泰州市2004年中考数学试题答案

合集下载

【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题07 统计与概率

【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题07 统计与概率

泰州市2002-2013年中考数学试题分类解析 专题07 统计与概率一、选择题1.(江苏省泰州市2002年4分)在青年业余歌手卡拉OK 大奖赛中,8位评委给某选手所评分数如下表,计算方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,则该选手最后得分是【 】(精确到0.01)A 、9.70B 、9.71C 、9.72D 、9.732.(江苏省泰州市2005年3分)某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小【 】A .S 2甲>S 2乙B .S 2甲=S 2乙 C .S 2甲<S 2乙 D .S 2甲≤S 2乙3.(江苏省泰州市2005年3分)下列说法正确的是【】A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C.彩票中奖的机会是1%,买100张一定会中奖.D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.4.(江苏省泰州市2006年3分)下列说法正确的是【】A.为了了解我市今年夏季冷饮市场冰淇淋的质量可采用普查的调查方式进行.B.为了了解一本300页的书稿的错别字的个数,应采用普查的调查方式进行.C.销售某种品牌的鞋,销售商最感兴趣的是所销售的鞋的尺码的平均数.D.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生.5.(江苏省泰州市2006年3分)投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的概率等于出现“点数为偶数”的概率.②只要连掷6次,一定会“出现一点”.③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大.④连续投掷3次,出现的点数之和不可能等于19.其中正确的见解有【】A. 1个 B.2个 C.3个 D.4个6.(江苏省泰州市2007年3分)下列说法正确的是【】A.小红和其他四个同学抽签决定从星期一到星期五的值日次序,她第三个抽签,抽到星期一的概率比前两个人小B.某种彩票中奖率为10%,小王同学买了10张彩票,一定有1张中奖C.为了了解一批炮弹的杀伤半径,应进行普查D.晚会前,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果由众数决定7.(江苏省泰州市2008年3分)有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有【】A.1个 B.2个 C. 3个 D.4个8.(江苏省2009年3分)某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是【】A.平均数B.众数C.中位数D.方差9.(江苏省泰州市2011年3分)为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是【】A.某市八年级学生的肺活量 B.从中抽取的500名学生的肺活量C.从中抽取的500名学生 D.50010.(2012江苏泰州3分)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是【】A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件11.(2013年江苏泰州3分)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是【】A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)二、填空题1. (江苏省泰州市2003年3分)在5月24日《中国青年报》上刊登了这样一幅图:请用简洁的语言描述出2003年5月13日到5月23日我国内地新发现SARS病例的变化情况:▲2.(江苏省泰州市2004年3分)泰州地区六月份某一周每天最高气温如下表:则这一周的最高气温的中位数是▲ ℃.3.(江苏省泰州市2005年3分)九年级(1)班进行一次数学测验,成绩分为优秀、良好、及格、不及格四个等级.测验结果反映在扇形统计图上,如下图所示,则成绩良好的学生人数占全班人数的百分比是▲ _ %.4.(江苏省泰州市2006年3分)小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如右图所示,则小明5次成绩的方差S 12与小兵5次成绩的方差S 22之间的大小关系为S 12 ▲ _S 22.(填“>”、“<”、“=”)5.(江苏省泰州市2007年3分)数据1,3-,4,2-的方差2S = ▲ .6.(江苏省泰州市2008年3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是▲ .7.(江苏省2009年3分)如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)▲ P(奇数)(填“>”“<”或“=”).8.(江苏省泰州市2010年3分)数据-1,0,2,-1,3的众数为 ▲ .9.(江苏省泰州市2010年3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 ▲ .10.(江苏省泰州市2011年3分)甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数乙甲x x ,方差22S S <乙甲,则成绩较稳定的同学是 ▲ (填“甲”或“乙”)。

江苏省泰州市2001-2012年中考数学试题分类解析 专题7 统计与概率

江苏省泰州市2001-2012年中考数学试题分类解析 专题7 统计与概率

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题7:统计与概率一、选择题1.(江苏省泰州市2002年4分)在青年业余歌手卡拉OK 大奖赛中,8位评委给某选手所评分数如下表,计算方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最 后得分,则该选手最后得分是【 】(精确到0.01)9.A 、9.70 B 、9.71C 、9.72D 、9.73【答案】C 。

【考点】平均数。

【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,去掉打分的最大值和最小值,再把剩余的数相加除以6即可:该选手最后得分=(9.8+9.5+9.7+9.8+9.7+9.8)÷6≈9.72(分)。

故选C 。

2.(江苏省泰州市2005年3分)某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛, 随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小【 】A .S 2甲>S 2乙 B .S 2甲=S 2乙C .S 2甲<S 2乙 D .S 2甲≤S 2乙【答案】A 。

【考点】方差,计算器的应用。

【分析】先计算出平均数后,再根据方差的计算公式计算进行比较:甲的平均数=(10.05+10.02+9.97+9.96+10)÷5=10, 乙的平均数=(10+10.01+10.02+9.97+10)÷5=10;2222221S [10.051010.02109.97109.96101010]0.05455=-+-+-+-+-=甲()()()()(),2222221S [101010.011010.02109.97101010]0.001455=-+-+-+-+-=乙()()()()()∴S 2甲>S 2乙。

故选A 。

3.(江苏省泰州市2005年3分)下列说法正确的是【 】A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C.彩票中奖的机会是1%,买100张一定会中奖.D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.【答案】B。

江苏省泰州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质

江苏省泰州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题6:函数的图象与性质一、选择题1.(2001江苏泰州3分)下列函数中,当x >0时,y 随x 的增大而增大的函教是【 】。

A.y=2x - B. y=2x+2- C. 2y=x- D. 2y=2x - 【答案】C 。

【考点】正比例函数、一次函数、反比例函数和二次函数的性质。

【分析】根据正比例函数、一次函数、反比例函数和二次函数的性质逐一作出判断:A.y=2x -的k=-2<0,∴y 随x 的增大而减小;B. y=2x+2-的k=-2<0,∴y 随x 的增大而减小;C. 2y=x-的k=-2<0,∴当x >0时,y 随x 的增大而增大; D. 2y=2x -的a=-2<0,对称轴为x=0,∴当x >0时,y 随x 的增大而减小。

故选C 。

2.(2001江苏泰州4分)抛物线()2y=x 2m 1x 2m ---与x 轴的两个交点坐标分别为A (x 1,0),B (x 2,0),且12x =1x ,则m 的值为【 】。

A.12- B. 0 C. 12± D. 12【答案】D 。

【考点】抛物线与x 轴的交点问题,一元二次方程根与系数的关系。

【分析】∵抛物线()2y=x 2m 1x 2m ---与x 轴的两个交点坐标分别为A (x 1,0),B (x 2,0),且12x =1x , ∴12x x =-,即12x +x =0。

又根据一元二次方程根与系数的关系,12x +x =2m 1-,∴2m 1=0-。

解得1m=2。

故选D 。

3.(江苏省泰州市2004年4分)用某种金属材料制成的高度为h 的圆柱形物体甲如右图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为21h 的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为【 】 A .500帕B .1000帕C .2000帕D .250帕【答案】A 。

【考点】反比例函数的应用。

江苏中考数学试卷真题2004

江苏中考数学试卷真题2004

江苏中考数学试卷真题2004第一部分选择题1.计算下列各题.(1) 420/ 6 + (-5)³ = 70 + (-125) = -55(2) 5 + (-1/3) + (-1/2) = 5 - 1/3 - 1/2 = 14/3(3) 13 - (-5) - 8 = 13 + 5 - 8 = 10(4) (-8) - (-20) = -8 + 20 = 122.写出下列各数的读法.(1) 1/5 = 零一分之五(2) 3.25 = 三又二分之五(3) -0.4 = 负零点四(4) 0.003 = 零又三千分之一3.化简下列各表达式(1) a(8a + 16) - 2(4a + 8) = 8a² + 16a - 8a - 16 = 8a² - 16(2) 5a - (4 - 6a) = 5a - 4 + 6a = 11a - 4(3) 2(a² - 4a + 8) - (a² + 5a - 2) = 2a² - 8a + 16 - a² - 5a + 2 = a² - 13a + 18(4) 3b + (2b - 4) - (2b + 6) = 3b + 2b - 4 - 2b - 6 = 3b - 104.计算下列各题(1) -5 × 8 = -40(2) 3 × (-6) × (-2) = 36(3) (-6) × (4 - 9) = -6 × (-5) = 30(4) (-0.5) × 4 × 8 = -16第二部分解答题5.解方程(3x + 1) / 2 = (x + 3) / 3(3x + 1) × 3 = (x + 3) × 29x + 3 = 2x + 69x - 2x = 6 - 37x = 3x = 3/76. 平行四边形ABCD中,$AB \parallel CD, AD \parallel BC$. P为AB的中点, Q是CD上的一点,使得PQ=3. 连接MP、MQ ,它们与BC交于E和F. 若AP=2.5cm ,AD=3.5cm,求BE的长度.由平行四边形性质可知,$\Delta PDA \sim \Delta QCB$.设x为BE的长度,根据相似三角形的性质,可得 $\frac {QD}{PD} = \frac {BC}{AB}$$\frac {3.5}{1.25} = \frac {x + 3.5}{x + 2.5} = \frac {7}{5}$得到 $5x + 17.5 = 7x + 10.5$$x = 3$所以BE的长度为3cm.7. 已知函数y = x² - 3x + k的图象经过点(2, 3),求k.将点(2, 3)代入方程,得到 $3 = 2² - 3×2 + k$化简方程,得到 $1 = k$所以k = 1。

江苏省泰州市2001-2012年中考数学试题分类解析 专题9 三角形

江苏省泰州市2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1.(江苏省泰州市2002年4分)Rt△ABC中,∠C=90°,a:b=3:4,运用计算器计算,∠A的度数是【】(精确到1°)A、30°B、37°C、38°D、39°【答案】B。

