四边形、相似、三角函数、二次函数等综合
专题10 二次函数与四边形的综合-中考数学函数考点全突破
一、考点分析:二次函数的综合题中在第二三小问比较常考到四边形的问题,这类题目主要考察两种题型:1.四边形的面积最值问题 2.特殊平行四边形的存在性问题,这类包括平行四边形,矩形菱形等。
二、解决此类题目的基本步骤与思路1.四边形面积最值问题的处理方法:核心步骤:对于普通四边形要转化成两个三角形进行研究,然后用求三角形面积最值问题的方法来求解2对于特殊平行四边形问题要先分类,(按照边和对角线进行分类)3.画图,(画出大致的平行四边形的样子,抓住目标点坐标)4. 计算(利用平行四边形的性质以及全等三角形的性质)三、针对于计算的方法选择1.全等三角形抓住对应边对应角的相等2.在利用点坐标进行长度的表示时要利用两点间距离公式3.平行四边形的对应边相等列相关的等式4.利用平行四边形的对角线的交点从而找出四个点坐标之间的关系X A+X C=X B+X D Y A+Y C=Y B+Y D (利用P是中点,以及中点坐标公式)A(x1,y1)、B(x2,y2),那么AB中点坐标就是(,)处理矩形菱形的方法与平行四边形方法类似注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想 3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
四、二次函数问题中四边形面积最值问题1.如图,已知抛物线213y x bx c =++经过ABC V 的三个顶点,其中点(0,1)A ,点(9,10)B -,//AC x 轴,点P 是直线AC 下方抛物线上的一个动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;【解析】:(1)用待定系数法求出抛物线解析式即可;(2)设点P (m , m2+2m+1),表示出PE=﹣m2﹣3m ,再用S 四边形AECP=S △AEC+S △APC=AC ×PE ,建立函数关系式,求出最大值即可设点P (m ,m 2+2m+1)∴E(m ,-m+1)∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是此时点P(﹣,﹣). *网2.抛物线y=-x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD的延长线于点F,作直线MF.(1)求点A,M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当BD=1时,①求直线MF的表达式,并判断点A是否落在该直线上;②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1∶S2∶S3=__3∶4∶8__.解:(1)令y=0,则-x2+6x=0,解得x1=0,x2=6,∴A(6,0),∴对称轴是直线x=3,∴M(3,9);(3)①当BD=1时,BE=3,∴F(5,3).设MF 的表达式为y =kx +b ,将M (3,9),F (5,3)代入, 得⎩⎪⎨⎪⎧9=3k +b ,3=5k +b ,解得⎩⎪⎨⎪⎧k =-3,b =18, ∴y =-3x +18.∵当x =6时,y =-3×6+18=0, ∴点A 落在直线MF 上; ②∵BD =1,BC =1, ∴△BDC 为等腰直角三角形, ∴△OBE 为等腰直角三角形,五、二次函数中特殊平行四边形的存在性问题(一)例题演示已知:如图,在平面直角坐标系xOy 中,直线与x 轴、y 轴的交点分别为A 、B ,将∠OBA 对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点C . (1)直接写出点C 的坐标,并求过A 、B 、C 三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;【解析】:(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是∠ABO的角平分线,所以OC=CH,BH=OB=6。
初中数学二次函数,三角函数,相似的总结
二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x . 几种特殊的二次函数的图像特征如下:函数解析式开口方向 对称轴顶点坐标 2ax y =当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2 ab x 2-= (ab ac a b 4422--,) 4.求抛物线的顶点、对称轴的方法5. (1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ). (2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A=-,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.相似三角形一、基本知识及需要说明的问题: (一)比例的性质1.比例的基本性质:bc ad dcb a =⇔=此性质非常重要,要求掌握把比例式化成等积式、把等积式转化成比例的方法.2.合、分比性质:ddc b b ad c b a d d c b b a d c b a -=-⇒=+=+⇒=或注意:此性质是分子加(减)分母比分母,不变的是分母.如:已知d c cb a a dc b a +=+=:,求证证明:∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴dc cb a a +=+3.等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n mf e d c b a 则b a n f d b m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 4.比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l 1∥l 2∥l 3,A D l 1B E l 2C F l 3hlα可得EFBC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等. 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的....三边..与原三角形三边......对应成比例. AD E B C说明:①此定理和平行线分线段成比例定理的异同 相同点:都是平行线不同点:平行线分线段成比例定理的推论是两条平行线截其它两边所成的对应线段成比例,即AD 与AE,DB 与EC,AB 与AC 这六条线段,而此定理是三角形的三边对应成比例.即ACAEAB AD BC DE AC AE BC DE AB AD ===或或,只要有图形中的BC DE ,它一定是△ADE 的三边与△ABC 的三边对应成比例.②注意:条件(平行线的应用)在作图中,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.如:如图(1),已知BD:CD=2:3,AE:ED=3:4 求:AF:FCAF A A F F E EG EB DC BD C B D G C 图(1) 图(2) 图(3) 辅助线当然是添加平行线。
二次函数与三角形的综合-中考数学函数考点全突破
二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。
初中数学丨二次函数的动点问题总结例题解析,两个问题一次解决
初中数学丨二次函数的动点问题总结例题解析,两个问题一次解决动点问题一直是初中热点,近几年往往考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
今天老师针对初中数学的二次函数及动点问题整理了这篇文章,并通过中考真题的详细讲解让同学们掌握所有知识点。
内容较长,由于篇幅限制,上传不完整,老师已整理好word打印版,需要的同学或家长可以在文末免费获取。
也可以关注后,发送私信“学习”来免费领取。
动点问题题型方法归纳总结动态几何特点——问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)共同点:1.特殊四边形为背景2.点动带线动得出动三角形;3.探究动三角形问题(相似、等腰三角形、面积函数关系式);4.求直线、抛物线解析式;5.探究存在性问题时,先画出图形,再根据图形性质探究答案。
解法四:数学往往有两个思考方向:代数和几何,有时可以独立思考,有时需要综合运用。
代数讨论:计算出△PQB三边长度,均用 t 表示,在讨论分析R t△PHQ中用勾股定理计算PQ长度,而PB、BQ长度都可以直接用 t 表示,进行分组讨论即可计算。
点评:此题综合性较强,涉及函数、相似性等代数、几何知识,1,2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的事在进行讨论并且得出结论后应当检验,在本题中若求出的 t 值与题目中的0<t<1矛盾,应舍去点评:这是一道涉及二次函数、方程、几何知识的综合压轴题,有一定的能力要求,第3小题是一个最值问题,解此类题时需数形结合方可较轻松的解决问题。
由于文章篇幅限制,完整word版老师已整理好,内容免费获取方式如下:关注后,发送私信“学习”即可免费获取。
除以上内容,老师还整理了关于初中数学各模块题型的精讲,上面展示的题型库+配套练习,课堂中关于如何学好数学的视频课,希望你们认真领会并按照课程中所讲坚持下去,必见成效。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
二次函数与相似三角形综合题
二次函数与相似三角形二次函数与相似三角形例1 如图1,已知抛物线x x 41y 2+-=的顶点为A ,且经过原,与x 轴交于点O 、B 。
(1)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;点的坐标;(2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. . 函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、在未知三角形中利用勾股定理、三角函数、三角函数、三角函数、对称、对称、旋转等知识来推导边的大小。
识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
度,之后利用相似来列方程求解。
解:⑴如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6 将x =6代入1)2x (41y 2+--=,得y =-3, ∴D(6,-3); 例1题图题图 图1 OAByxOAByx图2 COABDyx图1 13E A'OAB Py x图2 (2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长;(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.解答:解:(1)∵抛物线y=ax 2﹣2ax+c (a≠0)经过点A (3,0),点C (0,4), ∴,解得,∴抛物线的解析式为y=﹣x 2+x+4; (2)设直线AC 的解析式为y=kx+b , ∵A(3,0),点C (0,4), ∴,解得,∴直线AC 的解析式为y=﹣43x+4.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,﹣43m+4), ∵点P 的横坐标为m ,点P 在抛物线y=﹣x 2+x+4上,∴点P 的坐标为(m ,﹣ m 2+m+4), ∴PM=PE﹣ME=(﹣m 2+m+4)﹣(﹣43m+4)=﹣m 2+73m ,即PM=﹣m 2+73m (0<m <3); (3)在(2)的条件下,连结PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=﹣m+4,CF=m ,PF=﹣m 2+m+4﹣4=﹣m 2+m . 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况:①若△PFC∽△AEM,则PF :AE=FC :EM ,即(﹣m 2+m ):(3﹣m )=m :(﹣ m+4), ∵m≠0且m≠3, ∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF 中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM 为直角三角形;②若△CFP∽△AEM,则CF :AE=PF :EM ,即m :(3﹣m )=(﹣m 2+m ):(﹣m+4), ∵m≠0且m≠3,yxEQP C B OA ∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM,∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为或1,△PCM 为直角三角形或等腰三角形.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解. 练习1、已知抛物线225333y x x =-+经过53(33)02P E æöç÷ç÷èø,,,及原点(00)O ,. (1)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.点的坐标;若不存在,说明理由.(2)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?之间存在怎样的关系?为什么?(1)存在.)存在.设Q 点的坐标为()m n ,,则225333n m m =-+, 要使,BQ PB OCP PBQ CP OC =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12232m m ==,.当123m =时,2n =,即为Q 点,所以得(232)Q ,要使,BQ PB OCP QBP OC CP =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12333m m ==,,当3m =时,即为P 点,点, 当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.相似.Q 点的坐标为(232)(333)-,,,.(2)在Rt OCP △中,因为3tan 3CP COP OC Ð==.所以30COP Ð=. 当Q 点的坐标为(232),时,30BPQ COP Ð=Ð=. 所以90OPQ OCP B QAO Ð=Ð=Ð=Ð=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形.都是直角三角形.又在Rt OAQ △中,因为3tan 3QA QOA AO Ð==.所以30QOA Ð=. 即有30POQ QOA QPB COP Ð=Ð=Ð=Ð=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ Ð=Ð=,所以OQA OQP △≌△.2.在平面直角坐标系xOy 中,已知二次函数223y x x =-++的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C .(1)若直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO Ð与ACO Ð的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.的取值范围.(1)假设存在直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B \-,,,. 令0x =,得3y =.(03)C \,. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .yCl xB A 1x = 练习3图yx B E A OC D1x =l点B的坐标为(30),,点C的坐标为(03),,点A的坐标为(10)-,.4345.AB OB OC OBC\===Ð=,,223332BC\=+=.要使BOD BAC△∽△或BDO BAC△∽△,已有B BÐ=Ð,则只需BD BOBC BA=,①或.BO BDBC BA=②成立.成立.若是①,则有3329244BO BCBDBA´===.而45OBC BE DEÐ=\=,.\在Rt BDE△中,由勾股定理,得222229224BE DE BE BDæö+===ç÷ç÷èø.解得解得94BE DE==(负值舍去).93344OE OB BE\=-=-=.\点D的坐标为3944æöç÷èø,.将点D的坐标代入(0)y kx k=¹中,求得3k=.\满足条件的直线l的函数表达式为3y x=.[或求出直线AC的函数表达式为33y x=+,则与直线AC平行的直线l的函数表达式为3y x=.此时易知BOD BAC△∽△,再求出直线BC的函数表达式为3y x=-+.联立33y x y x==-+,求得点D的坐标为3944æöç÷èø,.]若是②,则有342232BO BABDBC´===.而45OBC BE DEÐ=\=,.\在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.解得解得2BE DE ==(负值舍去).321OE OB BE \=-=-=.\点D 的坐标为(12),. 将点D 的坐标代入(0)y kx k =¹中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.\存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944æöç÷èø,或(12),.(2)设过点(03)(10)C E ,,,的直线3(0)y kx k =+¹与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-. \此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y \==-,.\点P 的坐标为(512)-,.此时,锐角PCO ACO Ð=Ð.又二次函数的对称轴为1x =,\点C 关于对称轴对称的点C ¢的坐标为(23),. \当5px>时,锐角PCO ACO Ð<Ð;当5p x =时,锐角PCO ACO Ð=Ð; 当25p x <<时,锐角PCO ACO Ð>Ð.OxBEA O C1x =PC ¢ ·3.