知识讲解_《常用逻辑用语》全章复习与巩固_提高
常用逻辑用语知识点总结
常用逻辑用语知识点总结命题:1、定义:我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注:1、疑问句、祈使句、感叹句都不是命题.2、还有一种语句,如“5x >”、“210x -=”等,语句中含有变量x 或y ,在没有给定这些变量的值之前,是无法确定语句的真假的,这种含有变量的语句叫做开语句(条件命题).开语句不是命题.含有全称量词的命题,叫做全称命题.含有存在量词的命题,叫做存在性命题全称命题q: ()x q A ,x ∈∀的否定: 存在性命题p: ()x p A ,x ∈∃的否定:基本逻辑联结词“且”“或”“非”用联结词“且”把命题p 和q 联结起来,得到一个新命题,记作p q ∧,读作:“p 且q ” 命题p q ∧真假判断规律:用联结词“或”把命题p 和q 联结起来,得到一个新命题,记作p q ∨,读作:“p 或q ” 命题p q ∨真假判断规律:对命题p 加以否定,得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定” 命题p ⌝真假判断规律:充分条件与必要条件如果p ,则q ,记作p q ⇒,则称p 是q 的 条件;q 是p 的 条件。
如果p q ⇒,且q p ⇒,简称p 是q 的充要条件。
记作p q ⇔设满足条件p 的集合为数集A ,满足条件q 的集合为数集B,若A 是B 的子集,则p 是q 的 条件若A 是B 的真子集,则p 是q 的 条件若A=B ,则p 是q 的 条件若B 是A 的子集,则p 是q 的 条件若B 是A 的真子集,则p 是q 的 条件规律总结: 。
命题的四种形式• 原命题:如果p ,则q ; • 逆命题:如果q ,则p ;• 否命题:如果非p ,则非q ; • 逆否命题:如果非q ,则非p .原命题与逆命题,否命题与逆否命题是 的命题;原命题与否命题,逆命题与逆否命题是 的命题;原命题与逆否命题,逆命题与否命题是 的命题。
常用逻辑用语-知识点+习题+答案
常用逻辑用语知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假假假假当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题. 练习题1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数 2、下列说法中正确的是( )A 、一个命题的逆命题为真,则它的逆否命题一定为真B 、“a b >”与“ a c b c +>+”不等价C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D 、一个命题的否命题为真,则它的逆命题一定为真3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是( ) A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要 5、函数f (x )=x|x+a|+b 是奇函数的充要条件是( ) A 、ab =0 B 、a +b=0 C 、a =b D 、a 2+b 2=0 6、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、D 、若x =a 或x =b ,则x 2-(a +b )x +ab =07、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要8、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( ) A 、存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根9、不等式2230x x --<成立的一个必要不充分条件是( C )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<110.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>511、命题:“若0>a ,则02>a ”的否命题是12、:23A x -<, 2:2150B x x --<, 则A 是B 的_____ _条件。
《专题一常用逻辑用语》知识点归纳
高中数学必修+选修知识点归纳新课标人教A 版复习寄语:鲁甸县文屏镇中学高三第一轮复习资料引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:辑、充要条件数函数、函数的应用列、数列求和、数列的应用质、三角函数的应用数量积及其应用等式、不等式的应用直线与圆的位置关系棱锥、球、空间向量项式定理及其应用抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算.. ; 真假性p 是q 的 的必要条件; q ; ; q }q : A ; ;⑥若A B ⊄且B A ⊄,则p 是q 条件.4、复合命题⑴复合命题有三种形式:p 或q (p q ∨);p (p q ∧);非p (p ⌝). ⑵复合命题的真假判断“p 或q ”形式复合命题的真假判断方法:“p 且q ”形式复合命题的真假判断方法:“非p ”形式复合命题的真假判断方法:5、全称量词与存在量词 ⑴全称量词与全称命题 短语“所有的”量词,并用符号“∀”表示.定p ⌝:p ⌝:.。
(完整版)常用逻辑用语知识点总结
常用逻辑用语一、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1)、四种命题(2)、四种命题间的逆否关系(3)、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.二、充分条件与必要条件1、定义1.如果p⇒q,则p是q的充分条件,q是p的必要条件.2.如果p⇒q,q⇒p,则p是q的充要条件.2、四种条件的判断1.如果“若p则q”为真,记为p q⇒,如果“若p则q”为假,记为p q⇒/.2.若p q⇒,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:(1)定义法:①p是q的充分不必要条件⇔p qp q⇒⎧⎨⇐/⎩②p是q的必要不充分条件⇔p qp q⇒⎧/⎨⇐⎩③p是q的充要条件⇔p qq p⇒⎧⎨⇒⎩④p是q的既不充分也不必要条件⇔p qp q⇒⎧/⎨⇐/⎩(2)集合法:设P={p},Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件.②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P Q且Q P,则p是q的既不充分也不必要条件.(3)逆否命题法:①⌝q是⌝p的充分不必要条件⇔p是q的充分不必要条件②⌝q是⌝p的必要不充分条件⇔p是q的充分不必要条件③⌝q是⌝p的充分要条件⇔p是q的充要条件④⌝q是⌝p的既不充分又不必要条件⇔p是q的既不充分又不必要条件三、简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.①用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.②用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.③对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”.(2)简单复合命题的真值表:p qp∧q p∨q¬p真真真真假假真假真真真假假真假假假假假真*p∧q:p、q有一假为假,*p∨q:一真为真,*p与¬p:真假相对即一真一假.四、量词1、全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.2 全称命题与特称命题(1)含有全称量词的命题叫全称命题: “对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2)含有存在量词的命题叫特称命题: “存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M 中的元素x 0,使p (x 0)成立”. 3命题的否定(1) 含有量词命题的否定全称命题p :,()x M p x ∀∈的否定⌝p :(),x M p x ∃∈⌝;全称命题的否定为存在命题 存在命题p :(),x M p x ∃∈的否定⌝p :(),x M p x ∀∈⌝;存在命题的否定为全称命题 其中()p x p (x )是一个关于x 的命题. (2) 含有逻辑连接词命题的否定 “p 或q ”的否定:“ ⌝p 且⌝q ” ; “p 且q ”的否定:“ ⌝p 或⌝q ”(3) “若p 则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否 对命题p 的否定(即非p )是否定命题p 所作的判断,而“否命题”是 “若⌝p 则⌝q ”。
知识讲解_常用逻辑用语 全章复习与巩固
《常用逻辑用语》全章复习与巩固【学习目标】1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2.了解命题“若p,则q ”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定. 【知识网络】【要点梳理】 要点一:命题(1)命题的概念:可以真假的语句叫做命题. 一般可以用小写英文字母表示. 其中判断为真的语句叫真命题,判断为假的语句叫假命题.(2)全称量词与全称命题全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.如“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.全称命题:含有全称量词的命题,叫做全称命题. 符号表示为x M ∀∈,()p x(3)存在量词与存在性命题存在量词:表示个别或一部分的含义的量词称为存在量词.如“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.存在性命题:含有存在量词的命题,叫做存在性命题. 符号表示为x M ∃∈,()q x . 要点二:基本逻辑联结词基本逻辑联结词有“或”、“且”、“非”.(1)p q ∧:用“且”把命题p 和q 联结起来,得到的新命题,读作“p 且q ”,相当于集合中的交集.(2)p q ∨:用“或”把命题p 和q 联结起来,得到的新命题,读作“p 或q ”,相当于集合中的并集.(3)p ⌝:对命题p 加以否定,得到的新命题,读作“非p ”或“p 的否定”,相当于集合中的补集.要点三:充分条件、必要条件、充要条件 对于“若p 则q ”形式的命题:①若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;②若p ⇒q ,但q ⇒/p ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件; ③若既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充分必要条件(充要条件). 判断命题充要条件的三种方法 (1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用A B ⇒与B A ⌝⌝⇒;B A ⇒与A B ⌝⌝⇒;A B ⇔与B A ⌝⌝⇔的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,比如A ⊆B 可判断为A ⇒B ;A=B 可判断为A ⇒B ,且B ⇒A ,即A ⇔B.如图:“ÜA B ”⇔“x A ∈⇒x B ∈,且x B ∈⇒/x A ∈”⇔x A ∈是x B ∈的充分不必要条件.“A B =”⇔“x A ∈⇔x B ∈”⇔x A ∈是x B ∈的充分必要条件.要点诠释:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.要点四:四种命题及相互关系如果用p和q分别表示原命题的条件和结论,用⌝p和⌝q分别表示p和q的否定,则命题的四种形式为:原命题:若p则q;逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p.四种命题的关系①原命题⇔逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题⇔否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.要点五:命题真假的判断方法(1)对于一般的命题,结合所学知识经过推理论证或举反例来判断;(2)对于含有逻辑联结词的命题的真假判断,可参考下表(真值表):命题的真假判断(利用真值表):(3)对于“若,则”型的命题,因为原命题与逆否命题同真或同假,故可以利用其逆否命题的真假来判断.要点诠释:①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”; ③“p ⌝”与p 的真假相反. 要点六:量词与全称命题、特称命题 全称量词与存在量词(1)全称量词及表示:表示全体的量词称为全称量词。
2024新高考数学总复习(常用逻辑用语)
考点二 全称量词与存在量词 1.全称量词和存在量词 全称量词(∀):所有的、任意一个等. 存在量词(∃):存在一个、至少有一个等. 2.全称量词命题和存在量词命题 全称量词命题:对M中任意一个x,p(x)成立,即∀x∈M,p(x). 存在量词命题:存在M中的元素x,p(x)成立,即∃x∈M,p(x). 3.全称量词命题和存在量词命题的否定
1 2
,
2,使得2x2-λx-1<0成立”
是假命题,则实数λ的取值范围为
.
解析
若“∃x∈
1 2
, 2,使得2x2-λx-1<0成立”是假命题,则“∀x∈
1 2
,
2,
使得2x2-λx-1≥0成立”是真命题,由于x∈
1 2
,
2
,所以λ≤
2
x2 x
1=2x-
1 x
在x
∈
1 2
,
2
上恒成立,则λ≤
高考 数学
专题一 集合与常用逻辑用语
1.2 常用逻辑用语
基础篇
考点一 充分条件与必要条件 1.若p⇒q,则p是q的充分条件,q是p的必要条件. 2.若p⇒q,且q⇒/ p ,则p是q的充分不必要条件. 3.若p⇒/ q,且q⇒p,则p是q的必要不充分条件. 4.若p⇔q,则p是q的充要条件. 5.若p⇒/ q,且q⇒/ p,则p是q的既不充分也不必要条件.
8
题意,故选AC.
答案 (1)B (2)AC
名师点睛:判断充分、必要条件的两种方法 1.定义法:直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件 是什么、结论是什么. 2.集合法:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围 推得大范围,即可解决充分、必要性的问题.
