海门中学附中2007-08学年上学期七年级数学强化训练12

合集下载

海门中学附校期中考试题型强化训练 (苏科版七年级上).doc

海门中学附校期中考试题型强化训练 (苏科版七年级上).doc

海门中学附校期中考试选择题强化训练1、下列说法正确的是 ( )A 、比负数大的数是正数B 、数轴上的点表示的数越大,就离开原点越远C 、若a>b ,则a 是正数,b 是负数D 、若a>0,则a 是正数,若a<0,则a 是负数2、下列说法正确的有 ( )A 、正数的绝对值是正数B 、两个数比较,绝对值大的反而小B 、何一个数的绝对值都不会是小于0的数 D 、任何一个数的绝对值都是自然数3、一个数的立方等于它本身,这个数是 ( )A 、0B 、1C 、-1,1D 、-1,1,04、下列各式中,不相等的是 ( )A 、23)(-和23-B 、23)(- 和23C 、32)(-和32-D 、2|3|-和|3|2- 5、下列说法正确的是 ( )A 、有理数的绝对值一定是正数B 、如果两个数的绝对值相等,那么这两个数相等C 、若一个数是负数,那么这个数的绝对值是它的相反数D 、绝对值越大这个数就越大6、下列说法中正确的是 ( )A 、零除以任何数都是零。

B 、21-的倒数的绝对值是21 C 、相反数等于它的本身的数是零和一切正数。

D 、除以一个数,等于乘以它的倒数。

7、如果一个数除以这个数的绝对值的商为—1,那么这个数一定是 ( )A 、正数B 、负数C 、+1或—1D 、除零外的有理数8、下列说法正确的是 ( )A 、平方为16的数是4B 、平方等于本身的数是1C 、立方等于本身的数是0和1D 、有理数的平方方是非负数9.下列等式成立的是 ( )A .22()a a -= B .2a a a += C .||a a =± D .236a a a ⋅= 10.若||3a =,||2b =,且0a b -<,则a b +的值等于 ( )A .1或5B .1或-5C .-1或-5D .-1或511.已知a 、b 互为相反数,c 、d 互为倒数,x 等于4的2次方,则式子1()2cd a b x x ---的值为 ( )A .2B .4C .8D .-812. 任何一个有理数的绝对值在数轴上的位置是 ( )A.原点两旁B.整个数轴C.原点右边D.原点及其右边13. 如果=2a (3-)2,那么a 等于 ( ) A.3 B.-3 C.9 D.± 314. 2007-[2007-(2006-2007)]的值为 ( )A.-1B.-2007C.-2D.200615. 一个数的倒数的相反数是513,那么这个数是 ( ) A.516- B.516 C. 165 D. 165- 16.如果∣2+a ∣+(1-b )2=0,那么2007)(b a +的值是 ( )A.-2007B.2007C.-1D.117. 如果-4是关于x 的方程12-=+x k x 的解,那么k 等于 ( )A.-13B.3C.-5D.518、如果|5-a |+|b +3|=0,则式子1(12)b a -的值为 ( ) 5578 (7855)A B C D 19、下列说法中,正确的是 ( )A 、一个数的平方不能是负数B 、一个数的平方只能是正数C 、一个数的平方一定大于这个数D 、一个数的平方一定大于这个数的相反数20、若a 与b 互为倒数,当a=3时,代数式a b ab -2)(的值为 ( ) A .32 B .23 C .89 D .98 21. 如果 0=+b a ,那么a 与b 之间的关系是 ( )(A )相等 (B )符号相同 (C )符号相反 (D )互为相反数22. 若5=a ,3=b ,那么b a ⋅的有( )个(A )1 (B )2 (C )3 (D )423. 数a ,b 在数轴上的位置如图所示,则b a +是 ( )(A )正数 (B )零 (C )负数 (D )都有可能24、下列说法中,不正确的是 ( ).A 、0既不是正数,也不是负数B 、1是的绝对值最小的数C 、0的相反数是0D 、0的绝对值是0.25、|–2|的相反数是 ( ). A 、21-B 、–2C 、21 D 、2. 26、 若3=a ,5=b ,则b a +的值为 ( ). A 、8 B 、2 C 、2或8 D 、以上都不对27、下面的说法正确的是 ( ).A 、–2不是单项式B 、–a 表示负数C 、 3ab 5 的系数是3D 、x+ a x+1不是多项式28、已知一个数的平方数等于它的绝对值,这样的数共有 ( ).A 、1个B 、2个C 、3个D 、4个29、五个连续奇数中最大的一个数是a ,那么其余四个数的和是 ( ).A 、 4aB 、 4a-10C 、 4a-20D 、 4a+2030、如果知道a 与b 互为相反数,且x 与y 互为倒数,那么代数式|a + b| - 2xy 的值为 ( ).A 、 0B 、-2C 、-1D 、无法确定.31、某种品牌的彩电降价30℅以后,每台售价为a 元,则该品牌彩电每台原价为 ( ).A 、0.7a 元B 、0.3a 元C 、3.0a 元D 、7.0a 元. 32、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是 ( ).A 、20022B 、20022-1C 、20012D 、以上答案不对33、有一个人从甲地出发以7千米/时的速度到达乙地,又立即以9千米/时的速度返回甲地,则此人在往返过程中的平均速度为( )千米/时.A 、 8B 、 6316C 、 7D 、 638. 34、使ax 2-2xy +y 2 = 6x 2 + bxy +cy 2成立的a ,b ,c 依次是 ( )A 、6,-2,-1B 、-3,7,-1C 、6,2,1D 、6,-2,135、如果两个有理数的和是正数,积是负数,那么这两个有理数 ( )A 、都是正数B 、绝对值大的那个数正数,另一个是负数C 、都是负数D 、绝对值大的那个数负数,另一个是正数36.已知a 、b 互为相反数,c 、d 互为倒数,x 等于4的2次方,则式子1()2cd a b x x ---的值为 ( )A .2B .4C .8D .-837、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来的两位数是 ( )A. 54B. 27C. 72D. 4538.若3=a ,5=b ,则b a +的值为 ( ).A 、8B 、2C 、2或8D 、以上都不对39.如果a 是有理数,则下列各式的值一定大于零的是 ( )A 、 aB 、2a C 、01.02+a D 、100+a40.a,b 是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a, b, -b 按照从小到大的顺序排列 ( )A. -b <-a <a <bB. -a <-b <a <bC. -b <a <-a <bD. -b <b <-a <a41.某商品的销售价为225元,利润率为25%,则该商品的进价为 ( )A 、200元B 、250元C 、225元D 、180元期中考试数学选择题强化训练答案1、下列说法正确的是 ( D )A 、比负数大的数是正数B 、数轴上的点表示的数越大,就离开原点越远C 、若a>b ,则a 是正数,b 是负数D 、若a>0,则a 是正数,若a<0,则a 是负数2、下列说法正确的有 ( C )A 、正数的绝对值是正数B 、两个数比较,绝对值大的反而小B 、何一个数的绝对值都不会是小于0的数 D 、任何一个数的绝对值都是自然数3、一个数的立方等于它本身,这个数是 ( D )A 、0B 、1C 、-1,1D 、-1,1,04、下列各式中,不相等的是 ( A )A 、23)(-和23-B 、23)(- 和23C 、32)(-和32-D 、2|3|-和|3|2- 5、下列说法正确的是 ( C )A 、有理数的绝对值一定是正数B 、如果两个数的绝对值相等,那么这两个数相等C 、如果一个数是负数,那么这个数的绝对值是它的相反数D 、绝对值越大,这个数就越大6、下列说法中正确的是 ( C )A 、零除以任何数都是零。