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C ,过点A 作AP ∥CB 交抛物线于点P . 在x 轴上方的抛物线上是否存在一点M ,过M 作MG ^x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.否则,请说明理由. 解:解: 假设存在假设存在A (1,0)-B (1,0)C (0,1)- ∵ÐPAB=ÐBAC =45 ∴P A ^AC ∵MG ^x 轴于点G , ∴ÐMGA=ÐPAC =90 在Rt △AOC 中,OA=OC=1 ∴AC=2 在Rt △PAE 中,AE=PE=3 ∴AP= 32 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <-(ⅰ) 当D AMG ∽D PCA 时,有AG PA =MG CA∵AG=1m --,MG=21m -即211322m m ---=解得11m =-(舍去)(舍去) 223m =(舍去)(舍去)(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即 211232m m ---=解得:1m =-(舍去)(舍去) 22m =- ∴M (2,3)-② 点M 在y 轴右侧时,则1m > (ⅰ) 当D AMG ∽D PCA 时有AG PA =MGCA∵AG=1m +,MG=21m -G M 图3 C B y P A oxG M 图2 C B y P A ox图1 C P B y A ox∴211322m m +-=解得11m =-(舍去)(舍去) 243m =∴M 47(,)39(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即211232m m +-=解得:11m =-(舍去)(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似相似M 点的坐标为(2,3)-,47(,)39,(4,15)4.4.(2013•曲靖压轴题)如图,在平面直角坐标系(2013•曲靖压轴题)如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线y=﹣x 2﹣3x+4..点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C ,交抛物线于点E .(1)当DE=4时,求四边形CAEB 的面积.的面积. (2)连接BE BE,,是否存在点D ,使得△DBE 和△DAC 相似?若存在,求此点D 坐标;若不存在,说明理由.说明理由.考点: 二次函数综合题. 分析: (1)首先求出点A 、B 的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C 坐标为(m ,0)(m <0),根据已知条件求出点E 坐标为(m ,8+m );由于点E 在抛物线上,则可以列出方程求出m 的值.在计算四边形CAEB 面积时,利用S 四边形CAEB =S △A CE +S 梯形OCEB ﹣S △BCO ,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x 2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x 2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴C E=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.5.5.(2013•绍兴压轴题)抛物线(2013•绍兴压轴题)抛物线y=y=((x ﹣3)(x+1x+1))与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 为顶点.为顶点.(1)求点B 及点D 的坐标.的坐标.(2)连结BD BD,,CD CD,抛物线的对称轴与,抛物线的对称轴与x 轴交于点E .①若线段BD 上一点P ,使∠DCP=∠BDE,求点P 的坐标.的坐标.②若抛物线上一点M ,作MN⊥CD,交直线CD 于点N ,使∠CMN=∠BDE,求点M 的坐标.的坐标.考点: 二次函数综合题.3718684分析: (1)解方程(x ﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x ﹣3)(x+1)与x轴交于A ,B 两点(点A 在点B 左侧),确定点B 的坐标为(3,0);将y=(x ﹣3)(x+1)配方,写成顶点式为y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,即可确定顶点D 的坐标;(2)①根据抛物线y=(x ﹣3)(x+1),得到点C 、点E 的坐标.连接BC ,过点C 作CH⊥DE 于H ,由勾股定理得出CD=,CB=3,证明△BCD 为直角三角形.分别延长PC 、DC ,与x 轴相交于点Q ,R .根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q 的坐标(﹣9,0),运用待定系数法求出直线CQ 的解析式为y=﹣x ﹣3,直线BD 的解析式为y=2x ﹣6,解方程组,即可求出点P 的坐标;②分两种情况进行讨论:(Ⅰ)当点M 在对称轴右侧时.若点N 在射线CD 上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在.解答:解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,点评: 本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.6.6.(2013•恩施州压轴题)如图所示,直线(2013•恩施州压轴题)如图所示,直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线y=y=x x 2﹣4x+3过点B 、C 和D (3,0). (1)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N 、B 、D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.的坐标. (2)在抛物线上是否存在点P ,使S △PBD =6=6?若存在,求出点?若存在,求出点P 的坐标;若不存在,说明理由.由.考点: 二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: (1)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M(2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N 1(0,0);(II )若BD 为直角边,B 为直角顶点,则点N 在x 轴负半轴上,∵OB=OD=ON 2=3,∴N 2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(2)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m 2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.。
中考二次函数中角相等问题、二次函数的平移、四边形存在性和相似三角形(原卷版)
预测02 二次函数中角相等问题、二次函数的平移、四边形存在性和三角形相似2015-2020上海中考“二次函数”考点及分值分布年份题型考点分值15综合24主要考查了待定系数法,勾股定理,三角形相似,锐角三角比。
1416综合24二次函数的图象,二元一次方程组,三角函数,三角形的面积.二次函数中的角相等问题1417综合24主要考查了待定系数法,抛物线的顶点坐标的求法,二次函数的平移。
1418综合24涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.1419综合24抛物线的顶点坐标的求法,新定义,梯形存在性问题。
1420综合24主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.14考点分类总结类型一:已知等角,求点的坐标当题目中出现相等的角时,可以通过计算已知角的三角比,用所求点的横纵坐标表示另一角的三角比,从而建立等量关系;同时也可以通过构造相似三角形,利用比例线段解决问题。
方法辨析:平面直角坐标系中的角相等问题,首选锐角三角比,但是当计算复杂或者某个点坐标难求时,可以构造相似三角形解决问题。
类型二:构造等角,求点的坐标方法总结:以上的第2、3、4题通过已知中出现的45°特殊角,通过外角性质或者角的和差,构造了等角,进而再利用三角比进行问题解决。
因此,如何巧妙利用和拆分特殊角成为了构造等角的关键所在。
综合上面题目,对于二次函数中的角相等问题,首选方法是利用等角的三角比解决问题(利用一线三等角模型或者拆分特殊角来发现等角),其次选择利用相似三角形中的比例线段解决问题。
二次函数中的角相等问题比较灵活,同学们在遇到具体问题时具体分析,合理构造等角,解决问题。
二次函数中矩形的存在性问题二次函数中的矩形存在性问题相交于平行四边形的存在性问题而言,其难度更大。
本文将从知识梳理和例题讲解两部分进行讲解,具体分析矩形存在性问题中的“定”与“动”以及具体的解题策略。
二次函数综合(动点)问题——四边形面积最值存在问题培优教案(横版)
教学过程一、课堂导入在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),问题:这是在平面直角坐标系那章我们经常遇到的求四边形面积的题目,这类问题相信大家都有不同的解题方法,在二次函数这一章,我们依然要研究四边形的面积,如果我们将二次函数容纳其中,在抛物线(直线、坐标轴等)上求作一点,使得四边形面积最大并求出该点坐标时,又该如何解答呢?二、复习预习(一)二次函数y=ax2+bx+c的图像和性质:(二)相似三角形的性质:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(三)相似三角形模型探究与解题技巧:1、课堂导入题解如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为_________________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB 相似,即∠BOC应该与∠BOA=90°对应,①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(-4,0);②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(-1,0)或者(1,0).故答案可以是:(-1,0);(1,0).解析:分类讨论:①当△AOB∽△COB时,求点C的坐标;②当△AOB∽△BOC时,求点C的坐标;如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。
2、几种常见的相似三角形模型①直角三角形相似的几种常见模型②非直角三角形相似的几种常见模型3、解题技巧函数中因动点产生的相似三角形问题一般有三个解题途径。
高考数学内容
高考数学内容
高考数学内容包括:
1.函数与方程
涉及函数定义、函数的基本性质、一次函数、二次函数、指数函数、对数函数、三角函数、一元二次方程、一元二次不等式、多项式方程等。
2.平面几何
常见平面图形的性质如三角形、四边形、圆及其相关定理;投影原理与相似、等角、全等等几何变换的性质。
3.立体几何
空间图形的性质如球体、圆锥、圆柱、棱柱、棱锥、四面体。
立体图形的投影与截面、平行投影等的依据。
4.数列与数学归纳法
涉及等差数列、等比数列、求和公式、递推公式等知识点。
5.导数与微积分
一阶导数、高阶导数与导函数,极值问题与函数图像,和积分基础知识等。
6.统计与概率
频率与概率的基础知识;离散型随机变量与连续型随机变量的基本概念及分布律,期望、方差、协方差等随机变量的基础统计量。
专题11 二次函数与图形几何综合(6大考点)(学生版)
第三部分函数专题11二次函数与图形几何综合(6大考点)核心考点核心考点一线段问题核心考点二面积问题核心考点三角度问题核心考点四特殊三角形判定问题核心考点五特殊四边形判定问题核心考点六相似三角形判定问题新题速递核心考点一线段问题(2020·吉林长春·统考中考真题)如图,在平面直角坐标系中,点A的坐标为()0,2,点B的坐标为()4,2.若抛物线23()2y x h k=--+(h、k为常数)与线段AB交于C、D两点,且12CD AB=,则k的值为_________.(2020·山东滨州·中考真题)如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2-,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时 DFQ周长的最小值及点Q的坐标.1.确定线段长关系式(根据已知线段关系求点坐标):①先在图中找出对应线段,弄清已知点和未知点;②再联系二次函数和一次函数,设出未知点的坐标,使其只含一个未知数;③继而表示出线段的长度(如果该线段与坐标轴平行的话,则利用横纵坐标相加减确定;如果与坐标轴不平行的话,先转化为有边在与坐标轴平行的三角形中,再利用勾股定理、锐角三角函数或相似确定).2.线段数量关系问题:根据前面所得的线段长的关系式,结合题干列出满足线段数量关系的方程,解方程求解即可(注意排除不符合题意的数值).3.线段最值问题:求两条线段和差、三角形周长、四边形周长等一类最值问题,首先联想到“对称性质”,最常见的有以下模型:(1)定直线与两定点①同侧和最小值问题②同侧差最小值问题③同侧差最大值问题④异侧差最大值问题(2)角与定点①一定点与两条直线上两动点问题②两定点与两条直线上两动点问题【变式1】(2020·贵州遵义·统考二模)如图,二次函数图象经过()20A ,,()00O ,且有最小值1-,若A 点关于y 轴的对称点为B 点,过B 作y 轴平行线交抛物线于点C ,在Rt ABC △的斜边AC 上有一动点D ,过D 作DE BC ⊥于E ,DF AB ⊥于F ,则EF 的最小值为()ABC.D.【变式2】(2021·浙江湖州·模拟预测)如图,已知在平面直角坐标系xOy 中,抛物线C 1:y =a 1x 2(a 1≠0)与抛物线C 2:y =a 2x 2+bx (a 2≠0)的交点P 在第三象限,过点P 作x 轴的平行线,与物线C 1,C 2分别交于点M ,N .若PM PN =2n ,则12a a 的值是()A .2n B .n ﹣1C .n D .11n -【变式3】(2022·山东聊城·统考二模)平面直角坐标系中,将抛物线2y x =-平移得到抛物线C ,如图所示,且抛物线C 经过点()1,0A -和()0,3B ,点P 是抛物线C 上第一象限内一动点,过点P 作x 轴的垂线,垂足为Q ,则OQ PQ +的最大值为______.【变式4】(2021·陕西西安·交大附中分校校考模拟预测)如图,矩形ABCD 中,AB =2,BC =4,AE 为∠BAD 的角平分线,F 为AE 上一动点,M 为DF 的中点,连接BM ,则BM 的最小值是_____.核心考点二面积问题(2021·山东淄博·统考中考真题)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABPABP ABP S S S m === ,则m 的值是()A .1B .32C .2D .4(2021·浙江·统考中考真题)已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为()1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S P AB 的面积为2S .有下列结论:①当122x x >+时,12S S >;②当122x x <-时,12S S <;③当12221x x ->->时,12S S >;④当12221x x ->+>时,12S S <.其中正确结论的个数是()A .1B .2C .3D .4中考数学,最后的三道压轴题,一般都会有一题考察二次函数动点。
二次函数与几何图形综合归类
【通解通法】
1.知识必备:
(1)S△=
1 ×底×高=
2
1 ×水平宽×铅垂高;
2
(2)二次函数顶点式:
;
(3)符合某种条件的一次函数与二次函数联立求交点坐标和一元二次 方程根的判别式; (4)两直线平行时,k值相等(斜率相等)。 2.抛物线中“两定一动”型面积问题。 注:一动实际上是满足条件的唯一点的存在问题探究,本质上属于 特殊定点的存在性问题。
【通解通法】解特殊三角形点的存在性问题有两种方法: (1)代数法 盲解盲算,代数法一般分三步:罗列三边长、分类列方程(等量关 系有勾股定理、相似、三角函数等)、求解并检验。 (2)几何法:即“两圆一线”和“一圆两线”精准定位,分三步:分类、画图、 计算。解题过程中,二者有效结合,有力彰显数形结合思想。
几何模型特例三 如图17,在平面直角坐标系中,已知点A(-1,0),B(2,2), C(0,3)。在坐标平面内找一点D,使得以A,B,C,D四点组成的 四边形为平行四边形。
【简析】如图18,分别过A,B,C三点作对边的平行线,三条平行线互 相交于点D1,D2,D3。 方法一:如图19,以D1点为例,在平行四边形ABD1C中,以AB为一边时, 设D1(xD,yD),这里点A与点D1,点C与点B为对应顶点,利用四顶点坐标公 式,易得D1点坐标;以D3点为例,AB为对角线,这里点A与点B,点C与点D3为
类型1 二次函数与线段最值、面积最值问题
核心素养及解题思想和方法 1.核心素养:数学抽象、数学建模、数学运算、直观想象。 2.数学思想方法:数形结合思想、分类讨论思想、转化思想。 3.常用解题方法:代数法和几何法。
一、二次函数与线段最值问题
常见模型一
【问题情境】 如图①,在平面直角坐标系中,抛物线与x轴交于A,B两点, 与y轴交于点C,在对称轴上找一点P,使PA+PC的值最小或|PA-PC|的值最大, 求适合条件的点P的坐标或最值。 【通解通法】 1.知识必备:(1)两点之间,线段最短;
中考数学复习---《二次函数与三角形全等、相似(位似)有关的问题》PPT典型例 题讲解
本课结束
中考数学复习---《二次函数与三角形全等、相似(位似) 有关的问题》PPT典型例 题讲解
1、如图 1,已知二次函数 y ax2 bx ca 0 的图像与 x 轴交于点 A1,0 、 B2,0 ,与
y 轴交于点 C,且 tanOAC 2 .