【考点】三角函数定义,计算器的应用。

【分析】根据题中所给的条件,在直角三角形中应用正切函数解题:∵Rt△ABC中,∠C=90°,,∴tan A= a:b=3:4=0.75。

运用计算器得,∠A≈37°。

故选B。

2.(江苏省泰州市2003年4分)如图,某防洪大坝的横断面是梯形,斜坡AB的坡度i=1∶2.5,则斜坡AB的坡角 为【】(精确到1°)A.24° B.22° C.68° D.66°【答案】B。

【考点】解直角三角形的应用(坡度坡角问题),正切函数定义,计算器的应用。

【分析】算出坡角的正切值,用计算器即可求得坡角:如图,∵坡度tanα=铅直高度AC:水平距离BC=1:2.5=0.4,∴α=21.8°≈22°。

故选B。

3.(江苏省泰州市2003年4分)在Rt△ABC的直角边AC边上有一点P(点P与点A、C不重合),过点P作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有【】A.1条 B.2条 C.3条 D.3条或4条【答案】D。

【考点】相似三角形的判定。

【分析】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC 的另一个角即可:(1)若AC <BC (如图1),过点P 作PD 1⊥AB,或作PD 2⊥AC,或作PD 3∥AB,或作∠PD 4C=∠A,这样截得的三角形与△ABC 相似。

即满足条件的直线共有4条。

(2)若AC >BC 且PC BC >(如图2),同(1)有PD 1,PD 2,PD 3。

历年江苏省泰州市中考数学试卷含解析

历年江苏省泰州市中考数学试卷含解析

历年江苏省泰州市中考数学试卷含解析历年江苏省泰州市中考数学试卷一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是A.B.C.0D.12.(3分)如图图形中的轴对称图形是A.B.C.D.3.(3分)方程的两根为、,则等于A.B.6C.D.34.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20B.300C.500D.8005.(3分)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是A.点B.点C.点D.点6.(3分)若,则代数式的值为A.B.1C.2D.3二、填空题(本大题共有10小题,每小题3分,共30分,请把答直接填写在答题卡相应位置上)7.(3分)计算:.8.(3分)若分式有意义,则的取值范围是.9.(3分)201 9年5月28日,我国“科学”号远洋科考船在最深约为的马里亚纳海沟南侧发现了近10片珊瑚林.将11000用科学记数法表示为.10.(3分)不等式组的解集为.11.(3分)八边形的内角和为.12.(3分)命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”.13.(3分)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为万元.14.(3分)若关于的方程有两个不相等的实数根,则的取值范围是.15.(3分)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为,则该莱洛三角形的周长为.16.(3分)如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、.设,,则与的函数表达式为.三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:;(2)解方程:.18.(8分)是指空气中直径小于或等于的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年月全国338个地级及以上市平均浓度统计表(单位:月份年份789101112201 7年2724303851652018年232425364953(1)2018年月平均浓度的中位数为;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年月平均浓度变化过程和趋势的统计图是;(3)某同学观察统计表后说:“2018年月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.19.(8分)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中、两个项目的概率.20.(8分)如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.21.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.,,结果精确到22.(10分)如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1.(1)求该二次函数的表达式;(2)求.23.(10分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于,超过时,所有这种水果的批发单价均为3元.图中折线表示批发单价(元与质量的函数关系.(1)求图中线段所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?24.(10分)如图,四边形内接于,为的直径,为的中点,过点作,交的延长线于点.(1)判断与的位置关系,并说明理由;(2)若的半径为5,,求的长.25.(12分)如图,线段,射线,为射线上一点,以为边作正方形,且点、与点在两侧,在线段上取一点,使,直线与线段相交于点(点与点、不重合).(1)求证:;(2)判断与的位置关系,并说明理由;(3)求的周长.26.(14分)已知一次函数和反比例函数.(1)如图1,若,且函数、的图象都经过点.①求,的值;②直接写出当时的范围;(2)如图2,过点作轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点.①若,直线与函数的图象相交点.当点、、中的一点到另外两点的距离相等时,求的值;②过点作轴的平行线与函数的图象相交与点.当的值取不大于1的任意实数时,点、间的距离与点、间的距离之和始终是一个定值.求此时的值及定值.2019年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是A.B.C.0D.1【分析】直接利用相反数的定义分析得出答案.【解答】解:的相反数是:1.故选:.【点评】本题主要相反数的意义,只有符号不同的两个数互为相反数,的相反数是.2.(3分)如图图形中的轴对称图形是A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:、不是轴对称图形;、是轴对称图形;、不是轴对称图形;、不是轴对称图形;故选:.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)方程的两根为、,则等于A.B.6C.D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由于△,,故选:.【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.4.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20B.300C.50 0D.800【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近次,故选:.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.5.(3分)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是A.点B.点C.点D.点【分析】根据三角形三条中线相交于一点,这一点叫做它的重心,据此解答即可.【解答】解:根据题意可知,直线经过的边上的中线,直线经过的边上的中线,点是重心.故选:.【点评】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.6.(3分)若,则代数式的值为A.B.1C.2D.3【分析】将代数式变形后,整体代入可得结论.【解答】解:,,,,,故选:.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.二、填空题(本大题共有10小题,每小题3分,共30分,请把答直接填写在答题卡相应位置上)7.(3分)计算:1.【分析】根据零指数幂意义的即可求出答案.【解答】解:原式,故答案为:1【点评】本题考查零指数幂的意义,解题的关键是熟练运用零指数幂的意义,本题属于基础题型.8.(3分)若分式有意义,则的取值范围是.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,,解得.故答案为:.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零.9.(3分)2019年5月28日,我国“科学”号远洋科考船在最深约为的马里亚纳海沟南侧发现了近10片珊瑚林.将11000用科学记数法表示为.【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:将11000用科学记数法表示为:.故答案为:.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.10.(3分)不等式组的解集为..【分析】求出不等式组的解集即可.【解答】解:等式组的解集为,故答案为:.【点评】本题考查了不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.11.(3分)八边形的内角和为.【分析】根据多边形的内角和公式进行计算即可得解.【解答】解:.故答案为:.【点评】本题考查了多边形的内角和,熟记内角和公式是解题的关键.12.(3分)命题“三角形的三个内角中至少有两个锐角”是真命题(填“真命题”或“假命题”.【分析】根据三角形内角和定理判断即可.【解答】解:三角形的三个内角中至少有两个锐角,是真命题;故答案为:真命题【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.(3分)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为5000万元.【分析】用二季度的营业额二季度所占的百分比即可得到结论.【解答】解:该商场全年的营业额为万元,答:该商场全年的营业额为5000万元,故答案为:5000.【点评】本题考查了扇形统计图,正确的理解扇形统计图中的信息是解题的关键.14.(3分)若关于的方程有两个不相等的实数根,则的取值范围是.【分析】利用判别式的意义得到△,然后解关于的不等式即可.【解答】解:根据题意得△,解得.故答案为.【点评】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.15.(3分)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为,则该莱洛三角形的周长为.【分析】直接利用弧长公式计算即可.【解答】解:该莱洛三角形的周长.故答案为.【点评】本题考查了弧长公式:(弧长为,圆心角度数为,圆的半径为.也考查了等边三角形的性质.16.(3分)如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、.设,,则与的函数表达式为.【分析】连接并延长交于,连接,根据圆周角定理得到,,求得,根据相似三角形的性质即可得到结论.【解答】解:连接并延长交于,连接,则,,,,,,,的半径为5,,,,,,故答案为:.【点评】本题考查了圆周角定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:;(2)解方程:.【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到整式方程,再解整式方程,然后进行检验确定原方程的解.【解答】解:(1)原式;(2)去分母得,解得,检验:当时,,为原方程的解.所以原方程的解为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式方程.18.(8分)是指空气中直径小于或等于的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年月全国338个地级及以上市平均浓度统计表(单位:月份年份7891011122017年2724303851652018年232425364953(1)2018年月平均浓度的中位数为;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年月平均浓度变化过程和趋势的统计图是;(3)某同学观察统计表后说:“2018年月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.【分析】(1)根据中位数的定义解答即可;(2)根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;(3)观察统计表,根据统计表中的数据特点解答即可.【解答】解:(1)2018年月平均浓度的中位数为;故答案为:;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图,故答案为:折线统计图;(3)2018年月与2017年同期相比平均浓度下降了.【点评】本题考查了统计图的选择,利用统计图的特点选择是解题关键.19.(8分)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中、两个项目的概率.【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下由树状图知共有6种等可能结果,其中小明恰好抽中、两个项目的只有1种情况,所以小明恰好抽中、两个项目的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率所求情况数与总情况数之比.20.(8分)如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.【分析】(1)分别以,为圆心,大于为半径画弧,两弧交于点,,作直线即可.(2)设,在中,利用勾股定理构建方程即可解决问题.【解答】解:(1)如图直线即为所求.(2)垂直平分线段,,设,在中,,,解得,.【点评】本题考查作图基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.,,结果精确到【分析】(1)根据坡度的概念计算;(2)作于,于,根据正切的定义求出,结合图形计算即可.【解答】解:(1)观众区的坡度为,顶端离水平地面的高度为,,答:观众区的水平宽度为;(2)作于,于,则四边形、为矩形,,,,在中,,则,,答:顶棚的处离地面的高度约为.【点评】本题考查的是解直角三角形的应用仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.22.(10分)如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1.(1)求该二次函数的表达式;(2)求.【分析】(1)由题意可设抛物线解析式为:,将代入解析式来求的值.(2)由锐角三角函数定义解答.【解答】解:(1)由题意可设抛物线解析式为:,.把代入,得,解得.故该二次函数解析式为;(2)令,则.则.因为二次函数图象的顶点坐标为,,则点与点关系直线对称,所以.所以.所以,即.【点评】考查了抛物线与轴的交点,二次函数的性质,待定系数法确定函数关系式以及解直角三角形.解题时,充分利用了二次函数图象的对称性质.23.(10分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于,超过时,所有这种水果的批发单价均为3元.图中折线表示批发单价(元与质量的函数关系.(1)求图中线段所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?【分析】(1)设线段所在直线的函数表达式为,运用待定系数法即可求解;(2)根据“总价单价数量”解答即可.【解答】解:(1)设线段所在直线的函数表达式为,根据题意得,解得,线段所在直线的函数表达式为;(2)(千克).答:小李用800元一次可以批发这种水果的质量是千克.【点评】本题主要考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.24.(10分)如图,四边形内接于,为的直径,为的中点,过点作,交的延长线于点.(1)判断与的位置关系,并说明理由;(2)若的半径为5,,求的长.【分析】(1)连接,由为的直径,得到,根据,得到,根据平行线的性质得到,求得,于是得到结论;(2)根据勾股定理得到,由圆周角定理得到,求得,根据相似三角形的性质即可得到结论.【解答】解:(1)与相切,理由:连接,为的直径,,为的中点,,,,是的中点,,,,,与相切;(2)的半径为5,,,为的直径,,,,,,,,,.【点评】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,光杆司令,相似三角形的判定和性质,正确的识别图形是解题的关键.25.(12分)如图,线段,射线,为射线上一点,以为边作正方形,且点、与点在两侧,在线段上取一点,使,直线与线段相交于点(点与点、不重合).(1)求证:;(2)判断与的位置关系,并说明理由;(3)求的周长.【分析】(1)四边形正方形,则平分,,,即可求解;(2),则,而,则,又,则即可求解;(3)证明,则,,即可求解.【解答】解:(1)证明:四边形正方形,平分,,,;(2),理由如下:,,,,,,,,;(3)过点作.,,,,又,,,,,,.【点评】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明,是本题的关键.26.(14分)已知一次函数和反比例函数.(1)如图1,若,且函数、的图象都经过点.①求,的值;②直接写出当时的范围;(2)如图2,过点作轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点.①若,直线与函数的图象相交点.当点、、中的一点到另外两点的距离相等时,求的值;②过点作轴的平行线与函数的图象相交与点.当的值取不大于1的任意实数时,点、间的距离与点、间的距离之和始终是一个定值.求此时的值及定值.【分析】(1)①将点的坐标代入一次函数表达式并解得:,将点的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出;(2)①,,由得:,即可求解;②点的坐标为,,,即可求解.【解答】解:(1)①将点的坐标代入一次函数表达式并解得:,将点的坐标代入反比例函数得:;②由图象可以看出时,;(2)①当时,点、、的坐标分别为、、,则,,由得:,即:;②点的坐标为,,,当时,为定值,此时,.【点评】本题为反比例函数综合运用题,涉及到一次函数、函数定值的求法,关键是通过确定点的坐标,求出对应线段的长度,进而求解.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/9/2013:03:08;用户:中考数学李老师;邮箱:*****************************************.com;学号:30027651第1页(共23页)。

