2017年春八年级数学下册20.1.2中位数和众数第1课时同步课件新版新人教版
合集下载
人教版八年级下期数学20.1.2 第1课时 中位数和众数1
应聘者小王
你欺骗了我,我已问 过其他职员,没有一 个职员的工资超过
6000元.
小王在公司工作 了一周后
讲授新课
一 中位数
问题1 下表是某公司员工月收入的资料.
月收 入/元
人数
45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
1
1
1 3 6 1 11 1
2. 数学老师布置10道选择题作业,批阅得到如下统计 表,根据表中数据可知,这45名学生答对题数组成的 样本的中位数是___9__,众数是___8__.
答对题数 7 8
9 10
人数
4 18 16 7
3.某校男子足球队的年龄分布如下面的条形图所示.请
找出这些队员年龄的平均数、众数、中位数,并解释
它们的意义.
解:这些队员年龄的平均数为:
年龄/岁
(13×2+14×6+15×8+16×3+17×2+18×1)÷22=15,
队员年龄的众数为15,队员年龄的中位数是15.
意义:由平均数是15可说明队员们的平均年龄为15; 由众数是15可说明大多数队员的年龄为15岁;由中位 数是15可说明有一半队员的年龄大于或等于15岁,有 一半队员的年龄小于或等于15岁.
小明说谎了吗 x 74.4
我的工资是 4000元,在公司 算中等收入
职 员 D
职员C
你们公司员工收 入到底怎样呢?
我们好几个 人工资都是 3000元
应聘者小王
第二天,小王上班了.
经 理
我这里报酬不错, 月 平均工资是6000元, 你在这儿好好干!
平均工资确实是每
经
人教版数学八年级下册 20.1.2《中位数和众数》课件(共17张PPT)
(2)众数是一组数据中出现次数最多的数 据,是一组数据中的原数据,而不是相应的 次数.众数有可能不唯一,注意不要遗漏; 一组数据中也可能没有众数.
☞老师寄语
在日常生活中,平均数、中位数和众数 各有所长,也各有所短,要学会根据不同的问 题选择不同的数据代表。
只要你有一双爱观察的眼睛、有一个爱 思考的大脑,又有一颗爱创造的心,相信你 们会在生活中找到许许多多的数学知识, 也会用数学知识把我们的生活变得更加美 好!
14
15
人数
4
7
4
则该校女子排球队员年龄的中位数是__1_4_岁
众数是_1_4__岁
(2014福州市)若7名学生的体重分别是 40,42,43,47,45,47,58则这组数据的中 位数 ( C )
A.42 B.43 C.45 D.47
(2015福州市)若一组数据1,2,3,4,x的 平均数与中位数相同,则实数x的值不可 能是( C )
这9个数的众数 是 90 ; (2)若小亮也加入了他们这个学习小组,他的考 试成绩是88分,则这10个数的众数是 90和80 .
36 50 83 84 87 88 88 90 90 94
注:一组数据可以有不止一个众数, 也可以没有众数。
(2013福州市)某校女子排球队员的年 龄分布如下表:
年龄
13
A.0 B.2.5 C.3 D.5
(变式)若一组数据1,2,3,4,x的众数与 中位数相同,则实数x的值可能是( C )
A.1 B.2 C.3 D.4
说说看,在我们日常学习生活中哪些有用到 平均数、中位数、众数的实例?
平均数、中位数和众数的比较
统计量 相同点 优点
缺点
求法 个数
平均数
新人教版八年级数学下册第二十章《20.1.2中位数和众数1》公开课课件
1. 知识小结:这节课我们学习了中位数的概念, 了解了它们在描述一组数据“平均水平” 时 的不同角度和适用范围。 2.方法小结:众数是一组数据中出现次数最多的 数据,是一组数据中的原数据,而不是相应的次 数.众数有可能不唯一,注意不要遗漏.
注意事项:
(1)一组数据的众数一定出现在这组数据中
(2)一组数据的众数可能不止一个。 (3)众数是一组数据中出现次数最多的数据而 不是数据出现的次数,如 1,1,1,2,2, 5 中众数是1而不是3 (4)一组数据也可能没有众数,因为没有哪个
人教版新课标实验教材八年级数学下册
20.1.2 中位数和众数 (第二课时)
活动一:复习提问
1、如何计算平均数及加权平均数? 2、利用平均数能考察一组数据的什么特征? 3、什么是一组数据的中位数?又如何确定一 组数据的中位数呢? 4、利用中位数考察一组数据有什么优点?
活动二:引例分析,归纳定义
为筹备班级里的新年晚会,班长对全班同学爱吃
活动四:课堂练习
1.数据11, 8, 2, 7, 9, 2, 7, 3, 2, 0, 5 的众数是 中位数是 5 .