海门中学七年级数学上册第二单元《整式的加减》经典练习(含答案解析)

海门中学七年级数学上册第二单元《整式的加减》经典练习(含答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个 B .3个 C .4个 D .5个3.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg 4.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元5.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6 6.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22 7.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2 8.下列计算正确的是( ) A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣99.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 10.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11 11.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 12.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = 13.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8- C .6和8 D .2-和8- 14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元15.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738二、填空题16.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________. 17.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.19.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.20.单项式20.8a h π-的系数是______.21.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.22.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).23.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.24.“a 的3倍与b 的34的和”用代数式表示为______. 25.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.26.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;三、解答题27.已知31A B x ,且3223A x x ,求代数式B .28.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.29.观察下列单项式:﹣x,2x2,﹣3x3,…,﹣9x9,10x10,…从中我们可以发现:(1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n个单项式是.30.给定一列分式:3xy,52xy-,73xy,94xy-,…(其中0x≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.。

海门初一上数学试卷期末

海门初一上数学试卷期末

一、选择题(每题3分,共30分)1. 下列各数中,正数是()。

A. -5B. 0C. 3D. -32. 下列各式中,正确的是()。

A. a + b = b + aB. a - b = b - aC. a × b = b × aD. a ÷ b = b ÷ a3. 下列各数中,绝对值最大的是()。

A. -5B. 0C. 3D. -34. 若a > b,则下列不等式中正确的是()。

A. a + 1 > b + 1B. a - 1 < b - 1C. a × 1 > b × 1D. a ÷ 1 > b ÷ 15. 一个长方形的长是5厘米,宽是3厘米,它的周长是()厘米。

A. 8B. 10C. 15D. 186. 若一个数的平方是4,则这个数是()。

A. 2B. -2C. ±2D. ±47. 下列各数中,是质数的是()。

A. 4B. 6C. 7D. 88. 下列各数中,是偶数的是()。

A. 3B. 4C. 5D. 69. 下列各式中,正确的是()。

A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²10. 若一个数的倒数是1/3,则这个数是()。

A. 3B. -3C. 1/3D. -1/3二、填空题(每题3分,共30分)11. 5的倒数是______。

12. 3的平方是______。

13. -2的相反数是______。

14. 若a = 2,b = -3,则a + b = ______。

15. 若a = 3,b = 4,则a × b = ______。

海门市区2008~2008学年度第一学期期末联考初一数学试题 人教版上册

海门市区2008~2008学年度第一学期期末联考初一数学试题 人教版上册

海门市区2008~2008学年度第一学期期末联考初 一 数学试题一、选择题(每题2分,共28分)1.继短信之后,音乐类产品逐步成为我国手机用户最爱的移动通信的增长点.目前中国移动彩铃声用户已超过40000000,占中国移动2亿余用户总数的近20%,40000000用科学记数法可表示为( )A.74.010⨯ B.74010⨯ C.40×109D.0.4×1092.若a 与2互为相反数,则|a +2|等于( ) A .0 B .-2 C .2 D .43.某超市进了一批商品,每件进价为a 元,若要获利25%,则每件商品的零售价应定为( )A .25%aB .(1-25%)aC .(1+25%)aD .a1+25%4.如图所示,它们是—个物体的三视图,该物体的形状是( )A. 圆柱 B .正方体 C .圆锥 D .长方体5. 3ab-4bc+1=3ab-( ),括号中所填入的代数式应是( )。

(A )-4bc+1 (B )4bc+1 (C )4bc-1 (D )-4bc-1 ( )A.2x -(3x -2)=2x -3x -2 B.7a+(5b-1)=7a+5b+1 C.22m -(3m+5)=22m -3m -5 D.-(a-b)+(ab-1)=a-b+ab-1 ( )8. 若关于x 的方程3x+5=m 与x-2m=5有相同的解,则x 的值是( )A.3B.-3C.-49. 如果a ∥b,b ∥c,那么a ∥c,这个推理的依据是( )(A )等量代换 (B )平行线的定义(C )经过直线外一点,有且只有一条直线与已知直线平行 (D )平行于同一直线的两直线平行 10.若|x -21|+(2y +1)2=0,则x 2+ y 2的值是( ) A.83 B.21 C.-81 D.-83 12.下列画图语句中,正确的是( )OP =3 cm A 、B 两点 A 、BA 、B 两点的距离13.在一列数1,2,3,4,…,200中,数字“0”出现的次数是 ( )(A )30个 (B )31个 (C )32个 (D )33个14. 已知A ,B 两点之间距离是10cm,C 是线段AB 上任意一点,则AC 的中点与BC 的中点距离是( )(A )3cm (B )4cm (C )5cm (D )不能确定二、填空题(每题2分,共24分)1.在数轴上,与表示-1的点距离为4的所有数为___。

苏科版七年级上册数学海门中学附校期中考试应用题训练.docx

苏科版七年级上册数学海门中学附校期中考试应用题训练.docx

海门中学附校期中考试应用题训练1. (4分)老牛:“累死我了!”小马:“你还累?这么大的个儿,才比我多驮了2个。

”老牛:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!”小马:“真的吗?”根据老牛和小马的对话,你能求出它们各驮了多少个包裹吗?2、(8分)小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路依次为(单位:厘米)+5,-3,+10,-8,-6,+12,-10 (1)小虫最后是否可回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫一共得到多少粒芝麻?3、(6分)把若干本练习本分给学生,如果每人4本,就剩下25本,如果每人5本,就差5本,问学生有多少人?4、(8分)树的高度与树生长的年数有关,测得某棵树的有关数据如下表(树苗原高100厘米):(1(2)请用含a的代数式表示高度h ;(3)根据这种长势,10年后这棵树可能达到的高度是厘米.5、(6分)初一年级的学生去博物馆参观,从学校出发以5千米/时的速度前进,某同学因有事,迟从学校出发了18分,他急忙骑车以14千米/时的速度追队伍,问他在离开学校多远的地方能追上队伍。