【精品】泰州市中考数学试题及答案

【精品】泰州市中考数学试题及答案

泰州市二○○八年初中毕业、升学统一考试数学试题请注意:1.本试卷分第一部分选择题和第二部分非选择题.2.考生答卷前,必须将自己的姓名、考试号、座位号用黑色或蓝色钢笔或圆珠笔填写在试卷和答题卡的相应位置,再用2B 铅笔将考试号、科目填涂在答题卡上相应的小框内.第一部分 选择题(共36分)请注意:考生必须..将所选答案的字母标号用2B 铅笔填涂到答题卡上相应的题号内,答在试卷上无效.一、选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共36分) 1.化简-(-2)的结果是A .-2B .21-C .21D .2 2.国家投资建设的泰州长江大桥已经开工,据泰州日报报道,大桥预算总造价是9370000000元人民币,用科学计数法表示为A .93.7×109元B .9.37×109元C .9.37×1010元D .0.937×1010元 3.下列运算结果正确的是A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷4.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D 、C 、E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是A .9B .10C .12D .145.如图,直线a 、b 被直线c 所截,下列说法正确的是俯视图左视图主视图111122A .当∠1=∠2时,一定有a ∥bB .当a ∥b 时,一定有∠1=∠2C .当a ∥b 时,一定有∠1+∠2=180°D .当a ∥b 时,一定有∠1+∠2=90°第6题图 第7题图第5题图第4题图6.如左下图是一个几何体的三视图,根据图中提供的数据(单位:cm )可求得这个几何体的体积为A .2cm 3B .4 cm 3C .6 cm 3D .8 cm 3 7.如左下图,现有一扇形纸片,圆心角∠AOB 为120°,弦AB 的长为23cm ,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 A.32cm B.π32cm C.23cm D.π23cm 8.根据流程右边图中的程序,当输入数值x 为-2时,输出数值y 为A .4B .6C .8D .10 9.二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位10.有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a 、b 为实数,那么a +b =b +a .其中是必然事件的有 A .1个B .2个C .3个D .4个11.如图,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是A .正三角形B .正方形C .正五边形D .正六边形12.在平面上,四边形ABCD 的对角线AC 与BD 相交于O ,且满足AB =CD .有下列四个条件:(1)OB =OC ;(2)AD ∥BC ;(3)BODOCO AO =;(4)∠OAD =∠OBC .若只增加其中的一个条件,就一定能使∠BAC =∠CDB 成立,这样的条件可以是 A .(2)、(4)B .(2)C .(3)、(4)D .(4)座位号第8题图 第11题图泰州市2008中考数学试题及答案第二部分 非选择题(共114分)请注意:考生必须..将答案直接做在试卷上. 二、填空题(每题3分,共24分)13.在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为m . 14.方程22123=-+--xx x 的解是x=. 15.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.16.分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙O 1、⊙O 2,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是.17.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.18.若O 为△ABC 的外心,且∠BOC =60°,则∠BAC =°. 19.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2; 第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3; …………依此类推,则a 2008=_______________.20.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为a cm ,则a 的取值范围是.三、解答下列各题(21题8分,22、23每题9分,共26分) 21.计算:01)41.12(45tan 32)31(-++--- .22.先化简,再求值:xx x x x x x x x 416)44122(2222+-÷+----+,其中x =22+.得分 评卷人得分 评卷人第20题图ODE CB A 23.如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE , △ABE 与△ADC 相似吗?请证明你的结论.四、(本题满分9分) ABCD ,背水坡AD 的坡度i (即 tan )为1︰1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4,已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(4分)(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?(5分)得分 评卷人第23题图第24题图五、(本题满分9分)25.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别 噪声声级分组 频数 频率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 b c 5 104.5——119.56 0.15 合计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________;(3分) (2)补充完整频数分布直方图;(2分)(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?(4分)得分 评卷人第25题图六、(本题满分10分) 26.已知关于x 的不等式ax +3>0(其中a ≠0). (1)当a =-2时,求此不等式的解,并在数轴上表示此不等式的解集;(4分)(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a ,求使该不等式没有..正整数解的概率.(6分)七、(本题满分10分)27.在矩形ABCD 中,AB =2,AD =3.(1)在边CD 上找.一点E ,使EB 平分∠AEC ,并加以说明;(3分) (2)若P 为BC 边上一点,且BP =2CP ,连接EP 并延长交AB 的延长线于F .①求证:点B 平分线段AF ;(3分)②△P AE 能否由△PFB 绕P 点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.(4分)得分 评卷人 得分 评卷人第27题图28.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分)(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.(4分)第28题图29.已知二次函数y 1=ax 2+bx +c (a ≠0)的图像经过三点(1,0),(-3,0),(0,-23). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数y 2=x2(x >0)的图像与二次函数y 1=ax 2+bx +c (a ≠0)的图像在第一象限内交于点A (x 0,y 0),x 0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数;(4分) (3)若反比例函数y 2=xk (x >0,k >0)的图像与二次函数y 1=ax 2+bx +c (a ≠0)的图像在第一象限内的交点A ,点A 的横坐标x 0满足2<x 0<3,试求实数k 的取值范围.(5分)泰州市二00八年初中毕业、升学统一考试数学试题参考答案及评分标准一、选择题DBCDCAABBCDD 二、填空题(每题3分,共24分)13、10014、015、10%16、相外切(如写相切不给分)17、52第29题图18、30°或150°19、2620、3<a ≤3.5(如写成3<a <3.5,给2分) 三、解答下列各题(21题8分,22、23每题9分,共26分)21、解:原式= -3—2+3+1………………………………………………6分 =3—(2—3)+1……………………………………………7分 =2+3…………………………………………………………8分 (第一步计算中,每算对一个给2分)22、解:原式=)4()4)(4()2(1)2(22+-+÷⎥⎦⎤⎢⎣⎡----+x x x x x x x x x ……………………………4分 =x x x x x x x x x x 4)2()1()2()2)(2(22-÷⎥⎥⎦⎤⎢⎢⎣⎡-----+………………………………6分 =4·)2()1()2()2)(2(22-⎥⎥⎦⎤⎢⎢⎣⎡-----+x x x x x x x x x x …………………………………7分 =2)2(1-x …………………………………………………………………8分当x=2+2时,原式=21…………………………………………………9分 (第一步中每一个因式分解正确得1分)23、解:△ABE 与△ADC 相似.…………………………………………………………2分∵AE 是⊙O 的直径,∴∠ABE=90°………………………………………………5分 ∵∠ADC=90°,∴∠ABE=∠ADC …………………………………………………7分 又∵∠AEB=∠ACD ,∴△ABE ∽△ADC ……………………………………………9分四、(本题满分9分) 24、(1)作DG ⊥AB 于G ,作EH ⊥AB 于H.∵CD ∥AB ,∴EH =DG∵2.11=AG DG ,∴AG=6米,分∵4.11=FH EH ,∴FH=7米,……………………………………………………2分 ∴FA=FH+GH-AG=7+1-6=2(米)………………………………………………3分∴S ADEF =21(ED+AF )·EH=21(1+2)×5=7.5(平方米) V=7.5×4000=30000(立方米)……………………………………………………4分(2)设甲队原计划每天完成x 立方米土方,乙队原计划每天完成y 立方米土方.根据题意,得⎩⎨⎧=+++=+.30000]%)401(%)301[15,3000)(20y x y x ………………………6分 化简,得⎩⎨⎧=+=+.20004.13.1,1500y x y x ………………………………………………7分解之,得⎩⎨⎧==.5001000y x ………………………………………………………………8分 答:甲队原计划每天完成1000立方米土方,乙队原计划每天完成500立方米土方.……………………………………9分五、(本题满分9分)25.(1)a=8,b=12,c=0.3.(每对一个给1分)…………………………………………3分(2)略(画对一个直方图给1分)…………………………………………………5分(3)算出样本中噪声声级小于75dB 的测量点的频率是0.3…………………………7分 0.3×200=60∴在这一时噪声声级小于75dB 的测量点约有60个.…………………………………9分六、(本题满分10分)26.(1)x <;23………………………………………………………………………………3分 在数轴上正确表示此不等式的解集(略)……………………………………………4分(2)用列举法取a=-1,不等式ax+3>0的解为x <3,不等式有正整数解.取a=-2,不等式ax+3>0的解为x <23,不等式有正整数解.……………………6分 取a=-3,不等式ax+3>0的解为x <1,不等多没有正整数解. 取a=-4,不等式ax+3>0的解为x <43,不等式没有正整数解. ……∴整数a 取-3至-10中任意一个整数时,不等式没有正整数解.………………8分 ∴P (不等式没有正整数解)=108=54…………………………10分 七、(本题满分10分)27、(1)当E 为CD 中点时,EB 平分∠AEC 。