2
,
2.数据15, 20, 20, 22,30,30的众数是 20和30 , 中位数是 21 3.在数据-1, 0, 4, 5, 8中插入一个数据x , 2 使得这组数据的中位数是3,则x=
活动三:课堂举例 一家鞋店在一段时间内销售了某种女鞋30 双,各种尺码鞋的销售量如下表所示:
尺码/厘米 销售量/双 22 1 22.5 2 23 5 23.5 11 பைடு நூலகம்4 7 24.5 3 25 1
假如你是老板,你最关心哪一个统计量?你会如何进货? 解:由表可以看出,在鞋的尺码组成的一组数 据中,23.5是这组数据的众数,即23.5码的鞋销量 最大,因此可以建议多进23.5码的鞋。
注意事项:
(1)一组数据的众数一定出现在这组数据中
(2)一组数据的众数可能不止一个。 (3)众数是一组数据中出现次数最多的数据而 不是数据出现的次数,如 1,1,1,2,2, 5 中众数是1而不是3 (4)一组数据也可能没有众数,因为没有哪个
人教版新课标实验教材八年级数学下册
20.1.2 中位数和众数 (第二课时)
活动一:复习提问
1、如何计算平均数及加权平均数? 2、利用平均数能考察一组数据的什么特征? 3、什么是一组数据的中位数?又如何确定一 组数据的中位数呢? 4、利用中位数考察一组数据有什么优点?
活动二:引例分析,归纳定义
为筹备班级里的新年晚会,班长对全班同学爱吃
活动四:课堂练习
1.数据11, 8, 2, 7, 9, 2, 7, 3, 2, 0, 5 的众数是 中位数是 5 .
2
,
2.数据15, 20, 20, 22,30,30的众数是 20和30 , 中位数是 21 3.在数据-1, 0, 4, 5, 8中插入一个数据x , 2 使得这组数据的中位数是3,则x=
活动三:课堂举例 一家鞋店在一段时间内销售了某种女鞋30 双,各种尺码鞋的销售量如下表所示:
尺码/厘米 销售量/双 22 1 22.5 2 23 5 23.5 11 பைடு நூலகம்4 7 24.5 3 25 1
假如你是老板,你最关心哪一个统计量?你会如何进货? 解:由表可以看出,在鞋的尺码组成的一组数 据中,23.5是这组数据的众数,即23.5码的鞋销量 最大,因此可以建议多进23.5码的鞋。
人教版八年级数学下册20.1.2 中位数和众数第一课时优质课件.ppt
三、研学教材
解:
(1)先将样本数据按照由小到大的顺序排
列:__1_2_4__1_2_9__1_3_6__1_4_0__1_4_5__1_4_6________
_____1_4_8__1_5_4__1_5_8__1_6_5__1_7_5__1_8_0____
这组数据的中位数为 处于中间的两个数 146_,_1_4_8
三、研学教材
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些工人日加工零件数的中位数,并说明这个 中位数的意义. 人数
10 8 6
4 2 0 3 4 5 6 7 8 日加工零件数
三、研学教材
解:这些工人日加工 人数 零件数的中位数是6, 10 由中位数是6可以估 8 计,在这些工人中, 6 大约有一半工人的日 加工零件数大于或等 4 于6个,有一半工人 2 加工零件数小于或等 0 于6 个。
销售量/双 1
2
5
11
尺码/cm 24 24.5 25
销售量/双 7
3
1
三、研学教材
尺码/cm 22 22.5 23 23.5
销售量/双 1
2
5
11
尺码/cm 24 24.5 25
销售量/双 7
3
1
解:由上表看出,在鞋的尺码组成的数据中,
__2_3_._5__是这组数据的众数,它的意义是: __2_3_._5__cm的鞋销量最大.因此可以建议鞋店多 进__2_3_._5__cm的鞋.
的平均数, 146 148 147
即 =_______2
..
答:样本数据的中位数是__1_4_7___.
三、研学教材
(2)由(1)知样本数据的中位数为__1_4_7___,它 的意义是:这次马拉松比赛中,大约有__一__半__ 选手的成绩快于147min,有__一__半__选手的成 绩慢于147min. 这名选手的成绩是142min, 快于中位数_1_4_7_m_i_n,因此可以推测他的成绩 比___一__半__以__上____选手的成绩好.
人教版数学八年级下册20.1.2 第1课时 中位数和众数2.ppt
频数 1
2
3
1
2
3
1
6000 4000 1700 1300 1200 1100 500
如果每个工资数的频数都相同,那么这组数据 的众数是什么?独立思考后小组交流.
月薪 6000 4000 1700 1300 1200 1100 500
频数 1
1
1
1
1
1
1
这 种 情 况 没 有 众 数
6000 4000 1700 1300 1200 1100 500
Vivamus magna justo, lacinia eget consectetur sed.
2014
第三节
教学准备
输入你的文本 根据你所需的内容输入你想要的文本 点击输入本栏的具体文字,简明扼要的说明分项内容,此为概念图解,
请根据您的具体内容酌情修改。
MORE THAN TEMPLATE
Lorem Ipsum simply
dummy text of the printing.
THANKS!
感谢聆听 请多指点
Step
03
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
第四节
教学过程
输入你的文本 根据你所需的内容输入你想要的文本 点击输入本栏的具体文字,简明扼要的说明分项内容,此为概念图解,
请根据您的具体内容酌情修改。
MARK 03 PRESENTATION
Truffaut 90’s health goth master cleanse. YOLO Brooklyn coldpressed, lumbersexual health goth chillwave gastropub fap
人教版八年级下册课件 20.1.2 中位数和众数(共15张PPT)
20.1.2 中位数和众数
情境引入
我这里报酬不错, 月平均工资2000元, 你在这里好好干!
