4.8方程例7-例9

合集下载

青岛版五年级数学上册第四单元【解简易方程的方法及难点归纳】

青岛版五年级数学上册第四单元【解简易方程的方法及难点归纳】

青岛版五年级数学上册第四单元【解简易方程的方法及难点归纳】青岛版五年级数学上册:解简易方程的方法及难点归纳方程、方程的解、解方程、等式的基本性质是本文的重点概念(详见“知识点汇总”)。

解方程就是要运用等式的基本性质,对方程的左右两边同时进行运算,以求出方程的解(即如同“X=6”的形式)。

解方程就好像是要把复杂的绳结解开,因此一般要按照绳结形成的过程逆向操作(逆运算)。

过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。

以下内容除了标明的外,全都是正确的方程题示例,且没有跳步,请仔细观看其中每步的解题意图。

带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。

一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。

例如:x+5=14,解:x+5-5=14-5,x=9;x-6=7,解:x-6+6=7+6,x=13;3x=18,解:3x÷3=18÷3,x=6;x÷4=5,解:x÷4×4=5×4,x=20.难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。

二、两步方程例如:16-x=9,解:16-x+x=9+x,x+9=16,x+9-9=16-9,x=7.24÷x=4,解:24÷x×x=4×x,4x=24,4x÷4=24÷4,x=6.两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。

注意要“带符号移动”,增添括号时还要注意符号的变化。

例如:10+x-6=20,解:x+(10-6)=20,x+4=20,x+4-4=20-4,x=16;x÷4×8=9.6,解:x×(8÷4)=9.6,2x=9.6,2x÷2=9.6÷2,x=4.8或x÷4×8=9.6,解:x÷(4÷8)=9.6,x÷0.5=9.6,x÷0.5×0.5=9.6×0.5,x=4.8.如果含有两级运算,就“逆着运算顺序”同时变化,如含有未知数的一边是“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。

浙教版七年级数学上册第5章 一元一次方程应用专题复习学案(附答案)

浙教版七年级数学上册第5章 一元一次方程应用专题复习学案(附答案)