6、(6分)现有10箱苹果,以每箱24千克为标准,超过的记作正数,不足的记作负数,称重记录如下:+1、—2、+1、—1、+2、+2、—2、—1、0、+1,问这10箱苹果的总重量是多少?7、(6分)某山脚下的气温是20 C 0,已知高度每升高100米,气温就下降0.2 C 0,若该山的山顶距离山底2000米,问山顶的气温是多少?8、花园小学学生王新和他的爸爸、妈妈准备在国庆节外出旅游。

阳光旅行社的收费标准为:大人全价,小孩半价;而蓝天旅行社不管大人小孩,一律八折。

这两家旅行社的基本费一样都是200元,你认为应该去哪家旅行社较为合算?(本题10分)9、已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.(1)如果有人乘出租车行驶了x 公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?(8分)期中考试应用题训练答案1. (4分)老牛:“累死我了!”小马:“你还累?这么大的个儿,才比我多驮了2个。

海门中学附校期中考试题型强化训练(苏科版七年级上)

海门中学附校期中考试题型强化训练(苏科版七年级上)

海门中学附校期中考试选择题加强训练1、以下说法正确的选项是()A 、比负数大的数是正数B、数轴上的点表示的数越大,就走开原点越远C 、若 a>b ,则 a 是正数, b 是负数D 、若 a>0,则 a 是正数,若 a<0,则 a 是负数2、以下说法正确的有()A 、正数的绝对值是正数B 、两个数比较,绝对值大的反而小B 、何一个数的绝对值都不会是小于 0 的数 D 、任何一个数的绝对值都是自然数3、一个数的立方等于它自己,这个数是( )A 、0B、 1C、- 1,1 D、- 1,1,04、以下各式中,不相等的是()A 、23 2B 、( 2和 3 2C 、( 32 322|( 3)和3) 2)和D 、| 3|和| 3 5、以下说法正确的选项是( )A 、有理数的绝对值必定是正数B 、假如两个数的绝对值相等,那么这两个数相等C 、若一个数是负数,那么这个数的绝对值是它的相反数D 、绝对值越大这个数就越大 6、以下说法中正确的选项是 ( )A 、零除以任何数都是零。

B 、1的倒数的绝对值是122C 、相反数等于它的自己的数是零和全部正数。

D 、除以一个数,等于乘以它的倒数。

7、假如一个数除以这个数的绝对值的商为—1,那么这个数必定是()A 、正数B 、负数C、+1 或— 1 D、除零外的有理数8、以下说法正确的选项是()A 、平方为 16 的数是 4B、平方等于自己的数是 1 C 、立方等于自己的数是 0 和 1D、有理数的平方方是非负数9.以下等式建立的是()A . ( a)2a 2B. a a a 2C. | a |aD . 2a 3a 6a10.若 | a | 3 , | b | 2 ,且 a b 0 ,则 a b 的值等于()A .1或5B.1或 5C.1或5D. 1或511.已知 a 、 b 互为相反数, c 、d 互为倒数, x 等于 4 的 2 次方,则式子 (cd a b)x1 x2的值为 ()A .2B. 4C. 8D . 812. 任何一个有理数的绝对值在数轴上的地点是()A. 原点两旁B.整个数轴 C.原点右侧D.原点及其右侧13. 假如 a 2(3 )2,那么 a 等于()A.3B. - 3C.9D. 314. 2007 - [2007 -( 2006- 2007) ] 的值为()A.- 1B. - 2007C.- 2D.200615.一个数的倒数的相反数是 3 1,那么这个数是( )1616 55 5A.B.C.55D.161616. 假如∣ a2 ∣ ( b 1 ) 2 =0,那么 ( a b) 2007 的值是()A. - 2007B.2007C.-1 D.117. 假如- 4 是对于 x 的方程2x k x 1 的解,那么 k 等于()A.- 13B.3C.-5D.518、假如| 5- a |+| b + 3|= 0,则式子1(1 2b) 的值为()A.5B.5C. 7 aD. 8785 519、以下说法中,正确的选项是()A 、一个数的平方不可以是负数B 、一个数的平方只好是正数C 、一个数的平方必定大于这个数D 、一个数的平方必定大于这个数的相反数20、若 a 与 b 互为倒数,当 a=3 时,代数式 (ab) 2b的值为()aA .2B.3C .9D .8328921. 假如 a b0 ,那么 a 与 b 之间的关系是()( A )相等( B )符号同样( C )符号相反( D )互为相反数22. 若 a5 , b 3,那么 a b 的有()个( A )1(B )2( C )3(D )423. 数 a , b 在数轴上的地点以下图,则a b 是()( A )正数(B )零 (C )负数( D )都有可能24、以下说法中,不正确的选项是() .A 、0 既不是正数,也不是负数B 、 1 是的绝对值最小的数C 、 0的相反数是 0D 、 0 的绝对值是 0.25、 | – 2| 的相反数是() .A 、 1B、– 2C、1D、 2.2226、 若 a3, b 5 ,则 a b 的值为().A 、8B 、 2C、2或 8D、以上都不对27、下边的说法正确的选项是( ) .3abaA 、–2不是单项式B 、–a 表示负数C 、 5 的系数是 3D 、x+ x +1不是多项式28、已知一个数的平方数等于它的绝对值,这样的数共有().A、1个 B 、2个 C 、3个 D 、4个29、五个连续奇数中最大的一个数是a,那么其他四个数的和是().A、 4a B 、 4a-10 C 、 4a-20 D 、 4a+2030、假如知道 a 与 b 互为相反数,且 x 与 y 互为倒数,那么代数式|a + b| - 2xy 的值为().A、 0 B 、 -2 C 、 -1 D 、没法确立 .31、某种品牌的彩电降价 30℅此后,每台售价为 a 元,则该品牌彩电每台原价为().A、0.7a 元 B 、 0.3a 元 C 、a元 D 、a元 .0.3 0.732、下边一组按规律摆列的数:1,2 , 4,8 , 16,,第2002 个数应是() .A、22002 B 、22002-1 C 、2 2001 D 、以上答案不对33、有一个人从甲地出发以7 千米 / 时的速度抵达乙地,又立刻以9 千米 / 时的速度返回甲地,则这人在来回过程中的均匀速度为()千米 / 时.63 63A、 8 B 、16 C 、 7 D 、8 .34、使 ax2- 2xy +y2 = 6x 2 + bxy +cy 2建立的 a,b, c 挨次是()A、 6,- 2,- 1B、- 3, 7,- 1C、6, 2, 1D、 6,- 2, 135、假如两个有理数的和是正数,积是负数,那么这两个有理数()A 、都是正数B 、绝对值大的那个数正数,另一个是负数C、都是负数 D 、绝对值大的那个数负数,另一个是正数36.已知a、b互为相反数,c、d互为倒数,x等于 4 的 2 次方,则式子(cd a b)x 1 x2 的值为()A. 2 B. 4 C. 8 D. 837、一个两位数,个位数字与十位数字的和是9,假如将个位数字与十位数字对换后所得新数比原数大9,则本来的两位数是()A. 54B. 27C. 72D. 4538.若a 3 , b 5,则 a b 的值为().A、 8 B 、 2 C 、2或8 D 、以上都不对39.假如a是有理数,则以下各式的值必定大于零的是()A 、a B 、 a 2 C 、 a 2 0.01D 、 a 10040. a,b 是有理数,它们在数轴上的对应点的地点以以下图所示:a 0 b把 a, - a, b, - b 依据从小到大的次序摆列( )A.-b<- a<a< bB. - a<- b< a<bC. -b< a<- a< bD. - b< b<- a< a 41.某商品的销售价为225 元,收益率为25%,则该商品的进价为A、200 元B、250元C、225元D、180元()期中考试数学选择题加强训练答案1、以下说法正确的选项是( D) A 、比负数大的数是正数B、数轴上的点表示的数越大,就走开原点越远C 、若 a>b ,则 a 是正数, b 是负数D、若 a>0,则 a 是正数,若 a<0,则 a 是负数2、以下说法正确的有( C)A 、正数的绝对值是正数B 、两个数比较,绝对值大的反而小B 、何一个数的绝对值都不会是小于 0 的数 D 、任何一个数的绝对值都是自然数3、一个数的立方等于它自己,这个数是( D )A 、0B、 1 C 、-1,1 D、- 1,1,04、以下各式中,不相等的是( A)A 、22 B 、( 2和 3232 32和 | 3 2|(3)和3 3) C 、( 2)和D 、| 3|5、以下说法正确的选项是( C )A 、有理数的绝对值必定是正数B 、假如两个数的绝对值相等,那么这两个数相等C 、假如一个数是负数,那么这个数的绝对值是它的相反数D 、绝对值越大,这个数就越大6、以下说法中正确的选项是 ( C )A 、零除以任何数都是零。