这个公司员工收 入到底怎样?
经理
小王
第二天,小王上班了。
平均工资确实是每 月2000元,不信,你 看看公司的工资报 表.
你欺骗了我,我已 经问过公司的职员 了,没有一个人的 工资是超过2000元
的
经理
小王
中位数和众数唯一吗?
2 2 3 3 4 4 中位数:3
• 9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.8.1221.8.12Thursday, August 12, 2021 • 10、阅读一切好书如同和过去最杰出的人谈话。10:58:0210:58:0210:588/12/2021 10:58:02 AM • 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.1210:58:0210:58Aug-2112-Aug-21 • 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。10:58:0210:58:0210:58Thursday, August 12, 2021
(元)
中位数
众数
中位数和众数不受极端值的影响
该公司员工的月薪如下:
员工 经理 副经理 职员A 职员B 职 员 职员D 职员E 职员F 职 员 小王
C
G
月 薪 6000 4000 1700 1300 1200 1100 1100 1100 500 1600 (元)
反映出小于或大于这个中位数的数据
员工 经理 副经理 职员A 小王 各职占员B一职半员。C 职员D 职员E 职员F 职员G
情境引入
我这里报酬不错, 月平均工资2000元, 你在这里好好干!
这个公司员工收 入到底怎样?
经理
小王
第二天,小王上班了。
平均工资确实是每 月2000元,不信,你 看看公司的工资报 表.
你欺骗了我,我已 经问过公司的职员 了,没有一个人的 工资是超过2000元
的
经理
小王
中位数和众数唯一吗?
2 2 3 3 4 4 中位数:3
• 9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.8.1221.8.12Thursday, August 12, 2021 • 10、阅读一切好书如同和过去最杰出的人谈话。10:58:0210:58:0210:588/12/2021 10:58:02 AM • 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.1210:58:0210:58Aug-2112-Aug-21 • 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。10:58:0210:58:0210:58Thursday, August 12, 2021
(元)
中位数
众数
中位数和众数不受极端值的影响
该公司员工的月薪如下:
员工 经理 副经理 职员A 职员B 职 员 职员D 职员E 职员F 职 员 小王
C
G
月 薪 6000 4000 1700 1300 1200 1100 1100 1100 500 1600 (元)
反映出小于或大于这个中位数的数据
员工 经理 副经理 职员A 小王 各职占员B一职半员。C 职员D 职员E 职员F 职员G
人教版八年级数学下册课件:20.1.2中位数和众数(共16张ppt)
学习目标:
1、理解中位数与众数的意义。 2、了解平均数,中位数和众数的区别,并且能灵活应用这
三个数据代表解决实际问题。
小组内进行交流, 解决导学案中的问题
(每个组选个代表说说你们组出现的问题)
中位数: 将一组数据由小到大(或由大到小)的顺序排列, 如果数据的个数是奇数,则处于中间位置的数就是这个数 据的中位数,如果数据的个数是偶数,则中间两个数的平 均数就是这组数据的中位数。
2. 八年级某班的教室里,三位同学正在为谁的 数学成绩最好而争论,他们的五次数学测验成 绩分别是(单位:分):
小华 小明 小丽
62 94 95 98 98 62 62 98 99 100 40 62 85 99 99
你认为他们谁的成绩最好?并说说你的理由。
议一议: 平均数、中位数和众数各 自有哪些特征?
1. 一组数据23、27、20、18、X、12,
它的中位数是21,则X的值是 .
22
2.下面的扇形图描述了某种运动服的S号、M号、 L号、XL号、XXL号在一家商场的销售情况,请 你为这家商场提出进货建议。
22% L M 30%
16%
XL
XXL
S
8%
24%
因为众数是M号,所以建议商 场多进M号的运动服,其次是 进S号,再其次进L号。少进 XXL号的运动服。
众 数:一组数据中出现次数最多的数据就是这组数据的 众数
例题讲析
1.某公司销售部有营销人员15人,销售部为了制定某种 商品的销售额,统计了这15个人的销售量如下(单位: 件)
1800、510、250、250、210、250、210、210、 150、210、150、120、120、21,中位数和众 数。
(2) 假设销售部负责人把每位营销员的月销售额定为 320件,你认为合理吗?如果不合理,请你制定一个 合理的销售额并说明理由。
1、理解中位数与众数的意义。 2、了解平均数,中位数和众数的区别,并且能灵活应用这
三个数据代表解决实际问题。
小组内进行交流, 解决导学案中的问题
(每个组选个代表说说你们组出现的问题)
中位数: 将一组数据由小到大(或由大到小)的顺序排列, 如果数据的个数是奇数,则处于中间位置的数就是这个数 据的中位数,如果数据的个数是偶数,则中间两个数的平 均数就是这组数据的中位数。
2. 八年级某班的教室里,三位同学正在为谁的 数学成绩最好而争论,他们的五次数学测验成 绩分别是(单位:分):
小华 小明 小丽
62 94 95 98 98 62 62 98 99 100 40 62 85 99 99
你认为他们谁的成绩最好?并说说你的理由。
议一议: 平均数、中位数和众数各 自有哪些特征?