选修2-1 常用逻辑用语(全章复习专用)
精心整理基础典型题归类与解析C.π是有理数D.x2-5x=0的根是自然数解析:选D.x2-5x=0的根为x1=0,x2=5,均为自然数.二、题型二:复合命题的结构例3将下列命题改写成“若p,则q”的形式,并判断命题的真假:(1)6是12和18的公约数;(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;(3)已知x、y为非零自然数,当y-x=2时,y=4,x=2.解析:(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根,是假命题.因为当a=0时,方程变为2x-1=0,此时只有一个实根x=.(3)已知x、y为非零自然数,若y-x=2,则y=4,x=2,是假命题.变式练习:指出下列命题的条件p与结论q,并判断命题的真假:(1)若整数a是偶数,则a能被2整除;(2)对角线相等且互相平分的四边形是矩形;(3)相等的两个角的正切值相等.解析:(1)条件p:整数a是偶数,结论q:a能被2整除,真命题.(2)命题“对角线相等且互相平分的四边形是矩形”,即“若一个四边形的对角线相等且互相平分,则该四边形是矩形”.条件p:一个四边形的对角线相等且互相平分,结论q:该四边形是矩形,真命题..例求使pq是假例ABCD.与原命题同为真命题解析:选D.原命题显然为真,原命题的逆命题为“若△ABC的三内角成等差数列,则△ABC有一内角为”,它是真命题.故选D.例6.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数答案: B例7.若“x>y,则x2>y2”的逆否命题是( )A.若x≤y,则x2≤y2B.若x>y,则x2<y2C.若x2≤y2,则x≤y D.若x<y,则x2<y2解析:选C.由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.例8..给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;y,则非x例∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真命题.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真命题.六、题型六:判断条件关系及求参数范围例10.“x=2kπ+(k∈Z)”是“tan x=1”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当x=2kπ+时,tan x=1,而tan x=1得x=kπ+,所以“x=2kπ+”是“tan x=1”成立的充分不必要条件.故选A.例11、设A是B的充分不必要条件,C是B的必要不充分条件,D是C的充要条件,则D是A 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:由题意得:故D是A的必要不充分条件例12.已知条件p:-1≤x≤10,q:x2-4x+4-m2≤0(m>0)不变,若非p是非q的必要而不充分条件,如何求实数m的取值范围?解:p:-1≤x≤10.q:x2-4x+4-m2≤0⇔[x-(2-m)][x-(2+m)]≤0(m>0)⇔2-m≤x≤2+m(m>0).因为非p是非q的必要而不充分条件,所以p是q的充分不必要条件,即{x|-1≤x≤10}{x|2-m≤x≤2+m},故有或,解得m≥8.所以实数m的范围为{m|m≥8}.变式练习1:已知条件:p:y=lg(x2+2x-3)的定义域,条件q:5x-6>x2,则q是p的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.p:x2+2x-3>0,则x>1或x<-3;q:5x-6>x2,即x2-5x+6<0,由小集合⇒大集合,∴q⇒p,但p q.故选A.变式练习2已知p:≤x≤1,q:a≤x≤a+1,若p的必要不充分条件是q,求实数a的取值范围.解析:q是p的必要不充分条件,则p⇒q但qp.∵p:≤x≤1,q:a≤x≤a+1.∴a+1≥1且a≤,即0≤a≤.∴满足条件的a的取值范围为.七、充要条件的论证例13求证:0≤a<是不等式ax2-ax+1-a>0对一切实数x都成立的充要条件.证明:充分性:∵0<a<,∴Δ=a2-4a(1-a)=5a2-4a=a(5a-4)<0,则ax2-ax+1-a>0对一切实数x都成立.而当a=0时,不等式ax2-ax+1-a>0可变成1>0.显然当a=0时,不等式ax2-ax+1-a>0对一切实数x都成立.必要性:∵ax2-ax+1-a>0对一切实数x都成立,∴a=0或解得0≤a<.例ABCD例变式练习2:(2010年高考安徽卷)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.解:存在x∈R,使得|x-2|+|x-4|≤3变式练习3.写出下列命题的否定,然后判断其真假:(1)p:方程x2-x+1=0有实根;(2)p:函数y=tan x是周期函数;(3)p:∅⊆A;(4)p:不等式x2+3x+5<0的解集是∅.解析:题号判断p的真假非p的形式判断非p的真假(1)假方程x2-x+1=0无实数根真(2)真函数y=tan x不是周期函数假(3)真∅A 假(4)真不等式x2+3x+5<0的解集不是∅假十、全称命题与特称命题相关小综合题例16.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a>0,且a≠1,则对任意实数x,a x>0.(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2.(3)∃T0∈R,使|sin(x+T0)|=|sin x|.(4)∃x0∈R,使x+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成立,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1<x2,但tan0=tanπ,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的一个周期,∴命题(3)是真命题.(4)对任意x0∈R,x+1>0.∴命题(4)是假命题.例17.若命题p:∀x∈R,ax2+4x+a≥-2x2+1是真命题,则实数a的取值范围是( ) A.a≤-3或a>2 B.a≥2C.a>-2 D.-2<a<2解析:依题意:ax2+4x+a≥-2x2+1恒成立,即(a+2)x2+4x+a-1≥0恒成立,所以有:⇔⇔a≥2.所以选B变式练习1:已知命题p:∃x0∈R,tan x0=;命题q:∀x∈R,x2-x+1>0,则命题“p且q”是________命题.(填“真”或“假”)解析:当x0=时,tan x0=,∴命题p为真命题;x2-x+1=2+>0恒成立,∴命题q为真命题,∴“p且q”为真命题.所以填:真变式练习2:已知命题p:∃x∈R,使tan x=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题;②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题;④命题“¬p∨¬q”是假命题,其中正确的是( )A.②③B.①②④C.①③④D.①②③④解析:当x=时,tan x=1,∴命题p为真命题.由x2-3x+2<0得1<x<2,∴命题q为真命题.∴p∧q为真,p∧¬q为假,¬p∨q为真,¬p∨¬q为假.所以选D十一、综合训练典型题例18.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)非p是非q的充分不必要条件,求实数a的取值范围.解:(1)由x2-4ax+3a2<0得(x-3a)(x-a)<0.又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真命题时,实数x的取值范围是1<x<3.由解得即2<x≤3.所以q为真时实数x的取值范围是2<x≤3.若p∧q为真,则⇔2<x<3,所以实数x的取值范围是(2,3).(2)非p是非q的充分不必要条件,即非p⇒非p且非q非q.设A={x|x≤a或x≥3a},B={x|x≤2或x>3},则A B.所以0<a≤2且3a>3,即1<a≤2.所以实数a的取值范围是(1,2].例19.若∀x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,二次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成立,即4m2+4am+1≥0恒成立.又4m2+4am+1≥0是一个关于m的二次不等式,恒成立的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].(1)(2)即(2)∴m∵f∴mq:关于x=[∴-(a2-a)≤-2,即a2-a-2≥0,解得a≤-1或a≥2.即p:a≤-1或a≥2由不等式ax2-ax+1>0的解集为R得,即解得0≤a<4∴q:0≤a<4.∵p∧q假,p∨q真.∴p与q一真一假.∴p真q假或p假q真,即或∴a≤-1或a≥4或0≤a<2.所以实数a的取值范围是(-∞,-1]∪[0,2)∪[4,+∞).。
常用逻辑用语章末复习提升课件PPT
跟踪训练4 已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个
不相等的实根,则实数k的取值范围是( B )
A.(0,12)
B.(12,1)
C.(1,2)
D.(2,+∞)
解析 先作出函数f(x)=|x-2|+1的图象,如图所示, 当直线g(x)=kx与直线AB平行时斜率为1, 当直线 g(x)=kx 过 A 点时斜率为12, 故 f(x)=g(x)有两个不相等的实根时,k 的取值范围为(12,1).
例1 判断下列命题的真假.
(1)对角线不相等的四边形不是等腰梯形;
解 该命题的逆否命题:“若一个四边形是等腰梯形,则它的对角线相等”,
它为真命题,故原命题为真.
(2)若x∉A∩B,则x∉A且x∉B;
解 该命题的逆否命题:“若x∈A或x∈B,则x∈A∩B”,它为假命题,
故原命题为假.
(3)若x≠y或x≠-y,则|x|≠|y|.
因为a,b,c,d均为非负数,于是bc+ad≥0,
故由上式可以知道ac+bd≤1,
这与已知条件的ac+bd>1矛盾,
所以假设不成立,故a,b,c,d中至少有一个负数.
解析答案
跟踪训练5 用反证法证明:钝角三角形最大边上的中线小于该边长的一半.
已知:在△ABC中,∠BAC>90°,D是BC边上的中点, 求证:AD<12BC(如图所示). 证明 假设 AD≥12BC. ①若 AD=12BC,由平面几何知识“如果三角形一边上的中线等于该边长的一半, 那么这条边所对的角为直角”知∠BAC=90°,与题设矛盾.所以 AD≠21BC.
解析答案
(2)若綈p是綈q的充分不必要条件,求实数a的取值范围. 解 綈p是綈q的充分不必要条件, 即綈p⇒綈q且綈q⇏綈p. 设A={x|x≤a或x≥3a},B={x|x≤2或x>3}, 则A B. 所以0<a≤2且3a>3,即1<a≤2. 所以实数a的取值范围是(1,2].