海门中学七年级数学上册第二章《整式的加减》经典练习(含答案解析)

海门中学七年级数学上册第二章《整式的加减》经典练习(含答案解析)

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C 解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y 的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键.3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A 解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.7.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.8.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.9.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D 解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b -的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.10.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.11.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.12.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 13.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.14.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.与22m m +-的和是22m m -的多项式为__________.【分析】直接利用整式的加减运算法则计算得出答案【详解】设多项式A 与多项式的和等于∴A=-()故答案为:【点睛】本题主要考查了整式的加减正确去括号和合并同类项是解题关键 解析:32m -+【分析】直接利用整式的加减运算法则计算得出答案.【详解】设多项式A 与多项式22m m +-的和等于22m m -,∴A=22m m --(22m m +-)2222m m m m =---+32m =-+.故答案为:32m -+.【点睛】本题主要考查了整式的加减,正确去括号和合并同类项是解题关键.2.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 3.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.4.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.5.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -= 56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.6.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.7.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.8.图中阴影部分的面积为______.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.9.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式 解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式. 10.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法. 1.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.2.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x=﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),则f (﹣1)=﹣7.已知f (x )=ax 5+bx 3+3x+c ,且f (0)=﹣1(1)c=_____.(2)若f (1)=2,求a+b 的值;(3)若f (2)=9,求f (﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(2)把x=1,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题; 详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.3.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.4.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.。

海门中学附中2008期终培优强化训练12初一数学

海门中学附中2008期终培优强化训练12初一数学

数学培优强化训练(十二)1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则20082008b a +等于 ( )(A )1 (B ) -1 (C ) ±1 (D ) 22、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( )(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的 ( )(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上 图1 图34、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是 ( )(A )2α-β (B )α-β (C )α+β (D )以上都不正确5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=21PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为 ( )(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x元,根据题意,可列方程为7、2.42º= º ′ ″8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表: 销售数量x(千克) 1 23 4 …… 价格C (元) 2.5+0.25+0.4 7.5+0.6 10+0.8 ……(1)用数量x 表示售价C 的公式,C=___ __ __ (2)当销售数量为12千克时,售价C 为_____ _ 9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=2110、解方程(1) 5(x -1)-2(x+1)=3(x -1)+x+1(2)235.112.018.018.0103.002.0x x x --+-=+11、用棋子摆出下列一组图形: (1)(2)(3) (1)填写下表:图形编号 1 2 3图形中的棋子枚数(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含n 的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?12、如图所示, 设l =AB+AD+CD, m=BE+CE, n=BC. 试比较m 、n 、l 的大小, 并说明理由.数学培优强化训练(十二)(答案)1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则a2007+b 2007等于( A )(A )1 (B ) -1 (C ) 1 (D ) 22、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( C )(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm 图1 图33、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A 点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的( B )(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是( A )(A )2α-β (B )α-β (C )α+β (D )以上都不正确5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=21PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为( D )(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x 元,根据题意,可列方程为 X + X × 1.98% - X × 1.98% × 20% = 12197、2.42º= 2 º 25 ′ 12 ″(本小题1分)8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表: 销售数量x(千克) 1 23 4 …… 价格C (元) 2.5+0.25+0.4 7.5+0.6 10+0.8 …… (1)用数量x 表示售价C 的公式,C=_____2.7_×_X__ __(2)当销售数量为12千克时,售价C 为_____32.4__9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=21 解:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2 =2 a 2b+2 ab 2-[2 ab 2 -1 + a 2b]-2=2 a 2b+2 ab 2-2 ab 2 + 1 - a 2b-2= a 2b-1∵a= -2,b=21 ∴2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2= a 2b-1= (-2)2×21-1=2-1=1 10、解方程. (每小题3分, 共6分)(1) 5(x -1)-2(x+1)=3(x -1)+x+1 (2) 235.112.018.018.0103.002.0x x x --+-=+ 解:∵5(x -1)-2(x+1)=3(x -1)+x+1 解:∵235.112.018.018.0103.002.0x x x --+-=+∴3x -7 = 3x -3+x+1 ∴203015121818132x x x ---=+ ∴x =-5 463233132x x x ---=+ 8x +12=18-18x -9+18x 8x =-3∴x =-83 11、用棋子摆出下列一组图形:(1)(2)(3)(1)填写下表: 图形编号 12 3 图形中的棋子枚数6 9 12 (2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含n 的代数式表示)解:依题意可得当摆到第n 个图形时棋子的枚数应为:6 + 3(n -1)= 6 + 3n - 3 = 3n+3(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?(1分)解:由上题可知此时9933=+n ∴32=n答:第32个图形共有99枚棋子。

海门中学七年级数学上册第二单元《整式加减》-解答题专项经典题(答案解析)

海门中学七年级数学上册第二单元《整式加减》-解答题专项经典题(答案解析)

一、解答题1.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.2.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可.【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元;当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元);当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩. 【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.3.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.4.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