1. 一组数据23、27、20、18、X、12,
它的中位数是21,则X的值是 .
22
2.下面的扇形图描述了某种运动服的S号、M号、 L号、XL号、XXL号在一家商场的销售情况,请 你为这家商场提出进货建议。
22% L M 30%
16%
XL
XXL
S
8%
24%
因为众数是M号,所以建议商 场多进M号的运动服,其次是 进S号,再其次进L号。少进 XXL号的运动服。
众 数:一组数据中出现次数最多的数据就是这组数据的 众数
例题讲析
1.某公司销售部有营销人员15人,销售部为了制定某种 商品的销售额,统计了这15个人的销售量如下(单位: 件)
1800、510、250、250、210、250、210、210、 150、210、150、120、120、21,中位数和众 数。
(2) 假设销售部负责人把每位营销员的月销售额定为 320件,你认为合理吗?如果不合理,请你制定一个 合理的销售额并说明理由。
人教版八年级下册数学 20.1.2 中位数和众数(共19张PPT)
(3)该公司员工月收入的平均数为什么会比中位数 高得多呢? 受极端值的影响
下列这两组数据的中位数分别是多少? (1)7 5 4 8 5
4 5 5 7 8 一帮兄弟推拉让,大小顺序排成行; (2谁若占据中位数,不落后来不称王; )8 2 4 8 9 6 兄弟偶数怎么办,中间两个平均算; 2 4 6 8 8 9 兄弟奇数咋站位, 胆小怕事立中央.
20.1.2 中位数和众数 ( 1)
本公司现因业务需要招聘员工若 干名,员工的月平均工资在6000 元左右,愿有意者前来应聘。
本公司现因业 务需要招聘员 工若干名,员 工的月平均工 资在6000元左 右,愿有意者 前来应聘。
ቤተ መጻሕፍቲ ባይዱ
一个月后,灰太 狼只领到3000元 的工资。
我被 骗了!
人家哪里 骗你!
(2)根据(1)中得到的样本数据 的结论,可以估计,在这次马拉松比 赛中,大约有一半选手的成绩快于147 分,有一半选手的成绩慢于147分。这 名选手的成绩是142分,快于中位数 147分,可以推测他的成绩比一半以上 选手的成绩好。
某次数学考试,婷婷得到78分。 全班共30人, 其他同学的成绩为1个100 分,3个90分, 20个80分,1个65分、2 个60分、1个45分以及1个32分。计算出 全班的平均分为77分,所以婷婷告诉妈 妈说,自己这次成绩在班上处 于“中上水平”. 婷婷说得对吗?
A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>70
课外作业: 课外探究
教材第121页(习题20.1)第2题(前两问)
有一组数据如下:8,8,x,6. 已知这组数据的中 位数和平均数相等,求这组数据的中位数.
分析:要确定数据的中位数,应将数据由小到大 (或由大到小)排列才能求出,但x的大小不知道,因 此对x分情况讨论,然后根据中位数和平均数相等列 方程求解.
下列这两组数据的中位数分别是多少? (1)7 5 4 8 5
4 5 5 7 8 一帮兄弟推拉让,大小顺序排成行; (2谁若占据中位数,不落后来不称王; )8 2 4 8 9 6 兄弟偶数怎么办,中间两个平均算; 2 4 6 8 8 9 兄弟奇数咋站位, 胆小怕事立中央.
20.1.2 中位数和众数 ( 1)
本公司现因业务需要招聘员工若 干名,员工的月平均工资在6000 元左右,愿有意者前来应聘。
本公司现因业 务需要招聘员 工若干名,员 工的月平均工 资在6000元左 右,愿有意者 前来应聘。
ቤተ መጻሕፍቲ ባይዱ
一个月后,灰太 狼只领到3000元 的工资。
我被 骗了!
人家哪里 骗你!
(2)根据(1)中得到的样本数据 的结论,可以估计,在这次马拉松比 赛中,大约有一半选手的成绩快于147 分,有一半选手的成绩慢于147分。这 名选手的成绩是142分,快于中位数 147分,可以推测他的成绩比一半以上 选手的成绩好。
某次数学考试,婷婷得到78分。 全班共30人, 其他同学的成绩为1个100 分,3个90分, 20个80分,1个65分、2 个60分、1个45分以及1个32分。计算出 全班的平均分为77分,所以婷婷告诉妈 妈说,自己这次成绩在班上处 于“中上水平”. 婷婷说得对吗?
A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>70
课外作业: 课外探究
教材第121页(习题20.1)第2题(前两问)
有一组数据如下:8,8,x,6. 已知这组数据的中 位数和平均数相等,求这组数据的中位数.
分析:要确定数据的中位数,应将数据由小到大 (或由大到小)排列才能求出,但x的大小不知道,因 此对x分情况讨论,然后根据中位数和平均数相等列 方程求解.
人教版八年级数学下册课件:20.1.2中位数和众数
2
(2)某位选手的成绩是125cm,你对他的成绩 有何评价?