1 第02讲 常用逻辑用语
第02讲常用逻辑用语第一部分:思维导图1、充分条件、必要条件与充要条件的概念(1)若,则是的充分条件,是的必要条件; (2)若且,则是的充分不必要条件; (3)若且,则是的必要不充分条件;(4)若,则是的充要条件; (5)若且,则是的既不充分也不必要条件.拓展延伸一:等价转化法判断充分条件、必要条件(1)p 是q 的充分不必要条件⇔q ⌝是p ⌝的充分不必要条件; (2)p 是q 的必要不充分条件⇔q ⌝是p ⌝的必要不充分条件; (3)p 是q 的充要条件⇔q ⌝是p ⌝的充要条件;第二部分:知识点(4)p 是q 的既不充分也不必要条件⇔q ⌝是p ⌝的既不充分也不必要条件. 拓展延伸二:集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :{|()}A x p x =,q :{|()}B x q x =,则 (1)若A B ⊆,则p 是q 的充分条件; (2)若B A ⊆,则p 是q 的必要条件; (3)若A B ⊂≠,则p 是q 的充分不必要条件; (4)若B A ⊂≠,则p 是q 的必要不充分条件; (5)若A B =,则p 是q 的充要条件;(6)若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件. 拓展延伸三:充分性必要性高考高频考点结构 (1)p 是q 的充分不必要条件⇔p q ⇒且q p (注意标志性词:“是”,此时p 与q 正常顺序) (2)p 的充分不必要条件是q ⇔q p ⇒且p q (注意标志性词:“的”,此时p 与q 倒装顺序)2、全称量词与存在量词 (1)全称量词短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)存在量词短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (3)全称量词命题及其否定(高频考点)①全称量词命题:对M 中的任意一个x ,有()p x 成立;数学语言:,()x M p x ∀∈. ②全称量词命题的否定:,()x M p x ∃∈⌝. (4)存在量词命题及其否定(高频考点)①存在量词命题:存在M 中的元素x ,有()p x 成立;数学语言:,()x M p x ∃∈. ②存在量词命题的否定:,()x M p x ∀∈⌝. (5)常用的正面叙述词语和它的否定词语1.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.命题“0x ∀>,20x x ->”的否定是( ).A .0x ∀>,20x x -≤B .00x ∃<,2000x x -≤C .0x ∀<,20x x -≤D .00x ∃>,2000x x -≤ 3.命题“0x R ∃∈,00e 1xx -≥”的否定是( )A .0x R ∃∈,00e 1x x -<B .0x R ∃∈,00e 1xx -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<4.设x ∈R ,则“13x -≤≤”是“|2|13x -≤”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件5.“0<x <4”成立的一个必要不充分条件是( )A .x >0B .x <0或x >4C .0<x <3D .x <0高频考点一:充分条件与必要条件的判断1.祖暅原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A ,B 为两个等高的几何体,p :A 、B 的体积相等,q :A 、B 在同一高处的截面积相等.根据祖暅原理可知,p 是q 的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件 D .既不充分也不必要条件 2.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件3.已知a ,b R ∈,则“1≥ab ”是“222a b +≥”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件4.设R x ∈,则“12x -<”是“111x >-”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.“50k -<<”是“函数2y x -kx -k 的值恒为正值”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件高频考点二:充分条件与必要条件的应用1.已知()2160x a +->”的必要不充分条件是“2x -≤或3x ≥”,则实数a 的最大值为( ) A .-2B .-1C .0D .12.函数2()f x x bx c =++在[0,)+∞上单调递增的充分不必要条件是( )A .,[)0b ∈+∞B .(0,)b ∈+∞C .,)(0b ∈-∞D .,](0b ∈-∞3.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________. 4.已知命题p :122x x -≥-,命题q :22x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 5.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈. (1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.高频考点三:充分条件与必要条件(“是”,“的”)结构对比1.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件2.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.使不等式2(1)(2)0x x +->成立的一个充分不必要条件是( ) A .1x >-且2x ≠ B .13x C .1x <D .3x >4.使不等式260x x --<成立的充分不必要条件是( ) A .20x -<< B .23x -<< C .05x <<D .24x -<<5.命题:x R ∃∈,20020ax ax -->为假命题的一个充分不必要条件是( )A .(][),80,-∞-⋃+∞B .()8,0-C .(],0-∞D .[]8,0-6.已知0m >,()():120p x x +-≤,:11q m x m -≤≤+.若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.高频考点四:全称量词命题与存在量词命题的真假判断1.下列四个命题中,是真命题的为( )A .任意R x ∈,有230x +<B .任意N x ∈,有21x >C .存在Z x ∈,使51x <D .存在Q x ∈,使23x = 2.下列命题中的假命题是( )A .230,x x x ∃>>B .,ln 0x R x ∀∈>C .,sin 1x R x ∃∈>-D .,20x x R ∀∈>3.在下列命题中,是真命题的是( )A .2R,30x x x ∃∈++=B .2R,20x x x ∀∈++>C .2R,x x x ∀∈>D .已知{}{}2,3A aa n Bb b m ====∣∣,则对于任意的*,n m N ∈,都有A B =∅ 4.下列命题为真命题的是( ) A .,,2x y R x y xy ∀∈+≥ B .1,2x R x x∀∈+≥ C .2000,230x R x x ∃∈-+≤ D .,sin x R x x +∀∈≥5.下列命题中的假命题的是( ) A .B .C .D .高频考点五:含有一个量词的命题的否定1.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x ->B .01x ∃>,2000x x -≤ C .1x ∀>,20x x -≤D .1x ∀>,20x x ->2.命题“0x ∀>,01xx >-”的否定是( ) A .0x ∃<,01x x ≤- B .0x ∃>,01x ≤≤ C .0x ∀<,01x x ≤- D .0x ∀<,01x ≤≤ 3.命题“x ∀∈R ,都有210x x +>+”的否定是___________.4.命题“0x R x x ∈∃,”的否定是___________. 高频考点六:根据全称(特称)命题的真假求参数1.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞2.已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是( ) A .13aa ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13aa ⎧⎫≥⎨⎬⎩⎭∣ 3.已知命题“x R ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .1a <-B .13a -<<C .3a >-D .31a -<<4.存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1B .14C .12D .-15.命题“2,430x R ax ax ∀∈++>”为真,则实数a 的范围是__________6.已知()24f x x mx =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是_________.7.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 8.命题“0x ∃∈R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.9.命题1:,12p x ⎡⎤∀∈⎢⎥⎣⎦,4x a x +>恒成立是假命题,则实数a 的取值范围是________________.10.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.1.已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨2.已知a ∈R ,则“6a >”是“236a >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件3.“x =1”是“2320x x -+=”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件4.已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6.设a ∈R ,则“1a >”是“2a a >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件7.下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥一、单选题1.设命题:p n N ∃∈,22n n >,则p ⌝为( ).A .n N ∀∈,22n n >B .n N ∀∈,22n n ≤C .n N ∃∈,22n n >D .n N ∃∈,22n n ≤ 2.若“x R ∃∈,2390ax ax -+≤”是假命题,则a 的取值范围为( ) A .[0,4]B .(0,4)C .[0,4)D .(0,4]3.已知命题“存在()3,27x ∈,使得3log 03xx m +->”是假命题,则m 的取值范围是( )A .[)2,+∞B .()2,+∞C .[)12,+∞D .()12,+∞4.已知集合{}32,A x x n n Z ==-∈,{}64,B y y n n Z ==+∈,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知,a b ∈R ,则“1a b -<”是“1a b +<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥7.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭8.“函数()221xx f x a =++有零点”的充要条件是( )A .1a <-B .10a -<<C .01a <<D .0a <二、填空题9.已知“321a x a -<<-”是“2560x x -+<”成立的必要不充分条件,请写出符合条件的整数a 的一个值____________.10.已知24:()9,:log (3)1p x m q x -<+<,若¬q 是¬p 的必要不充分条件,则m 的取值范围是__.11.已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______.12.已知函数2()f x x x a =++,若存在实数[1,1]x ∈-,使得(())4()f f x a af x +>成立,则实数a 的取值范围是_______. 三、解答题13.已知集合()(){}3|10,|12A x x a x a B x x ⎧⎫=--+≤=>⎨⎬+⎩⎭. (1)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围;(2)设命题22:,(21)8p x B x m x m m ∃∈+++->,若命题p 为假命题,求实数m 的取值范围.14.在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围.15.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.第02讲 常用逻辑用语第一部分:思维导图1、充分条件、必要条件与充要条件的概念(1)若,则是的充分条件,是的必要条件; (2)若且,则是的充分不必要条件; (3)若且,则是的必要不充分条件;(4)若,则是的充要条件; (5)若且,则是的既不充分也不必要条件.拓展延伸一:等价转化法判断充分条件、必要条件(1)p 是q 的充分不必要条件⇔q ⌝是p ⌝的充分不必要条件; (2)p 是q 的必要不充分条件⇔q ⌝是p ⌝的必要不充分条件; (3)p 是q 的充要条件⇔q ⌝是p ⌝的充要条件;第二部分:知识点(4)p 是q 的既不充分也不必要条件⇔q ⌝是p ⌝的既不充分也不必要条件. 拓展延伸二:集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :{|()}A x p x =,q :{|()}B x q x =,则 (1)若A B ⊆,则p 是q 的充分条件; (2)若B A ⊆,则p 是q 的必要条件; (3)若A B ⊂≠,则p 是q 的充分不必要条件; (4)若B A ⊂≠,则p 是q 的必要不充分条件;(5)若A B =,则p 是q 的充要条件; (6)若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件. 拓展延伸三:充分性必要性高考高频考点结构 (1)p 是q 的充分不必要条件⇔p q ⇒且q p (注意标志性词:“是”,此时p 与q 正常顺序)(2)p 的充分不必要条件是q ⇔q p ⇒且p q (注意标志性词:“的”,此时p 与q 倒装顺序)2、全称量词与存在量词 (1)全称量词短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)存在量词短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (3)全称量词命题及其否定(高频考点)①全称量词命题:对M 中的任意一个x ,有()p x 成立;数学语言:,()x M p x ∀∈. ②全称量词命题的否定:,()x M p x ∃∈⌝. (4)存在量词命题及其否定(高频考点)①存在量词命题:存在M 中的元素x ,有()p x 成立;数学语言:,()x M p x ∃∈. ②存在量词命题的否定:,()x M p x ∀∈⌝. (5)常用的正面叙述词语和它的否定词语1.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( )A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件【答案】B“返回家乡”的前提条件是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要不充分条件故选:B2.命题“0x ∀>,20x x ->”的否定是( ).A .0x ∀>,20x x -≤B .00x ∃<,2000x x -≤C .0x ∀<,20x x -≤D .00x ∃>,2000x x -≤【答案】D解:因为全称命题的否定是特称命题,所以命题“,”的否定是:,故选:D3.命题“0x R ∃∈,00e 1xx -≥”的否定是( )A .0x R ∃∈,00e 1x x -<B .0x R ∃∈,00e 1xx -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<【答案】D 命题“,”为特称量词命题,其否定为,;故选:D4.设x ∈R ,则“13x -≤≤”是“|2|13x -≤”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B 因为,所以,显然由推不出,由可推出,所以“”是“”的必要不充分条件,故选:B.5.“0<x <4”成立的一个必要不充分条件是( )A .x >0B .x <0或x >4C .0<x <3D .x <0 【答案】A设p: 0<x <4,所求的命题为q ,则原表述可以改写为q 是p 的必要不充分条件,即q 推不出p ,但p ⇒q .,显然由: 0<x <4,能推出x >0,推不出x <0或x >4、0<x <3、x <0, 故选:A高频考点一:充分条件与必要条件的判断1.祖暅原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A ,B 为两个等高的几何体,p :A 、B 的体积相等,q :A 、B 在同一高处的截面积相等.根据祖暅原理可知,p 是q 的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件 D .既不充分也不必要条件 【答案】C已知A ,B 为两个等高的几何体,由祖暅原理知,而p 不能推出,可举反例,两个相同的圆锥,一个正置,第四部分:例题剖析一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则p 是的必要不充分条件 故选:C2.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】C对于p ,如果x =1.5,则q 不能成立,如果 ,则x 必然在 区间内,因此p 为q 的必要不充分条件; 故选:C.3.已知a ,b R ∈,则“1≥ab ”是“222a b +≥”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】A 当时,由,故充分性成立,当时,比如,满足,但,故必要性不成立.故选:A4.设R x ∈,则“12x -<”是“111x >-”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】B 解不等式可得,,又,反之不成立,所以“”是“111x >-”的必要不充分条件, 故选:B.5.“50k -<<”是“函数2y x -kx -k 的值恒为正值”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 函数-kx -k 的值恒为正值,则,∵,∴“”是“函数-kx -k 的值恒为正值”的必要不充分条件.