浙教版七年级数学上册第5章一元一次方程应用复习学案◆考点六:一元一次方程的应用:典例精讲:例7.一个三位数,百位上的数字比十位上的数字大4,个位上的数字比十位上的数字大2,这个三位数恰好是去掉百位上的数字后的两位数的21倍,求这个三位数.变式训练:已知一个三位数,个位上的数字是十位上数字的2倍还多1,百位上的数字是个位和十位数字的和,把这个三位数的个位数字与百位数字交换位置,得到一个新三位数,原三位数与新三位数的差为99,求原三位数.典例精讲:例8.某酒店客房部有三人间、双人间客房,收费标准如表:为吸引游客,实行团体入住五折优惠措施.现有一个100人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费6040元,则旅游团住了三人普通间和双人普通间客房各多少间?变式训练:某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x超过2000时,甲厂的收费为元,乙厂的收费为元;(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?典例精讲:例9.为发展校园足球运动,学校决定购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50 元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100 套队服和a 个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?变式训练:目前节能灯在各地区基本普及使用,某商场计划用3800元购进甲、乙两种节能灯共120只,这两种节能灯的进价、售价如下表:(1)(2)全部售完这120只节能灯后,该商场共获利多少元?典例精讲:例10.已知甲、乙两人均从400米的环形跑道的A处出发,各自以每秒6米和每秒8米的速度在跑道上跑步.(1)若两人同时出发,背向而行,则经过秒钟两人第一次相遇;若两人同时出发,同向而行,则经过秒钟乙第一次追上甲.(2)若两人同向而行,乙在甲出发10秒钟后去追甲,经过多少时间乙第二次追上甲.(3)若让甲先跑10秒钟后乙开始跑,在乙用时不超过100秒的情况下,乙跑多少秒钟时,两人相距40米.变式训练:甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?典例精讲:例11.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?变式训练:1.信息技术课上,老师让七年级学生练习打字,要求限时40分钟打完﹣篇文章.已知小宝独立打完这篇文章需要50分钟,而小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?2.小敏和小强到某厂参加社会实践,该厂用白板纸做包装盒.设计每张白板纸裁成盒身3个或者盒盖5个,且一个盒身....恰好能做成一个包装盒.设裁成盒身的白板纸有x张,回答下列问题.....和两个盒盖(1)若有11张白板纸.①请完成下表.②求最多可做几个包装盒.(2)若仓库中已有4个盒身,3个盒盖和23张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖.当盒身与盒盖全部配套用完时,可做多少个包装盒?(3)若有n张白板纸(70≤n≤80),先把一张白板纸适当套裁出3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖.当盒身与盒盖全部配套用完时,n的值可以是__________.巩固提升:1.某超市店庆促销,某种书包原价为每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A. 0.8x-10=90B. 0.08x-10=90C. 90-0.8x=10D. x-0.8x-10=902. 如图,水平桌面上有一个内部装有水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40 cm,50 cm,现将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板的厚度,则根据图中的数据,可知隔板抽出后水面静止时,箱内的水面高度为( )A. 43 cmB. 44 cmC. 45 cmD. 46 cm3.某书店为配合该市开展的“我读书,我快乐”读书活动推出一种优惠卡,每张卡售价为20元,凭卡购书可享受8折优惠﹒小芳同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元﹒若此次小芳同学不买卡直接购书,则她需付款多少元?()A﹒140元 B﹒150元 C﹒160元 D﹒200元4.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元5.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.26.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.20137.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?8.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?9.某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其他主要参考数据如下:(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;(2)若A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?10.为了保障我国海外维和部队和官兵的生活,现需通过A港口、B港口分别调运100吨和50吨生活物资,已知该物资在甲仓库存有80吨,乙仓库存有70吨,从甲、乙两仓库运送物资到每个港口的费用(元/吨)如下表所示:(1)如果从甲、乙两仓库运送物资到两个港口的总费用为1920元,则需要从甲仓库运送多少吨物资到A港口?(2)根据(1)求出的结果,请你说出此时的调运方案﹒11.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒,40盒乒乓球时,去哪家商店购买更合算?答案◆考点六:一元一次方程的应用: 典例精讲:例7.解析:设十位上的数为x ,则百位数字为x+4,个位数字为x+2, 由题意得:100(x+4)+10x+x+2=21(10x+x+2), 解得:x=3,x+4=7,x+2=5, ∴这个三位数为735变式训练:解析:设这个三位数的十位数字为x ,则个位为()12+x ,百位为()13+x 由题意得:()()[]99131012100121013100=++++-++++x x x x x x 解得:1=x答:这个三位数为:413典例精讲:例8.