江苏省泰州市中考数学试卷含答案解析(Word版)

江苏省泰州市中考数学试卷含答案解析(Word版)

精品基础教育教学资料,仅供参考,需要可下载使用!江苏省泰州市中考数学试卷一、选择题:本大题共有6小题,每小题3分,共18分1.4的平方根是()A.±2 B.﹣2 C.2 D.2.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣73.下列图案中,既是轴对称图形又是中心对称图形的是()A.B. C.D.4.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.56.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣二、填空题:本大题共10小题,每小题3分,共30分7.(﹣)0等于.8.函数中,自变量x的取值范围是.9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.10.五边形的内角和是°.11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.12.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.14.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.16.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.三、解答题17.计算或化简:(1)﹣(3+);(2)(﹣)÷.18.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18 a围棋类14 0.28喜剧类8 0.16国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?19.一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.20.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.21.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C 的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.24.如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.25.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共有6小题,每小题3分,共18分1.4的平方根是()A.±2 B.﹣2 C.2 D.【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.2.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:C.3.下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故错误;B、是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形.不是中心对称图形,故错误.故选B.4.如图所示的几何体,它的左视图与俯视图都正确的是()A. B. C. D.【考点】简单组合体的三视图.【分析】该几何体的左视图为一个矩形,俯视图为矩形.【解答】解:该几何体的左视图是边长分别为圆的半径和厚的矩形,俯视图是边长分别为圆的直径和厚的矩形,故选D.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是:[(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.6.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B. C.﹣2 D.﹣【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.二、填空题:本大题共10小题,每小题3分,共30分7.(﹣)0等于 1 .【考点】零指数幂.【分析】依据零指数幂的性质求解即可.【解答】解:由零指数幂的性质可知:(﹣)0=1.故答案为:1.8.函数中,自变量x的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】根据分式有意义的条件是分母不为0;令分母为0,可得到答案.【解答】解:根据题意得2x﹣3≠0,解可得x≠,故答案为x≠.9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.【考点】概率公式.【分析】根据概率公式知,6个数中有3个偶数,故掷一次骰子,向上一面的点数为偶数的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数为偶数,故其概率是=.故答案为:.10.五边形的内角和是540 °.【考点】多边形内角与外角.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为1:9 .【考点】相似三角形的判定与性质.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=1:9,故答案为:1:9.12.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为 2.5 cm.【考点】平移的性质.【分析】根据平移的性质:对应线段平行,以及三角形中位线定理可得B′是BC的中点,求出BB′即为所求.【解答】解:∵将△ABC沿BC方向平移至△A′B′C′的对应位置,∴A′B′∥AB,∵O是AC的中点,∴B′是BC的中点,∴BB′=5÷2=2.5(cm).故△ABC平移的距离为2.5cm.故答案为:2.5.14.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3 .【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为π.【考点】扇形面积的计算.【分析】通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC,套入扇形的面积公式即可得出结论.【解答】解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,∴OB==,sin∠AOB==,∠AOB=30°.同理,可得出:OD=1,∠COD=60°.∴∠AOC=∠AOB+=30°+180°﹣60°=150°.在△AOB和△OCD中,有,∴△AOB≌△OCD(SSS).∴S阴影=S扇形OAC.∴S扇形OAC=πR2=π×22=π.故答案为:π.16.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1﹣,﹣3).【考点】二次函数的性质.【分析】△ABC是等边三角形,且边长为2,所以该等边三角形的高为3,又点C在二次函数上,所以令y=±3代入解析式中,分别求出x的值.由因为使点C落在该函数y轴右侧的图象上,所以x<0.【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x<0,∴x=1﹣,∴C(1﹣,﹣3).故答案为:(1﹣,﹣3)三、解答题17.计算或化简:(1)﹣(3+);(2)(﹣)÷.【考点】二次根式的加减法;分式的混合运算.【分析】(1)先化成最简二次根式,再去括号、合并同类二次根式即可;(2)先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;(2)(﹣)÷=(﹣)•=•=.18.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18 a围棋类14 0.28喜剧类8 0.16国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)首先根据围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;(2)用50乘以0.20求出b的值,即可解答;(4)用总人数1500乘以喜爱围棋的学生频率即可求解.【解答】解:(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,如图,(3)1500×0.28=428(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有428人.19.一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据列表,可得答案;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等.【解答】解:列举所有可能:甲0 1 2乙 1 0 02 2 1(2)游戏不公平,理由如下:由表可知甲获胜的概率=,乙获胜的概率=,乙获胜的可能性大,所以游戏是公平的.20.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均增长率为x,根据“从2013年的200万元增长到2015年的392万元”,即可得出方程.【解答】解:设该购物网站平均每年销售额增长的百分率为x,根据题意,得:200(1+x)2=392,解得:x1=0.4,x2=﹣2.4(不符合题意,舍去).答:该购物网站平均每年销售额增长的百分率为40%.21.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.【考点】相似三角形的判定与性质;角平分线的定义.【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD平分∠CAE,∴∠DAG=∠CAG,∵AB=AC,∴∠B=∠ACB,∵∠CAG=∠B+∠ACB,∴∠B=∠CAG,∴∠B=∠CAG,∴AD∥BC;(2)解:∵CG⊥AD,∴∠AFC=∠AFG=90°,在△AFC和△AFG中,,∴△AFC≌△AFG(ASA),∴CF=GF,∵AD∥BC,∴△AGF∽△BGC,∴GF:GC=AF:BC=1:2,∴BC=2AF=2×4=8.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)【考点】解直角三角形的应用.【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+.23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.【考点】直线与圆的位置关系.【分析】(1)结论:AB是⊙O切线,连接DE,CF,由∠FCD+∠CDF=90°,只要证明∠ADF=∠DCF即可解决问题.(2)只要证明△PCF∽△PAC,得=,设PF=a.则PC=2a,列出方程即可解决问题.【解答】解:(1)AB是⊙O切线.理由:连接DE、CF.∵CD是直径,∴∠DEC=∠DFC=90°,∵∠ACB=90°,∴∠DEC+∠ACE=180°,∴DE∥AC,∴∠DEA=∠EAC=∠DCF,∵∠DFC=90°,∴∠FCD+∠CDF=90°,∵∠ADF=∠EAC=∠DCF,∴∠ADF+∠CDF=90°,∴∠ADC=90°,∴CD⊥AD,∴AB是⊙O切线.(2)∵∠CPF=∠CPA,PCF=∠PAC,∴△PCF∽△PAC,∴=,∴PC2=PF•PA,设PF=a.则PC=2a,∴4a2=a(a+5),∴a=,∴PC=2a=.24.如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A点坐标代入y=求出k的值得到反比例函数解析式为y=,然后把B(﹣4,n)代入y=可求出n的值;(2)利用反比例函数图象上点的坐标特征得到4m=k,﹣4n=k,然后把两式相减消去k 即可得到m+n的值;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,利用正切的定义得到tan∠AOE==,tan∠BOF= =,则+=1,加上m+n=0,于是可解得m=2,n=﹣2,从而得到A(2,4),B(﹣4,﹣2),然后利用待定系数法求直线AB的解析式.【解答】解:(1)当m=2,则A(2,4),把A(2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B(﹣4,n)代入y=得﹣4n=8,解得n=﹣2;(2)因为点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,所以4m=k,﹣4n=k,所以4m+4n=0,即m+n=0;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,在Rt△AOE中,tan∠AOE==,在Rt△BOF中,tan∠BOF==,而tan∠AOD+tan∠BOC=1,所以+=1,而m+n=0,解得m=2,n=﹣2,则A(2,4),B(﹣4,﹣2),设直线AB的解析式为y=px+q,把A(2,4),B(﹣4,﹣2)代入得,解得,所以直线AB的解析式为y=x+2.25.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【考点】四边形综合题.【分析】(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;(2)①根据正方形的性质、等腰直角三角形的性质解答;②根据PE∥CF,得到=,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.月23日。