(1)求二次函数的解析式; (2)如图 2,过点 C 作 CD∥x 轴交二次函数图像于点 D,P 是二次函数图像上异于点 D 的一
示出△PBC 的面积,根据 S△PBC=S△BCD,列出方程,进一步求得结果,当 P 在第一象限,同
样的方法求得结果;
(3)作 PN⊥AB 于 N,交 BC 于 M,根据 P(t, t2 t 2 ),M(t, t 2 ),表示出 PM 的长,
根据 PN∥OC,得出△PQM∽△OQC,从而得出 PQ PM ,从而得出 PQ 的函数表达式,进一
2
∵抛物线的对称轴为 y= 1 ,CD∥x 轴,C(0,-2), 2
∴点 D(1,-2),
∴CD=1,
∴S△BCD= 1 CD·OC, 2
∴ 1 PE·OC= 1 CD·OC,
2
2
∴a2-2a=1,
解得 a1=1+ 2 (舍去),a2=1- 2 ;
当 x=1- 2 时,y= a2 a 2 =a-1=- 2 ,
当 a=1+ 2 时,y= a2 a 2 = 2 , ∴P(1+ 2 , 2 ),
综上所述,P 点坐标为(1+ 2,2 )或(1- 2, 2 );
(3) 如图,作 PN⊥AB 于 N,交 BC 于 M,
由题意可知,P(t, t2 t 2 ),M(t,t-2),
∴PM=(t-2)-( t2 t 2 )=- t2 2t ,
中考数学复习攻略 专题8 二次函数与几何的综合(含答案)
专题八 二次函数与几何的综合题型1 二次函数中与线段相关及最值问题此类题型一般选择抛物线上一点与过这点且平行于y 轴的直线与已知直线交点形成的线段长度为定值或者最值时求点的坐标.突破口为设抛物线上点的坐标中横坐标为x ,纵坐标为抛物线的表达式,与之相关的点横坐标也为x ,纵坐标为直线的表达式,两点纵坐标之差的绝对值即线段长度;或者建立关于线段长度的二次函数,通过求二次函数的最值进而求线段长度相关的最值;也有出现线段长度之和最小的问题,转化为对称点后用“两点之间线段最短”解决.中考重难点突破【例】如图,在平面直角坐标系中,已知点B 的坐标为(-1,0),且OA =OC =4OB ,抛物线y =ax 2+bx +c (a ≠0)的图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标; (2)求抛物线的表达式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD ⊥AC 于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【解析】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等,其中第(3)问用函数关系式表示出PD 的长,是解题的关键.【解答】解:(1)由B (-1,0)可得OA =OC =4OB =4. ∴A (4,0),C (0,-4);(2)由题意可得抛物线的表达式为y =a (x +1)(x -4)=a (x 2-3x -4).∵点C (0,-4)在抛物线上,∴-4a =-4.解得a =1.∴抛物线的表达式为y =x 2-3x -4; (3)∵直线AC 过点C (0,-4), ∴设其函数表达式为y =kx -4.将A (4,0)代入上式,得4k -4=0.解得k =1. ∴直线AC 的表达式为y =x -4.过点P 作y 轴的平行线交AC 于点H .∵OA =OC =4,∴∠OAC =∠OCA =45°. ∵PH ∥y 轴,∴∠PHD =∠OCA =45°.设P (x ,x 2-3x -4)(0<x <4),则H (x ,x -4).∴PD =PH ·sin ∠PHD =22 (x -4-x 2+3x +4)=-22 x 2+22 x =-22(x -2)2+22 .∵-22 <0,∴当x =2时,PD 有最大值,最大值为22 ,此时P (2,-6).如图,二次函数y =ax 2+bx +c 的图象过O (0,0),A (1,0),B ⎝⎛⎭⎫32,32 三点.(1)求二次函数的表达式;(2)若线段OB 的垂直平分线与y 轴交于点C ,与二次函数的图象在x 轴上方的部分相交于点D ,求直线CD 的表达式;(3)在直线CD 下方的二次函数的图象上有一动点P ,过点P 作PQ ⊥x 轴,交直线CD 于点Q ,当线段PQ 的长最大时,求点P 的坐标.解:(1)将点O ,A ,B 的坐标代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧c =0,a +b +c =0,94a +32b +c =32. 解得⎩⎨⎧a =233,b =-233,c =0.∴二次函数的表达式为y =233 x 2-233x ;(2)设C (0,m ),直线CD 的表达式为y =kx +n .连接BC .∵CD 垂直平分OB ,∴OC =BC .∴m 2=⎝⎛⎭⎫32 2 +⎝⎛⎭⎫m -32 2.∴m =3 .∴C (0,3 ).又∵直线CD 经过OB 的中点⎝⎛⎭⎫34,34 ,∴⎩⎪⎨⎪⎧n =3,34k +n =34.解得⎩⎨⎧k =-3,n =3. ∴直线CD 的表达式为y =-3 x +3 ;(3)设P ⎝⎛⎭⎫x ,233x 2-233x ,则Q (x ,-3 x +3 ).∴PQ =-3 x +3 -⎝⎛⎭⎫233x 2-233x =-233 x 2-33 x +3 =-233 ⎝⎛⎭⎫x +14 2 +25324 . ∵-233 <0,∴当x =-14 时,PQ 的长最大,此时P ⎝⎛⎭⎫-14,5324 .中考专题过关1.在平面直角坐标系xOy 中,二次函数y =-x 2+(m -1)x +4m 的图象与x 轴负半轴交于点A ,与y 轴交于点B (0,4),已知点E (0,1).(1)求二次函数的表达式及点A 的坐标;(2)如图,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连接A ′B ,BE ′. ①当点E ′落在该二次函数的图象上时,求AA ′的长;②设AA ′=n ,其中0<n <2,试用含n 的式子表示A ′B 2+BE ′2,并求出使A ′B 2+BE ′2取得最小值时点E ′的坐标.解:(1)由题意,得4m =4. 解得m =1.∴二次函数的表达式为y =-x 2+4.当y =0时,-x 2+4=0.解得x 1=2,x 2=-2. ∵点A 在x 轴负半轴上, ∴A (-2,0);(2)①由题可知,y E ′=y E =1.∵点E ′在二次函数y =-x 2+4的图象上, ∴-x 2+4=1.解得x =±3 . ∵点E ′在y 轴右侧,∴x =3 . ∴AA ′=3 ; ②连接EE ′.由题意知AA ′=n (0<n <2),则A ′O =2-n .在Rt △A ′BO 中,A ′B 2=A ′O 2+BO 2=(2-n )2+42=n 2-4n +20. ∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的, ∴EE ′∥AA ′,且EE ′=AA ′. ∴∠BEE ′=90°,EE ′=n . 又∵BE =OB -OE =3,∴在Rt △BE ′E 中,BE ′2=E ′E 2+BE 2=n 2+9. ∴A ′B 2+BE ′2=2n 2-4n +29=2(n -1)2+27.当n =1时,A ′B 2+BE ′2取得最小值,此时E ′(1,1). 2.(2021·青海中考)如图,在平面直角坐标系中,直线y =x +2与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点C 的坐标为(1,0),抛物线y =ax 2+bx +c 经过点A ,B ,C .(1)求抛物线的表达式;(2)根据图象写出不等式ax 2+(b -1)x +c >2的解集;(3)点P 是抛物线上的一动点,过点P 作直线AB 的垂线段,垂足为点Q .当PQ =22时,求点P 的坐标.解:(1)当x =0时, y =0+2=2.当y =0时,x +2=0. 解得x =-2.∴A (-2,0),B (0,2).把A (-2,0),C (1,0),B (0,2)分别代入抛物线的表达式,得 ⎩⎪⎨⎪⎧4a -2b +c =0,a +b +c =0,c =2. 解得⎩⎪⎨⎪⎧a =-1,b =-1,c =2.∴抛物线的表达式为y =-x 2-x +2;(2)由ax 2+(b -1)x +c >2,得 ax 2+bx +c >x +2.由图象,得不等式ax 2+(b -1)x +c >2的解集为-2<x <0;(3)过点P作PE⊥x轴于点E,交AB于点D,作PQ⊥AB于点Q.①如图1,当点P在AB上方时,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°.∴∠PDQ=∠ADE=45°.在Rt△PDQ中,∠DPQ=∠PDQ=45°,∴PQ=DQ=22.∴PD=PQ2+DQ2=1.设点P(x,-x2-x+2),则点D(x,x+2).∴PD=-x2-x+2-(x+2)=-x2-2x,即-x2-2x=1.解得x1=x2=-1.∴此时点P的坐标为(-1,2);图1图2②如图2,当点P在点A左侧时,同①可得PD=1.设点P(x,-x2-x+2),则点D(x,x+2).∴PD=(x+2)-(-x2-x+2)=x2+2x,即x2+2x=1.解得x=±2-1.由图象知此时点P在第三象限.∴x=-2-1.∴此时点P的坐标为(-2-1,-2);③如图3,当点P在点B右侧时,图3同理可得PD=1.设点P(x,-x2-x+2),则点D(x,x+2).∴PD=(x+2)-(-x2-x+2)=x2+2x,即x2+2x=1.解得x=±2-1.由图象知此时点P在第一象限.∴x=2-1.∴此时点P的坐标为(2-1,2).综上所述,点P的坐标为(-1,2)或(-2-1,-2)或(2-1,2).3.(2021·泰安中考)二次函数y=ax2+bx+4(a≠0)的图象经过点A(-4,0),B(1,0),与y轴交于点C,点P 为第二象限内抛物线上一点,连接BP,AC,交于点Q,过点P作PD⊥x轴于点D.(1)求二次函数的表达式;(2)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式;(3)请判断:PQQB是否有最大值?如有,请求出有最大值时点P 的坐标;如没有,请说明理由.解:(1)∵二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0), ∴⎩⎪⎨⎪⎧16a -4b +4=0,a +b +4=0. 解得⎩⎪⎨⎪⎧a =-1,b =-3.∴该二次函数的表达式为y =-x 2-3x +4; (2)设BP 与y 轴交于点E .由题意知,PD ∥y 轴,∴∠DPB =∠OEB . ∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO . ∴∠ECB =∠EBC .∴BE =CE .设OE =a ,则CE =4-a ,∴BE =4-a . 在Rt △BOE 中,由勾股定理,得 BE 2=OE 2+OB 2.∴(4-a )2=a 2+12.解得a =158.∴E ⎝⎛⎭⎫0,158 . 设BE 所在直线表达式为y =kx +e (k ≠0).∴⎩⎪⎨⎪⎧e =158,k +e =0. 解得⎩⎨⎧k =-158,e =158.∴直线BP 的表达式为y =-158 x +158;(3)PQQB有最大值,此时P (-2,6). 设PD 与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M . 设直线AC 的表达式为y =mx +n . ∵A (-4,0),C (0,4), ∴⎩⎪⎨⎪⎧-4m +n =0,n =4. 解得⎩⎪⎨⎪⎧m =1,n =4.∴直线AC 的表达式为y =x +4. ∴点M 的坐标为(1,5).∴BM =5. ∵BM ∥PN ,∴△PNQ ∽△BMQ . ∴PQ QB =PN BM =PN 5. 设P (a 0,-a 20 -3a 0+4)(-4<a 0<0),则N (a 0,a 0+4).∴PQ QB =-a 20 -3a 0+4-(a 0+4)5 =-a 20 -4a 05 =-(a 0+2)2+45. ∴当a 0=-2时,PQQB有最大值.此时,点P 的坐标为(-2,6).题型2二次函数与图形的面积如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=12ah,即S三角形=水平宽×铅垂高2,也就是三角形面积等于水平宽与铅垂高乘积的一半.在直角坐标系中,水平宽为BC两点横坐标之差的绝对值,铅垂高为AD两点纵坐标之差的绝对值.中考重难点突破【例】如图,已知抛物线y=ax2+bx+c经过点A(0,3),B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的表达式;(2)若动点P在直线OE下方的抛物线上,连接PE,PO,当m为何值时,四边形AOPE面积最大?并求出其最大值.【解析】(1)利用抛物线对称性可得抛物线与x轴另一个交点的坐标,从而根据交点式可得抛物线的表达式;(2)由题意知P(m,am2+bm+c),过点P作y轴的平行线与OE相交,再根据OE的函数表达式表示出四边形AOPE的面积,利用配方法可求其最大值.【解答】解:(1)设抛物线与x轴的另一个交点为D.由抛物线的对称性可得D(3,0).设抛物线的表达式为y=a(x-1)(x-3).将A(0,3)代入y=a(x-1)(x-3),可得a=1.∴抛物线的表达式为y=x2-4x+3;(2)由题意,得P(m,m2-4m+3).∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°.∴△AOE是等腰直角三角形.∴AE=OA=3.∴E(3,3).易得OE的表达式为y=x.过点P作PG∥y轴,交OE于点G,则G(m,m).∴PG=m-(m2-4m+3)=-m2+5m-3.∴S四边形AOPE=S△AOE+S△POE=12×3×3+12 PG·AE=92+12×(-m2+5m-3)×3=-32 m2+152 m=-32⎝⎛⎭⎫m-522+758.∵-32<0,∴当m=52时,四边形AOPE面积最大,最大值是758.如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.解:(1)由抛物线y =ax 2+bx -2,得C (0,-2).∴OC =2. ∵OA =2OC =8OB ,∴OA =4,OB =12.∴A (-4,0),B ⎝⎛⎭⎫12,0 .∴y =a (x +4)⎝⎛⎭⎫x -12 =a ⎝⎛⎭⎫x 2+72x -2 . ∴-2a =-2,即a =1.∴此抛物线的表达式为y =x 2+72x -2;(2)由(1)可得抛物线的对称轴为x =-74.当PC ∥AB 时,点P ,C 的纵坐标相同,根据抛物线的对称性得P ⎝⎛⎭⎫-72,-2 ; (3)过点P 作PH ∥y 轴交AC 于点H .设P ⎝⎛⎭⎫m ,m 2+72m -2 .