解析:设三人普通间住了x 间,则双人普通间住了23100x-间, 由题意得:604014023100150=⨯-+⨯xx 解得:16=x答:旅游团住了三人普通间16间,双人普通间客房26间变式训练:解析:(1)若x 不超过2000时,甲厂的收费为元,乙厂的收费为(1.5x )元, 故答案为:0.5x +1000,1.5x ;(2)若x 超过2000时,甲厂的收费为元,乙厂的收费为2000×1.5+0.25(x ﹣2000)=0.25x +2500元,故答案为:1000+0.5x ,0.25x +2500;(3)当x =8000时,甲厂费用为1000+0.5×8000=5000元, 乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元; (4)当x ≤2000时,1000+0.5x =1.5x ,解得:x =1000;当x >2000时,1000+0.5x =0.25x +2500,解得:x =6000; 答:印刷1000或6000本证书时,甲乙两厂收费相同典例精讲:例9.解析:(1)设每个足球的定价是x 元,则每套队服是()50+x 元, 由题意得:()x x 3502=+,解得:100=x , 答每套队服是150元,每个足球是100元(2)到甲商场购买所化的费用为:1400010010100100100150+=⎪⎭⎫⎝⎛-+⨯a a (元) 到乙商场购买所化的费用为:150********.0100150+=⋅⨯+⨯a a (元) (3)当在两家商场购买一样合算时,150008014000100+=+a a , 解得:50=a所以购买的足球数等于50个时,则在两家商场购买一样合算, 当购买的足球数多于50个时,则到乙商场购买合算, 当购买的足球数少于50个时,则到甲商场购买合算变式训练:解析:(1)设购进甲种节能灯x 只,则购进乙种节能灯(120-x )只. 由题意得25x +45(120-x )=3800, 解得x =80,120-x =40.答:购进甲种节能灯80只,乙种节能灯40只. (2)80×(30-25)+40×(60-45)=1000(元).答:全部售完这120只节能灯后,该商场共获利1000元.典例精讲:例10.解析:(1)400÷(6+8)=7200(秒); 400÷(8﹣6)=200(秒). 故答案为:7200;200. (2)设经过x 秒时乙第二次追上甲, 根据题意得:8x ﹣6x=400+6×10, 解得:x=230.答:经过230秒钟乙第二次追上甲.(3)设经过y 秒时甲乙两人相距40米, 甲、乙同向而行时,|6(10+y )﹣8y|=40, 解得:y=10或y=50;甲、乙背向而行时,6(10+y )+8y=400n ﹣40或6(10+y )+8y=400n+40; 解得:750200-=n y 或710200-=n y , ∵y ≤100, ∴7150=y 、7190、50、7390、7550、7590. 答:当甲、乙同向而行时,乙跑10秒或50秒时,两人相距40米;当甲、乙背向而行时,乙跑7150、7190、50、7390、7550或7590秒时,两人相距40米.变式训练:解析:(1)设经过x 小时两车相距540千米, 由题意得80x +120x =540-240,解得23=x . 答:经过23小时两车相距540千米.(2)设经过y 小时快车可追上慢车. 由题意得120y -80y =240,解得y =6. 答:经过6小时快车可追上慢车. (3)设经过z 小时两车相距300千米. 由题意得120z -80z =300-240.解得z =23. 答:经过23小时两车相距300千米.典例精讲:例11.解析:设该小组共有x 名同学,由题意得,()14024408=-+x x . 解得:4=x答:该小组共有4名同学变式训练:1.解析:设小贝加入后打x 分钟完成任务, 根据题意得:(30+x )×501+301x=1, 解得:x=7.5. ∵7.5+30=37.5<40, 所以他能在要求的时间打完.2.解析:(1)①填表如下:②解:由题意得2×3x =5(11-x ),解得x =5.∴3x =15. 答:最多可做成15个包装盒.(2)解:设用y 张白板纸裁成盒身,由题意得2×(3y +4)=3+5(23-y ),解得y =10.∴3y +4=34. 答:可做成34个包装盒. (3)79.巩固提升:1.解析:设某种书包原价每个x 元,根据题意列出方程解答即可. 设某种书包原价每个x 元, 可得:0.8x ﹣10=90,故选择A2.解析:设长方形的宽为x 公分,抽出隔板后之水面高度为h 公分,长方形的长为130+70=200(公分),由题意得:()()hx x x ⨯⨯=⨯++⨯+2005029070402110130解得:h =44, 故选择B3.解析:设小芳同学不买卡直接购书需付书款x 元, 由题意,得x -(20+0.8x )=10, 解得x =150,即小芳同学不买卡直接购书需付书款150元,故选:B ﹒4.解析:设两件衣服的进价分别为x 、y 元,根据题意得:120﹣x=20%x ,y ﹣120=20%y ,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C .5.解析:设两人相遇的次数为x , 依题意有:100452100=+⨯x 解得x=4.5,∵x 为整数,∴x 取4.故选:B .6.解析:设中间数为x ,则另外两个数分别为x ﹣1、x+1,∴三个数之和为(x ﹣1)+x+(x+1)=3x .根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=67232(舍去),x=672,x=671. ∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D .7.解析:设城中有x 户人家,依题意得:x+3x =100 解得x=75.答:城中有75户人家.8.解析:设甲种零件制作x 天,乙种零件制作(30-x )天由题意得:200x × 3=2×150(30-x )解得:x=10所以30-x=30-10=20答:甲种零件制作10天,乙种零件制作20天9.解析:(1)设本市与A 市之间的路程是x 千米,由题意得200·80x +20·x +900-(200·100x +15·x +2000)=1100, 解得x =400.答:本市与A 市之间的路程是400千米.(2)选择汽车的总费用=200⎪⎭⎫ ⎝⎛+1.380s +20s +900=(22.5s +1520)元, 选择火车的总费用=200⎪⎭⎫ ⎝⎛+2100s +15s +2000=(17s +2400)元, 令22.5s +1520=17s +2400,解得s =160.故当s =160时,选择火车和汽车运输所需总费用相同.10.解析:设从甲仓库运送x 吨物资到A 港口,则从乙仓库运送(100-x )吨到A 港口,从甲仓库运送(80-x )吨物资到B 港口,从乙仓库运送50-(80-x )=(x -30)吨到B 港口,由题意,得14x +20(100-x )+10(80-x )+8(x -30)=1920,化简并整理,得-8x +640=0,解得x =80,答:需要从甲仓库运送80吨物资到A 港口;(2)当x =80时,100-x =20,x -30=50,故此时调配方案为:将甲仓库的80吨全部运送到A 港口,从乙仓库运送20吨到A 港口,乙仓库余下的50吨全部运送到B 港口﹒11.解析:(1)设该班购买乒乓球x 盒.根据题意,得甲:100×5+(x -5)×25=(25x +375)元,乙:0.9×100×5+0.9x ×25=(22.5x +450)元,当甲=乙时,25x +375=22.5x +450,解得x =30.答:当买30盒乒乓球时,两种方法付款一样.(2)买20盒时:甲25×20+375=875(元),乙22.5×20+450=900(元),选甲;买40盒时:甲25×40+375=1 375(元),乙22.5×40+450=1 350(元),选乙.答:买20盒乒乓球时,甲店更合算;买40盒乒乓球时,乙店更合算.。