最新海门中学附中2008期终培优强化训练2.doc

最新海门中学附中2008期终培优强化训练2.doc

数学培优强化训练(二)1.下列方程中,解为2=x 的方程是 ( ) A .323=-x B .1)1(24=--x C .x x 26=+- D .0121=+x 2.若代数式35)2(22++-y x m 的值与字母x 的取值无关,则m 的值是( ) A .2 B .-2 C .-3 D .03.如图,,,,,b CD a AB CD AD BC AC ==⊥⊥则AC 的取值范围 ( ) A .大于b B .小于a C .大于b 且小于a D .无法确定4.如图,已知正方形的边长为4cm ,则图中阴影部分的面积为 cm 2。

5.方程133221=--+xx 的解为 。

6.小华和小明每天坚持跑步,小明每秒跑6米,小华每秒跑4米,如果他们同时从相距200米的两地相向起跑,那么几秒后两人相遇?若设x 秒后两人相遇,可列方程 。

7.如图,直线AB 与CD 相交于点O ,OE⊥AB,OF⊥CD。

(1)图中∠AOF 的余角是 (把符合条件的角都填出来)。

(2)图中除直角相等外,还有相等的角,请写出三对: ① ;② ; ③ 。

(3)①如果∠AOD =140°.那么根据 ,可得∠BOC = 度。

②如果AOD EOF ∠=∠51,求∠EOF 的度数。

8.扬州某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜。

(1)两同学向公司经理了解租车的价格。

公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元。

”王老师说:“我baCB DAOFEDC BA们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格。

你知道45座和60座的客车每辆每天的租金各是多少元?(6分)(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由。

海门七年级上学期数学试卷

海门七年级上学期数学试卷

一、选择题(每题4分,共40分)1. 下列数中,属于有理数的是()A. √9B. √16C. √25D. √362. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 03. 已知方程2x - 3 = 7,则x的值为()A. 2B. 3C. 4D. 54. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = x^35. 在直角坐标系中,点A(2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)6. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 平行四边形D. 梯形7. 若等边三角形的边长为a,则其面积为()A. (a^2√3)/4B. (a^2√2)/4C. (a^2√3)/2D. (a^2√2)/28. 下列数据中,众数是5的是()A. 1, 2, 3, 4, 5, 5, 6B. 1, 2, 3, 4, 5, 5, 7C. 1, 2, 3, 4, 5, 6, 6D. 1, 2, 3, 4, 5, 7, 79. 若一个数的平方根是2,则这个数是()A. 4B. -4C. ±4D. 010. 在下列数中,质数有()A. 1, 2, 3, 4B. 2, 3, 5, 7C. 2, 3, 4, 6D. 2, 3, 4, 8二、填空题(每题5分,共25分)11. 若a - b = 5,且a + b = 3,则a = _______,b = _______。

12. 3x - 2 = 7的解为 x = _______。

13. 下列函数中,是二次函数的是 y = _______。

14. 下列图形中,对边平行且相等的四边形是 _______。

15. 若一个数的平方是25,则这个数是 _______。

江苏省南通市海中附校2024-2025学年七年级上学期第一次月考数学试题

江苏省南通市海中附校2024-2025学年七年级上学期第一次月考数学试题

江苏省南通市海中附校2024-2025学年 七年级上学期第一次月考数学试题一、单选题1.114-的倒数是( )A .114-B .114C .45D .45-2.下列几种说法中,正确的是( ) A .最小的自然数是1B .在一个数前面加上“-”号所得的数是负数C .任意有理数a 的倒数是1aD .任意有理数a 的相反数是a -3.如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数为( )A .7B .3C .2-D .24.如果0,0,0a b a b <>+>,那么下列各式中大小关系正确的是( ) A .a b a b <-<-< B .a b b a <-<<- C .b a b a -<<<-D .b a a b -<<-<5.若a b =,则a b 、的关系下列一定成立的是( ) A .a b ≥B .a b >C .a b ≤D .a b <6.在下列各等式中,a 表示正数的有( )个式子 ①a a =;②a a =-;③a a >-;④a a ≥-;⑤1a a=;⑥1a a<A .4B .3C .2D .17.已知1a b +、互为相反数,且||6a b -=,则|1|b -的值为( ) A .1.5或4.5B .2或3C .1.5或4D .2或48.如图所示,a b 、是有理数,则式子a b a b a b ++++-化简的结果为( )A .3a b +B .3a b -C .3b a +D .3b a -9.下列各组数中,结果一定相等的为( ) A .﹣a 2与(﹣a )2 B .﹣(﹣a )2与a 2C .﹣a 2与﹣(﹣a )2D .(﹣a )2与﹣(﹣a )210.设x 是有理数,12136y x x x =++-+-,则下面四个结论中正确的是( )A .y 没有最小值B .只有一个x 的值使y 取最小值C .有有限个(不止一个)x 的值使y 取最小值D .有无数多个x 的值使y 取最小值二、填空题11.若a 是最大的负整数,b 是绝对值最小的数,c 与2a 互为相反数,则()32019a b c -+=. 12.比较大小:π-- 3.14-.(填“>”或“=”或“<”)13.a b c d 、、、是互不相等的有理数,且1a b b c c d -=-=-=,则a d -=. 14.设[]x 表示不超过x 的最大整数如[]1.91=,计算下列各式的值:[][]2.7 4.5+-=;113223⎡⎤-÷=⎢⎥⎣⎦. 15.观察下面一列数:按照上述规律排下去,那么第10行从左边数第9个数是.16.用331313--,,,只能用加减乘除运算,列出等于36的算式是. 17.已知213460x x ++-=,则x =.18.将1,2,3,4,5,…,37这37个连续整数不重不漏地填入37个空格中.要求:从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第1个空格填入37,则第2个空格所填入的数为,第37个空格所填入的数为.三、解答题19.认真计算,并写清解题过程(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)752561812936⎡⎤⎛⎫--+--÷ ⎪⎢⎥⎝⎭⎣⎦(3)()194102849-÷⨯÷-(4)22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)315714424⎛⎫⎛⎫------ ⎪ ⎪⎝⎭⎝⎭(6)()10032151122⎛⎫----÷- ⎪⎝⎭20.已知x ,y 均为整数,且31x y x -+-=,求x y +的值.21.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知小明妈妈星期三生产玩具个; (2)根据记录的数据可知小明妈妈本周实际生产玩具个.(3)该厂实行“每周计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣2元,那么小明妈妈这一周的工资总额采用每日计件合算还是每周计件合算?试通过计算说明理由.22.一家饭店,地面上18层,地下1层.地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地下1层为停车场.(1)客房7楼与停车场相差几层楼?(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,你知道他最后在哪里吗?(3)某日,电梯检修,一名服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了几层楼梯?23.有理数a 、b 、c 在数轴上的位置如图所示(1)比较a 、b 、|c|的大小(用“>”连接); (2)若n=|b+c|﹣|c ﹣1|﹣|b ﹣a|,求()201812017?n a -+的值;(3)若a=34,b=﹣2,c=﹣3,且a 、b 、c 对应的点分别为A 、B 、C ,问在数轴上是否存在一点M ,使M 与B 的距离是M 与A 的距离的3倍,若存在,请求出M 点对应的有理数;若不存在,请说明理由.24.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时. (1)如果甲、乙、丙三人同时改卷,那么需要多少时间完成?(2)如果按照甲、乙、丙、甲、乙、丙、……的次序轮流阅卷,每一轮中每人各阅卷1小时.那么要多少小时完成?(3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需要说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)25.定义运算“*”如下:对任意有理数x y ,和z 都有()()0x x x y z x y z *=**=*+,,这里“+”号表示数的加法,则求以下式子的值: (1)0x * (2)()20245*-。