1.一家鞋店在一段时间内销售了某种运动鞋
30双,各种尺码的鞋的销售量如下:
鞋的鞋的尺尺码码 /(厘单米位):厘米
2222 222.25.52323 232.35.5 2424
242.4.55
2255
销售量
1 2 5 11 7 销售量
/(双单位:双)
F
G
月薪 6000 4000 1700 1300 1200 1100 1100 1100 500
(元)
中位数Leabharlann 众数中位数定义:一组数据按大小顺序排列,位于最中间的一个数据
(当偶数个数据时,为最中间两个数据的平均数)
叫做这组数据的中位数
众数定义:一组数据中,出现次数最多的那个数
据叫做这组数据的众数
1.数据11, 8, 2, 7, 9, 2, 7, 3, 2, 0, 5的众数是
Excel
• 1.平均数的计算要用到所有的数据,它能够 充分利用数据提供的信息,在现实生活中较 为常用.但它受极端值的影响较大.
2.当一组数据中某些数据多次重复出现时, 众数往往是人们关心的一个量众数不受极
端值的影响,这是它的一个优势.
3.中位数只需很少的计算,不受极端值的影
响,这在有些情况下是一个优点.
初中数学课件
金戈铁骑整理制作
20.1.2数据的代表
中位数和众数
我这里报酬不错, 月 平均工资2000元,你 在这里好好干!
这个公司员 工收入到底 怎样?
经
阿
理
冲
第二天,阿冲上班了。
平均工资确实是每 月2000元,你看看 公司的工资报表.
你欺骗了我,我已 经问过公司的职员 了,没有一个人是
(2)某位选手的成绩是125cm,你对他的成绩 有何评价?
1.一家鞋店在一段时间内销售了某种运动鞋
30双,各种尺码的鞋的销售量如下:
鞋的鞋的尺尺码码 /(厘单米位):厘米
2222 222.25.52323 232.35.5 2424
242.4.55
2255
销售量
1 2 5 11 7 销售量
/(双单位:双)
F
G
月薪 6000 4000 1700 1300 1200 1100 1100 1100 500
(元)
中位数Leabharlann 众数中位数定义:一组数据按大小顺序排列,位于最中间的一个数据
(当偶数个数据时,为最中间两个数据的平均数)
叫做这组数据的中位数
众数定义:一组数据中,出现次数最多的那个数
据叫做这组数据的众数
1.数据11, 8, 2, 7, 9, 2, 7, 3, 2, 0, 5的众数是
Excel
• 1.平均数的计算要用到所有的数据,它能够 充分利用数据提供的信息,在现实生活中较 为常用.但它受极端值的影响较大.
2.当一组数据中某些数据多次重复出现时, 众数往往是人们关心的一个量众数不受极
端值的影响,这是它的一个优势.
3.中位数只需很少的计算,不受极端值的影
响,这在有些情况下是一个优点.
初中数学课件
金戈铁骑整理制作
20.1.2数据的代表
中位数和众数
我这里报酬不错, 月 平均工资2000元,你 在这里好好干!
这个公司员 工收入到底 怎样?
经
阿
理
冲
第二天,阿冲上班了。
平均工资确实是每 月2000元,你看看 公司的工资报表.
你欺骗了我,我已 经问过公司的职员 了,没有一个人是
人教版八年级数学下册 第二十章 20.1.2中位数和众数 课件(共36张PPT)
知识引入
作为描述数据平均水平的统计量,平均数广泛应用于生活实际 中,例如我们经常听到诸如 “居民人均年收入”“人均住房 面积”“人均拥有绿地面积”等术语. 但如果我们不了解平均数的特点,数据分析得到的结论就会出 现偏差,出现平均数偏离绝大多数数据很多,大多数数据“被 平均”的情况.
做一做
下表是某公司员工月收入的资料.
中位数和众数
教学目标 了解中位数和众数的意义,会求一组数据的中位数和众数.
会用中位数和众数描述一组数据的集中趋势.
在解决实际问题中进一步理解平均数、中位数、众数作为数 据代表的意义,能根据所给信息求出相应的统计量.
教学重点 体会中位数和众数的意义.
结合具体问题情境,体会三种描述数据集中趋势的 统计量的各自特点. 教学难点 体会中位数和众数的意义.
例题 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目 标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售 目标,商场服装部统计了每个营业员在某月的销售额(单位:万元) ,数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19 (1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均 的月销售额是多少?
例题 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据 目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月 销售目标,商场服装部统计了每个营业员在某月的销售额(单位: 万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19 (2)如果想确定一个较高的销售目标,你认为月销售额定为多少 合适?说明理由.
人教版八年级数学下册课件-20.1.2中位数和众数[1]
145 146 158 176 165 148 ①样本数据(12名选手的成绩)的中位数是多少? ②一名选手的成绩是142分,他的成绩如何?
解:①先将样本数据按照由小到大的顺序排列: 124 129 136 140 145 146 148 154 158 165Fra bibliotek175 180
则这组数据的中位数是 1(146+148)=147 所以样本数据的中位数是147.2
员工 经理 副经理 职员 职员 职员 职员 职员 职员 职员
A
B
C
D
E
F
G
月薪 8000 6000 3700 3300 3100 3100 3100 3100 2600
(元)
问题1:该山庄员工的月平均工资是多少?赵经理 是否欺骗了小范?