由点A ,C 的坐标得,直线AC 的表达式为y =-12m -2,则H ⎝⎛⎭⎫m ,-12m -2 . ∴S △P AC =S △PHA +S △PHC =12 OA ·PH =12×4×⎝⎛⎭⎫-12m -2-m 2-72m +2 =-2(m +2)2+8. ∵-2<0,∴当m =-2时,S △P AC 有最大值,最大值为8.此时P (-2,-5).中考专题过关1.(2021·扬州中考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于点A (-1,0),B (3,0),与y 轴交于点C .(1)b =________,c =________;(2)若点D 在该二次函数的图象上,且S △ABD =2S △ABC ,求点D 的坐标;(3)若点P 是该二次函数图象上位于x 轴上方的一点,且S △APC =S △APB ,直接写出点P 的坐标.解:(1)-2,-3;(2)连接BC ,由题意,得A (-1,0),B (3,0),C (0,-3),y =x 2-2x -3,∴S △ABC =12×4×3=6.∵S △ABD =2S △ABC ,设点D (m ,m 2-2m -3), ∴12 ×AB ×|y D |=2×6, 即12×4×|m 2-2m -3|=2×6. 解得m =1+10 或1-10 , ∴D (1+10 ,6)或(1-10 ,6); (3)设P (n ,n 2-2n -3).∵点P 在抛物线位于x 轴上方的部分, ∴n <-1或n >3.当点P 在点A 左侧,即n <-1时,可知点C 到AP 的距离小于点B 到AP 的距离, ∴S △APC <S △APB ,与题意不符; 当点P 在点B 右侧,即n >3时,∵△APC 和△APB 都以AP 为底,若要面积相等,则点B 和点C 到AP 的距离相等,即BC ∥AP . 设直线BC 的表达式为y =kx +p , 则⎩⎪⎨⎪⎧0=3k +p ,-3=p . 解得⎩⎪⎨⎪⎧k =1,p =-3. 设直线AP 的表达式为y =x +q , 将点A (-1,0)代入上式, 得-1+q =0.解得q =1.∴直线AP 的表达式为y =x +1. 将P (n ,n 2-2n -3)代入上式, 得n 2-2n -3=n +1.解得n =4或n =-1(舍去). ∴点P 的坐标为(4,5).2.如图,直线y =-12 x +2交y 轴于点A ,交x 轴于点C ,抛物线y =-14x 2+bx +c 经过点A ,C ,且交x 轴于另一点B .(1)直接写出点A ,B ,C 的坐标及拋物线的表达式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点P (m ,0)顺时针旋转90°得到线段O ′A ′,若线段O ′A ′与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.解:(1)A (0,2),B (-2,0),C (4,0),y =-14 x 2+12x +2;(2)如图1,过点M 作MN ∥y 轴,与AC 交于点N .设M ⎝⎛⎭⎫a ,-14a 2+12a +2 ,则N ⎝⎛⎭⎫a ,-12a +2 . ∴S △ACM =12 MN ·OC =12 ⎣⎡⎝⎛⎭⎫-14a 2+12a +2-⎦⎤⎝⎛⎭⎫-12a +2 ×4=-12a 2+2a . ∵S △ABC =12 BC ·OA =12×(4+2)×2=6,∴S 四边形ABCM =S △ACM +S △ABC =-12 a 2+2a +6=-12(a -2)2+8.∴当a =2时,四边形ABCM 的面积最大,最大值为8,此时M (2,2);(3)如图2,将线段OA 绕x 轴上的动点P (m ,0)顺时针旋转90°得到线段O ′A ′. ∴PO ′=PO =m ,O ′A ′=OA =2. ∴O ′(m ,m ),A ′(m +2,m ).当A ′(m +2,m )在抛物线上时,有-14 (m +2+2)(m +2-4)=m .解得m =-3±17 ;当点O ′(m ,m )在抛物线上时,有-14 m 2+12m +2=m .解得m =-4或2.∴当-4≤m ≤-3-17 或-3+17 ≤m ≤2时,线段O ′A ′与抛物线只有一个公共点.3.在平面直角坐标系中,二次函数y =12x 2+bx +c 的图象与x 轴交于A (-2,0),B (4,0)两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的表达式;(2)如图1,连接AC ,P A ,PC ,若S △P AC =152,求点P 的坐标;(3)如图2,过A ,B ,P 三点作⊙M ,过点P 作PE ⊥x 轴,垂足为点D ,交⊙M 于点E .点P 在运动过程中线段DE 的长是否变化?若有变化,求出DE 的取值范围;若不变,求DE 的长.解:(1)∵二次函数y =12 x 2+bx +c 的图象与x 轴交于A (-2,0),B (4,0)两点,∴二次函数的表达式为y =12(x +2)(x -4),即y =12x 2-x -4;(2)图1中,连接OP .设P ⎝⎛⎭⎫m ,12m 2-m -4 . 由题意,得C (0,-4).∵S △P AC =S △AOC +S △OPC -S △AOP =152,∴152 =12 ×2×4+12 ×4×m -12×2×⎝⎛⎭⎫-12m 2+m +4 .整理,得m 2+2m -15=0. 解得m =3或m =-5(舍去).∴P ⎝⎛⎭⎫3,-52 ; (3)点P 在运动过程中线段DE 的长是定值.图2中,连接AM ,PM ,EM ,设M (1,t ),P ⎝⎛⎭⎫m ,12m 2-m -4 ,E (m ,n ). 由题意知,A (-2,0),AM =PM .∴32+t 2=(m -1)2+⎣⎡⎦⎤12(m +2)(m -4)-t 2.解得t =1+14(m +2)(m -4).∵EM =PM ,PE ⊥AB ,∴t =n +12(m +2)(m -4)2.∴n =2t -12(m +2)(m -4)=2⎣⎡⎦⎤1+14(m +2)(m -4) -12 (m +2)(m -4)=2. ∴DE =2.∴点P 在运动过程中线段DE 的长是定值,DE =2.题型3 二次函数与特殊三角形的存在类问题特殊三角形存在类问题常见的有等腰三角形和直角三角形两类.若判断等腰三角形,可以对顶点进行分类讨论,经常要借助勾股定理、线段垂直平分线、三角形相似等求点的坐标;若判断直角三角形,可以对直角顶点进行分类讨论,常借助勾股定理、三角形相似、锐角三角函数等求点的坐标.中考重难点突破【例】如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (-1,0),B (3,0)两点,与y 轴相交于点C (0,-3).(1)求这个二次函数的表达式;(2)若点P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【解析】(1)已知三点,直接利用待定系数法或交点式可求二次函数的表达式;(2)①根据平行于y 轴直线上两点间的距离是用较大的纵坐标减去较小的纵坐标,表示出PM 的长,利用相应函数的性质可求最大值;②根据等腰三角形的定义,分类讨论列方程求解即可.【解答】解:(1)将点A ,B ,C 的坐标代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3. 解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴这个二次函数的表达式为y =x 2-2x -3;(2)设直线BC 的表达式为y =kx +b ′. 将点B ,C 的坐标代入上式,得 ⎩⎪⎨⎪⎧3k +b ′=0,b ′=-3. 解得⎩⎪⎨⎪⎧k =1,b ′=-3. ∴直线BC 的表达式为y =x -3.设M (n ,n -3),P (n ,n 2-2n -3),0<n <3,则 ①PM =(n -3)-(n 2-2n -3) =-n 2+3n=-⎝⎛⎭⎫n -32 2 +94.∵-1<0,∴当n =32 时,PM 取得最大值,最大值为94;②当PM =PC 时,(-n 2+3n )2=n 2+(n 2-2n -3+3)2. 解得n =0(舍去)或n =2.当n =2时,y =-3,此时P (2,-3);当PM =MC 时,(-n 2+3n )2=n 2+(n -3+3)2. 解得n =0(舍去)或n =3+2 (舍去)或n =3-2 . 当n =3-2 时,y =2-42 , 此时P (3-2 ,2-42 ).综上所述,P (2,-3)或P (3-2 ,2-42 ).如图,直线y =-2x +10分别与x 轴、y 轴交于A ,B 两点,点C 为OB 的中点,抛物线y =x 2+bx +c 经过A ,C 两点.(1)求抛物线的表达式;(2)点D 是直线AB 下方的抛物线上的一点,且△ABD 的面积为452,求点D 的坐标;(3)点P 为抛物线上一点,若△APB 是以AB 为直角边的直角三角形,求点P 到抛物线的对称轴的距离. 解:(1)直线y =-2x +10中, 令x =0,则y =10;令y =0,则x =5. ∴A (5,0),B (0,10).∵点C 是OB 的中点,∴C (0,5).将点A ,C 的坐标代入y =x 2+bx +c ,得 ⎩⎪⎨⎪⎧0=25+5b +c ,5=c . 解得⎩⎪⎨⎪⎧b =-6,c =5. ∴抛物线的表达式为y =x 2-6x +5;(2)联立⎩⎪⎨⎪⎧y =-2x +10,y =x 2-6x +5, 解得⎩⎪⎨⎪⎧x =-1,y =12 或⎩⎪⎨⎪⎧x =5,y =0. ∴直线AB 与抛物线的另一个交点为(-1,12). 设D (m ,m 2-6m +5).∵点D 是直线AB 下方抛物线上的一点,∴-1<m <5.过点D 作DE ⊥x 轴,交直线AB 于点E ,则E (m ,-2m +10). ∴DE =-2m +10-m 2+6m -5=-m 2+4m +5.∴S △ABD =12 OA ·DE =12 ×5×(-m 2+4m +5)=452.解得m =2. ∴D (2,-3);(3)设P (n ,n 2-6n +5).∵A (5,0),B (0,10),∴AP 2=(n -5)2+(n 2-6n +5)2,BP 2=n 2+(n 2-6n +5-10)2,AB 2=125,AP 2-BP 2=20n 2-130n +25. 若△APB 是以AB 为直角边的直角三角形,则 当点A 为直角顶点时,BP 2=AB 2+AP 2,解得n =32或n =5(舍去);当点B 为直角顶点时,AP 2=AB 2+BP 2,解得n =13+2494 或n =13-2494.又∵抛物线的对称轴为直线x =3,则3-32 =32 ,13+2494 -3=249+14 ,3-13-2494 =249-14.综上所述,点P 到抛物线对称轴的距离为32 或249+14 或249-14.中考专题过关1.(2020·桂林中考)如图,已知抛物线y =a (x +6)(x -2)过点C (0,2),交x 轴于点A 和点B (点A 在点B 的左侧),抛物线的顶点为D ,对称轴DE 交x 轴于点E ,连接EC . (1)直接写出a 的值,点A 的坐标和抛物线对称轴的表达式;(2)若点M 是抛物线对称轴DE 上的点,当△MCE 是等腰三角形时,求点M 的坐标;(3)点P 是抛物线上的动点,连接PC ,PE ,将△PCE 沿CE 所在的直线对折,点P 落在坐标平面内的点P ′处.求当点P ′恰好落在直线AD 上时点P 的横坐标.解:(1)a =-16,A (-6,0),对称轴为直线x =-2;(2)如图1,由(1)知,抛物线的对称轴为x =-2. ∴E (-2,0).∵C (0,2),∴OC =OE =2.∴CE =2 OC =22 ,∠CED =45°. 由△MCE 是等腰三角形,得①当ME =MC 时,∠ECM 1=∠CED =45°, ∴∠CM 1E =90°.∴M 1(-2,2); ②当CE =CM 时,M 1M 2=CM 1=2, ∴EM 2=4.∴M 2(-2,4);③当EM =CE 时,EM 3=EM 4=22 . ∴M 3(-2,-22 ),M 4(-2,22 ).∴满足条件的点M 的坐标为(-2,2)或(-2,4)或(-2,-22 )或(-2,22 );(3)如图2,由(1)知,抛物线的表达式为y =-16 (x +6)(x -2)=-16 (x +2)2+83.∴D ⎝⎛⎭⎫-2,83 . 令y =0,即-16(x +6)(x -2)=0,∴x =-6或x =2.∴A (-6,0).设直线AD 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧-2k +b =83,-6k +b =0. 解得⎩⎪⎨⎪⎧k =23,b =4.∴直线AD 的表达式为y =23x +4.过点P 作PQ ⊥x 轴于点Q ,过点P ′作P ′Q ′⊥DE 于点Q ′,则∠EQP =∠EQ ′P ′=90°. 由(2)知,∠CEB =∠CED =45°.由折叠性质知,EP =EP ′,∠CEP =∠CEP ′. ∴∠CEB -∠CEP =∠CED -∠CEP ′, 即∠PEQ =∠P ′EQ ′.∴△PQE ≌△P ′Q ′E (AAS ). ∴PQ =P ′Q ′,EQ =EQ ′.设P (m ,n ),则OQ =m ,PQ =n .∴P ′Q ′=n ,EQ ′=EQ =m +2.∴P ′(n -2,2+m ). ∵点P ′在直线AD 上,∴2+m =23(n -2)+4. ①∵点P 在抛物线上,∴n =-16(m +6)(m -2). ②联立①②,解得m =-13-2412 或m =-13+2412.∴点P 的横坐标为-13-2412 或-13+2412.2.(2021·广安中考)如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 的图象与坐标轴相交于A ,B ,C 三点,其中点A 坐标为(3,0),点B 坐标为(-1,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒 2 个单位向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t s.(1)求b ,c 的值;(2)在P ,Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使△MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0), ∴⎩⎪⎨⎪⎧-9+3b +c =0,-1-b +c =0. 解得⎩⎪⎨⎪⎧b =2,c =3;(2)由(1)可知,抛物线为y =-x 2+2x +3,∴C (0,3),A (3,0).∴△OAC 是等腰直角三角形. 由点P 的运动可知,AP =2 t . 过点P 作PE ⊥x 轴,垂足为E .∴AE =PE =2t2=t ,即E (3-t ,0).