 5cm的这条边所对的角是30°.小明的画图过程如图所示.小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.那么两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?问题2:已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′.(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合? (2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?教师引导,学生自主探索. 归纳:基本事实二如果两个三角形的________和它们的______对应相等,那么这两个三角形全等.(可简写成“________”或“_____”)几何语言:在△ABC 和△ DEF 中, ____________AB A AC ⎧⎪⎨⎪⎩=,∠=,=, ∴ △ABC ≌△ DEF (______).例 已知:如图,AD ∥BC ,AD =CB . 求证:△ADC ≌△CBA . 教师引导,学生分析: 由两条直线平行可得内错角相等,还有隐含条件AC是公共边,可由SAS 证得结论.证明:∵AD ∥BC (已知),∴∠1=∠2(两直线平行,内错角相等).在△ADC 和△CBA 中,∵(),12(),(),AD CB AC CA ⎧⎪⎨⎪⎩=已知∠=∠已推出=公共边 ∴△ADC ≌△CBA (SAS ).三角形全等在实际生活中也有很广泛的应用.下图是一种测量工具的示意图.其中AB =CD ,并且AB ,CD 的中点O 被固定在一起, AB ,CD 可以绕点O 张合.在图中,只要量出AC 的长,就可以知道玻璃瓶的内径是多少.这是为什么?请把你的想法和同学进行交流.原理:SAS. 练习:在下列推理中填写需要补充的条件,使结论成立: 如图,在△AOB 和△DOC 中, AO =DO (已知),______=________( ),BO =CO (已知),∴ △AOB ≌△DOC ( ).学生独立完成,教师评价.答案:∠ AOB ∠ DOC 对顶角相等 SAS 课堂练习 1.如图,△ABC 中,已知AD 垂直于BC ,D 为BC 的中点,则下列结论不正确的是( ) A . △ABD ≌△ACD B . ∠B =∠CC . AD 是∠BAC 的平分线 D . △ABC 是等边三角形2.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A .一定全等B .一定不全等C .不一定全等D .面积相等 3.如图1,AB ,CD ,EF 交于点O ,且它们都被点O 平分,则图中共有______对全等教学反思内容 应用 边角边 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.(简写成 “边角边”或“SAS ”)1.“SSA ”不能作为判断三角形全等的依据;2. 根据已知条件,找到图形中的隐含条件,如公共边,公共角,对顶角,邻补角,外角,平角等,证明三角形全等.三角形.图1 图2 4.如图2,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC =DE ,AB ∥EF ,AB =EF .求证:△ABC ≌△EFD .5.某大学计划为新生配备如图3所示的折叠凳,图4是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长相等,O 是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为30 cm ,则由以上信息可推得CB 的长度是多少? 参考答案 1.D 2.C 3.34.证明:∵ AB ∥EF ,∴ ∠A =∠E .在△ABC 和△EFD 中,,,,AC ED A E AB EF ⎧⎪⎨⎪⎩=∠=∠=∴ △ABC ≌△EFD (SAS ).5.解:∵ O 是AB ,CD 的中点,∴ OA =OB ,OD =OC .∴ CB =AD .在△AOD 和△BOC 中,OA OB AOD BOC OD OC ⎧⎪⎨⎪⎩=,∠=∠,=, ∴ △AOD ≌△BOC (SAS ). ∵ AD =30 cm ,∴ CB =AD =30 cm.课堂小结1.基本事实二;2.SAS 的应用. 布置作业完成教材第43页习题.板书设计 13.3 全等三角形的判定第2课时 边角边 教学反思第十三章 全等三角形13.3 全等三角形的判定 第3课时 角边角、角角边教学目标1.分不同情况探索“两角一边”条件下两个三角形是否全等;2.掌握AAS 或ASA ,并会利用其证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握AAS 或ASA ,并会利用其证明两个三角形全等;难点:分不同情况探索“两角一边”条件下两个三角形是否全等.教学过程 导入新课探究新知1.角边角、角角边 问题1:如图,在△ABC和△A ′B ′C ′中,∠B =∠B ′,BC =B ′C ′.∠C =∠C ′.把△ABC 和△A ′B ′C ′叠放在一起,它们能够完全重合吗? 问题2:提出你的猜想,并试着说明理由.学生讨论会发现:将△ABC 叠放在△A ′B ′C ′上,使边BC 落在边B ′C ′上,顶点A 与顶点A ′在边B ′C ′的同侧.由BC =B ′C ′可得边BC 与边B ′C ′完全重合.因为∠B =∠B ′,∠C =∠C ′ ,∠B 的另一边BA 落在边B ′A ′上, ∠C 的另一边落在边C ′A ′上,所以∠B 与∠B ′完全重合, ∠C 与∠C ′完全重合.由于“两条直线相交只有一个交点”,所以点A 与点A ′重合.所以, △ABC 和△A ′B ′C ′全等. 归纳:基本事实三如果两个三角形的 两个角和它们的夹边对应相等,那么这两个三角形全等.(可简写成“角边角”或“ASA ”)几何语言: 如图,在△ABC 和△ DEF 中,∠A =∠D ,AB =DE ,∠B =∠E ,教学反思∴ △ABC ≌△ DEF (ASA ).问题3:已知:如问题1中的图,在△ABC 和△A ′B ′C ′中, ∠A =∠A ′, ∠B = ∠B ′,BC =B ′C ′. 求证: △ABC ≌△A ′B ′C ′.教师引导,学生观察:可将∠A =∠A ′这个条件转化为∠C =∠C ′. 证明:∵∠A +∠B +∠C =180°,∠ A ′ +∠ B ′ +∠ C ′ =180°(三角形内角和定理), 又∵ ∠A =∠A ′, ∠B = ∠B ′(已知), ∴ ∠C =∠C ′(等量代换).在△ABC 和△A ′B ′C ′中,,,,B B BC B C C C ∠=∠⎧⎪=⎨⎪∠=∠⎩′′′′ ∴ △ABC ≌△A ′B ′C ′(ASA ). 想一想:从中我们可以得到什么规律? 归纳:全等三角形的判定定理 如果两个三角形的 两角及其中一个角的对边对应相等,那么这两个三角形全等.(可简写成“角角边”或“AAS ”)几何语言:在△ABC 和△ DEF 中,∠B =∠E ,∠A =∠D ,BC =EF , ∴ △ABC ≌△ DEF (AAS ). 例 已知:如图,AD =BE ,∠A =∠FDE ,BC ∥EF . 求证:△ABC ≌△DEF .教师引导,学生分析.通过BC ∥EF ,可得∠ABC =∠E ,再根据等量代换可得AB =DE .证明:∵ AD =BE (已知),∴ AB =DE (等式的性质). ∵ BC ∥EF (已知), ∴∠ABC =∠E (两直线平行,同位角相等).在△ABC 和△DEF 中,,A FDE AB DE ABC E ⎧⎪⎨⎪⎩∠=∠,=,∠=∠∴ △ABC ≌△DEF (ASA ). 练习:1.如图1,已知△ABC 的三条边和三个角,则甲、乙两个三角形中和△ABC 全等的图形是( )A.甲B.乙C.甲、乙D.甲、乙都不是图1 图22.如图2,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,根据“AAS ”需添加的一个条件是___________. 学生独立完成,教师评价.答案:1.B 2.∠B =∠C (答案不唯一)课堂练习1.在△ABC 与△A ′B ′C ′中,已知∠A =44°,∠B =67°,∠C ′=69°,∠A ′教学反思=44°,且AC=A′C′,那么这两个三角形________________.2.如图1,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.