问题2:平均月工资能否客观地反映员工的实际收入? 问题3:你们认为用哪个数据反映该山庄员工的实际
本山庄需要招聘技术员一人, 有 为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查。
(2)中位数不受个别偏大或偏小数据的影响, (1)一组数据的众数( )出现在这组数据中
意者请来山庄面试。 致相等时,众数往往没有特别意义。
刘星所在小组9名同学的成绩分别为: (3)中位数是一个位置的代表值,当一组数据的个别数据相差较( )时,可用中位数来描述。 众数也常作为一组数据的代表,用来描述数据的集中趋势。
(4)由一组数据的中位数可以知道中位 数以上和以下的数据各占(一半)
一家鞋店在一段时间内销售了某种女鞋30双,各 种尺码鞋的销售量如下表所示: 尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双 1 2 5 11 7 3 1
假如你是老板,你会如何进货? 一组数据中出现次数最多的数据就是这组数据的众数。
解:①先将样本数据按照由小到大的顺序排列: 124 129 136 140 145 146 148 154 158 165Fra bibliotek175 180
则这组数据的中位数是 1(146+148)=147 所以样本数据的中位数是147.2
员工 经理 副经理 职员 职员 职员 职员 职员 职员 职员
A
B
C
D
E
F
G
月薪 8000 6000 3700 3300 3100 3100 3100 3100 2600
(元)
问题1:该山庄员工的月平均工资是多少?赵经理 是否欺骗了小范?
问题2:平均月工资能否客观地反映员工的实际收入? 问题3:你们认为用哪个数据反映该山庄员工的实际
本山庄需要招聘技术员一人, 有 为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查。
(2)中位数不受个别偏大或偏小数据的影响, (1)一组数据的众数( )出现在这组数据中
意者请来山庄面试。 致相等时,众数往往没有特别意义。
刘星所在小组9名同学的成绩分别为: (3)中位数是一个位置的代表值,当一组数据的个别数据相差较( )时,可用中位数来描述。 众数也常作为一组数据的代表,用来描述数据的集中趋势。
(4)由一组数据的中位数可以知道中位 数以上和以下的数据各占(一半)
一家鞋店在一段时间内销售了某种女鞋30双,各 种尺码鞋的销售量如下表所示: 尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双 1 2 5 11 7 3 1
假如你是老板,你会如何进货? 一组数据中出现次数最多的数据就是这组数据的众数。
最新人教版数学八年级下 册20.1.2 第1课时 中位数和众数 课件
书册数,统计数据如下表:
知识要点
1.定义:一组数据中出现次数最多的那个数据叫做这组数据的众数.
2.要点精析: (1)众数一定出现在这组数据中; (2)众数可能不止一个;也可能没有众数;因为有可能数据出现的 频数相同; (3)众数是一组数据中出现次数最多的数据而不是数据出现的次数; (4)众数可以在某种意义上代表这组数据的整体情况.
111 3 6 1111
月收入/元 45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
人数
1
1
1
3
6
1
11
1
(2)若用(1)算得的平均数反映公司全体员工月收入水平,
你认为合适吗?若不合适,请说明理由
不合适.平均数远远大于绝大多数人(22人)的实际月工资, 绝大多数人“被平均”.
5 11 7 3
1
解:由表可以看出,在鞋的尺码组成的数据中, 23.5是这组数据的众数,即23.5 cm的鞋销量最大. 因此可以建议鞋店多进23.5 cm的鞋.
巩固练习
下面的扇形图描述了某种运动服的S号、M号、L号、XL号、 XXL号在一家商场的销售情况.请你为这家商场提出进货建议.
解:因为众数是M号,所以建议商场多 进M号的运动服,其次是进S号,再其次 进L号,少进XXL号的运动服.
理由:平均数受“极端值”影响大
那怎么决策呢?什 么样的数可以表示 “中等水平”呢?
用这组数据排序最中间位置的数据,可以 准确的反映出全体员工的月工资平均水平, 这个最中间位置的数据就叫做中位数.
归纳总结
1. 定义:将一组数据按照由小到大(或由大到小)的顺序排列
如果数据的个数是奇数,则称处于中间位置的数为这组数据
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30 60
x1 + x2 + x3 + x4 + x5 + x6 6 x3 + x4 x1 = 4.00 2 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 9.00
60
= 12.83 = 5.50
50
= 6.00 = 5.50
50
2
40
40
30
20
20
平均数
= 6.00 = 5.50
50
= 12.83 = 5.50
50
2
40
40
30
20
20
平均数
10
中位数 众数
20 40
10
平均数 众数
20
中
60
40
20 10
60
60
80
40
20 10
图 20.1.2(1)
中位数或众数;
原因:极端数据的影响.
强化训练 1.在一次男子马拉松长跑比赛中,抽得12名选 手所用的时间(单位:min)如下: 136 140 129 180 124 154 146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多 少? (2)一名选手的成绩是142 min,他的成绩如何?
讲授新课
如果小张是该公司的一名普通员工,那么你认为他 的月工资最有可能是多少元? 如果小李想到该公司应聘一名普通员工岗位,他最 关注的是什么信息?