又∵Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =12 ×4×3-12 ×[3-(-1+t )]t =12 t 2-2t +6 =12(t -2)2+4. ∵当其中一点到达终点时,另一点随之停止运动, AC =32+32 =32 ,AB =4,∴0≤t ≤3.又∵12 >0,∴当t =2时,四边形BCPQ 的面积最小,最小值为4;(3)存在.过点M 作x 轴的平行线,与EP 的延长线交于点F . ∵△MPQ 是以点P 为直角顶点的等腰直角三角形, ∴PM =PQ ,∠MPQ =90°. ∴∠MPF +∠QPE =90°. 又∵∠MPF +∠PMF =90°, ∴∠PMF =∠QPE . 又∠F =∠QEP ,∴△PFM ≌△QEP (AAS ).∴MF =PE =t ,PF =QE =4-2t . ∴EF =4-2t +t =4-t . 又∵OE =3-t ,∴点M 的坐标为(3-2t ,4-t ).∵点M 是线段AC 上方的抛物线上的点, ∴4-t =-(3-2t )2+2(3-2t )+3.解得t 1=9-178 ,t 2=9+178(舍去).∴点M 的坐标为⎝ ⎛⎭⎪⎫3+174,23+178 .3.(2020·北部湾中考)如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,△ABC 的面积为S .(1)当t =2时,请直接写出点B 的坐标; (2)S 关于t 的函数表达式为S =⎩⎪⎨⎪⎧14t 2+bt -54,t <-1或t >5,a (t +1)(t -5),-1<t <5,其图象如图2所示,结合图1、图2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.解:(1)B ⎝⎛⎭⎫-12,12 ; (2)当t <-1或t >5时,由图可知当t =7时,S =4.∴14 ×72+7b -54=4.解得b =-1; 当-1<t <5时,由图可知当t =-1+52=2时,S 取得最大值,此时O ,A ,B 三点在一条直线上.∴S =S △OAC -S △OBC =12 ×3×2-12 ×3×12 =94 .∴a (2+1)(2-5)=94 .解得a =-14;(3)存在点A ,使得△ABC 是直角三角形.①若点A 为△ABC 的直角顶点,如图3,则AC ∥l 1. 此时AC 的表达式为y =x +3. 令x =-2,则A (-2,1).设B (x ,x +1).∵D (-2,-1),∴AD =2. 在Rt △ABD 中,AB 2+BD 2=AD 2, 即(x +2)2+x 2+(x +2)2+(x +2)2=22. 解得x 1=-1,x 2=-2(舍去). ∴B (-1,0),即点B 在x 轴上.∴AB =12+12 =2 ,AC =22+(3-1)2 =22 .∴S =12 AB ·AC =12×2 ×22 =2;②若点C 为△ABC 的直角顶点,过点B 作l 2的垂线交l 2于点E ,如图4 ,则A (-2,t ). ∵∠ABD =90°,∠ADB =45°, ∴△ABD 是等腰直角三角形.∵D (-2,-1),∴E ⎝⎛⎭⎫-2,t -12 ,B ⎝⎛⎭⎫t -32,t -12 . 在Rt △ABC 中,AC 2+BC 2=AB 2,∴22+(t -3)2+⎝⎛⎭⎫t -32 2 +⎝⎛⎭⎫t -12-3 2 =⎝⎛⎭⎫t -32+2 2 +⎝⎛⎭⎫t -t -12 2 .化简,得t 2-12t +27=0.解得t =3或t =9. ∴A (-2,3)或A (-2,9).当A (-2,3)时,B (0,1),AC =2,BC =2,则S =12 AC ·BC =12×2×2=2;当A (-2,9)时,B (3,4),AC =(9-3)2+22 =210 ,BC =(4-3)2+32 =10 ,则S =12 AC ·BC =12×210 ×10 =10;③若点B 为△ABC 的直角顶点,此种情况不存在.综上所述,当A (-2,1)时,△ABC 的面积S =2;当A (-2,3)时,S =2;当A (-2,9)时,S =10.题型4 二次函数与特殊四边形的综合此类题型结合特殊四边形的判定方法,对对应边进行分类讨论,尤其求平行四边形及特殊平行四边形存在类问题用平移法求坐标较简单.如图,点A 到B 的平移方式与点D 到C 的平移方式相同,若A (1,2),B (0,0),D (x ,y ),则可设C (x -1,y -2).也可利用平行四边形的对角线互相平分来通过对角线的中点坐标求解,如▱ABCD 中,x A +x C =x B +x D ,y A +y C =y B +y D .其他特殊的平行四边形结合其判定方法还可用边相等、角为直角等特殊性质来突破.中考重难点突破【例】如图,已知抛物线y =ax 2+bx +c 的顶点为A (4,3),与y 轴相交于点B (0,-5),对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.【解析】(1)设抛物线的顶点式为y =a (x -4)2+3,代入点B 的坐标,即可求解;(2)由A (4,3),B (0,-5),可求其中点M 的坐标,用待定系数法可直接求直线AB 的表达式; (3)分为当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)由题意可设抛物线的表达式为y =a (x -4)2+3,将点B 的坐标代入上式,解得a =-12.∴抛物线的表达式为y =-12x 2+4x -5;(2)由A (4,3),B (0,-5),得M (2,-1). 设直线AB 的表达式为y =kx -5.将点A 的坐标代入上式,得3=4k -5,解得k =2. ∴直线AB 的表达式为y =2x -5;(3)设P ⎝⎛⎭⎫m ,-12m 2+4m -5 ,Q (4,n ). 若点Q 在点A 下方,则①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到点M ,同样点P ⎝⎛⎭⎫m ,-12m 2+4m -5 向左平移2个单位、向下平移4个单位得到点Q (4,n ),即m -2=4,-12 m 2+4m -5-4=n ,解得m =6,n =-3.∴点P ,Q 的坐标分别为(6,1),(4,-3);②当AM 是平行四边形的对角线时,AQ 綊MP ,则m =2,-12m 2+4m -5=1,n =3-2=1.∴点P ,Q 的坐标分别为(2,1),(4,1);若点Q 在点A 上方,则AQ 綊MP ,同②可得AQ =MP =2,点P ,Q 的坐标分别为(2,1),(4,5). 综上所述,点P ,Q 的坐标分别为(6,1),(4,-3)或(2,1),(4,1)或(2,1),(4,5).如图,在平面直角坐标系xOy 中,直线y =kx +3分别交x 轴、y 轴于A ,B 两点,经过A ,B 两点的抛物线y =-x 2+bx +c 与x 轴的正半轴相交于点C (1,0).(1)求抛物线的表达式;(2)若点P 为线段AB 上一点,∠APO =∠ACB ,求AP 的长;(3)在(2)的条件下,设点M 是y 轴上一点,试问:抛物线上是否存在点N ,使得以A ,P ,M ,N 为顶点的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.解:(1)直线y =kx +3中, 令x =0,得y =3.∴B (0,3).由题意知抛物线经过B (0,3),C (1,0)两点,则 ⎩⎪⎨⎪⎧c =3,-1+b +c =0. 解得⎩⎪⎨⎪⎧b =-2,c =3. ∴抛物线的表达式为y =-x 2-2x +3;(2)对于抛物线y =-x 2-2x +3,令y =0,解得x =-3或x =1.∴A (-3,0). ∵B (0,3),C (1,0),∴OA =OB =3,OC =1,AB =32 ,AC =4. ∵∠APO =∠ACB ,∠P AO =∠CAB ,∴△P AO ∽△CAB .∴AP AC =AO AB ,即AP 4 =332.∴AP =22 ;(3)存在.由(2)可知,A (-3,0),P (-1,2),AP =22 .①当AP 为平行四边形的边时,点N 的横坐标为2或-2,∴N (-2,3)或N (2,-5); ②当AP 为平行四边形的对角线时,点N 的横坐标为-4,∴N (-4,-5). 综上所述,满足条件的点N 的坐标为(-2,3)或(2,-5)或(-4,-5).中考专题过关1.如图,已知抛物线L 1:y =-x 2+4经过点A (-1,a )和点B ,与x 轴正半轴交于点C ,且点B 与点A 关于y 轴对称.(1)求点B ,C 的坐标;(2)平移抛物线L 1得到抛物线L 2,且L 2经过点C ,那么在抛物线L 2的对称轴上是否存在一点P ,使得以A ,B ,C ,P 为顶点的四边形是以AB 为边的平行四边形?若存在,写出平移过程;若不存在,请说明理由.解:(1)∵抛物线L 1:y =-x 2+4过点A (-1,a ), ∴a =-1+4=3,即A (-1,3).∵点A 与点B 关于y 轴对称,∴B (1,3). 令y =0,得-x 2+4=0,解得x =±2. ∵点C 在x 轴的正半轴上,∴C (2,0);(2)存在.设抛物线L 1的顶点为D ,则D (0,4). ∵四边形是以AB 为边的平行四边形,∴AB 綊CP .∴点P 在x 轴上. ∵AB =2,∴CP =2.∴点P 的坐标为(0,0)或(4,0).设抛物线L 2的表达式为y =-x 2+bx +c . ∵点C 在抛物线L 2上,∴-4+2b +c =0.∴c =4-2b .∴抛物线L 2的表达式为y =-x 2+bx +4-2b .若P (0,0),则抛物线的对称轴为直线x =0,∴b =0.∴抛物线L 2的表达式为y =-x 2+4,与抛物线L 1重合.∴不存在坐标为(0,0)的点P ;若P (4,0),则抛物线的对称轴为直线x =4.∴b =8.∴抛物线L 2的表达式为y =-x 2+8x -12=-(x -4)2+4. 令抛物线L 2的顶点为D ′,则D ′(4,4).此时将抛物线L 1向右平移4个单位得到抛物线L 2.2.(2020·百色二模)如图,抛物线y =-x 2+bx +c 交x 轴于点A ,B ,交y 轴于点C ,点B 的坐标为(3,0),点C 的坐标为(0,3),点C 与点D 关于抛物线的对称轴对称.(1)求抛物线的表达式;(2)若点P 为抛物线对称轴上一点,连接BD ,以PD ,PB 为边作平行四边形PDNB ,是否存在这样的点P ,使得▱PDNB 是矩形?若存在,请求出点P 的坐标;(3)在(2)的结论下,求出tan ∠BDN 的值.解:(1)将B (3,0),C (0,3)代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-9+3b +c =0,c =3. 解得⎩⎪⎨⎪⎧b =2,c =3. ∴抛物线的表达式为y =-x 2+2x +3;答图(2)存在.如答图,设抛物线的对称轴交x 轴于点F ,过点D 作DH ⊥PF 于点H . ∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的对称轴为直线x =1.∵点D 与点C (0,3)关于对称轴对称,∴D (2,3). ∴DH =1,BF =2,HF =3.∵▱PDNB 是矩形,∴∠DPB =∠DHP =∠PFB =90°.∴∠DPH +∠BPF =90°. ∵∠PBF +∠BPF =90°,∴∠DPH =∠PBF .∴△DHP ∽△PFB .∴DH PF =HP FB =DPPB.设PF =m ,则HP =3-m .∵DH =1,FB =2,∴1m =3-m2.∴m =1或m =2.∴PF =1或PF =2.∴存在点P 使▱PDNB 是矩形,点P 的坐标为(1,1)或(1,2); (3)∵四边形PDNB 是平行四边形,∴DN ∥PB . ∴∠BDN =∠PBD . ①当PF =1时,tan ∠BDN =tan ∠PBD =DP BP =DH PF =11=1;②当PF =2时,tan ∠BDN =tan ∠PBD =DP BP =DH PF =12.综上所述,tan ∠BDN 的值为1或12.3.在平面直角坐标系中,抛物线y =-13x 2+bx +c 交x 轴于A (-3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34 x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.备用图解:(1)∵抛物线y =-13 x 2+bx +c 交x 轴于A (-3,0),B (4,0)两点,∴抛物线的表达式为y =-13(x +3)(x -4)=-13 x 2+13x +4;(2)①设直线BC 的表达式为y =kx +n .∵B (4,0),C (0,4),∴⎩⎪⎨⎪⎧4k +n =0,n =4. 解得⎩⎪⎨⎪⎧k =-1,n =4. ∴直线BC 的表达式为y =-x +4.令-x +4=34 x +94,解得x =1.∴E (1,3).∵M (m ,0),且MH ⊥x 轴,∴G ⎝⎛⎭⎫m ,34m +94 ,F ⎝⎛⎭⎫m ,-13m 2+13m +4 . ∵S △EFG =59 S △OEG ,直线AD 与y 轴交于点⎝⎛⎭⎫0,94 ,∴12 FG ·(x E -x F )=59 ×12 ×94(x E -x G ),即⎣⎡⎦⎤⎝⎛⎭⎫-13m 2+13m +4-⎝⎛⎭⎫34m +94 (1-m )=59 ×94 (1-m ).∴m =34或m =-2;②存在.点P 的坐标为⎝ ⎛⎭⎪⎫1,7+132 或⎝ ⎛⎭⎪⎫1,7-132 .[由①知E (1,3).∵四边形EFHP 是正方形,∴FH =EF ,∠EFH =∠FHP =∠HPE =90°. ∵M (m ,0),且MH ⊥x 轴,∴H (m ,-m +4),F ⎝⎛⎭⎫m ,-13m 2+13m +4 . 分两种情况:i)当-3≤m <1时,点F 在EP 的左侧,如图1.∴FH =(-m +4)-⎝⎛⎭⎫-13m 2+13m +4 =13 m 2-43 m . ∵FH =EF ,∴13 m 2-43 m =1-m .解得m 1=1+132 (舍去),m 2=1-132.∴H ⎝ ⎛⎭⎪⎫1-132,7+132 .∴P ⎝ ⎛⎭⎪⎫1,7+132 ; 图1图2ii)当1<m ≤4时,点F 在PE 的右侧,如图2.同理得-13 m 2+43 m =m -1.解得m 1=1+132 ,m 2=1-132 (舍去).同理得P ⎝⎛⎭⎪⎫1,7-132 .综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫1,7+132 或⎝ ⎛⎭⎪⎫1,7-132 .]题型5 二次函数与相似三角形的综合此类题型结合相似三角形判定方法,如果一个角为直角,只需两直角边之比分别相等,此时要对对应边进行分类讨论.中考重难点突破【例】(2019·百色二模)如图,以D 为顶点的抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为y =-x +3.(1)求抛物线的表达式;(2)请判断△BCD 的形状,并说明理由;(3)在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.