图1 图23.如图2,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=2cm,CF=4cm,则AB的长为( )A.2cmB.4cmC.6cmD.8cm4.如图3,∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.5.已知:如图4,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.图3 图4参考答案1.全等2.33.C4.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,12,,, AB ABABC ABD ⎧⎪⎨⎪⎩∠=∠=∠=∠∴△ABC≌△ABD(ASA). 5.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90 °.在△ABC和△ADC中,12B DAC AC⎧⎪⎨⎪⎩∠=∠,∠=∠,=(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.课堂小结1.角边角、角角边的内容;2.利用角边角、角角边解决问题.布置作业完成教材第47页习题.教学反思板书设计13.3全等三角形的判定第3课时角边角、角角边教学反思角边角角角边内容应用如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等(简写成“ASA”)如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等(简写成“AAS”)注意“AAS”“ASA”中两角与边的区别第十三章 全等三角形13.3 全等三角形的判定第4课时 具有特殊位置关系的三角形全等教学目标1.会从图形变换的角度,认识两个可能全等的三角形的位置关系;2.会综合运用本节学过的基本事实及相关定理证明两个三角形全等.教学重难点重点:会从图形变换的角度,认识两个可能全等的三角形的位置关系;难点:会综合运用本节学过的基本事实及相关定理证明两个三角形全等. 教学过程 导入新课1.图形的变换---平移、旋转;2.三角形全等的几个基本事实. 探究新知 问题:如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合.学生讨论会发现: (1)、(2)图通过平移重合;(3)、(4)、(5)、(6)通过旋转重合. 归纳:实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换) 得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快地解决问题.例1 已知:如图,在△ABC 中, D 是BC 的中点,DE ∥AB,交AC 于点 E ,DF ∥AC ,交AB 于点F .求证:△BDF≌△DCE .教师引导,学生分析:将△BDF 沿BC 方向向右平移可使△BDF △DCE 重合. 证明:∵ D 是BC 的中点(已知),∴ BD =DC (线段中点定义∵ DE ∥AB ,DF ∥AC ,(已知)∴ ∠B =∠EDC ,∠BDF =∠C ,(两直线平行,同位角相等)在△BDF 和△DCE 中,B EDC BD DC BDF C ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BDF ≌△DCE (ASA ).例2 已知:如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,CF ∥AB ,交DE 的延长线于点F . 求证:DE =FE .教师引导,学生分析:将△ADE 绕点E 旋转,可与△CFE 重合.证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). 在△EAD 和△ECF 中, 教学反思,A ECF AE CE AED CEF ⎧⎪⎨⎪⎩∠=∠,=,∠=∠ ∴△EAD ≌△ECF (ASA ).∴DE =FE (全等三角形的对应边相等). 练习: 1.如图1,由∠1=∠2,BC =DC ,AC =EC ,得△ABC ≌△EDC 的根据是( ) A .SAS B .ASA C .AAS D .SSS图1 图2 2.已知:如图2,AB ∥CD ,AD ∥BC . 求证:AB =CD ,AD =BC .学生独立完成,教师评价.答案:1.A2.证明:连接AC (图略),∵ AD ∥BC ,∴ ∠DAC =∠ACB.∵ AB ∥CD ,∴ ∠BAC =∠DCA. 在△BAC 和△DCA 中,BAC DCA AC CA BCA DAC ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BAC ≌△DCA , ∴ AB =CD ,AD =BC . 课堂练习 1. 如图1,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为________.2.如图2,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A.60°B.90°C.120°D.150° 图1 图2 图3 图4 3.如图3,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A与∠PR Q 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C画一条射线AE ,AE 就是∠PR Q 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠Q A E =∠P AE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS4.如图4,AE =AC ,AB =AD ,∠EAB =∠CAD ,试说明:∠B =∠D.参考答案 1.120° 2.B 3.D 4.证明:∵ ∠ EAB =∠ CAD ,∴ ∠ EAB +∠ BAD =∠ CAD +∠ BAD , 即∠ EAD =∠ CAB .教学反思。
八年级数学上册 13 全等三角形教学案 (新版)冀教版
第十三章全等三角形1.了解逆命题与逆定理的含义,能够判断真命题与假命题,感受证明的必要性、证明过程的严谨性以及结论的确定性.2.了解全等图形的概念,能识别全等多边形(三角形)的对应顶点、对应角、对应边,知道全等多边形(三角形)的对应边、对应角分别相等.3.熟练掌握三角形全等的判定方法,并会运用这些判定方法判定两个三角形全等.4.了解尺规作图的步骤,能利用基本作图方法作三角形.5.在教学中,注意知识的形成过程和所学内容与现实生活的联系;注重让学生经历操作、观察、推理、想象等探索过程.1.通过探究知识的过程,了解全等图形和全等三角形的判定,以及尺规作图之间的内在联系.2.使学生有效地使用逻辑推理的方式认识几何图形,知道证明的过程可以有不同的表达方式,学会演绎推理证明的格式.3.掌握全等三角形的证明思路和方法.1.让学生通过动手操作,感受知识的形成过程,树立认真的学习态度,激发学生的学习热情.2.利用小组合作学习的方法,在学习中多与同学进行交流,多种感官参与教学,主动探索,发现规律,归纳概括,形成能力,养成学数学、爱数学的情感.学生已经学过线段、角、相交线、平行线以及三角形的有关知识,这些为学习命题和全等三角形的有关内容做了准备.通过本章的学习,可以丰富和加深学生对已学图形的认识.全等三角形是研究图形的重要工具,学生只有掌握了全等三角形的相关知识,并且能够灵活运用它,才能学好以后要学的四边形.在本章中,全等三角形的判定既是重点,也是难点,同时也是中考的热点.全等三角形在中考中主要考查全等三角形的判定证明,并会将有关知识应用到综合题的解题过程中去,如把某些问题转化为三角形的问题求解,能从复杂的图形中寻求全等的三角形以获得自己需要的信息也是中考的要点.【重点】1.命题、定理的有关概念.2.全等三角形的性质及各种判定三角形全等的方法.3.证明的基本过程.4.尺规作图.【难点】1.根据不同条件合理选用三角形全等的判定方法,特别是对“SSA”不能判定三角形全等的认识.2.证明的格式.1.在命题与证明的教学中,要让学生通过大量的例子,分清命题的条件和结论,让学生逐步熟悉命题的形式,要通过学生自主探索、合作交流,让学生归纳出举反例判断假命题的方法,在进行定理的教学时,还应让学生确认可以通过逻辑推理证明的真命题才有可能作为定理,成为以后证明的依据.2.