故选:B.高频考点二:充分条件与必要条件的应用1.已知()2160x a +->”的必要不充分条件是“2x -≤或3x ≥”,则实数a 的最大值为( ) A .-2 B .-1C .0D .1【答案】D 由,得或,因为”的必要不充分条件是“或”,所以,解得,所以实数a 的最大值为1,故选:D2.函数2()f x x bx c =++在[0,)+∞上单调递增的充分不必要条件是( ) A .,[)0b ∈+∞ B .(0,)b ∈+∞C .,)(0b ∈-∞D .,](0b ∈-∞【答案】B函数2()f x x bx c =++的单调递增区间是,依题意,,于是得,解得,所以函数2()f x x bx c =++在[0,)+∞上单调递增的充分不必要条件是. 故选:B3.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________. 【答案】由题意得,,由是成立的一个充分而不必要条件,得,即解得,,故答案为:.4.已知命题p :122x x -≥-,命题q :22x a -<,若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________. 【答案】或(4,6]解析:122x x -≥-移项整理可得,解得.22x a -<得.由题意得:122a -+≤且132a+>,从而得出.故答案为:5.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈. (1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围. 【答案】(1);(2). (1)由题设,,当时,所以;(2)由题设,,且,若p 是的必要不充分条件,则,又a 为正实数,即,解得,故的取值范围为. 高频考点三:充分条件与必要条件(“是”,“的”)结构对比1.设p :3x <,q :()()130x x +-<,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 解不等式得:,即,显然{|13}x x -<< ,所以p 是q 成立的必要不充分条件. 故选:C2.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 解:因为,所以,解得;由,即,解得;所以与互相不能推出,故“”是“”的既不充分也不必要条件;故选:D3.使不等式2(1)(2)0x x +->成立的一个充分不必要条件是( ) A .1x >-且2x ≠ B .13x C .1x < D .3x >【答案】D 因为,故不等式的解集为且,故不等式成立的一个充分不必要条件所构成的集合应是且的真子集,显然,满足题意的只有.故选:D.4.使不等式260x x --<成立的充分不必要条件是( ) A .20x -<< B .23x -<< C .05x << D .24x -<<【答案】A 解不等式得:,对于A ,因 ,即是成立的充分不必要条件,A 正确;对于B ,是成立的充要条件,B 不正确;对于C ,因,且,则是成立的不充分不必要条件,C 不正确; 对于D ,因,则是成立的必要不充分条件,D 不正确. 故选:A5.命题:x R ∃∈,20020ax ax -->为假命题的一个充分不必要条件是( )A .(][),80,-∞-⋃+∞B .()8,0-C .(],0-∞D .[]8,0- 【答案】B命题”为假命题,命题“,220ax ax --”为真命题,当时,20-成立, 当时,,故方程的解得:80a -<,故的取值范围是:,要满足题意,则选项是集合真子集,故选项B 满足题意.故选:B6.已知0m >,()():120p x x +-≤,:11q m x m -≤≤+.若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围. 【答案】.因是的充分不必要条件,则p 是q 的必要不充分条件,于是得,解得,所以实数m的取值范围是.高频考点四:全称量词命题与存在量词命题的真假判断1.下列四个命题中,是真命题的为( )A .任意R x ∈,有230x +<B .任意N x ∈,有21x >C .存在Z x ∈,使51x <D .存在Q x ∈,使23x = 【答案】C 由于对任意,都有,因而有,故A 为假命题.由于,当时,不成立,故B 为假命题.由于,当时,,故C 为真命题.由于使成立的数只有,而它们都不是有理数,因此没有任何一个有理数平方等于3,故D 是假命题.故选:C2.下列命题中的假命题是( )A .230,x x x ∃>>B .,ln 0x R x ∀∈>C .,sin 1x R x ∃∈>-D .,20x x R ∀∈>【答案】B 解:对A :取,则成立,故选项A 正确;对B :当时,没有意义,故选项B 错误;对C :取,则成了,故选项C 正确;对D :由指数函数的性质有成立,故选项D 正确.故选:B.3.在下列命题中,是真命题的是( )A .2R,30x x x ∃∈++=B .2R,20x x x ∀∈++>C .2R,x x x ∀∈>D .已知{}{}2,3A aa n Bb b m ====∣∣,则对于任意的*,n m N ∈,都有A B =∅ 【答案】B 选项A ,,即有实数解,所以,显然此方程无实数解,故排除;选项B ,,,故该选项正确;选项C ,,而当,不成立,故该选项错误,排除;选项D ,,当时,当取得6的正整数倍时,,所以,该选项错误,排除. 故选:B.4.下列命题为真命题的是( ) A .,,2x y R x y xy ∀∈+≥ B .1,2x R x x∀∈+≥ C .2000,230x R x x ∃∈-+≤ D .,sin x R x x +∀∈≥【答案】D对于A 选项,当0x <且,,A 选项错误;对于B 选项,当0x <时,,B 选项错误;对于C 选项,,C 选项错误;对于D 选项,构造函数,其中,则()1sin 0f x x '=-≥,所以,函数在区间上单调递增,则,所以,,,D 选项正确.故选:D.5.下列命题中的假命题的是( ) A .B .C .D .【答案】B 当时,,显然选项B 错误,故选B. 高频考点五:含有一个量词的命题的否定1.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x ->B .01x ∃>,2000x x -≤ C .1x ∀>,20x x -≤D .1x ∀>,20x x ->【答案】B∵全称命题的否定是特称命题,即先将量词“”改为量词“”,再将结论否定, ∴“,”的否定为“,”,故选:. 2.命题“0x ∀>,01xx >-”的否定是( ) A .0x ∃<,01x x ≤- B .0x ∃>,01x ≤≤ C .0x ∀<,01x x ≤- D .0x ∀<,01x ≤≤ 【答案】B 由得:0x <或,所以的否定是.所以,命题的否定是“,”.故选:B.3.命题“x ∀∈R ,都有210x x +>+”的否定是___________. 【答案】,有 题“,都有”的否定是:.故答案为:.4.命题“0x R x x ∈∃+≥,”的否定是___________. 【答案】,.特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.高频考点六:根据全称(特称)命题的真假求参数1.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞- B .(),4-∞C .[)4,-+∞D .[)4,+∞【答案】C 由题意可知,命题“,”是真命题.当时,则有,不合乎题意;当时,由,可得,则有,,当且仅当时,等号成立,所以,.综上所述,实数的取值范围是.故选:C.2.已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是( ) A .13aa ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13aa ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C 先求当命题p :,为真命题时的的取值范围 (1)若,则不等式等价为,对于不成立,(2)若不为0,则,解得13a >,∴命题p 为真命题的的取值范围为13aa ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的的取值范围是13aa ⎧⎫≤⎨⎬⎩⎭∣. 故选:C3.已知命题“x R ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .1a <- B .13a -<<C .3a >-D .31a -<<【答案】B 因为命题“,使”是假命题,所以恒成立, 所以,解得,故实数的取值范围是.故选:B .4.存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C由不等式230x mx m +-≥,可化为,设,则,当时,,单调递减;当时,,单调递增,又由,所以函数的最大值为,要使得存在,使得230x mx m +-≥,则,则的最大值为.故选:C.5.命题“2,430x R ax ax ∀∈++>”为真,则实数a 的范围是__________ 【答案】(由题意知:不等式对x ∈R 恒成立,当时,可得,恒成立满足;当时,若不等式恒成立则需,解得304a <<,所以的取值范围是(,故答案为:(.6.已知()24f x x mx =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是_________. 【答案】当,有,则,,使得()()12f x g x >成立,等价于,,即,在上恒成立, 参变分离可得:,当,,当时取等,所以,故答案为:.7.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 【答案】解:因为命题“,使得不等式”是真命题当时,10≥恒成立,满足条件; 当时,则解得综上可得即故答案为:8.命题“0x ∃∈R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________. 【答案】若,使是假命题,则,使是真命题,当转化,不合题意; 当,使即恒成立,即,解得或(舍),所以,故答案为:9.命题1:,12p x ⎡⎤∀∈⎢⎥⎣⎦,4x a x +>恒成立是假命题,则实数a 的取值范围是________________.【答案】∵ 命题,恒成立是假命题,∴ ,,∴ ,,又函数在为减函数,∴ ,∴,∴ 实数a 的取值范围是(, 故答案为:(.10.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 【答案】存在x ∈[﹣1,1],成立,即在上有解,设,,易得y =f (x )在[﹣1,1]为减函数,所以,即,即,即,所以,故答案为:.1.已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .()p q ⌝∨【答案】A 由于,所以命题p 为真命题;由于在R 上为增函数,0x ≥,所以,所以命题为真第五部分:高考真题命题;所以为真命题,、、为假命题.故选:A .2.已知a ∈R ,则“6a >”是“236a >”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】A 由题意,若,则,故充分性成立;若,则或6a <-,推不出,故必要性不成立;所以“”是“”的充分不必要条件.故选:A.3.“x =1”是“2320x x -+=”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】A 将代入中可得,即“”是“”的充分条件; 由可得,即或2x =,所以“”不是“”的必要条件,故选:A4.已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 若函数在上单调递增,则在上的最大值为,若在上的最大值为,比如,但在为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数,故在上的最大值为推不出在上单调递增, 故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,故选:A.5.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】A 当时,集合,,可得,满足充分性,若,则或,不满足必要性,所以“”是“”的充分不必要条件,故选:A.6.设a ∈R ,则“1a >”是“2a a >”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】A 求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.7.下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥【答案】D A 项:因为,所以且是假命题,A 错误;B 项:根据、易知B 错误;C 项:由余弦函数性质易知,C 错误;D 项:2x 恒大于等于,D 正确,故选:D.一、单选题1.设命题:p n N ∃∈,22n n >,则p ⌝为( ).A .n N ∀∈,22n n >B .n N ∀∈,22n n ≤C .n N ∃∈,22n n >D .n N ∃∈,22n n ≤ 【答案】B 因为命题,,所以为,.故选:B.2.若“x R ∃∈,2390ax ax -+≤”是假命题,则a 的取值范围为( ) A .[0,4] B .(0,4)C .[0,4)D .(0,4]【答案】C 因为 “,”是假命题,所以 “,”是真命题,所以当时,90>成立;当时,则,解得04a <<,综上:04a ≤<,所以a 的取值范围为, 故选:C3.已知命题“存在()3,27x ∈,使得3log 03xx m +->”是假命题,则m 的取值范围是( )A .[)2,+∞B .()2,+∞C .[)12,+∞D .()12,+∞【答案】C 因为命题“存在,使得”是假命题,所以命题“对任意,都有”是真命题.令函数,显然在上单调递增,则,故,即12m ≥.故选:C4.已知集合{}32,A x x n n Z ==-∈,{}64,B y y n n Z ==+∈,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B第六部分:课后测试因为 ,但,故不充分;因为,所以当时,,故必要;故选:B5.已知,a b ∈R ,则“1a b -<”是“1a b +<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B由绝对值三角不等式得:,当且仅当时,等号成立,所以1a b -<⇒,而1a b +<⇒,所以“”是“”的必要不充分条件.故选:B6.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥【答案】C A.令,由,解得,由二次函数的性质知:t 在上递增,在上递减,又lg y t =在上递增,由复合函数的单调性知:在上递增,故正确;B. 当时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p :.存在0x R ∈,使得是存在量词命题,则其否定为全称量词命题,即p 任意x ∈R ,均有,故正确;故选:C7.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭【答案】C,若在上不单调,令,对称轴方程为,则函数与 轴在上有交点.当时,显然不成立;当时,有解得或.四个选项中的范围,只有为的真子集,∴在上不单调的一个充分不必要条件是.故选:C .8.“函数()221xx f x a =++有零点”的充要条件是( )A .1a <-B .10a -<<C .01a <<D .0a <【答案】B 由得,因为,所以,所以,所以,所以.故选:B 二、填空题9.已知“321a x a -<<-”是“2560x x -+<”成立的必要不充分条件,请写出符合条件的整数a 的一个值____________. 【答案】 由,得,令,,“”是“”成立的必要不充分条件,BA ∴.(等号不同时成立),解得,故整数的值可以为.故答案为:中任何一个均可.10.已知24:()9,:log (3)1p x m q x -<+<,若¬q 是¬p 的必要不充分条件,则m 的取值范围是__.【答案】.因为¬q 是¬p 的必要不充分条件,所以p 是q 的必要不充分条件,由不等式,可得,由不等式,可得,所以, 因为p 是q 的必要不充分条件,所以,解得,故实数m 的取值范围是.故答案为:.11.已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______. 【答案】因为若对,,使得,所以,因为的对称轴为,所以,因为,,所以所以,即所以12.已知函数2()f x x x a =++,若存在实数[1,1]x ∈-,使得(())4()f f x a af x +>成立,则实数a 的取值范围是_______. 【答案】。
逻辑用语知识点总结详细
逻辑用语知识点总结详细逻辑是一门研究思维方法和规律的学科,逻辑用语是指在逻辑学中常用的一些术语、概念和规则。
逻辑用语是逻辑学习者必须掌握的知识点,它们对于理解和运用逻辑学原理非常重要。
本文将对逻辑用语的相关知识点进行总结和介绍,希望可以帮助读者更好地理解逻辑学的基本原理。
一、命题逻辑用语1. 命题:命题是对某个事实或者概念作出真假判断的陈述句。
命题可以是简单命题,也可以是复合命题。
2. 真值:命题的真假状态称为真值,真命题的真值为真,假命题的真值为假。
3. 联结词:联结词是用来表示命题之间逻辑关系的词语,例如“与”、“或”、“非”、“如果...那么”等。
4. 合取命题:由多个简单命题用“且”联结而成的复合命题。
5. 析取命题:由多个简单命题用“或”联结而成的复合命题。
6. 蕴含命题:由前提命题和结论命题构成的复合命题,用“如果...那么”联结。
7. 反命题:将原命题的真值取反得到的命题。
8. 逆命题:将原命题中的前提和结论位置互换得到的命题。
9. 逻辑等值式:两个命题具有相同的真值。
10. 矛盾命题:两个命题在真值上互为反义。
11. 背反命题:两个命题只能有一个为真。
二、谬误逻辑用语1. 常见谬误:指在推理过程中常见的一些错误逻辑。
2. 漏洞谬误:推理中忽略了一些重要的信息或者条件。
3. 意义不明谬误:命题的表述不清晰或者含糊不清。
4. 假设不当谬误:推理过程中使用了不成立的假设。
5. 伪命题:看似是命题实际上并不是命题。
6. 偷换概念谬误:在推理过程中将概念混淆或者曲解。
7. 弱势推理谬误:推理的结论过于绝对,没有考虑例外情况。
8. 诱导推理谬误:推理的结论只是一种可能性,并非必然性。
三、谓词逻辑用语1. 主体:命题中被描述的对象或者概念。
2. 谓语:对主体进行描述或者陈述的部分。
3. 量词:用来表示主体范围的词语,例如“所有”、“存在”等。
4. 谓词逻辑:一种更为复杂的逻辑系统,它允许我们在命题中引入量词,进而使得我们可以对全称命题(一般化陈述)和存在命题(实例化陈述)进行讨论。
常用逻辑用语复习 ppt课件
当 m ______________时,此命题为真命题。
基 础
答案:
2
x0 R, x0
mx0 1 0
练
m [-2,2]
习
归纳 感悟
1
1. 明确这个命题是全称命题还是特称命题; 1 2. 找到量词及相应结论; 2 3. 把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否 定结论,即得其否定。3
全称命题 特称命题
含有一个量词命题的否定
回顾一 命题及其关系
1.命题, 真命题,假命题
命题:用语言、符号或式子表达的,可以 判断真假的陈述句.