【解析】(1)先求出点B ,C 的坐标,再用待定系数法即可得出结论;(2)先求出点D 的坐标,进而求出CD ,BC ,DB ,最后用勾股定理的逆定理判断即可得出结论; (3)先用两边对应成比例判断出△AOC ∽△DCB ,再构造出△ACQ ∽△AOC ,即可得出结论.【解答】解:(1)y =-x +3中,x =0时,y =3;y =0时,x =3,则B (3,0),C (0,3).将其代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-9+3b +c =0,c =3. 解得⎩⎪⎨⎪⎧b =2,c =3. ∴抛物线的表达式为y =-x 2+2x +3; (2)△BCD 是直角三角形.理由:由y =-x 2+2x +3=-(x -1)2+4,得D (1,4).又∵B (3,0),C (0,3),∴CD =(4-3)2+12 =2 , BC =32+32 =32 , BD =42+(1-3)2 =25 . ∵(2 )2+(32 )2=20,(25 )2=20, ∴CD 2+BC 2=BD 2.∴∠BCD =90°,即△BCD 是直角三角形;(3)存在.∵A (-1,0),C (0,3),∴OA =1,OC =3.∴OA OC =CD BC =13.又∵∠AOC =∠DCB =90°,∴△AOC ∽△DCB . ∴当点Q 的坐标为(0,0)时,△AQC ∽△DCB .如图,连接AC ,过点C 作CQ ⊥AC ,交x 轴于点Q . ∵△ACQ 为直角三角形,CO ⊥AQ , ∴△ACQ ∽△AOC .又∵△AOC ∽△DCB ,∴△DCB ∽△ACQ . ∴CD BD =AC AQ ,即225 =10AQ.∴AQ =10.∴Q (9,0). 综上所述,当点Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似.如图,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC ,抛物线对称轴为直线x =12,点D 为第一象限内抛物线上一动点,过点D 作DE ⊥OA 于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求点D 的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与△BOC 相似?若存在,求出m 的值;若不存在,请说明理由.解:(1)设OB =t ,则OA =2t .∴A (2t ,0),B (-t ,0).∵抛物线的对称轴为直线x =12 ,∴12 =12(2t -t ).解得t =1.∴A (2,0),B (-1,0).∴抛物线的表达式为y =a (x -2)(x +1)=ax 2-ax -2a .∴-2a =2.解得a =-1. ∴抛物线的表达式为y =-x 2+x +2;(2)对于y =-x 2+x +2,令x =0,则y =2.∴C (0,2). 由点A ,C 的坐标得,直线AC 的表达式为y =-x +2.设点D 的横坐标为m ,则D (m ,-m 2+m +2),F (m ,-m +2).∴DF =-m 2+m +2-(-m +2)=-m 2+2m =-(m -1)2+1.∵-1<0,∴当m =1时,DF 有最大值,此时D (1,2); (3)存在.∵D (m ,-m 2+m +2)(0<m <2), ∴OE =m ,DE =-m 2+m +2.若以点O ,D ,E 为顶点的三角形与△BOC 相似, 则DE OE =OB OC 或DE OE =OC OB ,即DE OE =12 或2. ∴-m 2+m +2m =12 或2.解得m =1或m =-2(舍去)或m =1+334 或m =1-334(舍去).∴m =1或m =1+334.中考专题突破1.已知抛物线y =-12x 2+bx 经过点A (4,0),抛物线顶点为点B ,点P 为抛物线上的一点,且点P 的横坐标为-1,直线l :y =-x +m 分别与P A ,PB 交于M ,N 两点.(1)求直线AB 的表达式;(2)当△P AB 与△PMN 的面积之比为4∶1时,求点M 的坐标及m 的值.解:(1)∵y =-12x 2+bx 经过点A (4,0),∴-12 ×42+4b =0.∴b =2.∴y =-12 x 2+2x =-12(x -2)2+2.∴B (2,2).设直线AB 的表达式为y =kx +n . 把A ,B 两点的坐标代入上式,得 ⎩⎪⎨⎪⎧4k +n =0,2k +n =2. 解得⎩⎪⎨⎪⎧k =-1,n =4. ∴直线AB 的表达式为y =-x +4;(2)∵y =-x +m 和y =-x +4的k 值相等, ∴直线l ∥AB .∴△P AB ∽△PMN . ∵S △P AB S △PMN=4,∴PN PB =PM P A =12 .∴点M 为P A 的中点,点N 为PB 的中点. ∵点P 的横坐标为-1,∴y p =-12 x 2+2x =-52,即P ⎝⎛⎭⎫-1,-52 . ∵-1+42 =32 ,-52 ×12 =-54 ,∴M ⎝⎛⎭⎫32,-54 . ∵y =-x +m 经过点M ⎝⎛⎭⎫32,-54 , ∴-54 =-32 +m .∴m =14 .2.(2021·黔东南中考)如图,抛物线y =ax 2-2x +c (a ≠0)与x 轴交于A ,B (3,0)两点,与y 轴交于点C (0,-3),抛物线的顶点为D .(1)求抛物线的表达式;(2)点P 在抛物线的对称轴上,点Q 在x 轴上,若以点P ,Q ,B ,C 为顶点,BC 为边的四边形为平行四边形,请直接写出点P ,Q 的坐标;(3)已知点M 是x 轴上的动点,过点M 作x 的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A ,M ,G 为顶点的三角形与△BCD 相似,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)将点B (3,0),C (0,-3)分别代入y =ax 2-2x +c 中,得⎩⎪⎨⎪⎧9a -2×3+c =0,c =-3. 解得⎩⎪⎨⎪⎧a =1,c =-3.∴抛物线的表达式为y =x 2-2x -3;(2)P(1,-3),Q(4,0)或P(1,3),Q(-2,0).[由抛物线的表达式知,其对称轴为x =-b2a=1,设点P(1,m),Q(x ,0).当以点P ,Q ,B ,C 为顶点,BC 为边的四边形为平行四边形时,点C 先向右平移3个单位再向上平移3个单位得到点B ,同样点P(Q)先向右平移3个单位再向上平移3个单位得到点Q(P),则1±3=x 且m±3=0.解得⎩⎪⎨⎪⎧m =-3,x =4 或⎩⎪⎨⎪⎧m =3,x =-2. ∴点P ,Q 的坐标分别为(1,-3),(4,0)或(1,3),(-2,0)](3)当y =0时,即x 2-2x -3=0,解得x 1=-1,x 2=3.∴A(-1,0). 又y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点D 的坐标为(1,-4). ∵C(0,-3),B(3,0),D(1,-4),∴BD 2=22+42=20,CD 2=12+12=2,BC 2=32+32=18.∴BD 2=CD 2+BC 2. ∴△BDC 是直角三角形,且∠BCD =90°.设点M 的坐标为(m ,0),则点G 的坐标为(m ,m 2-2m -3). 根据题意,得∠AMG =∠BCD =90°.∴要使以A ,M ,G 为顶点的三角形与△BCD 相似,需要满足条件:AM MG =BC CD =322=3或AM MG =CDBC =。
2024年中考数学-押江苏南京卷第25-26题(二次函数的综合、三角形旋转问题)(解析版)
押江苏南京卷第25-26题押题方向一:二次函数的综合3年江苏南京卷真题考点命题趋势2023年江苏南京卷第26题二次函数的综合从近年江苏南京中考来看,二次函数的综合的考查,难度较大,综合性比较强;预计2024年江苏南京卷还将继续重视对二次函数的综合问题的考查。
2022年江苏南京卷第26题二次函数的综合2021年江苏南京卷第26题二次函数的综合1.(2023·江苏南京·中考真题)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是3a >或1a <-.【分析】(1)证明240b ac ->即可解决问题.(2)将1a =-代入函数解析式,进行证明即可.(3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a --⨯⨯=-,又因为0a <,所以40a <,30a -<,所以24124(3)0a a a a -=->,所以该函数的图象与x 轴有两个公共点.(2)将1a =-代入函数解析式得,2223(1)4y x x x =-++=--+,所以抛物线的对称轴为直线1x =,开口向下.则当10x -<<时,是AB 上的动点,连接EF ,G 是EF 上一点,且GFk EF=(k 为常数,0k ≠),分别过点F 、G 作AB 、EF 的垂线相交于点P ,设AF 的长为x ,PF 的长为y .(1)若12k =,4x =,则y 的值为________;(2)求y 与x 之间的函数表达式;(3)在点F 从点A 到点B 的整个运动过程中,若线段CD 上存在点P ,则k 的值应满足什么条件?直接写出k 的取值范围.两点.(1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围.即1410 93410 a aa a+-->⎧⎨---<⎩,解得a<0;②如图,当0a>时,当=1x -时,14y a =+-∴当3x =时,93y a =--解得45a >,综上,a 的取值范围为a<【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(一、二次函数的图象1.二次函数2ax y =(0≠a )的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点.当0>a 时,抛物线开口向上,顶点是抛物线的最低点;当0<a 时,抛物线开口向下,顶点是抛物线的最高点.2.二次函数()2m x a y -=(0≠a )的图象的顶点坐标是(m,0),对称轴是直线m x =.图象的开口方向:当0>a 时,开口向上;当0<a 时,抛物线开口向下.3.二次函数()k m x a y +-=2(0≠a )的图象的顶点坐标是(m,k),对称轴是直线m x =.图象的开口方向:当0>a 时,开口向上;当0<a 时,抛物线开口向下.4.二次函数c bx ax y ++=2(0≠a )的图象是一条抛物线,它de 对称轴是直线2bx a=-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,当0>a 时,抛物线开口向上,顶点是抛物线上的最低点;当0<a 时,抛物线开口向下,顶点是抛物线上的最高点.二、二次函数的图象与系数的关系二次函数c bx ax y ++=2(0≠a )的系数与图象的关系(1)a 的符号由抛物线c bx ax y ++=2的开口方向决定:0>⇔a 开口向上,0>⇔a 开口向上;(2)b 的符号由抛物线c bx ax y ++=2的对称轴的位置及a 的符号共同决定:对称轴在y 轴左侧b a ,⇔同号,对称轴在y 轴右侧b a ,⇔异号;(3)c 的符号由抛物线c bx ax y ++=2与y 轴的交点的位置决定:与y 轴正半轴相交0>⇔c ,与y 轴正半轴相交0<⇔c 三、二次函数的图象与几何变换1.二次函数的平移(1)平移步骤:①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;②保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(2)平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.2.二次函数图象的对称(1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.1.已知二次函数()244y x a x a =-++(a 为常数且4a ≠).(1)求证:不论a 为何值,该函数的图像与x 轴总有两个公共点(2)设该二次函数的图象与x 轴的两个交点分别记为A 、B ,线段AB (含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为9.①直接写出a 的取值范围;②若a 为负整数,则函数()244y x a x a =-++的图像与函数y x b =+的图像的交点个数随b 的值变化而变化,直接写出交点个数及对应的b 的取值范围.第二种情况:4b <-时,函数(2y x a =-+第三种情况:直线y x b =+经过(),0a 时,则第四种情况:当4b a -<<-时,有2个交点,如图示:当直线y x b =+与函数()244y x a x =-++联立直线y x b =+与函数()24y x a =-++得()244y x b y x a x a =+⎧⎨=-++-⎩,∴()2340x a x b a -+++=,由()2Δ3a =+∴第五种情况:21094a ab -+=时,直线第七种情况:当21094a ab -+>时,有2个交点,如图示:综上,当4a <时,当4b <-时,函数()244y x a x a =-++的图像与函数当4b =-时,函数()244y x a x a =-++的图像与函数当4b a -<<-或21094a ab -+≥时,函数当=-b a 时,函数()244y x a x a =-++的图像与函数当21094a a ab -+-<<时,函数(2y x =-中曲线AB 为反比例函数图像的一部分,BC 为一次函数图像的一部分.(1)求y 与x 之间的函数表达式;(2)已知每年该产品的研发费用为40万元,该产品成本价为4元/件,设销售产品年利润为w (万元),当销售单价为多少元时,年利润最大?最大年利润是多少?(说明:年利润=年销售利润-研发费用)(1)求证:该函数的图像与x 轴总有两个公共点;(2)若该函数图像与x 轴的两个交点坐标分别为()(),0,0x x ₁,₂,且2x x =-₁₁,求证²0a b +=;(3)若()1,A k y ,()26,B y ,()14,C k y +都在该二次函数的图像上,且212y y <<,结合函数的图像,直接写出k 的取值范围.或此时B 的横坐标小于0,不符合题意,舍去;当20k +>,即2k >-时,∵212y y <<,∴画出草图,如下:∴6262k k k k >⎧⎨+->+-⎩,解得6k >;或∴466242622k k k k k k +<⎧⎪-->+--⎨⎪--<+⎩,解得12k <<,综上,12k <<或6k >.【点睛】本题考查了二次函数与一元二次方程,二次函数的图象与性质,一元二次方程根与系数的关系以及根的判别式等知识,明确题意,合理分类讨论,画出函数图象,数形结合列出不等式组是解答第(3)的关键.4.在二次函数221y x mx m =++-中.(1)求证:不论m 取何值,该函数图像与x 轴总有两个公共点(2)当03x ≤≤时,y 的最小值为3-,则m 的值为________.(3)当0m <时,点()2,A n a -,()4,B b ,(),C n a 都在这个二次函数的图象上,且1a b m <<-.则n 的取值范围是________.5.若一次函数y mx n =+与反比例函数k y x=同时经过点(,)P x y 则称二次函数2y mx nx k =+-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =-与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++--,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m 为何值,该函数的图象经过的定点坐标是.(3)在22x -≤≤的范围中,y 的最大值是2,直接写出m 的值.为常数).(1)若4m =,3n =,求该函数图像与x 轴的两个交点之间的距离;(2)若函数2y x mx n =++的图象与x 轴有两个交点,将该函数的图像向右平移()0k k >个单位长度得到新函数y '的图象,且这两个函数图象与x 轴的四个交点中任意相邻两点之间的距离都相等.①若函数2y x mx n =++的图象如图所示,直接写出新函数y '的表达式;②若函数2y x mx n =++的图象经过点()1,3,当1k =时,求m n ,的值.押题方向二:三角形的旋转3年江苏南京卷真题考点命题趋势2023年江苏南京卷第27题三角形的旋转从近年江苏南京中考来看,三角形的旋转的考查,难度较大,常常与全等和相似三角形结合一起考查,综合性比较强;预计2024年江苏南京卷还将继续重视对三角形的旋转的综合问题的考查。