对全等三角形的教学时,要引导学生正确分类,能根据所给数据画出三角形,通过比较,直观感知全等三角形的判定方法,同时也要让学生能通过说理确认全等三角形的判定方法的正确性.在证明的过程中要指导学生注意规范书写格式,规范推理过程,让学生的推理过程有理有据,同时要注重分析思路,让学生学会思考问题,让学生学会对问题有清晰的思路过程.有必要养成固定的思考过程模式,如:证等角——全等三角形——找到相关三角形——找全等条件——联系已知条件.3.在教学尺规作图时,应要求学生采用先画草图分析作法,再进行尺规作图;对于“作一个角等于已知角”的教学时,要注意引导学生进行分析,要让学生先自主探究,后合作交流,同时要让学生在动手操作的基础上总结作图的步骤.13.1命题与证明1课时13.2全等图形1课时13.3全等三角形的判定4课时13.4三角形的尺规作图1课时回顾与思考1课时13.1命题与证明1.理解逆命题的概念,能够判断命题的真假.2.会把命题改写成“如果……那么……”的形式.3.了解逆定理及证明的概念,会对一个真命题进行证明.1.感受几何中推理的严谨性,掌握推理的方法.2.通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力.通过积极参与,获取正确的数学推理方法,理解数学的严谨性,并培养与他人合作的意识.【重点】1.让学生弄清命题的条件和结论,熟悉命题的形式.2.理解逆定理和证明的概念,能进行简单的证明.【难点】理解证明的必要性.【教师准备】课件1~5.【学生准备】复习以前学过的几何定理等知识.导入一:情境:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮:“哈!这个黑客终于被逮住了.”小刚:“是的,现在网络广泛应用于我们的生活中,给我们带来了方便,但…”.坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着.“这个黑客是小偷吗?”“可能是喜欢穿黑衣服的贼.”你听完这节片段的故事,有何想法?同学们各抒己见,老师给予同学的各种回答评价后,发表自己的看法:在日常生活中,我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这些概念的含义,以致无法正常地进行交流.同样,在数学学习中,要进行严格的论证,也必须首先对所涉及的概念下定义.本节我们就一起学习命题与证明.导入二:在电影《流浪者》中,法官和流浪者有这样一段对话,法官说:“贼的儿子永远是贼,因为你是贼的儿子,所以永远是贼.”同学们,法官这个推理对吗?显然是错误的,你知道这个荒谬的结论错在哪里吗?学完本节课“命题与证明”你就会明白了.[设计意图]通过风趣幽默的对话,让学生感知证明的重要性,从而激发学生的求知欲望,能够更好地投入到本节课的学习之中,为学习本节课的知识做好铺垫.导入三:师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”“三条边相等的三角形是等边三角形”等.根据我们已学过的图形的特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等.2.两直线平行,同位角相等.3.同旁内角相等,两直线平行.4.平行四边形的四条边相等.5.直角都相等.[设计意图]通过对以前学过知识的掌握能够判断一个命题的真假,初步感知真命题和假命题,从而自然地引入新知.活动一:真假命题与互逆命题思路一【课件1】观察下面两个命题:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.引导学生思考:(1)在这两个命题中,其中一个命题的条件和结论,与另一个命题的条件和结论有怎样的关系?(2)请再举例说明两个具有这种关系的命题.归纳:像这样,一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.在两个互逆的命题中,如果我们将其中一个命题称为原命题,那么另一个命题就是这个原命题的逆命题.让学生完成教材第32页“做一做”,指出原命题和逆命题的真假性.教师在学生思考的基础上指导学生注意语言的规范性和逻辑性.[知识拓展]每一个命题都有逆命题,只要将原命题的条件改成结论,并将结论改成条件,便可得到原命题的逆命题,但有很多命题的逆命题并不是简单地将原命题的条件与结论互换,必须正确运用数学语言.强调:每个命题都有逆命题,但原命题正确,它的逆命题未必正确.要说明一个命题是假命题,只要举出反例就可以了.例如:“若,则a=b”这个命题是假命题,只要举出两个数的绝对值相等,但这两个数不相等的情况就可以判断这个命题是假命题.如:,但5≠-5.让学生举出反例说明:“如果a+b>0,那么a-b>0”是个假命题.[设计意图]明确真、假命题与互逆命题,通过区分两类概念,从中体会要说明一个命题是假命题,只要举出一个反例就可以了,培养学生举反例进行说明的能力.思路二[过渡语]刚才通过实例,我们初步了解了推理的重要性,首先我们来学习真假命题与互逆命题.1命题的条件和结论教师讲解:在数学中,许多命题是由已知条件、结论两部分组成的.条件是已知事项,结论是由已知事项推出的事项.这样的命题常可以改写成“如果……那么……”的形式,用“如果”开始的部分是条件,“那么”开始的部分是结论.有的命题的条件和结论不十分明显,可以将它写成“如果……那么……”的形式,就可以分清它的条件和结论了.例如:命题“直角都相等”可以写成“如果两个角是直角,那么这两个角相等”.【课件2】下列命题的条件是什么?结论是什么?(1)对顶角相等.(2)如果a>b,b>c,那么a=c.引导学生把(1)先改写成“如果……那么……”的形式,再确定条件和结论.解:(1)条件:两个角是对顶角.结论:这两个角相等.(2)条件:a>b,b>c,结论:a=c.2.真假命题[过渡语]命题有真命题和假命题,真命题就是条件成立,结论也一定成立的命题;而假命题是条件成立时,不能保证结论总是成立的命题.请同学们看下面的问题.【课件3】判断下列句子是否正确(1)三角形的内角和是180度.(2)同位角相等.(3)同角的余角相等.(4)一个锐角与一个钝角的和是180度.让学生根据已有的知识进行判断,并说明理由.3.互逆命题教师讲解:例如“两直线平行,内错角相等”这个命题,条件为“如果两条直线被第三条直线所截,且两直线平行”,结论是“那么内错角相等”.如果把这个命题的条件和结论互换一下位置,新句子也是一个命题,这时条件为“如果两条直线被第三条直线所截,内错角相等”,结论变为“那么这两条直线平行”.这样我们就说后一个命题是前一个命题的逆命题,前一个命题也是后一个命题的逆命题.这两个命题互为逆命题.一般来说,在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做这个原命题的逆命题.活动二:证明与互逆定理[过渡语]要说明一个命题是真命题,则要从命题的条件出发,根据已经学过的基本事实、定义、性质和定理等,进行有理有据的推理,这种推理叫做证明.【课件4】证明:平行于同一条直线的两条直线平行让学生首先判断这个命题的真假性,引导学生分析讨论证明的方法.说明:教师要重点关注学生的证明过程的书写是否符合要求.已知:如图所示,直线a,b,c,a∥c,b∥c.求证:a∥b.证明:如图所示,作直线d,分别与直线a,b,c相交.∵a∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∵b∥c(已知),∴∠2=∠3(两直线平行,同位角相等).∴∠1=∠3(等量代换).∴a∥b(同位角相等,两直线平行).即平行于同一条直线的两条直线平行.一般地,证明命题按如下步骤进行:(1)依据题意画图,将文字语言转换为符号(图形)语言;(2)根据图形写出已知、求证;(3)根据基本事实、已有定理等进行证明.教师讲解:如果一个定理的逆命题是真命题,那么这个逆命题也就成了定理.这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是真命题,所以它们都是定理,因此它们就是互逆定理.你能举出我们学过的一些互逆定理吗?一个假命题的逆命题可以是真命题,甚至可以是定理.例如:“相等的角是对顶角”是假命题,但它的逆命题“对顶角相等”是真命题,且是定理.指导学生完成教材第33页“做一做”.【课件5】已知:如图所示,点O在直线AB上,OD,OE分别是∠AOC,∠BOC的平分线.求证:OD⊥OE.证明:∵OD平分∠AOC,OE平分∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠COD+∠COE=(∠AOC+∠BOC)=180°=90°,即∠DOE=90°,∴OD⊥OE.