知
真命题
假命题
识
判断为真的语句.
判断为假的语句.
回 顾
2.标准的数学式命题:”若p,则q.”
3.四种命题:
原命题 逆命题 否命题 逆否命题
4.四种命题间的关系:
练习 2 充分条件与必要条件的判断
B 例题: 在数列{an} 中,“ an 2an1(n 2, 3, 4,) ”是“{an} 是公比为2的等比数列”的( )
基
A. 充分不必要条件
础 练
B. 必要不充分条件
习
C. 充要条件
D. 既不充分也不必要条件
练习 2 充分条件与必要条件的判断
例题:
基 础 练 习
存在量词 ——“存在一个”、“至少有一个”等,用“ ”表示。
知
识
命题类型
全称命题
回
形式
x M , p(x)
顾
否定
x0 M , p(x0 )
特称命题
x0 M , p(x0 )
否定 方法
x M , p(x)
Tips
常用逻辑用语(课件)-2024届《创新设计》高考数学一轮复习(湘教版)
当x∈(2,4)时,2x<x2,故C为真命题; 当 x=13时,1313∈(0,1),log113=1,
3
所以1313<log113,故 D 为假命题. 3
索引
角度3 含量词命题的应用 例5 (2023·长春调研)已知命题“∃x∈R,mx2-mx+1≤0”是假命题,则实数m
的取值范围是__[0_,__4_)__. 解析 由题意得“∀x∈R,mx2-mx+1>0”为真命题. 当m=0时,1>0,符合题意; 当 m≠0 时,有m(>-0m,)2-4m<0, 解得0<m<4. 综上,0≤m<4.
分层精练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p叫作q的__充__分__条件,q叫作p的_必__要___条件
p是q的_充__分__不__必__要___条件 p是q的__必__要__不__充__分__条件
A.∃a∈R,使函数 y=2x+a·2-x 在 R 上为偶函数 B.∀x∈R,函数 y=sin x+cos x+ 2的值恒为正数 C.∃x∈R,2x<x2 D.∀x∈(0,+∞),13x>log1x
3
解析 当 a=1 时,y=2x+2-x 为偶函数,故 A 为真命题; y=sin x+cos x+ 2= 2sinx+π4+ 2, 当 sinx+π4=-1 时,y=0,故 B 为假命题;
索引
考点三 全称量词与存在量词
角度1 含量词命题的否定
例3 (1)(2023·天津模拟)已知命题p:∀x∈R,sin x≤1,则( C )
A.綈p:∃x∈R,sin x≥1
B.綈p:∀x∈R,sin x≥1
《专题一:常用逻辑用语》知识点归纳
高中数学必修+选修知识点归纳新课标人教A 版复习寄语:鲁甸县文屏镇中学高三第一轮复习资料引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算.选修数学知识点专题一:常用逻辑用语1、命题:可以判断真假的语句叫命题; 逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题. 常用小写的拉丁字母p ,q ,r ,s ,……表示命题.2、四种命题及其相互关系四种命题的真假性之间的关系:⑴、两个命题互为逆否命题,它们有相同的真假性; ⑵、两个命题为互逆命题或互否命题,它们的真假性没有关系.3、充分条件、必要条件与充要条件p 是q 的充分条件,q 是p 的必要条件; 若p q ⇔,则p 是q 的充分必要条件,简称充要条件. ⑵、充分条件,必要条件与充要条件主要用来区分命题的条件p 与结论q 之间的关系:Ⅰ、从逻辑推理关系上看: ①若p q ⇒,则p 是q 充分条件,q 是p 的必要条件; ②若p q ⇒,但q p ,则p 是q 充分而不必要条件; ③若p q ,但q p ⇒,则p 是q 必要而不充分条件; ④若p q ⇒且q p ⇒,则p 是q 的充要条件; ⑤若p q 且q p ,则p 是q 的既不充分也不必要条件.Ⅱ、从集合与集合之间的关系上看:已知{A x x =满足条件}p ,{B x x =满足条件}q : ①若A B ⊆,则p 是q 充分条件; ②若B A ⊆,则p 是q必要条件;③若 A B ,则p 是q 充分而不必要条件; ④若B A ,则p 是q 必要而不充分条件; ⑤若A B =,则p 是q 的充要条件;⑥若A B ⊄且B A ⊄,则p 是q 的既不充分也不必要条件.4、复合命题p 或q (p q ∨);p 且q (p q ∧);非p (p ⌝). ⑵复合命题的真假判断“p 或q ”形式复合命题的真假判断方法:一真必真; “p 且q ”形式复合命题的真假判断方法:一假必假; “非p ”形式复合命题的真假判断方法:真假相对. 5、全称量词与存在量词 ⑴全称量词与全称命题 短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.⑵存在量词与特称命题 短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题.⑶全称命题与特称命题的符号表示及否定①全称命题p :,()x p x ∀∈M ,它的否定p ⌝:00,().x p x ∃∈M ⌝全称命题的否定是特称命题.②特称命题p :00,(),x p x ∃∈M ,它的否定p ⌝:,().x p x ∀∈M ⌝特称命题的否定是全称命题.。
第一章 常用逻辑用语复习课
D
) (C)②④ (D)③④
(B)②③
2. 命题: “若 x2 x 2 0 ,则 x≠–1 且 x≠ 2”
2 x x 2 0 , 则 x 1 或 x 2 若 的否命题是 __________________________________________. 2019/3/28 8
2019/3/28
2
常用逻辑用语复习小结 知道命题的特征 .
本章知识结构:
重要考点
命题及 其关系
常用逻辑用语
能准确写出命题 的否定.
全称量词 存在量词
充分条件 必要条件 充要条件
简单的逻辑联结 词:且、或、非
四种命题:原命题、逆命题、 否命题、逆否命题. 1.原命题与逆否命题同真同假.
2. p q 说 p 与 q 互为充 要条件 . 充要条件的探求 2.证明一个命题,可以考虑证它 是学好数学的基本功. 2019/3/28 3
____________________.
a 、 b 、 c R ,若 x a 2 2b 1 , y b2 2c 1 , z c 2 2a 1 ,则 x 、 y 、 z 三个都小于 0”
2
1 6.设命题 p:函数 f ( x) lg( ax x a) 的定义域为 R;命 16 题 q:不等式 2 x 1 1 ax 对一切正实数均成立.如果命题 p
又 命题q为真命题 2x 1 1 ax对一切正实数均成立
a
2 x 1 1 2x 2 对一切正实数x均成立 x x( 2 x 1 1) 2x 1 1
2 由于x 0, 2 x 1 1, 2 x 1 1 2, 1. 2x 1 1
22版:§1.2 常用逻辑用语(步步高)
D.既不充分也不必要条件
解析 当a>b时,若c2=0,则ac2=bc2, 所以a>b⇏ac2>bc2, 当ac2>bc2时,c2≠0,则a>b, 所以ac2>bc2⇒a>b, 即“a>b”是“ac2>bc2”的必要不充分条件.
4.“等边三角形都是等腰三角形”的否定是__存__在__一__个__等__边_三__角__形__,___ _它__不__是__等__腰__三__角__形__.
题组二 教材改编
2.(多选)下列命题是真命题的是
√A.∀x∈R,x2-x+1>0
B.∃x∈R,sin x=2
√C.存在一个无理数,它的平方是有理数 √D.平面内,到A,B两点距离相等的点都在线段AB的垂直平分线上
3.“a>b”是“ac2>bc2”的
A.充分不必要条件
√B.必要不充分条件
C.充要条件
思维升华
充分条件、必要条件的两种判定方法 (1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题. (2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条 件中涉及参数范围的推断问题.