二次函数与几何图形的综合问题(学生版)--初中数学专题训练
二次函数与几何图形的综合问题目录一、热点题型归纳【题型一】 二次函数与图像面积的数量关系及最值问题【题型二】 二次函数与角度数量关系问题【题型三】 二次函数与线段长度数量关系及线段长度最值问题【题型四】 二次函数与特殊三角形问题【题型五】 二次函数与相似三角形存在性问题【题型六】 二次函数与特殊四边形存在性问题【题型七】 二次函数与代数或几何综合问题二、最新模考题组练1.热点题型归纳题型一:二次函数与图像面积的数量关系及最值问题1【典例分析】1如图,二次函数y=x2+bx+c的图象与x轴交于A-3,0两点,点C为二次函数的图象与y轴,B1,0的交点.(1)求二次函数的表达式;(2)若点P为二次函数图象上的一点,且S△POC=2S△BOC,求点P的坐标.2【提分秘籍】对于图形的运动产生的相等关系问题,解答时应认真审题,仔细研究图形,分析动点的运动状态及运动过程,解题过程的一般步骤是:①弄清其取值范围,画出符合条件的图形;②确定其存在的情况有几种,然后分别求解,在求解计算中一般由函数关系式设出图形的动点坐标并结合图形作辅助线,画出所求面积为定值的三角形;③过动点作有关三角形的高或平行于y轴、x轴的辅助线,利用面积公式或三角形相似求出有关线段长度或面积的代数式,列方程求解,再根据实际问题确定方程的解是否符合题意,从而证得面积等量关系的存在性.④对于面积的最值问题选择合适的自变量,建立面积关于自变量的函数,并求出自变量的取值范围,用二次函数或一次函数的性质来解决.3【变式演练】1如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(-2,0)和点B,与y轴交于点C(0,8),点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)求△BCP的面积最大值.2如图,抛物线y=x2+bx+c与x轴交于A-1,0两点.,B3,0(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x取何值时,y>0?(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.3如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,抛物线的对称轴l与x轴交于点M.(1)求抛物线的函数关系式.(2)设点P是直线l上的一个动点,求△PAC周长的最小值.题型二:二次函数与角度数量关系问题1【典例分析】1如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0)和B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,若点M为直线BC上方抛物线一动点(与点B、C不重合),作MN平行于y轴,交直线BC于点N,当线段MN的长最大时,请求出点M的坐标;(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当∠QCO=∠PBC时,请求出点Q的坐标.2【提分秘籍】探究两个角相等的方法:①可转换为满足此三角形是等腰三角形时的点,一般是通过此动点作已知两点连线的中垂线,再通过三角形相似以及中垂线的性质求出中垂线所在直线的解析式,最后通过直线解析式和抛物线解析式联立方程组求得动点的坐标;②通过构造两个三角形相似,再通过三角形相似的性质建立等式关系,再通过直线解析式和抛物线解析式联立方程组求得动点的坐标.3【变式演练】1如图,在平面直角坐标系中,抛物线y=-12x2+bx+c过点A-2,0,B4,0,x轴上有一动点P t,0,过点P且垂直于x轴的直线与直线BC及抛物线分别交于点D,E.连接CE.(1)求抛物线的解析式.(2)点P在线段OB上运动时(不与点O,B重合)当△CDE∽△BDP时,求t的值.(3)当点P在x轴上自由运动时,是否存在点P,使∠DCE=∠DEC?若存在,请直接写出点P的坐标;若不存在,请说明理由.2如图,抛物线y=ax2+bx+5(a≠0)与y轴相交于点C,且经过A(1,0),B(5,0)两点,连接AC.(1)求抛物线的表达式;(2)设P为x轴下方抛物线上一点,M为对称轴上一点,N为该抛物线对称轴与x轴交点,若∠MNP=∠OCA,求点P的坐标.题型三:二次函数与线段长度数量关系及线段长度最值问题1【典例分析】1如图,已知经过A1,0两点的抛物线y=x2+bx+c与y轴交于点C.,B4,0(1)求此抛物线的解析式及点C的坐标;(2)若线段BC上有一动点M(不与B、C重合),过点M作MN⊥x轴交抛物线于点N.求当线段MN的长度最大时点M的坐标;2【提分秘籍】探究平面直角坐标系中线段的数量关系的方法:①先设点的坐标,再用点的坐标表示线段的长度,然后分析表示线段长度的代数式,得出线段之间的数量关系;②函数图象上点的坐标的表示方法:直线y=kx+b上点的坐标为(x,kx+b);抛物线y=ax2+bx+c上点的坐标为(x,ax2+bx+c);双曲线y=k x上的点的坐标为y=x,k x③已知点A(x,y),B(m,n),若AB与x轴平行,则AB=|x-m|;若AB与y轴平行,则AB=|y-n|;若AB既不与x轴平行又不与y轴平行,则AB=(x-m)2+(y-n)2。
初二数学的重要性,几何常见辅助线口诀
初二数学的重要性, 几何常见辅助线口诀数学学科,初二年级所学的知识占中考总分的50%—60%,甚至可以说,学生初二数学成绩的好坏是中考能否取胜的关键。
接下来小编整理了初二数学学习相关内容,希望能帮助到您。
初二数学的重要性“初一不分上下,初二两极分化,初三一决上下”,初二年级的学习是整个初中阶段学习的关键。
初二的全等、一次函数、勾股定理、四边形,是大部分初三难题所运用的知识点,而中考仅借用初三将学到的二次函数、相似、三角函数、几何变换作为工具,综合初二知识点进行考察。
初二数学,学生最常见问题分析1、老师讲的懂了会了,可是仍然不会做题。
很多初二同学反应:“虽然老师讲的全等、轴对称,好像都听懂了,可是写作业时老是有疑问”、“考试时,几何证明题一不注意就会被扣去一两分”、“做证明题,思路不清楚”。
究其原因,主要是学生不能将学到的知识点与解题很好地联系起来,不能熟练理解公式,无法做到在题目中熟练应用。
理解是一个过程,如果学员在暑假能提前预习、巩固基础;秋季综合训练时,在经过了一个消化理解的过程后,会轻松很多。
2、学校课程进度加快、难度加深,班级学生差距会越来越大。
初二数学除了进度会明显加快外,更重要的是知识难度会加深。
学生要保持成绩领先,绝不能仅满足于课本的基础知识;尤其是对想在中考取得优异成绩的学生来说,他们会在巩固学科基础的同时,深化所学知识点的难度,学生间的差距愈加明显。
3.暑假提前学习初二数学,不仅可以培养自学能力,提高自己独立解决难题的能力;还可以提高自己的自信心。
其次,在暑期里超前预习,可以提前了解学科的难点及自己的疑问。
开学后,再次接触到这个知识点,因为有前期的知识的讲解与梳理,会比其他同学理解起来更加容易,也会更加深刻。
4.章节预习为主,由浅入深,循循善诱初二上册数学以几何为主,学生首次正式接触到辅助线构造类几何证明。
暑假课程设计,主要是学生整体把握教材内容,层层递进,打好基础。
如先讲三角形内角和,了解概念,然后顺势推广到多边形内角和进行拓展,最后将内角和公式应用于镶嵌,进行几何证明。
二次函数压轴题题型总结有答案
二次函数压轴题解题思路一、基本知识1会求解析式以及一些关键点的坐标如函数图像与坐标轴的交点、两函数图像的交点等;2.会利用函数性质和图像3.相关知识:如一次函数、反比例函数、点的坐标、方程;图形中的三角形、四边形、圆及平行线、垂直;一些方法:如相似、三角函数、解方程;一些转换:如轴对称、平移、旋转;二、典型例题:一、求解析式可参考一下部分试题的第一问;二、二次函数的相关应用第一类:面积问题例题. 2012莱芜如图,顶点坐标为2,﹣1的抛物线y=ax2+bx+ca≠0与y轴交于点C0,3,与x轴交于A、B两点.1求抛物线的表达式;抛物线的解析式:y=x﹣22﹣1=x2﹣4x+3.2设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;练习:1. 2014兰州如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A﹣1,0,C0,2. 1求抛物线的表达式;2在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形如果存在,直接写出P点的坐标;如果不存在,请说明理由;3点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大求出四边形CDBF的最大面积及此时E点的坐标.第二类:.构造问题1构造线段2014枣庄如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点不与点D重合.1求∠OBC的度数;2连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE =S四边形OCDB,求此时P点的坐标;3过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2构造相似三角形2013莱芜如图,抛物线y=ax2+bx+ca≠0经过点A﹣3,0、B1,0、C﹣2,1,交y轴于点M.1求抛物线的表达式;2D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;3抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似若存在,求点P的坐标;若不存在,请说明理由.3构造平行四边形2014莱芜如图,过A1,0、B3,0作x轴的垂线,分别交直线y=4﹣x 于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点. 1求抛物线的表达式;2点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形若存在,求此时点M的横坐标;若不存在,请说明理由;3若△AOC沿CD方向平移点C在线段CD上,且不与点D重合,在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.x2+bx+c与y轴交于点C0,-4,与x轴4构造等腰三角形2013泰安如图,抛物线y=12交于点A,B,且B点的坐标为2,0 1求该抛物线的解析式.2若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.3若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.5构造直角三角形2014四川内江如图,抛物线y=ax2+bx+c经过A﹣、C0,4,点B在抛物线上,CB∥x轴,且AB平分∠CAO.1求抛物线的解析式;2线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;3抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形如果存在,求出点M的坐标;如果不存在,说明理由.6构造角相等2014娄底如图,抛物线y=x2+mx+m﹣1与x轴交于点Ax1,0,Bx2,0,x1<x2,与y轴交于点C0,c,且满足x12+x22+x1x2=7.1求抛物线的解析式;2在抛物线上能不能找到一点P,使∠POC=∠PCO若能,请求出点P 的坐标;若不能,请说明理由.7构造菱形2013枣庄如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为3,0,与y轴交于C0,-3点,点P是直线BC下方的抛物线上一动点.1求这个二次函数的表达式.2连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形若存在,请求出此时点P的坐标;若不存在,请说明理由.3当点P运动到什么位置时,四边形ABPC的面积最大求出此时P点的坐标和四边形ABPC的最大面积.8构造对称点11莱芜如图,在平面直角坐标系中,已知点A-2,-4,OB=2,抛物线y =ax2+bx+c经过点A、O、B三点.1求抛物线的函数表达式;2若点M是抛物线对称轴上一点,试求AM+OM的最小值;3在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形.