[设计意图]通过做一做锻炼学生的逻辑思维能力,巩固所学的知识,同时培养学生的合作探究精神和归纳总结的能力,让学生理解定理可以作为进一步判断其他命题真假的依据.命题的组成每一个命题都是由条件和结论两部分组成的,条件是已知事项,结论是由已知事项推断出的事项.注意:对每一个讨论的命题,其条件和结论不一定只有一个.真命题、假命题、反例正确的命题称为真命题;错误的命题称为假命题;举一个例子,其具备命题的条件,而不具备命题的结论,这种例子称为反例.注意:要说明一个命题是假命题,通常举出反例来说明.互逆命题与互逆定理一般来说,在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果一个定理的逆命题是真命题,那么这个逆命题也就成了定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.注意:任何一个命题都有逆命题,但任何一个定理不一定有逆定理.证明的一般步骤(1)画图;(2)写出已知、求证;(3)证明.注意:证明要做到有理有据.1.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2-3x=0.A.①②③B.①④C.②④D.②解析:①对顶角相等,逆命题为:相等的角为对顶角,错误;②同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,正确;③若a=b,则|a|=|b|,逆命题为:若|a|=|b|,则a=b,错误;④若x=3,则x2-3x=0,逆命题为:若x2-3x=0,则x=3,错误.故选D.2.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个解析:对顶角相等,所以①为真命题;在同一平面内,垂直于同一条直线的两直线平行,所以②为假命题;相等的角不一定是对顶角,所以③为假命题;两直线平行,同位角相等,所以④为假命题.故选C.3.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)解析:分析所给命题是否为真命题,需要分析条件是否能推出结论,从而利用排除法得出答案.故填①②④.4.命题“如果n是整数,那么2n是偶数”的条件是,结论是,这是命题(填“真”或“假”).解析:命题写成“如果…,那么…”的形式时,“如果”后面接的部分是条件,“那么”后面接的部分是结论.依此可写出命题“如果n是整数,那么2n是偶数”的条件和结论.根据偶数的定义可知该命题是真命题.答案:n是整数2n是偶数真5.如图所示,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为条件,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.解析:可以由①②得到③:由AB⊥BC,CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,所以∠EBC=∠FCB,所以∠ABC-∠EBC=∠DCB-∠FCB,即∠1=∠2.解:(答案不唯一)已知:如图所示,AB⊥BC,CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC-∠EBC=∠DCB-∠FCB,∴∠1=∠2.13.1命题与证明活动一:真假命题与互逆命题活动二:证明与互逆定理一、教材作业【必做题】教材第34页练习第1,2题.【选做题】教材第34页习题第1,2,3题.二、课后作业【基础巩固】1.下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.连接A,B两点2.举一个反例说明“一个角的余角大于这个角”是假命题,其中错误的是 ()A.设这个角是45°,它的余角是45°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°3.以下说法正确的有:(只填序号).①垂线段最短;②在平面内,若a⊥b,b⊥c,则a∥c;③“同旁内角互补,两直线平行”的条件是“同旁内角互补”,结论是“两直线平行”;④过一点有且只有一条直线平行于已知直线.4.已知下列命题:①相等的角是对顶角;②互补的两个角一定是一个锐角,另一个是钝角;③在同一平面内,平行于同一条直线的两条直线平行;④互为邻补角的两角的平分线互相垂直.其中正确命题的序号是.【能力提升】5.命题:若a>b,则.(1)请判断这个命题的真假,若是真命题,请证明;若是假命题,请举一个反例.(2)若这个命题是假命题,请你适当修改命题的条件,使其成为一个真命题.【拓展探究】6.对于有理数a,b,规定一种新运算:a b=a·b+b.有下列命题:①(-3) 4=-8;②a b=b a;③方程(x-4) 3=6的解为x=5;④(4 3) 2=4 (3 2).其中正确命题的序号是.(把所有正确命题的序号都填上)7.如图所示,现有以下3个条件:①AB∥CD,②∠B=∠C,③∠E=∠F.请以其中2个作为条件,第3个作为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请加以证明.【答案与解析】1.D(解析:命题是能够判断出正确或错误的句子,所以它必须对某件事情进行判断.)2.B(解析:反例一般是举符合条件但结论不成立的例子.)3.①②③(解析:垂线段最短,所以①正确;在平面内,若a⊥b,b⊥c,则a∥c,所以②正确;“同旁内角互补,两直线平行”的条件是“同旁内角互补”,结论是“两直线平行”,所以③正确;过直线外一点有且只有一条直线平行于已知直线,所以④错误.)4.③④(解析:①相等的角是对顶角,错误,因为对顶角既要考虑大小,还要考虑位置;②互补的两个角,一个为锐角,另一个为钝角,错误,还有可能是两个直角;③在同一平面内,平行于同一条直线的两条直线平行,是平行公理,正确;④互为邻补角的两角的平分线互相垂直,正确.所以只有③④命题正确.)5.解:(1)假命题.如a=1,b=-2符合a>b,但不满足. (2)改成:若a>b>0,则或若0>a>b,则.6.①③(解析:(-3) 4=-3×4+4=-8,所以①正确;a b=ab+b,b a=ab+a,所以②错误;方程(x-4) 3=6可化为3(x-4)+3=6,解得x=5,所以③正确;(4 3) 2=(4×3+3) 2=15 2=15×2+2=32,4 (3 2)=4 (3×2+2)=4 8=4×8+8=40,所以④错误.故填①③.)7.解:(1)①②为条件,③为结论;①③为条件,②为结论;②③为条件,①为结论. (2)∵AB∥CD,∴∠B=∠CDF,∵∠B=∠C,∴∠C=∠CDF,∴CE∥BF,∴∠E=∠F,所以由①②为条件,③为结论组成的命题是真命题.∵AB∥CD,∴∠B=∠CDF,∵∠E=∠F,∴CE∥BF,∴∠C=∠CDF,∴∠B=∠C,所以由①③为条件,②为结论组成的命题是真命题.∵∠E=∠F,∴CE∥BF,∴∠C=∠CDF,∵∠B=∠C,∴∠B=∠CDF,∴AB∥CD,所以由②③为条件,①为结论组成的命题是真命题.本节课的主要内容是命题、定理、证明.为此,在导入时让学生通过生动的情境导入,提高了学生学习的兴趣,激发了学生的好奇心.整个过程以学生与学生、学生与教师之间的“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.本课的内容比较简单,但概念较多,因此在学习之后设计了大量练习,让学生在练习中巩固所学知识,加深对概念的理解和运用.本节涉及的概念较多,在概念的传授上,教师没有做到成功引导,虽然有引导的内容,但实际效果不佳.在判断一些较难命题的条件和结论时判断不够准确,语言表达不够清晰,对于定理部分的内容介绍较少.1.加强对概念的剖析和引导,要注意它们的联系和区别,可组织学生讨论发现,这样学生通过小组的研讨,能够增强他们对概念的认识和理解.2.通过多举例,让学生发现命题、定理的区别,掌握定理的应用价值.3.对于命题的剖析,要让学生尽量做到语言表述的严谨性,鼓励学生互相补充,同时,多加练习.练习(教材第34页)1.解:(1)如果两个角相等,那么这两个角是直角.它是假命题,如∠1=50°,∠2=50°,∠1=∠2≠90°.(2)如果两个角的和是平角,那么这两个角一个是锐角,一个是钝角.它是假命题,如∠1=90°,∠2=90°,∠1+∠2=180°,但∠1和∠2都是直角. (3)如果两个角相等,那么这两个角是同角(或等角)的余角.