苏科版七年级上册数学海门中学附校期中考试解答题训练

苏科版七年级上册数学海门中学附校期中考试解答题训练

海门中学附校期中考试解答题训练1.先化简,再求值(5分)2223(21)2(3)x x x x x --++-+-,其中3x =-2.已知关于x 的方程142ax x a +=+的解是3,求式子22(3)a a +-的值。

(5分)3.(7分)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表。

(1)如图,用一正方形框在表中任意框住4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是___________,____________,____________。

(2)当(1)中被框住的4个数之和等于416时,x 的值为多少?(3)(1)中能否框住这样的4个数,它们的和等于324?若能,则求出x 的值;若不能,则说明理由。

(4)从左到右,第1至第7列各列数之和分别记为1a ,2a ,3a ,4a ,5a ,6a ,7a ,则这7个数中,最大数与最小数之差等于__________(直接填出结果,不写计算过程)。

4. 计算:(每题3分,共12分)(1) [15.25-13-(-14.75)]×(-0.125)÷321 (2) (1276543+-)÷23765432114131211109821201918171615 (23)22…………(3) -12+[431+8×(-3)]×0-(-5)2 (4) 523+6÷(-2)+(-4)×2125、计算(每小题4分,共12分) (1)-56÷(-16-12)+(-2)×5 (2)-14-(2111336--)×78(3)-42×5|5|8--×(-4)3×14+22÷4(4)()3422312111-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--- (5)5273213157÷⨯⎪⎭⎫ ⎝⎛-⨯(6) 22)7(])6()61121197(50[-÷-⨯+--6.先化简,再求值:2)(2)(3++--y x y x ,其中1-=x ,.43=y7. 去括号,并合并相同的项:(每题3分,共6分)(1) )1(2+-x x x 3+ (2) )25()(y x x y --+-8. (4分)已知∣a ∣=3,∣b ∣=2,且a <b ,求b a +的值。

海门中学七年级数学上册第四单元《几何图形初步》-解答题专项经典题(答案解析)

海门中学七年级数学上册第四单元《几何图形初步》-解答题专项经典题(答案解析)

一、解答题1.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.2.如图,已知点C 是线段AB 的中点,点D 在线段CB 上,且DA =5,DB =3.求CD 的长.解析:1【分析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=12AB=4.由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.3.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D在线段CB上”改为“点D在线段CB的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD的长度.解析:(1)CD=2.5厘米;(2)CD=4厘米.根据BD+AD=AB可求出AB的长,利用中点的定义可求出BC的长,根据CD=BC-BD求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD的长即可.【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C是线段AB的中点,∴BC=12AB=4(厘米)∴CD=BC-BD=2.5(厘米).(2)当点D在线段CB的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C是线段AB的中点,∴BC=12AB=2.5(厘米)∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意.解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A爬到G的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.6.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.7.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 8.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.9.已知线段AB=12,CD=6,线段CD 在直线AB 上运动(C 、A 在B 左侧,C 在D 左侧).(1)M 、N 分别是线段AC 、BD 的中点,若BC=4,求MN ;(2)当CD 运动到D 点与B 点重合时,P 是线段AB 延长线上一点,下列两个结论:①PA PB PC +是定值; ②PA PB PC-是定值,请作出正确的选择,并求出其定值. 解析:(1)MN =9;(2)①PA PB PC+是定值2. 【分析】(1)如图,根据“M 、N 分别为线段AC 、BD 的中点”,可先计算出CM 、BN 的长度,然后根据MN =MC +BC +BN 利用线段间的和差关系计算即可;(2)根据题意可得:当CD 运动到D 点与B 点重合时,C 为线段AB 的中点,根据线段中点的定义可得AC =BC ,此时①式可变形为()()PC AC PC BC PA PB PC PC ++-+=,进而可得结论.【详解】解:(1)如图,∵M 、N 分别为线段AC 、BD 的中点,∴CM =12AC =12(AB ﹣BC )=12(12﹣4)=4, BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PB PC +=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.10.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)连接E 、F 交BC 于点G ;(4)连接AD ,并将其反向延长;(5)作射线BC .解析:见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ;(2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.11.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】 (1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b ,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.12.如图所示,A,B两条海上巡逻船同时在海面发现一不明物体,A船发现该不明物体在他的东北方向(从靠近A点的船头观测),B船发现该不明物体在它的南偏东60 的方向上(从靠近B点的船头观测),请你试着在图中确定这个不明物体的位置.解析:见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A点向东北方向作一条线,在B点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A和B所在位置作出不明物体所在它们的方向上的射线,两线的交点D即为不明物体所处的位置.如图所示,点D即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.13.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 14.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.解析:见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x )=72°, 解得x=36°,故∠EOC=2x=72°.【点睛】 本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.17.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.18.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.19.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.20.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案.【详解】 (1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.21.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.22.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.解析:(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点, 所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键. 23.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,24.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.解析:(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC =55°,∴∠NOC =∠NOA +∠AOC =15°+ 55°70=°,∴射线OC 的方向是北偏东70°.(2)∵∠AOB =55°,∠AOB =∠AOC ,∴∠BOC =∠AOB +∠AOC =55°+55°=110°,又∵射线OD 是OB 的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.25.作图:如图,平面内有 A,B,C,D 四点按下列语句画图:(1)画射线 AB,直线 BC,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.26.已知线段14AB=,在线段AB上有点C,D,M,N四个点,且满足AC:CD:1DB=:2:4,12AM AC=,且14DN BD=,求MN的长.解析:7或3【分析】求出AC,CD,BD,求出CM,DN,根据MN CM CD DN=++或MN CM CD ND=+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =, 12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.28.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.29.如图,OC是∠AOB的平分线,∠AOD比∠BOD大30°,则∠COD的度数为________.解析:15°【分析】设∠BOD=x,分别表示出∠AOD=x+30°,∠AOC= x+15°,即可求出∠COD.【详解】解:设∠BOD=x,则∠AOD=x+30°,所以∠AOB=2x+30°.因为OC是∠AOB的平分线,所以∠AOC=12∠AOB= x+15°,所以∠COD=∠AOD-∠AOC=15°.故答案为:15°【点睛】本题考查了角平分线的定义,角的和差等知识,理解角平分线的定义,并用含x的式子表示是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。