若存在,求点P 的坐标;若不存在,请说明理由.9构造平行线:2014山东烟台如图,在平面直角坐标系中,Rt △ABC 的顶点A ,C 分别在y 轴,x 轴上,∠ACB =90°,OA =,抛物线y =ax 2﹣ax ﹣a 经过点B 2,,与y 轴交于点D .1求抛物线的表达式;2点B 关于直线AC 的对称点是否在抛物线上请说明理由; 3延长BA 交抛物线于点E ,连接ED ,试说明ED ∥AC 的理由.10构造垂直:2014宜宾市如图,已知抛物线y = x 2+bx +c 的顶点坐标为M 0,–1,与x 轴交于A 、B 两点. 1求抛物线的解析式; 2判断△MAB 的形状,并说明理由; 3过原点的任意直线不与y 轴重合交抛物线于C 、D 两点,连结MC 、MD ,试判断MC 、MD 是否垂直,并说明理由.11构造圆2014年淄博如图,点A 与点B 的坐标分别是1,0,5,0,点P 是该直角坐标系内的一个动点.1使∠APB=30°的点P 有 个;2若点P 在y 轴上,且∠APB=30°,求满足条件的点P 的坐标;yxO MDCBA3当点P在y轴上移动时,∠APB是否有最大值若有,求点P的坐标,并说明此时∠APB 最大的理由;若没有,也请说明理由.参考答案:一、求解析式二、二次函数的相关应用第一类:面积问题2012莱芜解:1y=x﹣22﹣1=x2﹣4x+3.2S△ACD=ADCD=××2=2.32+,1﹣、2﹣,1+、1,2或4,﹣1.2014兰州解1y=﹣x2+x+2;2y=﹣x﹣2+,P 1,4,P2,,P3,﹣;3S四边形CDBF =S△BCD+S△CEF+S△BEF=﹣a﹣22+∴a=2时,S四边形CDBF的面积最大=,∴E2,19.第二类:.构造问题1构造线段2014枣庄1△OBC 为等腰直角三角形∠OBC=45°. 2P2,﹣3.3线段PF 长度=﹣x P 2+3x P =﹣x P ﹣2+,1<x P ≤3,当x P =时,线段PF 长度最大为.2构造相似三角形2013莱芜 1y=.2DF 的最大值为.此时D 的坐标为.3存在点P,使得以点P 、A 、N 为顶点的三角形与△MAO 相似.设Pm,.在Rt△MAO 中,AO=3MO,要使两个三角形相似,由题意可知,点P 不可能在第一象限.①设点P 在第二象限时,∵点P 不可能在直线MN 上,∴只能PN=3NM,故此时满足条件的点不存在.②当点P 在第三象限时,∵点P 不可能在直线MN 上,∴只能PN=3NM, P 的坐标为﹣8,﹣15. ③当点P 在第四象限时,若AN=3PN 时,此时点P 的坐标为2,﹣.若PN=3NA,此时点P 的坐标为10,﹣39.综上所述,满足条件的点P 的坐标为﹣8,﹣15、2,﹣、10,﹣39.3构造平行四边形 2014莱芜解:1y=﹣x 2+x .2存在. 或或.3∴S=S △OFQ ﹣S △OEP =OFFQ ﹣OEPG=1+t +t ﹣t t=﹣t ﹣12+当t=1时,S 有最大值为.∴S的最大值为.4构造等腰三角形PBE ABCSS=PBE S 12=x×4-1323x+835构造直角三角形2014四川内江 1y=﹣x 2+x+4.2当t=1时,PQ 取到最大值,最大值为. 3①当∠BAM=90°时,MH=11.M ,﹣11. ②当∠ABM=90°时,M ,9.综上所述:符合要求的点M 的坐标为,9和,﹣11.6构造角相等2014娄底解1依题意:x 1+x 2=﹣m,x 1x 2=m ﹣1,∵x 1+x 2+x 1x 2=7,∴x 1+x 22﹣x 1x 2=7,∴﹣m 2﹣m ﹣1=7,即m 2﹣m ﹣6=0,解得m 1=﹣2,m 2=3,∵c=m ﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x 2﹣2x ﹣3;2能如图,设p 是抛物线上的一点,连接PO,PC,过点P 作y 轴的垂线,垂足为D .若∠POC=∠PCO 则PD 应是线段OC 的垂直平分线∵C 的坐标为0,﹣3∴D 的坐标为0,﹣∴P 的纵坐标应是﹣令x 2﹣2x ﹣3=,解得,x 1=,x 2=因此所求点P 的坐标是,﹣,,﹣7构造菱形2013枣庄 解:1.2此时P 点的坐标为,. 3 S 四边形ABPC =++==. 易知,当x=时,四边形ABPC 的面积最大.此时P 点坐标为,,四边形ABPC 的最大面积为. 8构造对称点11莱芜1212y x x =-+;2MO+MA 的最小值为42;3①若OB ∥AP P4,-4,则得梯形OAPB;②若OA ∥BP,点P 412--,,则得梯形OAPB;③若AB ∥OP,此时点P 不存在;综上所述,存在两点P4,-4或P 412--,使得以点P 与点O 、A 、B 为顶点的四边形是梯形;2=23y x x --2232-AOC S ∆POB S ∆POC S ∆239622x x -++23375()228x --+3232154-7589构造平行线:2014山东烟台解: y=x2﹣x﹣.2连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.3过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×﹣2+=,∴点E的坐标为﹣2,,∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.10构造垂直:2014宜宾市解:1y=x 2﹣1.2OA=OB=OC=1,∴AM=BM,∴△MAB 是等腰直角三角形.3=,即=解得m=﹣,∵==﹣n,==,∴=,∵∠CGM=∠MHD=90°,∴△CGM∽△MHD,∴∠CMG=∠MDH,∵∠MDH+∠DMH=90°∴∠CMG+∠DMH=90°,∴∠CMD=90°,即MC⊥MF. 11构造圆2014年淄博解:1∵抛物线y=﹣x 2+mx+n 经过A ﹣1,0,C0,2.解得:,∴抛物线的解析式为:y=﹣x 2+x+2;2∵y=﹣x 2+x+2,∴y=﹣x ﹣2+,∴抛物线的对称轴是x=.∴OD=.∵C0,2,∴OC=2.在Rt △OCD 中,由勾股定理,得CD=.∵△CDP 是以CD 为腰的等腰三角形, ∴CP 1=CP 2=CP 3=CD .作CH ⊥x 轴于H,∴HP 1=HD=2,∴DP 1=4.∴P 1,4,P 2,,P 3,﹣;3当y=0时,0=﹣x 2+x+2∴x 1=﹣1,x 2=4,∴B4,0.设直线BC 的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M,设Ea,﹣a+2,Fa,﹣a 2+a+2,∴EF=﹣a 2+a+2﹣﹣a+2=﹣a 2+2a0≤x≤4.∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BDOC+EFCM+EFBN,=+a ﹣a 2+2a+4﹣a ﹣a 2+2a,=﹣a 2+4a+0≤x≤4.=﹣a ﹣22+∴a=2时,S 四边形CDBF 的面积最大=,∴E2,1.。
二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题
二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题在数学学习中,二次函数和三角函数是重要的概念。
它们在综合算式中也经常出现,因此熟练掌握二次函数和三角函数的综合题目练习对于初中数学的学习非常重要。
接下来,我们将通过一些例题,来练习和巩固这些知识点。
1. 题目一:已知函数f(x) = 2x^2 - 3x + 5,求f(-1)的值。
解析:将x = -1代入函数f(x)中,得到f(-1) = 2(-1)^2 - 3(-1) + 5= 2(1) + 3 + 5= 2 + 3 + 5= 10故f(-1)的值为10。
2. 题目二:已知函数g(x) = sin(x),求g(π/2)的值。
解析:将x = π/2代入函数g(x)中,得到g(π/2) = sin(π/2)= 1故g(π/2)的值为1。
3. 题目三:已知函数h(x) = 3x^2 - 4sin(x),求h(π)的值。
解析:将x = π代入函数h(x)中,得到h(π) = 3(π)^2 - 4sin(π)= 3π^2 - 4(0)= 3π^2故h(π)的值为3π^2。
通过以上例题,我们可以看到如何运用二次函数和三角函数来求特定点的函数值。
对于二次函数的计算,只需将给定值代入函数表达式中;对于三角函数的计算,只需将给定值代入三角函数表达式中。
掌握了这些计算方法后,我们就能够解决更复杂的综合题目。
接下来,我们来解决一些综合的二次函数和三角函数题目。
4. 题目四:已知函数y = ax^2 + bx + c,其中a ≠ 0。
若函数图像过点(1, 5),且在x = 2处的切线斜率为4,则求函数的解析式。
解析:由已知条件可得:①将x = 1代入函数y中,得到a(1)^2 + b(1) + c = 5得到a + b + c = 5②函数在x = 2处的切线斜率为4,即导数为4。
求导得到y' = 2ax + b,将x = 2代入导数中,得到4 = 2a(2) + b化简得到4 = 4a + b通过以上两个方程,我们可以得到关于a、b、c的方程组:a +b +c = 54 = 4a + b解这个二元一次方程组,可以得到a = 1,b = 0,c = 4。
二次函数与几何综合(有答案)中考数学压轴题必做(经典)
二次函数与几何综合题目背景07 年课改后,最后一题宽泛为抛物线和几何结合(主若是与三角形结合)的代数几何综合题,计算量较大。
几何题可能想许久都不能够动笔,而代数题则能够想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。
因此,课改此后,武汉市数学中考最后一题相对来说要比以前简单很多,而这也吻合教育部要求给学生减少负担的主旨,因此也会连续下去。
要做好这最后一题,主若是要在有限的时间里面找到的简略的计算方法。
要做到这一点,一是要加强自己的观察力,二是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐心,做到计算又快又准。
题型解析题目解析及对考生要求(1)第一问平时为求点坐标、解析式:本小问要修业生能够熟练地掌握待定系数法求函数解析式,属于送分题。
(2)第二问为代数几何综合题,题型不固定。
解题偏代数,要修业生能够熟练掌握函数的平移,左加右减,上加下减。
要修业生有较好的计算能力,能够把题目中所给的几何信息进行转变,获取相应的点坐标,再进行相应的代数计算。
(3)第三问为几何代数综合,题型不固定。
解题偏几何,要修业生能够对题目所给条件进行转变,合理设参数,将点坐标转变成相应的线段长,再依照题目条件合理构造相似、全等,也许利用锐角三角函数,将这些线段与题目成立起联系,再进行相应计算求解,此处要修业生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,经常有一些几何条件,我们直接在坐标系中话不是很好用,这时我们需要对它进行相应的条件转变,变成方便我们使用的条件,以下为两种常有的条件转变思想。
1、遇到面积条件: a. 不规则图形先进行切割,变成规则的图形面积; b. 在第一步变化后仍不是很好使用时,依照同底等高,也许等底同高的三角形面积相等这一性质,将面积进行转变; c. 当面积转变成一边与坐标轴平行时,以这条边为底,依照面积公式转变成线段条件。
2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全等也许利用锐角三角函数,转变成线段条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E 作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EMN的周长是.
2.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,
则D为BC的中点,∠BAD=∠BAC=60°,于是==;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
3.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,
连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
4.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F
在线段CB的延长线上,连接EA,EC.
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;
(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.
5.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐
标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:=;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
6.问题提出
(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的
长为;
问题探究
(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
7.我们定义:如图1,在△ABC中,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们
称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.
8.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA
于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.
(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.
9.如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE 的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF
交AD于点G,设=n.
(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.
10.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.
(1)如图1,若点M与点D重合,求证:AF=MN;
(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为t s.
①设BF=y cm,求y关于t的函数表达式;
②当BN=2AN时,连接FN,求FN的长.
11.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
12.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.
(1)填空:∠BAD与∠ACB的数量关系为;
第11页(共12页)
(2)求的值;
(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若
CD=,求PC的长.
第12页(共12页)。