它是假命题,如∠α=∠β=130°>90°,∠α和∠β不可能是某个角(或某两个相等的角)的余角. (4)如果两个角相等,那么这两个角是同角(或等角)的补角.它是假命题,如∠α=∠β=200°>180°,∠α和∠β不可能是某个角(或某两个相等的角)的补角. (5)如果两个数的和等于0,那么这两个数是互为相反数的两个非0数.它是假命题,如a=0,b=0,a+b=0,但a,b不为非0数. (6)能被2整除的数一定是偶数.它是真命题.(证明略) 2.证明:如图所示,∵∠1+∠2=180°(已知),∠1=∠3(对顶角相等),∴∠3+∠2=180°(等量代换),∴a∥b(同旁内角互补,两直线平行).习题(教材第34页)1.证明:∵点C是线段AD的中点(已知),∴AD=2CD(线段中点的定义).又∵点D是线段CB的中点,∴CB=2CD(线段中点的定义),∴AD=CB(等量代换).2.证明:∵∠AOB=∠A'O'B'(已知),∠1=∠3(已知),∴∠AOB-∠1=∠A'O'B'-∠3(等式的性质),即∠2=∠4.3.解:∵DE∥BC(已知),∠ADE=50°(已知),∠C=70°(已知),∴∠B=∠ADE=50°(两直线平行,同位角相等),∠DEC+∠C=180°(两直线平行,同旁内角互补),∴∠DEC=180°-∠C=180°-70°=110°.1.初中数学命题的三个特征命题是对某一事件作出正确或不正确判断的语句.正确理解命题的关键是要抓住它的三个特征,下面举例分析.下列各语句中,哪些是命题?哪些不是命题?(1)相等的角是直角.(2)直线是没有长度的.(3)明天会下雨吗?(4)两条直线被第三条直线所截.(5)作直线AB∥CD.解:(1)(2)是命题,因为它们都是具有判断性的语句.(3)(4)(5)都不是命题,因为它们都不是判断性语句,(3)是疑问句,(5)是叙述一个过程的语句.2.数学命题有真假之分正确的命题称为真命题,错误的命题称为假命题.要判断一个命题是真命题需要进行证明,而判断一个命题是假命题只要举出一个反例就可以.下列各命题是真命题还是假命题?(1)有公共顶点的两个角是对顶角.(2)四边形的内角和是360度.(3)内错角相等.解:不能认为肯定的命题就是真命题,否定的命题就是假命题.(1)假命题.如图1所示,∠1和∠2是有公共顶点的两个角,但∠1和∠2并不是对顶角. (2)真命题.如图2所示,一条对角线可以把一个四边形分成两个三角形,由每个三角形内角和是180度可知四边形内角和是360度. (3)假命题.如图3所示,若直线AB与CD不平行,则∠1≠∠2.3.命题的结构有固定的形式每个命题都是由题设(条件)和结论两部分构成的,有些命题常常写成“如果…,那么…”的形式,具有这种形式的命题中,“如果”部分是条件,就是命题证明中的“已知”;“那么”部分是结论,就是命题证明中的“求证”.如图所示,下列六个条件:①∠1=∠E;②∠2=∠F;③∠A+∠1=180°;④∠B+∠2=180°;⑤∠DCE+∠E=180°;⑥∠CDF+∠F=180°.从中选取两个作为条件,使得命题“如果,,那么AB∥EF”是一个真命题,并证明你的结论.(填序号)解:(本题答案不唯一)可选①④.如果∠1=∠E,∠B+∠2=180°,那么CD∥EF,AB∥CD,∴AB∥EF.13.2全等图形1.了解全等图形以及全等图形的对应点、对应线段、对应角.2.了解全等三角形,知道全等三角形的对应边相等,对应角也相等.通过观察图形,找到全等三角形的对应边、对应角,利用全等三角形对应边相等,对应角相等的性质进行简单的推理和计算.培养学生的观察和动手能力,发展学生的几何观念.【重点】掌握全等三角形的对应边相等、对应角相等的性质.【难点】用全等三角形的性质进行简单的推理和计算.【教师准备】课件1~7.【学生准备】搜集日常生活中形状、大小相同的图形.导入一:1.做一做:指导学生画边长为4 cm的等边三角形和边长为4 cm的正方形,并将它们剪下来.2.交流讨论:同桌两人为一组,将剪下的图形放在一块,观察重合情况.。
冀教版八年级上学期数学13.3.4全等三角形的判定优秀教学案例
4.结合生活实际,提出与全等三角形相关的问题,让学生体会数学与生活的紧密联系。
(三)学生小组讨论
1.教师布置具有挑战性的讨论题目,如:“全等三角形的判定方法在实际应用中有什么作用?”
2.学生分组讨论,教师巡回指导,鼓励学生发表自己的观点,培养学生的团队合作能力和沟通能力。
4.反思与评价的环节:教师引导学生对学习过程进行反思,总结学习方法和经验,提高学生的自我认知能力。同时,教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维能力、问题解决能力等方面的发展,为学生提供有针对性的指导和建议。
5.多元化的评价方式:本案例中,教师采用了自我评价、同伴评价和教师评价等多种评价方式,全面客观地评价了学生的学习情况。这种多元化的评价方式,不仅能够激发学生的学习动力,还能够促进学生的全面发展富有挑战性的问题,引导学生进行思考、探究,激发学生的问题意识。
2.鼓励学生提出自己的疑问,教师及时解答,引导学生主动寻求解决问题的方法。
3.创设问题情境,让学生在解决实际问题的过程中,运用全等三角形的判定方法,提高学生的知识运用能力。
(三)小组合作
1.组织学生进行小组讨论,共同探讨全等三角形的判定方法,培养学生的团队合作能力和沟通能力。
三、教学策略
(一)情景创设
1.利用实物模型、几何画板软件等教学资源,创设生动直观的全等三角形判定情景,让学生在实际操作中感受全等三角形的判定方法。
2.通过设计有趣的数学故事、问题情境等,激发学生的学习兴趣,引导学生主动参与到全等三角形的学习中来。
3.结合生活实际,提出与全等三角形相关的问题,让学生体会数学与生活的紧密联系,提高学生解决实际问题的能力。
冀教版八年级上学期《全等三角形的判定》教学案例
四边形、五边形不具稳定性。
学生练习
让学生感受举例的作用。
播放三角形稳定性及四边形不稳定性在生活中的应用.
检测学生对知识的掌握情况及应用能力。
反思小结,提炼规律
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
学生在教师引导下回顾反思,归纳整理。
五、教学重点及难点
重点:三角形全等条件的探索过程。
难点:三角形全等条件的探索过程。
六、教学过程
教师活动
学生活动
设计意图
复习过渡,引入新知
电脑显示,带领学生复习全等三角定义及其性质。
创设情景,提出问题
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那么,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
由上面的结论可知,只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
八、板书设计
13.3全等三角形的判定
1、总结:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
2、基本事实一:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
3、三角形的稳定性
九.教学反思
(1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
2022年八年级数学上册第十三章全等三角形13.3全等三角形的判定3教案新版冀教版