海门中学七年级数学上册第二单元《整式加减》-解答题专项提高练习(专题培优)

海门中学七年级数学上册第二单元《整式加减》-解答题专项提高练习(专题培优)

一、解答题1.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -. 【分析】 (1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

海门中学初中数学七年级上期中经典练习(含答案解析)

海门中学初中数学七年级上期中经典练习(含答案解析)

一、选择题1.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2015,则m的值是()A.43B.44C.45D.462.﹣3的绝对值是()A.﹣3B.3C.-13D.133.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.x=5是下列哪个方程的解()A.x+5=0B.3x﹣2=12+xC.x﹣15x=6D.1700+150x=24505.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定6.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.7.如图,线段AB=8cm,M为线段AB的中点,C为线段MB上一点,且MC=2cm,N为线段AC的中点,则线段MN的长为()A .1B .2C .3D .48.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补 9.下列运用等式的性质,变形正确的是( )A .若x=y ,则x-5=y+5B .若a=b ,则ac=bcC .若23a bc c =,则2a=3b D .若x=y ,则x y a b= 10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .11.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( ) A .30°B .150°C .30°或150°D .90°12.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我13.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( ) A .﹣1 B .0 C .1 D .214.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330 D .(1+10%)x =33015.周长为68的长方形ABCD 被分成7个全等的长方形,如图所示,则长方形ABCD 的面积为( )A .98B .196C .280D .284二、填空题16.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___17.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=________度. 18.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).19.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.20.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.21.太阳半径约为696000千米,数字696000用科学记数法表示为 千米. 22.下列哪个图形是正方体的展开图( )A .B .C .D .23.2a -2-9 | = 0,则ab = ____________ 24.某公园划船项目收费标准如下: 船型 两人船 (限乘两人) 四人船 (限乘四人) 六人船 (限乘六人) 八人船 (限乘八人) 每船租金 (元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.25.用科学记数法表示:-206亿=______.三、解答题26.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.27.已知直线AB 和CD 交于点O ,∠AOC 的度数为x ,∠BOE=90°,OF 平分∠AOD . (1)当x=19°48′,求∠EOC 与∠FOD 的度数.(2)当x=60°,射线OE 、OF 分别以10°/s ,4°/s 的速度同时绕点O 顺时针转动,求当射线OE 与射线OF 重合时至少需要多少时间?(3)当x=60°,射线OE 以10°/s 的速度绕点O 顺时针转动,同时射线OF 也以4°/s 的速度绕点O 逆时针转动,当射线OE 转动一周时射线OF 也停止转动.射线OE 在转动一周的过程中当∠EOF=90°时,求射线OE 转动的时间.28.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.61545454 2.6154••=为例,进行探索:设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-=25893287799001100x ∴==因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示.29.解方程:x+12=2−x3−130.解下列方程:(1)3x﹣1=2﹣x;(2)1﹣2(x﹣1)=﹣3x;(3)213x+﹣16x-=1;(4)32[2(x﹣12)+23]=5x.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题二、填空题16.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的17.30【解析】【分析】根据和为90度的两个角互为余角和为180度的两个角互为补角列出算式计算即可【详解】解:∵∠3与30°互余∴∠3=90°-30°=60°∵∠2+∠3=210°∴∠2=150°∵∠118.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关19.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应20.无21.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数22.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛23.6或-6【解析】分析:根据非负数的性质列出方程求出ab的值代入所求代数式计算即可详解:+|b2﹣9|=0∴a﹣2=0b=±3因此ab=2×(±3)=±6故答案为:±6点睛:本题考查了非负数的性质:几24.380【解析】分析:分析题意可知八人船最划算其次是六人船计算出最总费用最低的租船方案即可详解:租用四人船六人船八人船各1艘租船的总费用为(元)故答案为:380点睛:考查统筹规划对船型进行分析找出总费25.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的解析:-5【解析】分析:点A表示的数是-1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,-1-x=4,解出即可解答;解答:解:如图,点A表示的数是-1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,-1-x=4,x=-5;故答案为-5.17.30【解析】【分析】根据和为90度的两个角互为余角和为180度的两个角互为补角列出算式计算即可【详解】解:∵∠3与30°互余∴∠3=90°-30°=60°∵∠2+∠3=210°∴∠2=150°∵∠1解析:30【解析】【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【详解】解:∵∠3与30°互余,∴∠3=90°-30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为30.【点睛】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.18.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b+【解析】【分析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.19.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应【解析】【分析】由题意设这批树苗共有x棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x棵,根据题意列出方程:441516x x-+=,解得124x=.故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键.20.21.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数解析:56.9610⨯ .【解析】试题分析:696000=6.96×105,故答案为6.96×105.考点:科学记数法—表示较大的数.22.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.23.6或-6【解析】分析:根据非负数的性质列出方程求出ab的值代入所求代数式计算即可详解:+|b2﹣9|=0∴a﹣2=0b=±3因此ab=2×(±3)=±6故答案为:±6点睛:本题考查了非负数的性质:几解析:6或-6分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.b2﹣9|=0,∴a﹣2=0,b=±3,因此ab=2×(±3)=±6.故答案为:±6.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.380【解析】分析:分析题意可知八人船最划算其次是六人船计算出最总费用最低的租船方案即可详解:租用四人船六人船八人船各1艘租船的总费用为(元)故答案为:380点睛:考查统筹规划对船型进行分析找出总费解析:380【解析】分析:分析题意,可知,八人船最划算,其次是六人船,计算出最总费用最低的租船方案即可.++=详解:租用四人船、六人船、八人船各1艘,租船的总费用为100130150380(元)故答案为:380.点睛:考查统筹规划,对船型进行分析,找出总费用最低的租船方案即可.25.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<1 0n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时解析:-2.06×1010【解析】【分析】科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将-206亿=-20600000000用科学记数法表示为-2.06×1010 .故答案为:-2.06×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题26.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12.【解析】【分析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6;(4)由3BC−2AB=3(2t+6)−2(3t+3)求解即可.【详解】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,27.(1)∠EOC=70°12′,∠FOD=80°6′;(2)射线OE与射线OF重合时至少需要35秒;(3)射线OE转动的时间为t=607或1507或2407.【解析】【分析】(1)利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)先根据x=60°,求∠EOF=150°,则射线OE、OF第一次重合时,则OE运动的度数-OF运动的度数=360-150,列式解出即可;(3)分三种情况:①OE不经过OF时,②OE经过OF,但OF在OB的下方时;③OF在OB的上方时;根据其夹角列方程可得时间.【详解】(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°-19°48′=89°60°-19°48′=70°12′,∠AOD=180°-19°48′=160°12′,∵OF平分∠AOD,∴∠FOD=12∠AOD=12×160°12′=80°6′;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t-4t=360-150,t=35,答:当射线OE 与射线OF 重合时至少需要35秒;(3)设射线OE 转动的时间为t 秒,分三种情况:①OE 不经过OF 时,得10t+90+4t=360-150,解得,t=607; ②OE 经过OF ,但OF 在OB 的下方时,得10t-(360-150)+4t=90 解得,t=1507; ③OF 在OB 的上方时,得:360-10t=4t-120解得,t=2407. 所以,射线OE 转动的时间为t=607或1507或2407. 【点睛】本题考查了对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记性质是解题的关键,难点在于要分情况讨论.28.(1)149;(2)见解析 【解析】【分析】 (1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,①两边乘10得:1015.5x •=,②②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,①两边同乘以100得:••100314.15x =,②②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==,因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.29.x=-1【解析】【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解;【详解】解:去分母得:3x+3=4-2x-6,移项合并得:5x=-5,解得:x=-1;【点睛】此题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.30.(1)x=34;(2)x=﹣3;(3)x=1;(4)x=﹣14【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项合并得:4x=3,解得:x=34;故答案为:x=3 4(2)去括号得:1﹣2x+2=﹣3x,移项合并得:x=﹣3;故答案为:x=﹣3(3)去分母得:4x+2﹣x+1=6,移项合并得:3x=3,解得:x=1;故答案为:x=1(4)去中括号得:3(x﹣12)+1=5x,去小括号得:3x﹣32+1=5x移项合并得:﹣2x=12,解得:x=﹣14.故答案为:x=﹣1 4【点睛】本题考查了一元一次方程的解法,有分数的时候分母,有括号的时候去括号,然后移项合并同类项,x系数化为1,即可求解.。