江苏省泰州市2001-2012年中考数学试题分类解析 专题2 代数式和因式分解

江苏省泰州市2001-2012年中考数学试题分类解析 专题2 代数式和因式分解

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题2:代数式和因式分解一、选择题1.(2001江苏泰州3分)下列计算正确的是【 】。

A. ()2n2naa =aa 0÷≠ B.32xx=xyy()b a b -≥【答案】B 。

【考点】同底幂除法,分式化简, 根式化简。

【分析】根据同底幂除法,分式化简, 根式化简运算法则逐一计算作出判断:A. 2n22n 2aa =a-÷ ,计算错误; B.32xx=xyy,计算正确;a - ,计算错误;ab -不等,计算错误, 故选B 。

2.(江苏省泰州市2002年4分)下列运算正确的是【 】 A 、a 3·a 4=a 12B 、a 5-a 3=a 2C 、(a 2)m =a 2mD 、(a+1)0=1【答案】C 。

【考点】同底数幂的乘法,合并同类项,幂的乘方,零指数幂。

【分析】根据同底数幂的乘法的性质,合并同类项的法则,幂的乘方的性质,零指数幂的意义,对各选项分析判断后利用排除法求解:A 、a 3•a 4=a 7,此选项错误;B 、a 5和a 3不是同类项,不可以合并,此选项错误; C 、(a 2)m =a 2m ,此选项正确;D 、(a+1)0=1必须a≠-1,此选项错误。

故选C 。

3.(江苏省泰州市2003年4分)下列运算正确的是【 】 A .4222x x x =+ B .532a a a =⋅C .64216)2(x x =- D .223)3)(3(y x y x y x -=-+ 【答案】B 。

【考点】合并同类项,同底数幂的乘法,幂的乘方与积的乘方,平方差公式。

【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;平方差公式,对各选项分析判断后利用排除法求解:A 、应为2222x x x +=,故本选项错误;B 、235a a a ⋅=,故本选项正确;C 、应为248(2)16x x -=,故本选项错误;D 、应为22(3)(3)9x y x y x y +-=-,故本选项错误。

【中考12年】江苏省泰州市2001-中考数学试题分类解析 专题10 四边形

【中考12年】江苏省泰州市2001-中考数学试题分类解析 专题10 四边形

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题10:四边形一、选择题1. (2001江苏泰州3分)已知:如图,正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 点作OE⊥OF,分别交AB 、BC 于点E 、F 。

若AE=4,CF=3,则EF 等于【 】。

A. 7 B. 5 C.4 D.3【答案】B 。

【考点】正方形的性质,全等三角形的判定和性质,勾股定理。

【分析】根据正方形的性质,OB=OC ,∠OBE=∠OCF,∵OE⊥OF,∴∠EOB+∠BOF=90°。

∵∠BOF+∠COF=90°,∴∠EOB=∠COF。

∴△BEO≌△OFC(ASA )。

∴BE=CF。

∴在Rt△BEF 中,AE=4,BE=3,由勾股定理,得EF=5。

故选B 。

2.(江苏省泰州市2003年4分)顺次连结等腰梯形各边中点所得的四边形一定是【 】 A .菱形 B .矩形 C .梯形 D .正方形 【答案】A 。

【考点】等腰梯形的性质,三角形中位线定理,菱形的判定。

【分析】根据等腰梯形的性质及中位线定理和菱形的判定,可推出四边形为菱形:如图,∵E、F 分别是AB 、BC 的中点,∴EF=12AC 。

同理,GH=12AC ,FG=12BD ,EH=12BD 又∵四边形ABCD 是等腰梯形,∴AC=BD。

∴EF=FG=GH=HE。

∴四边形EFGH 是菱形。

故选A 。

3.(江苏省泰州市2004年4分)圆内接四边形ABCD 中,若∠A :∠B :∠C=1:2:5,则∠D 等于【 】A. 60°B. 120°C. 140°D. 150°【答案】B 。

【考点】圆内接四边形的性质,多边形内角和定理。

【分析】∵四边形ABCD 圆内接四边形,∴由圆内接四边形的对角互补得∠A:∠B:∠C:∠D=1:2:5:4。

∴∠D=180°×46=120°。

中考数学试卷真题2004

中考数学试卷真题2004

中考数学试卷真题20042004年中考数学试卷一、选择题1. 已知:正方形ABCD的边长为5cm。

点E、F分别是AB、CD的中点。

连接EF并延长至交点G,连接AG。

则AG的长为()。

A. 5.5cmB. 2.5cmC. 6.5cmD. 3.5cm2. 解方程2x - 8 = 4x的解为()。

A. x = 2B. x = -2C. x = -4D. x = 43. 如图,ΔABC中,∠ACB = 90°,AB = 8cm,AC = 6cm。

则BC 的长为()。

(图略)A. 2cmB. 10cmC. 10.8cmD. 4cm4. 把一个平面图形沿顶点A旋转120°,得到图形'A。

再把图形'A沿顶点A旋转120°,得到图形''A。

如下图所示:(图略)则图形''A与图形A的形状相同,并且A''是A的()。

A. 起始位置B. 三倍位置C. 原位置D. 六倍位置5. 已知一个人健走的速度为每小时5km(公里),则他每走20分钟的速度是()。

A. 1km/hB. 1.2km/hC. 0.2km/hD. 6km/h二、填空题6. 如图,已知∠ABC = 60°,边长AB = 3cm,线段AD平分∠BAC,且点D在AB上。

则以线段AD为边的等边三角形的周长是______ cm。

(图略)7. 一水果店买来一箱苹果,总共200个。

如果每个人平均分得3个苹果,店主自己得3个,还剩17个苹果没有分。

则买来这一个箱苹果的人数为_____ 人。

8. 已知数k使“5:k = 3:15”成立,则k的值为______。

三、解答题9. 小明口中有4颗红色的糖和6颗黄色的糖,小红口中有5颗红色的糖和5颗黄色的糖。

如果小红和小明同时从自己的口袋里拿出一颗糖,放到中间的一个盘子里。

现在从盘子里随机取出一个糖,请问这颗糖是黄色的概率为多少?10. 小明从家到学校有两条路可选,一条是直线距离为8km的收费公路,另一条是弯曲的道路,相当于直线距离的1.25倍,但不收费。

【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题06 函数的图像与性质

【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题06 函数的图像与性质

泰州市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1.(江苏省泰州市2004年4分)用某种金属材料制成的高度为h 的圆柱形物体甲如右图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为21h 的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为【 】A .500帕B .1000帕C .2000帕D .250帕2.(江苏省泰州市2006年3分)反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为【 】 A .1- B .0 C .1 D .23.(江苏省泰州市2007年3分)下列函数中,y 随x 的增大而减小的是【 】A .1y x =-B .2y x =C .3y x =-(0x >)D .4y x=(0x <)4.(江苏省泰州市2007年3分)已知:二次函数24y x x a =--,下列说法错误..的是【 】 A .当1x <时,y 随x 的增大而减小B .若图象与x 轴有交点,则4a ≤C .当3a =时,不等式240x x a <-+的解集是13x <<D .若将图象向上平移1个单位,再向左平移3个单位后过点(12)-,,则3a =-5.(江苏省泰州市2010年3分)下列函数中,y 随x 增大而增大的是【 】 A.3y x =- B. y x 5=-+ C. 1y x 2= D. 21y x (x 0)2=<6.(江苏省泰州市2011年3分)某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m )之间的函数关系式为)0(≠=h hV S ,这个函数的图象大致是【 】二、填空题1. (江苏省泰州市2004年3分)在距离地面2米高的某处把一物体以初速度0v (米/秒)竖直向上抛出,在不计空气阻力的情况下,其上升高度s (米)与抛出时间t (秒)满足:2021gt t v s -= (其中g 是常数,通常取10米/秒2),若100=v 米/秒,则该物体在运动过程中最高点距离地面 ▲ 米.2.(江苏省泰州市2005年3分)写出一个图象分布在二、四象限内的反比例函数解析式 ▲ _.3.(江苏省泰州市2007年3分)直线y x =-,直线2y x =+与x 轴围成图形的周长是 ▲ (结果保留根号).4.(江苏省2009年3分)反比例函数1y x=-的图象在第 ▲ 象限.5.(江苏省泰州市2010年3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y成立的x 的取值范围为 ▲ .三、解答题1.(江苏省泰州市2002年8分)某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威。

【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题10 四边形

【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题10 四边形

泰州市2002-2013年中考数学试题分类解析 专题10 四边形一、选择题1.(江苏省泰州市2003年4分)顺次连结等腰梯形各边中点所得的四边形一定是【 】A .菱形B .矩形C .梯形D .正方形2.(江苏省泰州市2004年4分)圆内接四边形ABCD 中,若∠A :∠B :∠C=1:2:5,则∠D 等于【 】A. 60°B. 120°C. 140°D. 150°3.(江苏省泰州市2004年4分)四边形ABCD 中,AB ∥CD ,且AB 、CD 长是关于x 的方程 022322=-++-m m mx x 的两个实数根,则四边形ABCD 是【 】A. 矩形B. 平行四边形C. 梯形D. 平行四边形或梯形4.(江苏省泰州市2005年3分)如图,梯形ABCD中,AD//BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于【】A.4 B.6 C.8 D.105.(江苏省泰州市2008年3分)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是【】6.(江苏省泰州市2011年3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。