13.3全等三角形的判定(3)教学目标【知识与能力】1.掌握“角边角”及“角角边”的内容.2.能初步应用“角边角”及“角角边”判定两个三角形全等.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度价值观】通过探究三角形全等的活动,培养学生敢于面对困难、克服困难的能力.教学重难点【教学重点】“角边角”及“角角边”的内容.【教学难点】分析问题,寻找判定两个三角形全等的条件.课前准备多媒体课件教学过程一、新课导入:导入一:教师讲解:前面,我们已经知道,当两个三角形的两条边及其夹角分别对应相等时,两个三角形一定全等,而当两个三角形的两条边及其中一边的对角分别对应相等时,两个三角形不一定全等.这节课,我们将讨论以下情况:如图所示,一种情况是已知两个角及这两角的夹边;另一种情况是已知两个角及其中一角的对边.[设计意图]让学生明确本节课要研究的主要内容,并明确三角形中边与角的位置关系,理解“两角夹一边”和“两角一对边”的含义.导入二:1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?(三个角、三个边、两边一角、两角一边)(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.师:在三角形中,已知三个元素的四种情况中,我们研究了两种,我们接着探究已知两角一边是否可以判定两三角形全等.导入三:【课件1】如图所示,小明不小心把一块三角形的玻璃打碎成四块,现在要去玻璃店配一块完全一样的玻璃,那么最省事的办法是什么?你能帮小明出出主意吗?要想最省事,就要带块数最少且要满足它能够确定该三角形的形状和大小,这就是本节课要学到的判定三角形全等的知识.学完本节,你就会知道为什么应该带第2块去.[设计意图]激趣设疑,让学生产生学习的兴趣,积极地投入到本节课的学习之中.二、新知构建:活动一:“角边角”基本事实和“角角边”定理的探究思路一做一做:【课件2】三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下来.同伴比较,观察它们是不是全等,你能得出什么结论?【学生活动】自己动手操作,然后与同伴交流,得出结论.【教师活动】检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形放在一起,发现完全重合,这说明这些三角形全等.提炼结论:两角和它们的夹边对应相等的两个三角形全等(可以简记为“角边角”或“ASA”).师:我们刚才作的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个ΔA'B'C',使∠A=∠A',∠B=∠B',AB=A'B'呢?生:能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.生:(1)先用量角器量出∠A与∠B的度数,再用直尺量出AB边的长;(2)画线段A'B',使A'B'=AB;(3)分别以A',B'为顶点,A'B'为一边在同侧作∠DA'B',∠EB'A',使∠DA'B'=∠CAB,∠EB'A'=∠CBA;(4)射线A'D与B'E交于一点,记为C',即可得到ΔA'B'C'.将ΔA'B'C'与ΔABC放到一起,发现两三角形全等.教师出示图形:于是我们发现规律:两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA ”). 这又是一个判定两个三角形全等的方法.[知识拓展] “ASA ”中的“S ”必须是两个“A ”所夹的边.书写格式:在ΔABC 和ΔA'B'C'中,{∠A =∠A ',AB =A 'B ',∠B =∠B ',所以ΔABC ≌ΔA'B'C'.出示探究问题:【课件3】 如图所示,在ΔABC 和ΔDEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,ΔABC 与ΔDEF 全等吗?能利用角边角条件证明你的结论吗?〔解析〕 如果能证明∠C =∠F ,就可以利用“角边角”证明ΔABC 和ΔDEF 全等,由三角形内角和定理可以证明∠C =∠F.证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°,∠A =∠D ,∠B =∠E ,∴∠A +∠B =∠D +∠E∴∠C =∠F.在ΔABC 和ΔDEF 中,{∠B =∠E ,BC =EF ,∠C =∠F ,∴ΔABC ≌ΔDEF (ASA).于是得规律:两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).[知识拓展] “角角边”(AAS)可以看成是“角边角”(ASA)的推论.由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等,无论这一边是“对边”还是“夹边”,只要对应相等即可.思路二一、体验已知两角及夹边的三角形的唯一性1.利用刻度尺、量角器、小刀等工具制作符合如下条件的三角形:(1)ΔABC ,其中∠A =35°,∠B =65°,AB =5cm;(2)ΔDEF ,其中∠D =70°,∠E =50°,∠E 的对边DF =4cm .注意:(2)题学生可能感觉难度较大,教师可提示学生先求出∠F=60°,再利用(1)的作法进行作图.2.如果“两角及一边”条件中的边是两角所夹的边,那么你画的三角形与同伴画的一定完全重合吗?试试看.结论:有两角和夹边对应相等的两个三角形全等,简写成“ASA”或“角边角”.3.如果“两角及一边”条件中的边是其中一角的对边,以你所画的ΔDEF为例,你画的三角形与同伴画的一定完全重合吗?试试看.结论:有两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”.二、证明“ASA”定理教师出示已知条件:如图所示,在ΔABC和ΔA'B'C'中,已知AB=A'B',∠A=∠A',∠B=∠B'.求证ΔABC≌ΔA'B'C'.教师给出证明方法:由于AB=A'B',我们移动其中的ΔABC,使点A与点A'、点B与点B'重合,且使点C与点C'分别位于线段AB,A'B'的同侧,因为∠A=∠A',因此可以使∠A与∠A'的边AC 与A'C'重叠在一起;同样因为∠B=∠B',可以使∠B与∠B'的边BC与B'C'重叠在一起,由于两条直线相交只有一个交点,因此点C与点C'重合,这就说明这两个三角形全等,由此可得判定三角形全等的又一种简便方法:如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等,简记为“ASA”(或角边角).三、证明“AAS”定理教师出示应用“ASA”证明三角形全等的问题:【课件4】如图所示,已知∠ABC=∠DCB,∠A=∠D,求证ΔABC≌ΔDCB.教师要求学生应用“ASA”定理证明本题,学生思考后教师提问,并根据学生的回答加以引导后由教师板书.证明结束后教师提出问题:如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等?教师要求学生思考这个问题,并提醒学生利用三角形内角和为180°这一公理来考虑问题,一般学生都会得出正确结论,教师再加以总结:因为三角形的内角和为180°,所以有两个角对应相等,那么第三个角必对应相等,于是问题就由“角角边”转化为“角边角”,这样便可证得这两个三角形全等.教师要求学生自己证明“AAS”定理:如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等.简记为“AAS ”(或角角边).学生证明后,教师边讲解边板书.教师提问:我们已经讨论了两个三角形有两边一角以及两角一边分别对应相等,这两个三角形能否全等的情况.我们很容易发现,如果两个三角形有三个角分别对应相等,那么这两个三角形未必全等,如图所示,这两个三角形三个角分别相等,它们并不全等,只是形状相同. 活动二:例题讲解【课件5】已知:如图所示,AD =BE ,∠A =∠FDE ,BC ∥EF.求证:ΔABC ≌ΔDEF.[师生共析] 根据AD =BE ,得到AB =DE ;由两直线平行,得到同位角相等,然后利用“ASA ”即可得到ΔABC ≌ΔDEF.证明:∵AD =BE (已知),∴AB =DE (等式的性质).∵BC ∥EF (已知),∴∠ABC =∠E (两直线平行,同位角相等).在ΔABC 和ΔDEF 中,∵{∠A =∠FDE ,AB =DE ,∠ABC =∠E ,∴ΔABC ≌ΔDEF (ASA).师:到目前为止,在三角形中已知三个条件探索两个三角形全等的问题已全部结束,请同学们把两个三角形全等的判定方法作一个小结.【学生活动】 自我回忆总结,然后小组讨论交流、补充.三、课堂小结:知识点一:“角边角”判定三角形全等两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“ASA ”.这是我们学习的第三个判定三角形全等的方法,这里的两角和夹边,是指同一个三角形的边和角,边是两个角的夹边.知识点二:“角角边”判定三角形全等两角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS ”).该判定是通过“ASA ”推导得出的,今后可以直接用“AAS ”来判定两个三角形全等,它是“ASA ”的一个推论.。
八年级数学上册 13.3 全等三角形的判定 13.3.3 三角形全等的条件—“ASA、AAS”教案 (新版)冀教版
13.3全等三角形的判定
这节课我们将讨论以下情况:如图,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.
二、师生互动,探究新知
教师提出已知条件:如图,在△ABC
=A′B′,∠A=∠A′,∠B=∠B′,求证:
△ABC≌△A′B′C′.