江苏省海门市七年级数学上学期期中考试试题(无答案)

江苏省海门市七年级数学上学期期中考试试题(无答案)

江苏省海门市2012-2013学年七年级数学上学期期中考试试题(无答案)一.选择题:(每题2分,共20分)1.如果运进72吨记作+72吨,那么-56吨表示 ( ) A .运进56吨 B.运出56吨 C.运出-56吨 D.运进+56吨2.下列各式中,正确的是( )(A )y x y x y x 2222-=- (B )2a +3b =5ab(C )7ab -3ab =4 (D )523aa a =+3.右图是一数值转换机,若输入的x 为-5,则输出的结果为( )A. 11B. -9C. -17D. 21 4.运用等式性质进行的变形,不正确...的是: ( )A .如果a=b ,那么a -c=b -cB .如果a=b ,那么a+c=b+cC .如果a=b ,那么错误!未找到引用源。

=错误!未找到引用源。

D .如果a=b ,那么ac=bc5.如果a 是不等于零的有理数,那么式子错误!未找到引用源。

化简的结果是 ( )A.0或1B.0或-1C.0D.1 6.下列各数中,不相等的组数有( )①(-3)2与-32②(-3)2与32 ③(-2)3与-23④错误!未找到引用源。

3与错误!未找到引用源。

⑤(-2)3与错误!未找到引用源。

3A.0组B.1组C.2组D.3组7.已知错误!未找到引用源。

是关于错误!未找到引用源。

的方程错误!未找到引用源。

的解,则错误!未找到引用源。

的值是: ( )A 、5B 、-5C 、1D 、-18.两个有理数a ,b 在数轴上的位置如图,下列四个式子中运算结果为正数的式子是( )A、a+bB、a-bC、abD、错误!未找到引用源。

9.代数式(a+1)2-5有最小值,此时a2012=______ ( )A.0B. 1C. -1D.201210.小张在某月的日历上圈出了相邻的三个数a、b、c,并求出了它们的和为33,这三个数在日历中的排布不可能是()二、填空(11~17每空1分,18~20没空2分,本题共20分)11、-2.4的相反数是,倒数是,绝对值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学培优强化训练(十二)
1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则20082008b a +等于 ( )
(A )1 (B ) -1 (C ) ±1 (D ) 2
2、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面
积是 ( )
(A) 252cm (B) 452cm (C) 3752cm (D) 15752
cm
3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A
点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正
方形的 ( )
(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上
图1 图3
4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=
α, ∠BOC=β, 则表示∠AOD 的代数式是 ( )
(A )2α-β (B )α-β (C )α+β (D )以上都不正确
5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=2
1PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为 ( )
(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm
6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔
一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x
元,根据题意,可列方程为
7、2.42º= º ′ ″
8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关
系如下表:
(1)用数量x 表示售价C 的公式,C=___ __ __
(2)当销售数量为12千克时,售价C 为_____ _
9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=
2
1
10、解方程(1) 5(x -1)-2(x+1)=3(x -1)+x+1(2)
2
35.112.018.018.0103.002.0x x x --+-=+
11、用棋子摆出下列一组图形:
(1)
(2)(3) (1)填写下表:
(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含n 的代数式表示)
(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?
12、如图所示, 设l =AB+AD+CD, m=BE+CE, n=BC. 试比较m 、n 、l 的大小, 并说明理由.
数学培优强化训练(十二)(答案)
1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则a
2007+b 2007等于( A )
(A )1 (B ) -1 (C ) 1 (D ) 2
2、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( C )
(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm
图1 图3
3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A 点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正
方形的( B )
(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上
4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是( A )
(A )2α-β (B )α-β (C )α+β (D )以上都不正确
5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=2
1PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为( D )
(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm
6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔
7、2.42º8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表:
(1(2)当销售数量为12千克时,售价C 为_____32.4__
9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=1
10、解方程. (每小题3分, 共6分)
(1) 5(x -1)-2(x+1)=3(x -1)+x+1 (2) 35.118.018.0102.0x x x --+-=+
11、用棋子摆出下列一组图形:
(1)(2)(3)
(1)填写下表:
(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含n 的代数式表示)
解:依题意可得当摆到第n 个图形时棋子的枚数应为:
6 + 3(n -1)= 6 + 3n - 3 = 3n+3
(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?(1分)
解:由上题可知此时9933=+n ∴32=n
答:第32个图形共有99枚棋子。

12、如图所示, 设l =AB+AD+CD, m=BE+CE, n=BC. 试比较m 、n 、l 的大小, 并说明理由.
解:∵m=BE+CE n=BC
∴n 表示了B 、C 两点间的距离。

所以m >n (两点之间线段最短)
又∵AD=AE+ED
∴l = AB+AD+CD=(AB+AE )+(ED+CD )又∵AB+AE >BE ED+CD
>EC (两点之间线段最短)
∴l >m ∴l >m>n。

相关文档
最新文档