跟踪训练2 (1)已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d
成等比数列”的
A.∃x∈R,ex-x-1≥0
B.∃x∈R,ex-x-1>0
√C.∀x∈R,ex-x-1>0
D.∀x∈R,ex-x-1≥0
解析 根据全称量词命题与存在量词命题的否定关系,可得綈p为 “∀x∈R,ex-x-1>0”,故选C.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.“x<0”是“ln(x+1)<0”的 A.充分不必要条件
第02讲 常用逻辑用语(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第02讲 常用逻辑用语(精讲)①充分、必要条件的判断一、充分条件、必要条件、充要条件1.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2.从逻辑推理关系上看 ①若p q ⇒且q p ,则p 是q 的充分不必要条件;①若pq 且q p ⇒,则p 是q 的必要不充分条件;①若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); ①若pq 且q p ,则p 不是q 的充分条件,也不是q 的必要条件.注:对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立). 二、全称量词与存在童词1.全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.2.存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为一、必备知识整合“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题).三、含有一个量词的命题的否定1.全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝.2.存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝.1.从集合与集合之间的关系上看:设{}{}|(),|()A x p x B x q x ==. (1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ;注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件; (3)若A B =,则p 与q 互为充要条件. 2.常见的一些词语和它的否定词如下表(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每一个元素x 证明其成立,要判断全称量词命题为假命题,只要能举出集合M 中的一个0x ,使得其不成立即可,这就是通常所说的举一个反例. (2)要判断一个存在量词命题为真命题,只要在限定集合M 中能找到一个0x 使之成立即可,否则这个存在量词命题就是假命题.【题型一充分、必要条件的判断】判断充分、必要条件的几种方法【典例1】(单选题)设,αβ是两个不同的平面,,l m是两条直线,且,m lαα⊂⊥.则“lβ⊥”是“//mβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【典例2】(单选题)设n S为无穷等比数列{}n a的前n项和,则“{}n a有最大值”是“{}n S有最大值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件一、单选题1.(2024高三·全国·专题练习)已知ABCD是平面四边形,设p:AB=3DC,q:四边形ABCD是梯形,则p是q的()A.充分不必要条件B.必要不充分条件二、考点分类精讲C .充要条件D .既不充分也不必要条件2.(2024·湖南衡阳·模拟预测)已知复数()i i(,,i z a b a b =+∈R 为虚数单位)的共轭复数为z ,则“z 为纯虚数”的充分必要条件为( ) A .220a b +≠ B .0ab = C .0,0a b =≠D .0,0a b ≠=3.(2024·全国·模拟预测)a b ≥是22am bm ≥的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.(2024·全国·模拟预测)已知直线1l :360ax y +-=,直线2l :()2140x a y +--=,则“2a =-”是“12l l ∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2024·江西南昌·二模)已知集合{}{ln 0},22x A xx B x ==∣∣,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(2024高三·全国·专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,则“C 为钝角”是“()22212c a b >+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.(2024·陕西汉中·二模)已知,m n 为两条直线,,αβ为两个平面,,,m n m n αβ⊂⊂⊥,则m β⊥是αβ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.(2024·四川成都·三模)已知圆C :221x y +=,直线l :0x y c -+=,则“c =是“圆C 上恰存在三个点到直线l 的距离等于12”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要9.(2024·浙江金华·模拟预测)已知函数e 1(),()cos x f x g x x x-==,设甲:()()f x g x >;乙:0x >,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件10.(2024·北京东城·一模)设等差数列{}n a 的公差为d ,则“10a d <<”是“{}n an为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【题型二 根据充分必要条件求参数的取值范围】1.充分、必要条件的探求方法(与范围有关)【典例1】(单选题)已知2:280,:21p x x q a x a --<-<<+,且q 是p 的必要不充分条件,则实数a 的取值范围是( ) A .()(),30,∞∞-⋃+B .[)4,+∞C .[]3,0-D .()3,0-A .1a <-B .0a ≤C .1a <D .2a ≤件是( ) A .45m << B .35m << C .15m <<D .13m <<一、单选题1.(23-24高三上·四川·期中)已知:0,:1p x a q x ->>,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .{1}aa <∣ B .{}1aa ≤∣ C .{1}aa >∣ D .{}1aa ≥∣ 2.(2023·贵州铜仁·模拟预测)已知()132xf x ⎛⎫=- ⎪⎝⎭,则()5f x <的一个必要不充分条件是( )A .4x >-B .3x >-C .<2x -D .3x <-3.(2023·海南海口·模拟预测)已知集合{}{}220,1P x x x Q =-<=<,则P Q P =的充要条件是( )A .01a <<B .01a <≤C .01a ≤<D .01a ≤≤4.(2023·四川甘孜·一模)设()22:log 1;:1p x m q x-<>.若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(],0-∞B .[)0,∞+C .[)1,-+∞D .(],1-∞-5.(22-23高三下·北京·开学考试)函数()()()2e e -=-++x xf x ax bx c 是偶函数的充分必要条件是( ).A .0b =B .0ac =C .0a =且0cD .0a =,0c 且0b ≠6.(23-24高三上·四川德阳·阶段练习)使得“函数()2313x txf x -⎛⎫= ⎪⎝⎭在区间()2,3上单调递增”成立的一个充分不必要条件可以是( ) A .2t ≥B .2t ≤C .3t ≥D .433t ≤≤ 7.(23-24高三上·浙江宁波·期末)命题“[]2,1x ∃∈-,20x x a -->”为假命题的一个充分不必要条件是( ) A .14a -≤B .0a ≤C .6a ≥D .8a ≥8.(23-24高三上·浙江绍兴·期末)已知命题p :函数3()2f x x x a =+-在(]1,2内有零点,则命题p 成立的一个必要不充分条件是( ) A .318a ≤< B .318a <<C .18a <D .3a ≥【题型三 全称量词命题与存在量词命题的否定】全称量词命题与存在量词命题的否定(1)改量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进【典例1】(单选题)已知命题p :x ∀∈R ,3210x x +->,则p ⌝为( ) A .0x ∃∈R ,300210x x +-≤ B .0x ∃∈R ,300210x x +-< C .x ∀∈R ,3210x x +-≤D .x ∀∈R ,3210x x +-<一、单选题1.(2024高三·全国·专题练习)命题“x ∀∈Z ,20x ≥”的否定是( ) A .x ∃∈Z ,20x ≥ B .x ∃∉Z ,20x ≤ C .x ∃∈Z ,20x <D .x ∃∉Z ,20x <2.(2024·四川成都·模拟预测)命题[]1,1,0x x x ∃∈-+<的否定是( ) A .[]1,1,0x x x ∃∈-+≥ B .[]1,1,0x x x ∀∈-+≥C .()(),11,,0x x x ∞∞∀∈--⋃++≥D .()(),11,,0x x x ∞∞∀∈--⋃++<3.(2024·山西吕梁·二模)设命题p :对任意的等比数列{}{}1,n n n a a a ++也是等比数列,则命题p 的否定p ⌝为( )A .对任意的非等比数列{}{}1,n n n a a a ++是等比数列B .对任意的等比数列{}{}1,n n n a a a ++不是等比数列C .存在一个等比数列{}n a ,使{}1n n a a ++是等比数列D .存在一个等比数列{}n a ,使{}1n n a a ++不是等比数列 4.(2024·山西·一模)设命题:R,x p x a kx ∃∈>,则p ⌝为( ) A .R,x x a kx ∀∈> B .R,x x a kx ∃∈≤ C .R,x x a kx ∀∈≤D .R,x x a kx ∃∈=5.(2024·全国·模拟预测)命题“1a ∀>,函数()a f x x =在[),a +∞上单调递增”的否定为( )A .1a ∃>,函数()af x x =在[),a +∞上单调递减B .1a ∃>,函数()af x x =在[),a +∞上不单调递增C .1a ∃≤,函数()af x x =在[),a +∞上单调递减D .1a ∃≤,函数()af x x =在[),a +∞上不单调递增6.(23-24高一上·山东青岛·期中)十七世纪,数学家费马提出猜想:“对任意正整数2n >,关于,,x y z 的方程n n n x y z +=没有正整数解”,经历三百多年,1995年数学家安德鲁怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数2n >,关于,,x y z 的方程n n n x y z +=都没有正整数解B .对任意正整数2n >,关于,,x y z 的方程n n n x y z +=至少存在一组正整数解C .存在正整数2n ≤,关于,,x y z 的方程n n n x y z +=至少存在一组正整数解D .存在正整数2n >,关于,,x y z 的方程n n n x y z +=至少存在一组正整数解【题型四 根据全称、存在量词命题的真假求参数的取值范围】根据全称、存在量词命题的真假求参数的取值范围一般思路1.在解决求参数的取值范围问题上,可以先令两个命题都为真命题,如果哪个是假命题,去求【典例1】(单选题)命题“[]1,2,25xx x a ∀∈+-≥”为真命题,则实数a 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .(],2-∞ D .(],1-∞【典例2】(单选题)若命题“[]1,2x ∃∈-,使21x m +>”是真命题,则实数m 的取值范围是( ) A .(],1-∞B .(),2-∞C .(),5-∞D .()5,+∞一、单选题1.(23-24高三下·云南昆明·阶段练习)若命题“2x ∀<,2x a <”为真命题,则实数a 的取值范围为( ) A .(,4]-∞B .(,4)-∞C .[4,)+∞D .(4,)+∞2.(2024高三·全国·专题练习)若命题“2000,20x x x m ∃∈-+<R ”为真命题,则实数m 的取值范围是( )A .(,1)-∞B .(,1]-∞C .(0,1)D .(1,)+∞3.(2024·四川·模拟预测)已知命题“[]21,4,e 0xx m x∀∈--≥”为真命题,则实数m 的取值范围为( ) A .(],e 2-∞-B .41,e 2⎛⎤-∞- ⎥⎝⎦C .[)e 2,-+∞D .41e ,2⎡⎫-+∞⎪⎢⎣⎭4.(2024·四川凉山·二模)已知命题“R x ∀∈,()2sin π2cos 0x x m +++≤”是假命题,则m 的取值范围为( )A .[)2,-+∞B .()2,-+∞C .(),1-∞-D .(],2-∞-5.(23-24高三上·安徽·阶段练习)已知向量()(),2,,12m ax n x ax ==-,命题:,0p x m n ∃∈⋅<R .若p 是假命题,则实数a 的取值范围是( ) A .10,2⎛⎫⎪⎝⎭B .10,2⎡⎫⎪⎢⎣⎭C .10,2⎛⎤ ⎥⎝⎦D .10,2⎡⎤⎢⎥⎣⎦6.(2024·陕西西安·模拟预测)设函数()22f x ax ax =-,命题“[]2,6x ∃∈,()23f x a ≤-+”是假命题,则实数a 的取值范围是( ).A .3,2⎛⎫+∞ ⎪⎝⎭B .()3,+∞C .()2,+∞D .3,2⎛⎫-∞ ⎪⎝⎭二、填空题7.(2024·全国·模拟预测)已知命题“对于()0,x ∀∈+∞,e 1x ax >+”为真命题,写出符合条件的a 的一个值: .8.(23-24高三上·湖北武汉·期末)若命题“0ππ,86x ⎡⎤∀∈⎢⎥⎣⎦,0tan 22x m +≥”是假命题,则实数m 的取值范围是 .。
第02讲-常用逻辑用语(解析版)