教师要求学生应用
并根据学生的回答加以引导后由教师板书
证明结束后教师提出问题:如果两个三角形有两个角及其中
第(2)题图
A.AB=ED[DW2]
B.AB=
C.AC=FD[DW2]
D.∠A
第(3)题图
①图中的全等三角形有对,它们分别是W
(不添加任何辅助线)
②请在①问中选出一对你认为全等的三角形进行证明我选择的是.。
冀教版八年级上册13.3全等三角形的判定第一课时教学设计
(三)ห้องสมุดไป่ตู้感态度与价值观
1.培养学生严谨的学习态度,使学生认识到几何图形的精确性和逻辑推理的重要性。
2.通过全等三角形的学习,让学生体会到几何美的同时,培养他们的审美情趣。
3.引导学生关注全等三角形在实际生活中的应用,提高学生的应用意识和创新意识。
作业布置注意事项:
1.作业难度要适中,既要保证基础知识的巩固,又要适当提高,激发学生的探究欲望。
2.鼓励学生创新思考,培养学生的几何直观能力和解决问题的能力。
3.关注学生的个体差异,针对性地布置作业,使每个学生都能在完成作业的过程中得到提高。
4.作业批改要及时,对学生作业中的问题进行详细解答,帮助学生巩固所学知识。
4.实践应用,提高解决问题的能力
(1)设计具有实际背景的问题,让学生运用全等三角形的判定方法解决,提高学生的应用能力。
(2)鼓励学生进行一题多解,培养学生的创新思维和解决问题的能力。
5.课堂小结,巩固提高
对本节课所学内容进行总结,强调全等三角形的判定方法和解题技巧,巩固学生的知识体系。
6.课后作业,拓展延伸
1.教师引导学生回顾本节课所学内容,总结全等三角形的定义、性质及判定方法。
2.学生分享自己在学习全等三角形过程中的收获和感悟,教师给予鼓励和肯定。
3.教师强调全等三角形在实际生活中的应用,激发学生的学习兴趣。
4.布置课后作业,要求学生运用所学知识解决实际问题,巩固课堂所学。
5.教师提醒学生关注下一节课的内容,为学习全等三角形的综合应用做好准备。
4.培养学生克服困难的勇气和信心,让他们在解决问题的过程中体验成功,树立正确的价值观。
冀教版数学八年级上册13.3全等三角形的判定教学设计
1.设计具有层次性的练习题,让学生运用全等三角形的判定方法解决问题。
2.练习题包括基本题、提高题和拓展题,以满足不同层次学生的需求。
3.教师针对学生的解答,进行点评和指导,帮助学生巩固所学知识。
(五)总结归纳,500字
1.学生总结:让学生回顾本节课所学内容,总结全等三角形的判定方法,加深记忆。
(1)填空题:要求学生运用SSS、SAS、ASA、AAS、HL判定法判断给定三角形是否全等。
(2)选择题:通过实际图形,让学生选择正确的全等三角形判定方法。
(3)解答题:解决与全等三角形相关的实际问题,如求角度、边长等。
2.提高题:设计具有挑战性的题目,让学生运用全等三角形的判定方法解决更复杂的问题,提高学生的推理能力和知识迁移能力。
(3)准备丰富的教具,如直尺、圆规、三角板等,方便学生进行实际操作。
3.教学过程:
(1)导入:通过复习三角形的基本概念和性质,为新课学习做好铺垫。
(2)新授:介绍全等三角形的判定方法,结合实例进行讲解,让学生充分理解。
(3)巩固:设计典型例题,让学生运用全等三角形的判定方法解决问题,巩固所学知识。
(4)拓展:布置具有挑战性的练习题,提高学生的推理能力和灵活运用能力。
4.小组讨论题:针对课堂所学内容,布置小组讨论题,促使学生在合作交流中深化对全等三角形判定方法的理解。
(1)讨论全等三角形判定方法的适用场景。
(2)分享解题心得,总结解题技巧。
作业要求:
1.学生按时完成作业,保证作业质量。
2.注意书写规范,保持卷面整洁。
3.遇到问题及时请教同学或老师,提高问题解决能力。
(5)小结:引导学生总结全等三角形的判定方法,强化记忆。
《13.3 全等三角形的判定》数学 八年级 上册 冀教版第三课时教学设计
教学设计平移,并动画演示.3、我们除了学习平移这种变换外,还学过什么变换呢?旋转.你能发现如图2所示的两组全等两个三角形有什么特殊的位置关系吗? △ABC 绕点A 旋转180°与△AED 重合,并动画演示.二、探究学习1、观察与思考 如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合,并通过摆放你手中的一对全等三角形进行验证.2、学生回答、动画演示:①、②是平移;③、④是旋转;⑤、⑥可以直接旋转也可以先旋转后平移.3、实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换)得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快解决问题. 三、图形变换在全等三角形中的应用.例1:已知:如图,在△ABC 中,D 是BC 的中点,DE ∥AB ,交AC 于点E ,DF ∥AC ,交AB 于点F .求证:△BDF ≌△DCE .(1)观察图形,△BDF 和△DCE 有怎样的位置关系?可以怎样变换得到? 将△BDF 沿BC 方向向右平移,可使△BDF 与△DCE 重合.并动画演示F DBCA E证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). ∵点E 是AC 的中点(已知), ∴ AE =CE (线段中点的定义). 在△EAD 和△ECF 中,∵∴△EAD ≌△ECF (ASA).∴DE =FE (全等三角形的对应边相等). 四、拓展提升1、以下每幅图中的两个三角形都是全等的(我从前边学习的习题中挑选出来的其中三幅图),观察每组全等三角形的位置,还是我们学习的变换:平移和旋转吗?答案是否定的,其实每幅图中的一个三角形都可以沿着某一条直线折叠后与另一个三角形完全重合,我们把具有这种位置关系的变换叫做轴对称(折叠).我们将要在16章学习这种变换.2、是不是所有的全等三角形都具有明显的这三种特殊的位置关系呢?看下面这两个全等三角形的位置.∠A =∠ECF (已证),AE =CE (已证),∠AED=∠CEF (对顶角相等),DBC AOABDC学生通过实际动手操作摆放发现需要多次变换才能实现重合.所以全等三角形有时可能不具有明显的“变换”关系,因此要具体情况具体分析.大家可以把前几课的全等三角形的习题找出来,观察它们的位置关系,是否具有明显的“变换”关系,若是,是哪种“变换”. 五、归纳总结 平移全等形旋转全等形翻折全等形EDBAC备注:教学设计应至少含教学目标、教学内容、教学过程等三个部分,如有其它内容,可自行补充增加。
冀教版-数学-八年级上册-《全等三角形的判定(第三课时)》教学设计
13.3全等三角形的判定(第三课时)教学设计知识目标:1.探究“角边角”和“角角边”公理,并会用它证明三角形全等.2.能利用三角形全等的定理进行证明和计算.重难点:重点:掌握三角形全等的条件“ASA、AAS”,并能应用它们来判定两个三角形是否全等.难点:探索“ASA、AAS”,及应用.教具学具准备:投影仪,直尺,量角器教学过程设计一、回顾思考引导学生回忆已学的判定三角形全等的《边边边公理》与《边角边公理》,并再度阐明:1.三角形虽然含有三条边、三个角共有六个元素,但在两个三角形中,如果各有三个元素如“三边相等”或“两边夹一角”对应地相等,两个三角形就全等了,其它的“三个角”或“两角一夹边”也就对应地相等了.2.实际上,一个三角形中,有“三边”或“两边一夹角”固定了,三角形的大小、形状也就固定而不能改变了.二、一起探究1.问题的提出:类比着《边边边公理》和《边角边公理》即“三元素定三角形”,提出:如果两个三角形两边一个角分别对应相等,这两个三角形能不能全等?2.学生活动:(1)画三角形A1B1C1,使∠B1=∠B,∠C1=∠C,B1C1=BC,(其中B、C是教科书上三角形ABC的两个顶点,)动手比较所画三角形A1B1C1与三角形ABC是否重合?(2)按照下面的步骤画三角形,使它的两个内角分别为35°和65°,并且这两个角的夹边的长为2.5cm.画好后小组交流,比较画出的三角形是否全等3.活动3:将两角和它们的夹边的数据改换成另一组,再与同学一起按新数据画三角形.通过对所画三角形的比较,你能得出什么结论?4.角边角定理:如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等.这个事实可以简写为“角边角”或“ASA”5.角角边定理提问:由两个三角形的两个角和其中一个角的对边对应相等,能推出这两个三角形的两角和它们的夹边对应相等吗?提示:如果两个三角形的两个角对应相等,那么它们的第三个角是什么关系?总结定理:如果两个三角形的两个角和其中一个角的对边对应相等,那么这两个三角形全等.这个事实可以简写为“角角边”或“AAS” .三、范例讲解例2 已知:如图13-3-10,AD=BE,∠A=∠FDE,BC∥EF.求证:⊿ABC≌⊿DEF.图13-3-10证明:∵AD=BE (已知),∴AB=DE (等式的性质).∵BC ∥EF (已知),∴∠ABC=∠E (两直线平行,同位角相等).在⊿ABC ≌⊿DEF 中,A=FDE AB=DE ABC=E ⎧⎪∴⎨⎪⎩∠∠,,∠∠,∴⊿ABC ≌⊿DEF .(四)巩固练习1.课本P46练习 1、22.P47 习题A 组 1、B 组 1(五)学习小结至今为止,我们已有哪些方法判定两个三角形全等?五种判定三角形全等的条件:(1)全等三角形的定义(2)边边边(3)角边角(4)角角边(5)边角边推证两个三角形全等,要学会联系思考其条件,找它们对应相等的条件,这样有利于探索并获得解题途径.“分析法”是我们思考问题的一种重要方法,也是证明三角形全等的常用方法.“分析法”的特点是:从需要证明的结论出发,逆推出要使结论成立所需要的条件,再把这样的“条件”看作“结论”,一步一步逆推,直至归结为已知条件.这种“由未知(结论)想须知”的逆向推理,称为分析法.与分析法相反“由已知想可知”的顺向推理称为综合法.(六)布置作业课本P47习题 A 组2、3、B 组 2(七)板书设计。
【最新冀教版精选】冀教初中数学八上《13.3全等三角形的判定》word教案 (5).doc
13.3全等三角形的判定(第三课时)
教学目标
知识与技能
(1)探索出三角形全等的条件“ASA”和“AAS”。
并会用它证明三角形全等
(2)能熟练运用“ASA”和“AAS”来判别两个三角形是否全等。
发展学生有条理的表达能力。
能力目标
(1)培养学生动手操作、探索、观察、分析、归纳获得数学结论的能力。
(2)培养学生转化独立获取知识的方法并解决问题的能力。
情感、态度与价值观
通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心。
教学重点和难点
重点:掌握三角形全等的条件“ASA”和“AAS”,并能利用它们判定三角形是否全等。
难点:探索三角形全等的条件“ASA”和“AAS”的过程及应用。
学法引导
让学生通过画图、观察、比较、推理、交流,逐步地掌握三角形全等的判别条件。
教具学具准备:
直尺,量角器
预习导航
1、我们学过几种判断三角形全等的方法?