其中一定能判断这个四边形是平行四边形的条件共有【】A.1组 B.2组 C.3组 D.4组7.(2012江苏泰州3分)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题...共有【】A.1个 B.2个 C.3个 D.4个二、填空题1.(江苏省泰州市2006年3分)在等腰梯形ABCD中,AD∥BC,AD=1,AB=CD=2,BC=3,则∠B=▲ _度.4cm,2.(江苏省2009年3分)如图,已知EF是梯形ABCD的中位线,△DEF的面积为2则梯形ABCD的面积为▲ cm2.3.(江苏省泰州市2011年3分)如图,平面内4条直线l1、l2、 l3、 l4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD的4个顶点A、B、C、D都在这些平行线上,其中点A、C分别在直线l1、l4上,该正方形的面积是▲ 平方单位。

江苏省泰州市2001-2012年中考数学试题分类解析 专题8 平面几何基础

江苏省泰州市2001-2012年中考数学试题分类解析 专题8 平面几何基础

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题8:平面几何基础一、选择题2.(2001江苏泰州4分)①若不等式()a 2x 2a <--的解集为x 1>-,则a 2<。

②若α、β,则以α、β为根的一元二次方程为2x +3x+2=0。

③方程(x+3的解为x=3±。

④用反证法证明“三角形中至少有一个内角不小于600”。

第一步应假设三角形中三个内角都小于600。

以上4条解答,正确的条数为【 】。

A.0B. 1C. 2D. 3【答案】C 。

【考点】解不等式,非负数的性质,一元二次方程的根,解无理方程,反证法。

【分析】根据相关知识逐一判断:①当a 2<时,原不等式化为2a x a 2>--,即x 1>-;当a 2>时,原不等式化为2a x a 2<--,即x 1<-。

∴若不等式()a 2x 2a <--的解集为x 1>-,则a 2<。

∴结论正确。

②∵α、β,∴+3=02=0αβαβ-- ,,即+=3=2αβαβ ,。

∴根据一元二次方程根与系数的关系知,以α、β为根的一元二次方程为2x 3x+2=0-。

∴结论错误。

③∵当x=3-时,方程(x+3无意义,∴结论错误。

④结论正确。

∴正确的条数为2条。

故选C 。

3.(江苏省泰州市2002年4分)等腰三角形一边长为4,一边长9,它的周长是【 】A 、17B 、22C 、17或22D 、13【答案】B 。

【考点】等腰三角形的性质,三角形的构成条件。

【分析】分底边是4和底边是两种情况讨论:当底边是4时:三边是4,9,9,则周长是22;当底边是9时:三边是:4,4,9,因为4+4<9不能构成三角形。

∴等腰三角形的周长为22。

故选B 。

4.(江苏省泰州市2002年4分)下列图形中是中心对称图形的是【 】A 、B 、C 、D 、【答案】C 。

【考点】中心对称图形,【分析】根据中心对称图形是图形沿对称中心旋转180度后与原图重合的概念和各图形的特点即可求解:A 、是轴对称图形;B 、有五个角,但有旋转,所以既不是轴对称图形也不是中心对称图形;C 、即是轴对称图形,又是中心对称图形;D 、是轴对称图形。

江苏泰州中考数学试卷及答案

江苏泰州中考数学试卷及答案

泰州市二○一○年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 3-的倒数为( )A.3-B.31 C.3 D. 31- 2.下列运算正确的是( )A.623·a a a = B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 3.据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( )A.810305.4⨯亩 B. 610305.4⨯亩 C. 71005.43⨯亩 D. 710305.4⨯亩 4.下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.5.下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 6.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个7.一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种8.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A.Q P > B. Q P = C. Q P < D.不能确定第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.数据-1,0,2,-1,3的众数为 . 10.不等式642-<x x 的解集为 .11.等腰△ABC 的两边长分别为2和5,则第三边长为 .12.已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π). 13.一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .14.已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .15.一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 .16.如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.17.观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: . 18.如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.计算:(1)12)21(30tan 3)21(01+-+︒---;(2))212(112aa a a a a +-+÷--. 20.已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F . 由⑴、⑵可得:线段EF 与线段BD 的关系为21.学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.22.如图,四边形矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连结EF,试判断四边形BCEF的形状,并说明理由.23.近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?24.玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是;(2)全国接收直接捐款数和捐物折款数共计约亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?25.庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶ i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)26.保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?27.如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)28.在平面直角坐标系中,直线y kx b =+(k 为常数且k ≠0)分别交x 轴、y 轴于点A 、B ,⊙O5个单位长度.⑴如图甲,若点A 在x 轴正半轴上,点B 在y 轴正半轴上,且OA=OB . ①求k 的值;②若b =4,点P 为直线y kx b =+上的动点,过点P 作⊙O 的切线PC 、PD ,切点分别为C 、D ,当PC ⊥PD 时,求点P 的坐标. ⑵若12k =-,直线y kx b =+将圆周分成两段弧长之比为1∶2,求b 的值.(图乙供选用)参考答案一、选择题 1.D 2.B 3.D 4.C 5.C 6.B 7.B 8.C二、填空题 9.-1 10.x >3 11.5 12.10π 13.x <-2 14.(4,0);(4,4);(0,4)(只要写出一个即可) 15.3116.4或617.())22(21122+=-+n n n 18.75°三、解答题:19.(1)原式=3231233--⨯++=23123--++=13-+. (2)原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+.20.⑴、⑵题作图如下:由作图可知线段EF 与线段BD 的关系为:互相垂直平分.21.根据题意列表(或画树状图)如下:由列表可知:()2163==和为偶数P ,()2163==和为奇数P . 所以这个方法是公平的.22.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB ,∴∠DCA =∠EDC ,∴AC ∥DE ; ⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°, 又∠EDC =∠CAB ,AB=CD ,∴△DEC △AFB ≌,∴DE =AF ,由⑴得AC ∥DE , ∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF , ∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形. 22.证明:(1)∵四边形ABCD 是矩形,∴CD ∥AB ∴∠DCA =∠CAB又∵∠EDC =∠CAB ∴∠EDC =∠DCA ∴AC ∥DE .(2)四边形BCEF 是平行四边形 证明:∵∠DEC =90° ,BF ⊥AC ∴在Rt △DEC 与Rt △AFC 中∠DEC =∠AFB ,∠EDC =∠F AB ,CD =AB ∴Rt △DEC ≌ Rt △AFC ∴CE =BF又∵DE ∥AC ∴∠DEC +∠ACE =180° 又∵∠DEC =90°∴∠ACE =90° ∴∠ACE =∠AFB ∴CE ∥BF∴四边形BCEF 是平行四边形. 23.解:设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800.答:调进绿豆的吨数应不少于600,不超过800吨. 24.(1)1―33%―33%―13%―17%=4%,故应填4% (2)因为中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:15.6/30%=52亿,应填52亿.(3)补全图如下:(4)设直接捐款数为x ,则捐赠物折款数为:(52-x ) 依题意得:x =6(52-x )+3 解得x =45(亿)(52-x )=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元. 25.解:过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A . 26.(1)①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x=;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;(2)当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; (3)对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.27.解:(1) ∵抛物线经过点D (29,3-) ∴29)3(212=+-⨯-c ∴c=6.(2)过点D 、B 点分别作AC 的垂线,垂足分别为E 、F ,设AC 与BD 交点为M , ∵AC 分四边形ABCD 相等,即:S △ABC =S △ADC ∴DE =BF 又∵∠DME =∠BMF , ∠DEM =∠BFE ∴△DEM ≌△BFM∴DM =BM 即AC 平分BD ∵c =6. ∵抛物线为6212+-=x y ∴A (0,32-)、B (0,32)∵M 是BD 的中点 ∴M (49,23) 设AC 的解析式为y =kx +b ,经过A 、M 点 ∴⎪⎩⎪⎨⎧=+=+-4923032b k b k 解得⎪⎪⎩⎪⎪⎨⎧==591033b k ∴直线AC 的解析式为591033+=x y . (3)存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN=于是以A 点为圆心,AB=为半径作圆与抛物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .28.解:⑴①根据题意得:B 的坐标为(0,b ),∴OA =OB =b ,∴A 的坐标为(b ,0),代入y =kx +b 得k =-1.②过P 作x 轴的垂线,垂足为F ,连结OD .∵PC 、PD 是⊙O 的两条切线,∠CPD =90°,∴∠OPD =∠OPC =12∠CPD =45°, ∵∠PDO=90°,,∠POD =∠OPD =45°,∴OD =PDOP∵P 在直线y =-x +4上,设P (m ,-m +4),则OF =m ,PF =-m +4,∵∠PFO =90°, OF 2+PF 2=PO 2,∴ m 2+ (-m +4)22,解得m=1或3,∴P 的坐标为(1,3)或(3,1)(2)分两种情形,y=-12x+54,或y=-12x-54。