月收 入/ 元 人数 45 000 1 18 000 1 10 000 5 500 5 000 3 400 3 000 1 000 1
3
6
1
11
1
一组数据中出现次数最多的数据称为这组数据的众数.
一半人月工资高于该数值,另一半人月工资低于该 数值;中等水平的含义是中位数.
讲授新课
有6户家庭的年收入分别为(单元:万元):4,5, 5,6,7,50.你认为这6户家庭的年收入水平大概是多 少? 计算中间两个数据的平均值:
5+6 =5.5 2
将一组数据按照由小到大(或由大到小)的顺序排 列,如果数据的个数是奇数,则称处于中间位置的数为 这组数据的中位数;如果数据的个数是偶数,则称中间 两个数据的平均数为这组数据的中位数. 如果一组数据中有极端数据,中位数能比平均数更 合理地反映该组数据的整体水平.
数和众数;
2.会用中位数和众数描述一组数据的集中趋势;
3.体会中位数、众数在估计数据集中趋势中的作用,
体会平均数的特点和局限性.
学习重点:
体会中位数和众数的意义.
引入新课
引
言
作为描述数据平均水平的统计量,平均数广泛应 用于生活实际中,例如我们经常听到诸如“居民人均 年收入”“人均住房面积”“人均拥有绿地面积”等 术语.但如果我们不了解平均数的特点,数据分析得 到的结论就会出现偏差,出现平均数偏离绝大多数数 据很多,大多数数据“被平均”的情况.
10
中位数 众数
20 40 60 80
10
平均数 众数
20
中位
60
40
20 10
60
40
20 10
图 20.1.2(1)
用哪些量描述这6户家庭年收入水平比较合理?原 因是什么?
讲授新课
有6户家庭的年收入分别为(单元:万元):4,5,5,6,7, 50.你认为这6户家庭的年收入水平大概是多少?如果把数据50改 成9,结果又会怎样?
根据例1 中的样本数据,你还有其他方法评价(2) 中这名选手在这次比赛中的表现吗?
强化训练 2.一家鞋店在一段时间内销售了某种女鞋30双, 各种尺码鞋的销售量如下表所示. (1)你能根据表中的数据为这家鞋店提供进货建议 吗? (2)分析表中的数据,你还能为鞋店进货提出哪些 建议?
答:校女子排球队队员的平均年法国梧桐, 三年后这些树的树干的周长情况如图所示,计算(可以 使用计算器)这批法国梧桐树干的平均周长(精确到 频数 0.1 cm). 14
12 10 8
6
4
2
0 40 50 60 70 80 90 周长/cm
学习目标
学习目标: 1.了解中位数和众数的意义,会求一组数据的中位
下表是某公司员工月收入的资料.
月收 入/ 元 人数 45 000 1 18 000 1 10 000 5 500 5 000 3 400 3 000 1 000 1 3 6 1 11 1
(2)如果用(1) 算得的平均数反映公司全体员工 月收入水平,你认为合适吗?
平均数远远大于绝大多数人(22人)的实际月工资, 绝大多数人“被平均”. 不合适.
讲授新课
下表是某公司员工月收入的资料. 月收 入/元 人数
45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
1 1 1 3 6 1 11 1
(1)计算这个公司员工月收入的平均数; 6276 ; 这个公司员工月收入的平均数为________
讲授新课
人教版 八年级 下册
第二十章
数据的分析
20.1.2 中位数和众数 (第1课时)
复习旧知
1、下表是校女子排球队队员的年龄分布:
年龄
频数
13
1
14
4
15
5
16
2
求校女子排球队队员的平均年龄(可使用计算器). 解:
13 1 14 4 15 5 16 2 x 14.7( 岁) 1 4 5 2
讲授新课 有6户家庭的年收入分别为(单元:万元):4,5, 5,6,7,50.你认为这6户家庭的年收入水平大概是多 少?如果把数据50改成9,结果又会怎样?
x1 + x2 + x3 + x4 + x5 + x6 6 x3 + x4 x1 = 4.00 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 50.00
x1 + x2 + x3 + x4 + x5 + x6
x1 + x2 + x3 + x4 + x5 + x6 6 x3 + x4 x1 = 4.00 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 50.00
30 60
60
6 x3 + x4 x1 = 4.00 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 9.00 2
讲授新课
该公司员工的中等收入水平大概是多少元?你是怎 样确定的?
月收 入/ 元
45 000 1
18 000 1
10 000 5 500 5 000 3 400 3 000 1 000 1
3 6 1 11
人数
1
“平均数”和“中等水平”谁更合理地反映了该公 司绝大部分员工的月工资水平?这个问题中,中等水平 的含义是什么?
x1 + x2 + x3 + x4 + x5 + x6 6 x3 + x4 x1 = 4.00 2 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 9.00
60
= 12.83 = 5.50
50
= 6.00 = 5.50
50
2
40
40
30
20
20
平均数
= 6.00 = 5.50
50
= 12.83 = 5.50
50
2
40
40
30
20
20
平均数
10
中位数 众数
20 40
10
平均数 众数
20
中
60
40
20 10
60
60
80
40
20 10
图 20.1.2(1)
中位数或众数;
原因:极端数据的影响.