2、如果已知一个三角形的两角及一边,那么得到的三角形全等吗?
出这两个三角形的
”或
EF.请说明△ABC≌△
体现数学问题变式:若
板书设计
11.5 探索三角形全等的条件(三)定理1 例题
定理2
数学化语言:
小结:五种判定三角形全等的条件
(1)全等三角形的定义
(2)边边边
(3)角边角
(4)角角边
(5)边角边。
八年级数学上册133全等三角形的判定1332三角形全等的条件—“SAS”教案(新版)冀.docx
13. 3全等三角形的判定第2课时三角形全等的条件一一“SAS”【教学目标】1.探索三角形全等的条件“场S”,并能运用相应的条件进行有条理的思考和简单的推理.2.经历探索三角形全等条件归纳获得数学结论的过程,体会利用转化的数学思想和方法解决问题的过程.3.敢于面对数学活动中的困难,并能通过合作交流解决遇到的问题.【重点难点】重点:掌握三角形全等条件“QS”,并能应用它来判定两个三角形是否全等.难点:用三角形“场S”的条件进行有条理的思考并进行简单的推理.I教学过程设计I教学过程设计意图一、创设情境,导入新课1.两个三角形全等的条件有哪些?2.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合.B甲AAB E乙图甲中:AABD竺AB与AC是对应边,AD与AE是对应边,BD和CE是对应边.图乙中:△ABC^AAED, AD与AC是对应边,AE与AB是对应边,BC和ED是对应边.图甲屮可通过三角形旋转变换重合.图乙中可通过三角形翻折变换重合.二、师生互动,探究新知1.提出问题:如果两个三角形有两组边及一组角对应相等,两个三角形一定全等吗?两边一角包括两种情况:一是两边及其夹角,二是两边及其中一边的对角.出示教材41页“观察与思考”,结合图形说明两个三角形屮有两组边和其中一边的对角对应相等时,两个三角形不一定全等.2.如图:AC, BD相交于0, AO, BO, CO, DO的长度如图所示, AAB0和ACDO是否能完全重合呢?不难看出,这两个三角形有三对兀素是相等的:彳 BAO=CO,ZA0B=ZC0D,BO=DO.如果把AOAB绕着0点顺时针方向旋转,因为OA=OC,所以可以使0A与0C重合;又因为ZAOB=ZCOD, OB=OD,所以点B 与点D重合;这样△ABO与△□)()就完全重合(附注:此外,还可以将图甲屮的AACE绕着点A逆时针方向旋转ZCAB的度数,也将与AABD重合.图乙屮的AABC绕着点A旋转,使AB与AE重合,再把AADE沿看AE (AB)翻折180°,两个三角形也可重合).因此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.3.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画ZDAE=45°;②在AD. AE ±分别取B、C,使AB=3. U//7, AC=2.8⑵;③连接BC,得/XABC;④按上述画法再画一个Z\A' B‘ C .(2)把AA' B‘ C'剪下来放在△ ABC上,观察B' C' 与AABC是否能够完全重合?4.边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“场S”)・出示教材42页“大家谈谈”,说明全等三角形的判定方法在生活中的广泛应用•在判定两个三角形全等吋,经常要用到对顶角、公共角或公共边.出示例1 (教材42页例1):让学生完成证明过程,指导书写时要规范,注意条理,做到语言的逻辑性与严密性.5.如图,0, M, N分别为AB, CE, CD的中点,若CM=CN, Z 1 = Z2,问AD与BE的数量关系如何?请说明原因.VZ1 = Z2,A Z1 + ZECD= Z2+ ZECD,J穿A C B・・・ZACD=ZBCE.又TM, N, C分别为CE, CD, AB的中点,・・・CE=2CM, CD = 2CN, AC=CB.又VCM=CN, ・・・CE=CD.在ZiACD与ZXBCE屮错误!AAACD^ABCE (场S),・・・AD=BE (全等三角形对应边相等).三、运用新知,解决问题1.如图,点B在A E±, ZCAB=ZDAB,要使△ ABC^AABD,可补充的一个条件是:(写一个即可)•笫1题图匕D B第2题图Ac第3题图2.如图,AB、CD相交于点0, AD=CB,试添加一个条件使得AABD^ACDB,你添加的条件是(只需写一个).3.如图,在AABD和AACE中,有下列四个等式:®AB=AC;②AD=AE;③Z1 = Z2;④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个结论并给111理由.四、课堂小结,提炼观点本节课在学习了“SSS”的基础上,学习了a SAS ff判定的三角形全等的方法,在应用“边角边”时,一定要注意相等的角必须是两对应边的夹角.五、布置作业,巩固提升教材43页“习题”・【板书设计】三角形全等的条件一一“SAS'”如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等,可简记为“边角边”或a SAS"。
初中数学冀教版八年级上册《1332全等三角形的判定》教学设计
《13.3.2全等三角形的判定》本节课的主要内容是探索两个三角形全等的条件和如何利用“边角边”的条件证明两个三角形全等,是在学生学习了SSS判定方法后又学习的一种新的判定方法,在整个判定三角形全等的方法中应用比较多的一种方法,要求学生必须掌握和会应用。
【知识与能力目标】1.掌握三角形全等的“边角边”判定方法,并能进行简单的应用.【过程与方法目标】2、经历探究两个三角形全等地过程,体会利用操作,归纳获得数学规律的过程.结合运用过程,进而培养学生有条理的分析、推理能力.【情感态度价值观目标】3、通过探究活动,感受数学活动充满了探索以及数学结论的确定性,体会数学充满了探索和创造,从而提高学生的学习热情.【教学重点】边角边定理及其应用【教学难点】应用边角边定理证明三角形全等,线段、角相等.多媒体课件一、情境引入◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程小明不小心将一块大玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节的内容吧!二、探究新知(一)画一画画一个三角形,使它的两条边长分别是1.5 cm,2.5 cm,并且使长为1. 5 cm的这条边所对的角是30°.小明的画图过程如图所示:小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?(二)想一想已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC 与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合?(2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?(三)理一理基本事实二:如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等。