第02讲常用逻辑用语一、考情分析1.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系;理解充分条件的意义,理解判定定理与充分条件的关系;理解充要条件的意义,理解数学定义与充要条件的关系;2.通过已知的数学实例,理解全称量词与存在量词的意义;3.能正确使用存在量词对全称命题进行否定;能正确使用全称量词对存在性命题进行否定.二、知识梳理1.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q pp是q的必要不充分条件p q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p q且q p2.全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.3.全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)名称全称命题存在性命题形式结构对M中的所有x,有p(x)成立存在M中的一个x0,使p(x0)成立简记∀x∈M,p(x)∃x0∈M,p(x0)否定∃x0∈M,⌝p(x0)∀x∈M,⌝p(x)[方法技巧]1.区别A 是B 的充分不必要条件(A ⇒B 且B A ),与A 的充分不必要条件是B (B ⇒A 且A B )两者的不同.2.A 是B 的充分不必要条件⇔綈B 是綈A 的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.三、 经典例题考点一 充分条件与必要条件的判断A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >. 因此,“cos cos A B <”是“sin sin A B >”的充分必要条件. 故选:C.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】函数()f x 为R 上的增函数⇒不等式()(0.001)f x f x <+恒成立,反之不成立,∴“()f x 是增函数”是“不等式()(0.001)f x f x <+恒成立”的充分不必要条件.故选:AA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】必要性显然成立;下面来证明充分性, 若()12n n n a a S +=,所以当2n 时,()111(1)2n n n a a S ---+=,所以()()1112(1)n n n a n a a n a a -=+--+,化简得11(1)(2)n n n a a n a --=+-①, 所以当3n 时,211(2)(3)n n n a a n a ---=+-②,①-②得()122(2)(2)n n n n a n a a ---=-+,所以122n n n a a a --=+,即数列{}n a 是等差数列,充分性得证,所以“()12n n n a a S +=”是“数列{}n a 是等差数列”的充要条件.故选:C.规律方法 充要条件的两种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据使p ,q 成立的对象的集合之间的包含关系进行判断. 考点二 全称量词与存在量词A .[]01,3x ∃∈-,200320x x -+> B .[]1,3x ∀∉-,2320x x -+> C .[]1,3x ∀∈-,2320x x -+> D .[]01,3x ∃∉-,200320x x -+>【答案】A【解析】因为全称命题的否定是特称命题,所以命题“[]1,3x ∀∈-,2320x x -+≤”的否定为“[]01,3x ∃∈-,200320x x -+>”. 故选A .A .x R ∀∈, 22x x >B .x R ∃∈,22x x <C .x R ∀∈,22x x ≤D .x R ∃∈,22x x ≤【答案】C【解析】命题是特称命题,则命题的否定是全称命题, 即x R ∀∈,22x x ≤.规律方法 1.全称命题与存在性命题的否定与命题的否定有一定的区别,否定全称命题和存在性命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决. 考点三 充分条件、必要条件的应用【答案】充分不必要【解析】若p 为真命题:当1k =时,对于任意x ∈R ,则有20>恒成立;当1k ≠时,根据题意,有()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩,解得19k <<. 所以19k ≤<;若q ⌝为真命题:2x ∀>,2272x k x -≥-.()()()2222821271228228222x x x x x x x -+-+-==-++≥+---, 当且仅当222x =+时,等号成立,所以822k ≤+. {}19k k ≤< {}822k k ≤+,所以,“p 为真命题”是“q ⌝为真命题”的充分不必要条件.(Ⅰ)求实数m 的取值集合M ;(Ⅱ)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围. 【答案】(1)(2)或.【解析】(1)方程在有解,转化为函数在上的值域,实数m 的取值集合M 可求; (2)x N ∈是x M ∈的必要条件,分、、三种情况讨论即可求a 的取值范围.(1) 由题意知,方程20x x m --=在上有解,即m 的取值范围就为函数在上的值域,易得1|24M m m ⎧⎫=-≤<⎨⎬⎩⎭7分 (2) 因为x N ∈是x M ∈的必要条件,所以8分当时,解集为空集,不满足题意 9分 当时,,此时集合则,解得12分当时,,此时集合则11 {,4422aaa<-⇒<--≥15分综上9144a a><-或16分规律方法充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.[思维升华]1.充分条件、必要条件、充要条件的判断方法(1)定义法(2)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)};①若A⊆B,则p是q的充分条件,q是p的必要条件;②若BA⊂≠,则p是q的充分不必要条件,q是p的必要不充分条件;③若A=B,则p是q的充要条件.2.要写一个命题的否定,需先分清其是全称命题还是存在性命题,再对照否定结构去写,否定的规律是“改量词,否结论”.[易错防范]1.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.2.注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定.四、 课时作业A .充分条件,但不是必要条件B .必要条件,但不是充分条件C .充要条件D .既不是充分也不是必要条件【答案】A【解析】由“复数()a bi a b +∈R ,为纯虚数”,一定可以得出0a =,但反之,不一定,因为,纯虚数要求b 不为0.故选A .A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】当1a >时,440a ∆=-<,由221y ax x =++开口向上,则2210ax x ++>恒成立; 当2210ax x ++>恒成立时,若0a =,则210x +> 不恒成立,不符合题意, 若0a ≠ 时,要使得2210ax x ++>恒成立,则0440a a >⎧⎨∆=-<⎩ ,即1a > .所以“1a >”是“2210ax x ++>恒成立”的充要条件. 故选:C.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】∵直线()12:110,:20l ax a y l x ay +++=++=, 当“2a =-”时,直线12:210,:220l x y l x y --+=-+=, 满足121k k ⋅=-,∴12l l ⊥.如果12l l ⊥,∴()110a a a ⋅++=,解得2a =-或0a =,∴直线()12:110,:20l ax a y l x ay +++=++=,则“2a =-”是“12l l ⊥”充分不必要条件.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】若1x y +=得1y x =-,则由OA xOB yOC =+得()1OA xOB x OC xOB OC xOC =+-=+- ,即()=OA OC x OB OC --, 则CA xCB =,即CA xCB =,即A ,B ,C 共线,即充分性成立 反之若A ,B ,C 共线,则存在一个实数x ,满足CA xCB =,即()=OA OC x OB OC --,则()()1OA OC x OB OC xOB x OC ++-=+-,令1y x =-, 则1x y +=,即必要性成立,则“1x y +=”是“A ,B ,C 共线”的充要条件, 故选C .A .30m -<<B .13m -<<C .34m -<<D .23m -<< 【答案】B【解析】方程22123x y m m +=+-表示双曲线()()23023m m m ⇔+-<⇔-<<,选项是23m -<<的充分不必要条件,∴选项范围是23m -<<的真子集,只有选项B 符合题意,故选B .A .3002,80x x ∃>-≤ B .32,80x x ∀>-≤ C .3002,80x x ∃≤-≤ D .32,80x x ∀≤-≤【答案】B【解析】已知命题0:2p x ∃>,380x ->,那么p ⌝是32,80x x ∀>-≤. 故选:B .A .p ⌝:x R ∃∈,2210x x ++<B .p ⌝:x R ∃∈,2210x x ++≤C .p ⌝:x R ∀∈,2210x x ++<D .p ⌝:x R ∀∈,2210x x ++≤【答案】A【解析】由命题p :x R ∀∈,2210x x ++≥ 所以命题p 的否定是:x R ∃∈,2210x x ++< 故选:A【答案】存在2,20x R x x ∈-<【解析】由全称命题的否定是特称命题,可得命题“任意2,20x R x x ∈-≥”的否定是“存在2,20x R x x ∈-<”,故答案为:存在2,20x R x x ∈-<.【答案】5m ≤-【解析】∵命题“()20001,2,+m 40x x x ∃∈+≥满足不等式”是假命题,∴()x 1,2∀∈,不等式240x mx ++<恒成立. 设()2()4,1,2f x x mx x =++∈,则有(1)50()280f m f x m =+≤⎧⎨=+≤⎩,解得5m ≤-,∴实数m 的取值范围为(,5]-∞-.【答案】充分不必要【解析】“3x >”则“29x >”,但是“29x >”可得“3x >或3x <-”,所以“3x >”是“29x >”的充分不必要条件.【答案】充分不必要【解析】“||||||x y x y +=+” ||0xy xy xy ⇔=⇔ 若“0xy >”成立,则“0xy ”成立,则“||||||x y x y +=+” 反之,若“||||||x y x y +=+”成立,不一定有“0xy >” 所以“0xy >”是“||||||x y x y +=+”的充分不必要条件. 故答案为:充分不必要.(1)若p 是q 的必要条件,求m 的取值范围;(2)若p ⌝是q ⌝的必要不充分条件,求m 的取值范围.【答案】(Ⅰ)⎡⎣;(Ⅱ)(,3][3,)-∞-+∞.【解析】由x 2﹣8x ﹣20≤0得﹣2≤x ≤10,即P :﹣2≤x ≤10, 又q :1﹣m 2≤x ≤1+m 2. (1)若p 是q 的必要条件,则2212110m m ⎧-≥-⎨+≤⎩,即2239m m ⎧≤⎨≤⎩,即m 2≤3,解得m ≤≤,即m 的取值范围是⎡⎣.(2)∵¬p 是¬q 的必要不充分条件, ∴q 是p 的必要不充分条件.即2212110m m ⎧-≤-⎨+≥⎩,即m 2≥9,解得m ≥3或 m ≤﹣3 即m 的取值范围是(﹣∞,﹣3]∪[3,+∞).(1)当1a =时,求AB ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围. 【答案】(1)(1,0]-;(2)(,0]-∞.【解析】(1)1a =时,2()lg(1)f x x =-,由210x ->得11x -<<,即(1,1)A =-, 由2011x <-≤得(,0]B =-∞,∴(1,0]A B =-;(2)“x A ∈”是“x B ∈”的必要不充分条件,则B 是A 的真子集,若0a >, 则由210ax ->得x <<(A =,与(1)类似得(,0]B =-∞,不合题意, 若0a =,则()lg10f x ==,即,{0}A R B ==,满足题意, 若0a <,则211ax -≥,A R =,[0,)B =+∞,满足题意. 综上a 的取值范围是(,0]-∞.(1)若P 为真命题,求实数a 的取值范围; (2)若()p q -∧为真命题,求实数a 的取值范围.【答案】(1)1,12⎛⎫⎪⎝⎭;(2)1,[1,2]2⎛⎤-∞⋃ ⎥⎝⎦【解析】(1)由命题P为真命题,即()(12122222220a aa a a ++--+=--<,22a <<,可得112a <<,即实数a 的取值范围是1,12⎛⎫ ⎪⎝⎭.(2)若命题q 为真命题,由(0,)x ∀∈+∞,不等式210x ax -+≥恒成立,即21x ax +在(0,)x ∈+∞上恒成立,即1a x x≤+对(0,)x ∈+∞恒成立, 当(0,)x ∈+∞时,12x x +≥=,当且仅当1x x =,即1x =时等号成立,所以q 为真命题时,可得2a ≤,又因为()p q ⌝∧为真命题,则p 为假命题且q 为真命题,所以1122a a a ⎧≤≥⎪⎨⎪≤⎩或,解得12a 或12a . 所以实数a 的取值范围是1,[1,2]2⎛⎤-∞⋃ ⎥⎝⎦.。
常用逻辑用语章末整合提升
数 学 选 修 北 师 大 版
返回导航
1-1 ·
第一章 常用逻辑用语
一、选择题
1.命题“∃x∈R,2x+x2≤1”的否定是( A )
A.∀x∈R,2x+x2>1,假命题
B.∀x∈R,2x+x2>1,真命题
当 p 真 q 假时,即mm>≤21或m≥3 ,得 m∈[3,+∞).
当
p
假
q
真时,即m≤2 1<m<3
,得 m∈(1,2].
数
综上所述,m 的取值范围是(1,2]∪[3,+∞).
学
选
修
北 师 大 版
返回导航
第一章 常用逻辑用语
『规律方法』 此种类型的题目往往是先假设命题p和q都是真命题,求出 参数的取值范围.若有假命题,则参数的范围就是使之为真命题时的补集.该 题中p、q一真一假,则需分类讨论:p真q假、p假q真,分别求出参数m的范围, 最后取并集.
[思路分析] 解决本题可先求出命题p和q成立的条件,再得到¬p和¬q,利 用¬p是¬q的必要不充分条件,则¬q⇒¬p,求出a的取值范围,或利用等价条件 p⇒q求得a.