2004年江苏省泰州市中考数学试卷

2004年江苏省泰州市中考数学试卷

2004年江苏省泰州市中考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)的倒数是()A.B.C.D.2.(4分)下列计算中,正确的是()A.(a+b)2=a2+b2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(m+n)(﹣m+n)=﹣m2+n23.(4分)2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米B.4.29×104千米C.4.28×105千米D.4.29×105千米4.(4分)已知△ABC中,AB=3,BC=4,则第三边AC的取值范围是()A.3<AC<4B.1≤AC≤7C.1<AC<7D.0<AC<12 5.(4分)下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(4分)圆内接四边形ABCD中,若∠A:∠B:∠C=1:2:5,则∠D等于()A.60°B.120°C.140°D.150°7.(4分)已知⊙O1和⊙O2的半径分别为5和2,O1O2=7,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内含8.(4分)小明和爸爸妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于()A.49千克B.50千克C.24千克D.25千克9.(4分)若代数式的值为2,则a的取值范围是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=4 10.(4分)四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形11.(4分)用某种金属材料制成的高度为h的圆柱形物体甲如图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为h的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为()A.500帕B.1000帕C.2000帕D.250帕12.(4分)给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a﹣1,n)(a>0)在反比例函y的图象上,则m<n.其中,正确命题的个数是()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)13.(3分)下列各数,π,,,sin60°中,无理数共有个.14.(3分)函数的自变量x的取值范围是.15.(3分)某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为cm.16.(3分)如图,△ABC中,BD平分∠ABC,且D为AC的中点,DE∥BC,AB于点E,若BC=4,则EB长为.17.(3分)某地区六月份某一周每天最高气温如下表.则这一周最高气温的中位数是℃.18.(3分)李小同叔叔下岗后想自主创业搞大棚蔬菜种植,需要修一个如图所示的育苗棚,棚宽a=3m,棚顶与地面所成的角约为25°,长b=9m,则覆盖在顶上的塑料薄膜至少需m2.(利用计算器计算,结果精确到1m2)19.(3分)为了能有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00每千瓦时0.30元(“谷电”价).王老师家使用“峰谷”电后,五月份用电量为300千瓦时,付电费115元,则王老师家该月使用“峰电”千瓦时.20.(3分)在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面m.三、解答题(共9小题,满分78分)21.(6分)计算:.22.(6分)化简:.23.(7分)解方程:.24.(7分)已知:D、E为BC边上的点,AD=AE,BD=EC.求证:AB=AC.25.(9分)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放.记第n个图中小黑点的个数为y.解答下列问题:(1)填表:(2)当n=8时,y=;(3)根据上表中的数据,把n作为横坐标,把y作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y),其中1≤n≤5;(4)请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,请写出该函数的解析式.26.(9分)用剪刀将形状如图(甲)所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图(乙)中的Rt△BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图乙中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图丙、图丁的虚框内;(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB 和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x2﹣(m﹣1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.27.(10分)“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)28.(12分)如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.(1)求证:BE是⊙O的切线;(2)求证:AC2=CM•CF;(3)若CM,MF,求BD;(4)若过点D作DG∥BE交EF于点G,过G作GH∥DE交DF于点H,则易知△DGH 是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.29.(12分)抛物线y=ax2+bx+c(a<0)交x轴于点A(﹣1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.(1)求顶点D的坐标(用a的代数式表示);(2)求抛物线的解析式;(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2004年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)的倒数是()A.B.C.D.【解答】解:∵()=1,∴的倒数是.故选:C.2.(4分)下列计算中,正确的是()A.(a+b)2=a2+b2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(m+n)(﹣m+n)=﹣m2+n2【解答】解:A、应为(a+b)2=a2+2ab+b2,故错误;B、应为(a﹣b)2=a2﹣2ab+b2,故错误;C、应为(a+m)(b+n)=ab+an+bm+mn,故错误;D、(m+n)(﹣m+n)=﹣m2+n2,正确.故选:D.3.(4分)2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米B.4.29×104千米C.4.28×105千米D.4.29×105千米【解答】解:60万÷14≈4.29×104.故选:B.4.(4分)已知△ABC中,AB=3,BC=4,则第三边AC的取值范围是()A.3<AC<4B.1≤AC≤7C.1<AC<7D.0<AC<12【解答】解:根据三角形的三边关系,得4﹣3<AC<4+3,1<AC<7.故选:C.5.(4分)下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、B、D都是中心对称也是轴对称图形,C、是轴对称,但不是中心对称.故选:C.6.(4分)圆内接四边形ABCD中,若∠A:∠B:∠C=1:2:5,则∠D等于()A.60°B.120°C.140°D.150°【解答】解:∵四边形ABCD圆内接四边形,∴∠A:∠B:∠C:∠D=1:2:5:4,∴∠D=180°120°.故选:B.7.(4分)已知⊙O1和⊙O2的半径分别为5和2,O1O2=7,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内含【解答】解:∵⊙O1和⊙O2的半径分别为5和2,O1O2=7,r1+r2=5+2=7,∴两圆外切.故选:B.8.(4分)小明和爸爸妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于()A.49千克B.50千克C.24千克D.25千克【解答】解:设小明的体重为x,则小明妈妈的体重为2x,爸爸的体重为150﹣3x.则有x+2x<150﹣3x即6x<150所以x<25因此小明的体重应小于25千克.故选:D.9.(4分)若代数式的值为2,则a的取值范围是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=4【解答】解:依题意,得|2﹣a|+|a﹣4|=a﹣2+4﹣a=2,由结果可知(2﹣a)≤0,且(a﹣4)≤0,解得2≤a≤4.故选C.10.(4分)四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选:C.11.(4分)用某种金属材料制成的高度为h的圆柱形物体甲如图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为h的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为()A.500帕B.1000帕C.2000帕D.250帕【解答】解:根据压强公式可知,甲的压强为p,即F=1000S,则乙的压强为p′500帕.故选:A.12.(4分)给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a﹣1,n)(a>0)在反比例函y的图象上,则m<n.其中,正确命题的个数是()A.1个B.2个C.3个D.4个【解答】解:根据对称性可知.(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形,正确;(2)如果点A到两坐标轴的距离相等,那么点A是y=x与y=2x﹣3的交点,是(3,3),在第一象限,或点A是y=﹣x与y=2x﹣3的交点,是(1,﹣1),在第四象限.则点A 在第一或第四象限是正确的;(3)半径为5的圆中,弦AB=8,则弦心距是3,圆周上到直线AB的距离为2的点是平行于AB,弦心距是2的弦与圆的交点.再加上垂直于弦AB的半径与圆的交点共3个,故其错误;(4)若A(a,m)、B(a﹣1,n)(a>0)在反比例函y的图象上,而a与a﹣1的不能确定是否同号,即A,B不能确定是否在同一象限内,故m与n的大小关系无法确定.故错误.故选:B.二、填空题(共8小题,每小题3分,满分24分)13.(3分)下列各数,π,,,sin60°中,无理数共有3个.【解答】解:显然,π,,sin60°,是无理数,而,4,是有理数,所以无理数共有3个.14.(3分)函数的自变量x的取值范围是x.【解答】解:根据题意得:1﹣2x≥0,解得:x.15.(3分)某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为6cm.【解答】解:根据正六边形的边长与它的外接圆的半径相等知,此正六边形的边长为6cm.16.(3分)如图,△ABC中,BD平分∠ABC,且D为AC的中点,DE∥BC,AB于点E,若BC=4,则EB长为2.【解答】解:∵D为AC的中点,DE∥BC∴DE BC=2,∠EBD=∠CBD∵BD平分∠ABC∴∠EBD=∠EDB∴BE=DE=2.17.(3分)某地区六月份某一周每天最高气温如下表.则这一周最高气温的中位数是27℃.【解答】解:根据图表可知题目中数据共有7个,故中位数是按从小到大排列后第4个数作为中位数,故这组数据的中位数是27(℃). 故答案为27.18.(3分)李小同叔叔下岗后想自主创业搞大棚蔬菜种植,需要修一个如图所示的育苗棚,棚宽a =3m ,棚顶与地面所成的角约为25°,长b =9m ,则覆盖在顶上的塑料薄膜至少需 30 m 2.(利用计算器计算,结果精确到1m 2)【解答】解:∵棚顶的宽=a ÷cos25°=3÷0.9=3.∴覆盖在顶上的塑料薄膜面积=39=30(m 2).19.(3分)为了能有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00每千瓦时0.30元(“谷电”价).王老师家使用“峰谷”电后,五月份用电量为300千瓦时,付电费115元,则王老师家该月使用“峰电” 100 千瓦时.【解答】解:设用峰电x 千瓦时,则有0.55x +0.30×(300﹣x )=115, 解得:x =100.∴王老师家该月使用“峰电”100千瓦时.20.(3分)在距离地面2m 高的某处把一物体以初速度v 0(m /s )竖直向上抛物出,在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:s =v 0tgt 2(其中g 是常数,通常取10m /s 2).若v 0=10m /s ,则该物体在运动过程中最高点距地面 7 m . 【解答】解:把g =10,v 0=10代入s =v 0t gt 2得: s =﹣5t 2+10t =﹣5(t ﹣1)2+5,它是开口向下的一条抛物线,所以最大值为5,此时离地面5+2=7m.三、解答题(共9小题,满分78分)21.(6分)计算:.【解答】解:原式1﹣321﹣32(1)=2.22.(6分)化简:.【解答】解:原式(3分)(5分).(6分)故答案为.23.(7分)解方程:.【解答】解:方程两边同乘(x+1)(x﹣1),得:6﹣3(x+1)=(x+1)(x﹣1),整理得:x2+3x﹣4=0,解得x1=1,x2=﹣4,经检验:x1=1是增根,舍去,∴方程的解为:x=﹣4.24.(7分)已知:D、E为BC边上的点,AD=AE,BD=EC.求证:AB=AC.【解答】证明:∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.25.(9分)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放.记第n个图中小黑点的个数为y.解答下列问题:(1)填表:(2)当n=8时,y=57;(3)根据上表中的数据,把n作为横坐标,把y作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y),其中1≤n≤5;(4)请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,请写出该函数的解析式.【解答】解:由题意得:(1)21;(2)57;(3)(4)在一个函数的图象上,该函数的解析式为y=n2﹣n+1.26.(9分)用剪刀将形状如图(甲)所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图(乙)中的Rt△BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图乙中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图丙、图丁的虚框内;(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x2﹣(m﹣1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.【解答】解:(1)如图;(4分)(每一个图2分)(2)由题可知AB=CD=AE,又BC=BE=AB+AE,∴BC=2AB,即b=2a,(5分)由题意知a,2a是方程x2﹣(m﹣1)x+m+1=0的两根,∴(6分)消去a,得2m2﹣13m﹣7=0,解得m=7或,(7分)经检验:由于当,<,知不符合题意,舍去.m=7符合题意.(8分)∴S矩形=ab=m+1=8,答:原矩形纸片的面积为8cm2.(9分)27.(10分)“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【解答】解:(1)由图象可知,小明全家在旅游景点游玩了4小时;(2)设s=kt+b,由(14,180)及(15,120)得,解得∴s=﹣60t+1020(14≤t≤17)令s=0,得t=17.答:返程途中s与时间t的函数关系是s=﹣60t+1020,小明全家当天17:00到家;(3)答案不唯一,大致的方案为:①9:30前必须加一次油;②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量至少为25升.28.(12分)如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.(1)求证:BE是⊙O的切线;(2)求证:AC2=CM•CF;(3)若CM,MF,求BD;(4)若过点D作DG∥BE交EF于点G,过G作GH∥DE交DF于点H,则易知△DGH 是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.【解答】(1)证明:连接OB∵△ABC和△BDE都是等边三角形∴AB=BC=AC,∠CAB=∠ABC=∠EBD=60°∴∠OBC=30°(1分)∵∠CBE=180°﹣60°﹣60°=60°∴∠OBE=30°+60°=90°即OB⊥BE(2分)∴BE是⊙O的切线;(3分)(2)证明:连接AM,则∠AMC=∠ABC=∠CAF=60°(4分)∵∠ACM=∠FCA∴△ACM∽△FCA(5分)∴∴AC2=CM•CF;(6分)(3)解:∵AC2=CM•CF∴AC=2(7分)设FB=x∵FB•F A=FM•FC∴∴x=4,x=﹣6(舍去)∴FB=4(8分)∵EB∥AC∴∴(9分)∴BE∴BD;(10分)(4)解:S22=S1•S3或(12分).29.(12分)抛物线y=ax2+bx+c(a<0)交x轴于点A(﹣1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.(1)求顶点D的坐标(用a的代数式表示);(2)求抛物线的解析式;(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【解答】解:(1)(方法一)由题意:设抛物线的解析式为y=a(x+1)(x﹣3)∴y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴点C(0,﹣3a),D(1,﹣4a),(方法二)由题意:,解得.∴y=ax2﹣2ax﹣3a(下同方法一);(2)(方法一)过点D作DE⊥y轴于点E,易证△DEC∽△COB∴∴∴a2=1.∵a<0,∴a=﹣1.故抛物线的解析式为:y=﹣x2+2x+3.(方法二)过点D作DE⊥y轴于点E,过M作MG⊥x轴于点G,设⊙M交x轴于另一点H,交y轴于另一点F,可先证四边形OHDE为矩形,则OH=DE=1,再证OF=CE=﹣a,由OH•OB=OF•OC得:(﹣a)(﹣3a)=1×3,∴a2=1;(下同法一)(3)符合条件的点P存在,共3个①若∠BPD=90°,P点与C点重合,则P1(0,3)(P1表示第一个P点,下同)②若∠DBP=90°,过点P2作P2R⊥x轴于点R,设点P2(p,﹣p2+2p+3)由△BP2R∽△DBH得,,即,解得或p=3(舍去)故,③若∠BDP=90°,设DP3的延长线交y轴于点N,可证△EDN∽△HDB,求得EN,∴N(0,).求得DN的解析式为,求抛物线与直线DN的交点得P3(,),综上所述:符合条件的点P为(0,3)、,、(,).。