强化训练 1.在一次男子马拉松长跑比赛中,抽得12名选 手所用的时间(单位:min)如下: 136 140 129 180 124 154 146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多 少? (2)一名选手的成绩是142 min,他的成绩如何?
讲授新课
如果小张是该公司的一名普通员工,那么你认为他 的月工资最有可能是多少元? 如果小李想到该公司应聘一名普通员工岗位,他最 关注的是什么信息?
月收 入/ 元 人数 45 000 1 18 000 1 10 000 5 500 5 000 3 400 3 000 1 000 1
3
6
1
11
1
一组数据中出现次数最多的数据称为这组数据的众数.
一半人月工资高于该数值,另一半人月工资低于该 数值;中等水平的含义是中位数.
讲授新课
有6户家庭的年收入分别为(单元:万元):4,5, 5,6,7,50.你认为这6户家庭的年收入水平大概是多 少? 计算中间两个数据的平均值:
5+6 =5.5 2
将一组数据按照由小到大(或由大到小)的顺序排 列,如果数据的个数是奇数,则称处于中间位置的数为 这组数据的中位数;如果数据的个数是偶数,则称中间 两个数据的平均数为这组数据的中位数. 如果一组数据中有极端数据,中位数能比平均数更 合理地反映该组数据的整体水平.
数和众数;
2.会用中位数和众数描述一组数据的集中趋势;
3.体会中位数、众数在估计数据集中趋势中的作用,
体会平均数的特点和局限性.
学习重点:
体会中位数和众数的意义.
引入新课
引
言
作为描述数据平均水平的统计量,平均数广泛应 用于生活实际中,例如我们经常听到诸如“居民人均 年收入”“人均住房面积”“人均拥有绿地面积”等 术语.但如果我们不了解平均数的特点,数据分析得 到的结论就会出现偏差,出现平均数偏离绝大多数数 据很多,大多数数据“被平均”的情况.
10
中位数 众数
20 40 60 80
10
平均数 众数
20
中位
60
40
20 10
60
40
20 10
图 20.1.2(1)
用哪些量描述这6户家庭年收入水平比较合理?原 因是什么?
讲授新课
有6户家庭的年收入分别为(单元:万元):4,5,5,6,7, 50.你认为这6户家庭的年收入水平大概是多少?如果把数据50改 成9,结果又会怎样?
根据例1 中的样本数据,你还有其他方法评价(2) 中这名选手在这次比赛中的表现吗?
强化训练 2.一家鞋店在一段时间内销售了某种女鞋30双, 各种尺码鞋的销售量如下表所示. (1)你能根据表中的数据为这家鞋店提供进货建议 吗? (2)分析表中的数据,你还能为鞋店进货提出哪些 建议?
答:校女子排球队队员的平均年法国梧桐, 三年后这些树的树干的周长情况如图所示,计算(可以 使用计算器)这批法国梧桐树干的平均周长(精确到 频数 0.1 cm). 14
12 10 8
6
4
2
0 40 50 60 70 80 90 周长/cm
学习目标
学习目标: 1.了解中位数和众数的意义,会求一组数据的中位
下表是某公司员工月收入的资料.
月收 入/ 元 人数 45 000 1 18 000 1 10 000 5 500 5 000 3 400 3 000 1 000 1 3 6 1 11 1
(2)如果用(1) 算得的平均数反映公司全体员工 月收入水平,你认为合适吗?
平均数远远大于绝大多数人(22人)的实际月工资, 绝大多数人“被平均”. 不合适.
讲授新课
下表是某公司员工月收入的资料. 月收 入/元 人数
45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
1 1 1 3 6 1 11 1
(1)计算这个公司员工月收入的平均数; 6276 ; 这个公司员工月收入的平均数为________
讲授新课
人教版 八年级 下册
第二十章
数据的分析
20.1.2 中位数和众数 (第1课时)
复习旧知
1、下表是校女子排球队队员的年龄分布:
年龄
频数
13
1
14
4
15
5
16
2
求校女子排球队队员的平均年龄(可使用计算器). 解:
13 1 14 4 15 5 16 2 x 14.7( 岁) 1 4 5 2
讲授新课 有6户家庭的年收入分别为(单元:万元):4,5, 5,6,7,50.你认为这6户家庭的年收入水平大概是多 少?如果把数据50改成9,结果又会怎样?
x1 + x2 + x3 + x4 + x5 + x6 6 x3 + x4 x1 = 4.00 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 50.00
x1 + x2 + x3 + x4 + x5 + x6
x1 + x2 + x3 + x4 + x5 + x6 6 x3 + x4 x1 = 4.00 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 50.00
30 60
60
6 x3 + x4 x1 = 4.00 x2 = 5.00 x3 = 5.00 x4 = 6.00 x5 = 7.00 x6 = 9.00 2
讲授新课
该公司员工的中等收入水平大概是多少元?你是怎 样确定的?
月收 入/ 元
45 000 1
18 000 1
10 000 5 500 5 000 3 400 3 000 1 000 1
3 6 1 11
人数
1
“平均数”和“中等水平”谁更合理地反映了该公 司绝大部分员工的月工资水平?这个问题中,中等水平 的含义是什么?