数 学 选 修 北 师 大 版
返回导航
1-1 ·
1-1 ·
第一章 常用逻辑用语
[解析] 由 x2-4ax+3a2<0 且 a<0,得 3a<x<a, ∴p:3a<x<a. 由 x2-x-6≤0 得,-2≤x≤3,∴q:-2≤x≤3. ∵¬q⇒¬p,∴p⇒q.
数 学 选 修 北 师 大 版
返回导航
1-1 ·
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《常用逻辑用语》全章复习与巩固 编稿:张林娟 审稿:孙永钊【学习目标】1.理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2.了解命题“若p ,则q ”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定. 【知识网络】【要点梳理】要点一:命题的四种形式如果用p 和q 分别表示原命题的条件和结论,用⌝p 和⌝q 分别表示p 和q 的否定,则命题的四种形式为:原命题: 若p ,则q ; 逆命题: 若q ,则p ; 否命题: 若p ⌝,则q ⌝; 逆否命题:若q ⌝,则p ⌝. 四种命题的关系:①原命题⇔逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题⇔否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系. 要点二:充分条件、必要条件、充要条件 对于“若p 则q ”形式的命题:①若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;②若p ⇒q ,但q ⇒/p ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件; ③若既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充分必要条件(充要条件). 判断命题充要条件的三种方法: (1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用A B ⇒与B A ⌝⌝⇒;B A ⇒与A B ⌝⌝⇒;A B ⇔与B A ⌝⌝⇔的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,比如A ⊆B 可判断为A ⇒B ;A =B ,可判断为A ⇒B ,且B ⇒A ,即A ⇔B .如图:“A B ⊆”⇔“x A ∈⇒x B ∈,且x B ∈⇒/x A ∈”⇔x A ∈是x B ∈的充分不必要条件.“A B =”⇔“x A ∈⇔x B ∈”⇔x A ∈是x B ∈的充分必要条件.要点诠释:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.要点三:逻辑联结词“或”“且”“非” “或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫做简单命题,由简单命题与逻辑联结词构成的命题叫做复合命题.(2)复合命题的构成形式:①p 或q ;②p 且q ;③非p (即命题p 的否定). (3)复合命题的真假判断(利用真值表):①当p 、q 同时为假时,“p 或q ”为假,其它情况时为真,可简称为“一真必真”; ②当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”. ③“非p ”与p 的真假相反. 要点诠释:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p 或q ”为例:一是p 成立且q 不成立,二是p 不成立但q 成立,三是p 成立且q 也成立.可以类比于集合中“x A ∈或x B ∈”.(2)“或”、“且”联结的命题的否定形式:“p 或q ”的否定是“⌝p 且⌝q ”; “p 且q ” 的否定是“⌝p 或⌝q ”. (3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论.要点四:量词与全称命题、特称命题 全称量词与存在量词(1)全称量词及表示:表示全体的量词称为全称量词.表示形式为“所有”、“任意”、“每一个”等,通常用符号“ ∀”表示,读作“对任意 ”.含有全称量词的命题,叫做全称命题.全称命题“对M 中任意一个x ,有()p x 成立”可表示为“,()x M p x ∀∈”,其中M 为给定的集合,()p x 是关于x 的命题.(2)存在量词及表示:表示部分的量称为存在量词.表示形式为“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“∃”表示,读作“存在 ”.含有存在量词的命题,叫做特称命题.特称命题“存在M 中的一个x ,使()p x 成立”可表示为“,()x M p x ∃∈”,其中M 为给定的集合,()p x 是关于x 的命题.对含有一个量词的命题进行否定 (1)对含有一个量词的全称命题的否定全称命题p : ,()x M p x ∀∈,他的否定p ⌝: ,()x M p x ∃∈⌝.全称命题的否定是特称命题.(2)对含有一个量词的特称命题的否定特称命题p : ,()x M p x ∃∈,他的否定p ⌝: ,()x M p x ∀∈⌝.特称命题的否定是全称命题.要点诠释:(1)命题的否定与命题的否命题是不同的. 命题的否定只对命题的结论进行否定(否定一次),而命题的否命题则需要对命题的条件和结论同时进行否定(否定二次).(2)一些常见的词的否定:【典型例题】类型一:命题的四种形式例1. 写出命题“已知a ,b 是实数,若0ab =,则0a =或0b =”的逆命题,否命题,逆否命题,并判断其真假.【解析】逆命题:已知a ,b 是实数,若0a =或0b =, 则0ab =, 真命题; 否命题:已知a ,b 是实数,若0ab ≠,则0a ≠且0b ≠,真命题; 逆否命题:已知a ,b 是实数,若0a ≠且0b ≠,则0ab ≠,真命题. 【总结升华】1.“已知a ,b 是实数”为命题的大前提,写命题时不应该忽略;2. 互为逆否命题的两个命题同真假;3. 注意区分命题的否定和否命题. 举一反三:【变式1】已知命题:若1q <,则方程220x x q ++=有实根. 写出它的逆命题,否命题,逆否命题,并判断其真假.【答案】逆命题:若方程220x x q ++=有实根,则1q <, 假命题;否命题:若q ≥1,则方程220x x q ++=无实根, 假命题; 逆否命题:若方程220x x q ++=无实根,则q ≥1, 真命题. 【高清课堂:常用逻辑用语综合395487 例1】 【变式2】写出下列命题的否命题:(1)若0abc =,则a b c ,,中至少有一个为0; (2)若220x y +=,则x y ,全是0. 【答案】(1)若0abc ≠,则a ,b ,c 都不为0; (2)若220,x y +≠则x y ,不都为0. 类型二:充要条件的判断例2. 填空(在“充分而不必要条件”“必要而不充分条件”“充要条件”“既不充分也不必要条件”中选一种).(1)已知:p :0m >;q :方程20x x m +-=有实根.则p 是q 的条件; (2)已知:p :|1|4x +≤;q :256x x <-.则p ⌝是q ⌝的条件. 【解析】(1)方法一:定义法∵0m >⇒方程20x x m +-=有实根,且方程20x x m +-=有实根0⇔∆≥140m ⇔+≥⇒/0m >.所以p 是q 的充分而不必要条件.方法二:从集合的观点入手p :{|0}m A m m ∈=>q :{|m B m ∈=方程20x x m +-=有实根}1{|}4m m =≥-因为A ◊B ,所以p 是q 的充分而不必要条件.(2)p :|1|4x +≤53x ⇔-≤≤;q :256x x <-2560x x ⇔-+<23x ⇔<<.由图知:q ⇒p 但p ⎭q ,故q 是p 的充分不必要条件,故p ⌝是q ⌝的充分不必要条件. 【总结升华】1. 处理充分、必要条件问题时,首先要分清条件与结论;2. 正确使用判定充要条件的三种方法,要重视等价关系转换,特别是p ⌝与q ⌝关系. 举一反三:【变式1】指出下列各组命题中,A 是B 的什么条件(1)A :2,p p R ≥∈; B :方程230x px p +++=有实根; (2)A :231x ->;B :2106x x >+-;(3)A :圆222x y r +=与直线0ax by c ++=相切;B :2222()c a b r =+. 【答案】(1)必要非充分条件. ∵2p ≥⇔2p ≥或2p ≤-,方程230x px p +++=有实根⇔0∆≥⇔214(3)02p p -+≥⇔≤-或6p ≥, ∴{|2A p p =≥或2}p ≤-{|6B p p =≥或2}p ≤-,即x A∈x B ∈.所以A 是B 的必要非充分条件. (2)必要非充分条件 ∵23112x x x ->⇔<>或;210326x x x x >⇔<->+-或,所以A 推不出B ,但B 可以推出A , 故A 是B 的必要非充分条件. (3)充要条件直线0ax by c ++=与圆222x y r +=相切⇔ 圆(0,0)到直线的距离d r =, 222222()c r c a b r a b =⇔=++.所以A 是B 的充要条件.【高清课堂:常用逻辑用语综合395487 例2】 【变式2】设a ∈R ,则1a >是11a -<的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A类型三:复合命题真假的判断例3. 已知下列各组命题,写出满足条件的复合形式命题,并判断真假.(1)p :2x =是方程2560x x -+=的根, q :5x =是方程2560x x -+=的根; p 或q .(2)p :3π>,q :π是有理数; p 且q . (3)p :若2x =,则x ∈N 或0x <; 非p . 【解析】(1)p 或q :2x =或5x =是方程2560x x -+=的根,真命题. (2)p 且q :π是大于3的有理数, 假命题. (3) 非p : 若2x =,则x ∉N 且0x ≥, 假命题. 【总结升华】1. 判断复合命题的真假的步骤: ①确定复合命题的构成形式; ②判断其中简单命题p 和q 的真假;③根据规定(或真假表)判断复合命题的真假.2. 条件“x ∈N 或0x <”是“或”的关系,否定时要注意. 举一反三:【变式1】若命题p :()x AB ∈,则命题“非p ”是( )A .x A ∉且xB ∉ B .x A ∉或x B ∉C .()x A B ∉D .()x AB ∈【答案】A【解析】∵因为命题p 可陈述为:x 属于集合A 或x 属于集合B ,∴非p :x 即不属于集合A 且也不属于集合B ,即非p :x A ∉且x B ∉,故选A.【变式2】满足“p 或q ”为真,“非p ”为真的是 (填序号)(1)p :在ABC ∆中,若cos2cos2A B =,则A=B ; q :sin y x =在第一象限是增函数(2)p :,)a b a b +≥∈R ;q :不等式x x >的解集为(),0-∞(3)p :圆()221(2)1x y -+-=的面积被直线1x =平分;q :椭圆22143x y +=的一条准线方程是4x =.【答案】(2)【解析】由已知条件,知命题p 假、命题q 真. 选项(1)中,命题p 真而命题q 假,排除;选项(2)中命题p 假、命题q 真;选项(3)中,命题p 和命题q 都为真,排除;故填(2).类型四:全称命题与特称命题真假的判断 例4. 判断下列命题的真假:(1)41x x ∀∈≥,N ; (2)3001x x ∃∈<,Ζ. 【思路点拨】如何判断一个存在性命题为真,只要在给定的集合中,找到一个....元素,使得命题为真,否则为假;要判断一个全称命题为真,必须对给定集合中的每一个...元素,使得命题为真,否则为假.【解析】(1)由于0N ∈,当0x =时,41x ≥不成立,故(1)为假命题; (2)由于1Z -∈,当1x =-时能使31x <,所以(2)为真命题.【总结升华】1. 要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证()p x 成立;要判断全称命题是假命题,只要能举出集合M 中的一个0x x =,使0()p x 不成立即可;2.要判断一个特称命题的真假,依据:只要在限定集合M 中,至少能找到一个0x x =,使0()p x 成立,则这个特称命题就是真命题,否则就是假命题.举一反三:【变式】写出下列命题的否定,并判断真假. (1)21,04x x x ∀∈-+≥R ; (2)所有的正方形都是矩形; (3)2000220x x x ∃∈++≤R ,; (4)至少有一个实数0x ,使得2020x +=. 【答案】(1)p ⌝:20001,04x R x x ∃∈-+<(假命题); (2)p ⌝:至少存在一个正方形不是矩形(真命题); (3)p ⌝:2,220x R x x ∀∈++>(真命题); (4)p ⌝:2,20x R x ∀∈+≠(真命题).。