江苏省泰州市2001-2012年中考数学试题分类解析 专题5 数量和位置变化

江苏省泰州市2001-2012年中考数学试题分类解析 专题5 数量和位置变化

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题5:数量和位置变化一、选择题1.(江苏省泰州市2002年4分)向高层建筑屋顶的水箱注水,水对水箱底部的压强p 与水深h 的函数关系的图象是【 】(水箱能容纳的水的最大高度为H )。

【答案】D 。

【考点】函数的图象,跨学科问题的应用。

【分析】由压强公式p gh ρ=,ρ是水的密度,g 是重力加速度9.8,h 是水中某点距水面的高度,由此可知,压强p 与水深h 的函数关系是一次函数的关系,且p 随着h 的增加而增加。

故选D 。

2.(江苏省泰州市2003年4分)向一容器内均匀注水,最后把容器注满.在注水过程中,容器的水面高度 与时间的关系如右图所示,图中PQ 为一线段..,则这个容器是【 】【答案】C 。

【考点】函数的图象。

【分析】观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案:根据图象, 水面高度增加的先逐渐变快,再匀速增加,故容器从下到上,应逐渐变小,最后均匀。

故选C 。

3.(江苏省泰州市2006年3分)在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀 速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的 高度x (单位cm )之间的函数关系的大致图象是【 】A. B. C. D. 【答案】C 。

【考点】函数的图象。

【分析】露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变:因为小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度。

故选C 。

4.(江苏省泰州市2007年3分)已知:如图,(42)E -,,(11)F --,,以O 为位似中心,按比例尺1:2,把EFO △缩小,则点E 的对应点E '的坐标为【 】A .(21)-,或(21)-, B .(84)-,或(84)-, C .(21)-,D .(84)-,【答案】A 。

江苏省泰州市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)

江苏省泰州市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题3:方程(组)和不等式(组)一、选择题1.(江苏省泰州市2002年4分)k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是【 】A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、无法确定【答案】A 。

【考点】一元二次方程根的判别式。

【分析】判断一元二次方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号即可:∵a=1,b=2k +1,c=k -1,∴△=b 2-4ac=(2k +1)2-4×1×(k -1)=4k 2+4k +1-4k +4=4k 2+5>0。

∴方程有两个不等的实数根。

故选A 。

2.(江苏省泰州市2003年4分)一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是【 】A .2>kB .12≠<k k 且C .2<kD .12≠>k k 且 【答案】B 。

【考点】一元二次方程根的判别式,一元二次方程成立的条件。

【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足240b ac ∆=->。

所以∵=1=2=1a k b c ---,,,一元二次方程有两个不相等的实数根, ∴()()()224=24110b ac k ∆=----->,解得2k <。

∵二次项系数是1k -,不能为0, ∴21k k <≠且。

故选B 。

3.(江苏省泰州市2004年4分)小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端;体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端.这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于【 】A. 49千克B. 50千克C. 24千克D. 25千克【答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰州市2004年中考数学试题答案
1.C 2.D 3.B 4.D 5.C 6.B 7.A 8.D 9.C
10.C 1 1.A 12.B
13.3 14.x>-2
1 15.6 16.
2 17.27 18.30 19.100 20.7
21.解.原式=2.
22.解:原式=(a+2)/a
23.解:经检验:x=1是原方程的增根,x=-4是原方程的根.
∴原方程的根是x=-4.
24.证明:(方法一)∵AD=AE,∴∠AEB=∠ADC.
∵BD=EC,∴BE=CD.
∴△AB≌△ACD.
∴AB=AC.
(方法二)过A 点作AH⊥BC 于点H ,
25.(1)21 (2)57 (3)(图略) (4)在一个函数
的图象上,该函数的解析式为y=n 2-n+1
26.(1)如图1 2.
(2)由题可知AB-CD=AE ,又BC=BE=AB+AE .
∴BC=2AB,且b=2a . .
由题意知a ,2a 是方程x 2-(m-1)x+m+1=O 的两根,
∴ a+2a=m-l ,
a·2a=m+1.
消去a ,得2m 2-13m-7=0,解得m=7或m=-
21 经检验:由于当m=-2
1 时,a+2a=-3/2<0,知m=-1/2不符合题意,舍去. m=7符合题意.
S 矩形=ab=m+1=8.
答:原矩形纸片的面积为8平方厘米.
27.解:(1)由图象可知,小明全家在旅游景点游玩了4小时.
(2)s=-60t+1020(14≤t≤17).
令s=0,得t=17.
答:返程途中s 与时间t 的函数关系是s=-60t+1020,
小明全家当天1 7:00到家.
(3)加油时间正确,加油量正确.
注:本题答案不唯一,只要合理即可,但需注意合理性主要体现在:
①9:30前必须加一次油;
②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;
③全程可多次加油,但加油总量至少为25升.
28.(1)证明:连结OB,
∵△ABC和△BDE都是等边三角形,
∴AB=BC=AC,∠CAB=∠ABC=∠EBD=60°.
且∠OBC=30°,
又∠CBE=180°-60°-60°=60°.
∴∠OBE=30°+60°=90°,即OB⊥BE
∴BE是⊙0的切线.
(2)证明:连结AM,
则∠AMC=∠ABC=∠CAF=60°,
又∠ACM=∠FCA,
∴△A C M∽△FCA.
∴AC/CF=CM/AC,.AC2=CM·CF.
(3)AC2=CM·CF AC=2
设FB=x FB·FA=FM·FC解得x=4,x=-6(舍去).∴FB=4.
由EB∥AC,BE/AC=BF/FA
∴BE=4/3∴BD=4/3.
(4)s22=S1·S3
29.解:(1)由题意:设抛物线的解析式为y=a(x+1)(x-3).
∴y=a(x-1)2-4a.
∴.点C(0,-3a),D(1,-4a).
(2)过点D作DE⊥y轴于点E,易证△DEC∽△COB.
DE/OC=CE/OB a2=1∴a<O .a=-1.
故抛物线的解析式为:y=-x2+2x+3.
(3)符合条件的点P存在,共有3个.
①若∠BPD=90°,P点与C点重合,则P l(O,3)(P,表示第一个P点,下同).
②若∠DBP=90°,过点P2作P2R⊥x轴于点R,设点P2(p,-p2+2p+3),
由△BP2R∽△DBH得,BR/DH=P2R/BH,解得p=-3/2或P=3(舍去).
故P2(-3/2,-9/4).
③若∠BDP=90°,设DP3的延长线交y轴于点N,
可证△EDN∽△HDB,求得EN=1/2 N(0,7'2).
求得DN的解析式为Y=x/2+7/2.
求抛物线与直线DN的交点得P3(1/2,15/4).
综上所述:符合条件的点P为(O,3)、(-3/2,-9/4)、(1/2,15/4).。

相关文档
最新文档