2024年秋季新人教版七年级上册数学教学课件 第五章 一元一次方程 综合专题

2024年秋季新人教版七年级上册数学教学课件 第五章 一元一次方程 综合专题

海起飞,9 天到南海,现野鸭从南海、大雁从北海同
时起飞,问经过多少天相遇 ? 设经过 x 天相遇,根据
题意可列方程为
(A )
A.(17
+1 9
)x=1
C.(9-7)=1
B.(17
-1 9
)x=1
D.(9+7)=1
例2 (连云港)元朝朱世杰所著的《算学启蒙》中,记载
了这样一道题:良马日行二百四十里,驽马日行一百
五十里,驽马先行一十一日,问良马几何日追及之?其
大意是:快马每天行 240 里,慢马每天行 150 里,慢
马先行 12 天,快马几天可追上慢马?若设快马 x 天可
追上慢马,由题意得
( D)
A.
x =x+2 240 150
B.24x0
=x 150
-12
C.240(x-12)=150x D.240x=150(x+12)
例3 (荔湾区期末)爸爸与小明在足球场上进行耐力训练, 他们在 400 米的环形跑道上从同一起点沿同一方向同时 出发进行绕圈跑,爸爸跑完一圈时,小明才跑完半圈, 4 分钟时爸爸第一次追上小明.请问: (1) 小明与爸爸的速度各是多少? (2) 再过多少分钟后,爸爸在第二次追上小明前两人相距 50 米?
5x-5-1=4x-4+1 解得 x=3.
(2) 将 x=3+2=5 代入第一个方程得 12-m=-m-2. 解得 m=22. 2
类型三:求含字母参数的方程的解
例4 (汉阳区期末)已知关于 x 的一元一次方程 x+1=
2x+a 的解为 x=-1,那么关于 y 的一元一次方程
(y+2)+1=2(y+2)+a 的解是
解:45÷3=15(人). 设从甲处调往乙处 x 人,则从甲处调往丙处 (15-x) 人. 依题意,得:15+x=1.5×(15+15-x), 解得:x=12. 所以 15-x=3.

数学解方程50题(打印版)

数学解方程50题(打印版)

数学解方程50题(打印版)解方程是数学中的重要概念,能够帮助我们找到未知数的值。

下面是50个解方程的例题,供您练和巩固解方程的能力。

1. 解方程:3x + 5 = 202. 解方程:2(x - 4) = 103. 解方程:5(2x + 3) = 354. 解方程:4x - 3 = 5x + 25. 解方程:8 - 3(x + 2) = 96. 解方程:2(3x - 1) - 4 = 147. 解方程:3(5x + 2) - 1 = 148. 解方程:(2x + 1) / 3 = 59. 解方程:6 - 2(4x + 1) = 010. 解方程:3(x - 2) + 4 = 2x + 711. 解方程:2x + 3 = 4x - 512. 解方程:3(2x - 1) = 4 - 2x13. 解方程:2(x + 3) = 4x - 214. 解方程:5(2x + 1) = 3x - 215. 解方程:3x + 4 = 2(x + 1)16. 解方程:4(3x - 2) - 5 = 2x + 317. 解方程:(2x + 3) / 4 = 718. 解方程:3(4x - 1) = 5 - 2x19. 解方程:6 - 2(3x + 4) = 1020. 解方程:2(2x + 5) + 3 = 4x + 721. 解方程:3x - 2 + 5 = 12 + 2x22. 解方程:5(2x - 3) - x = 723. 解方程:6 - 3(4x + 5) = 924. 解方程:4(2x + 1) - 3(3x - 2) = 525. 解方程:6(x + 2) + 4 = 5 - 2x26. 解方程:3(4x - 1) = 2(3 - x) + 127. 解方程:(2x - 3) / 5 = 728. 解方程:4(2x + 3) = 5(3 - x)29. 解方程:6 - 3(2x + 4) = 5x30. 解方程:2(3x - 1) = 4(2x + 3) - 131. 解方程:3(2x - 1) + 4 = 5 - 3x32. 解方程:4(3 - 2x) + 2x = 4 - 2(3x + 1)33. 解方程:5(x + 3) - 2 = 8(2 - x)34. 解方程:4x + 5 - 7 = 6 - x + 935. 解方程:6(3 - 2x) + 2 = 8 - 4x36. 解方程:3(4x + 1) - 2x = 6(1 - 3x)37. 解方程:(6x - 3) / 4 = 1 - 2x38. 解方程:4(2 - x) + 3(2x - 1) = 1539. 解方程:8 - 5(2 - x) = 2(x - 1)40. 解方程:5(2x - 3) - 3 = 2(3x - 2)41. 解方程:3x + 4 = 2(3 - 2x)42. 解方程:4(2x + 1) - 3(x - 2) = 543. 解方程:5(2 - x) + 3(x + 1) = 744. 解方程:6 - 3x = 4x + 745. 解方程:4(3 - 2x) - 2(2 - x) = 1 - 3x46. 解方程:3(4x + 1) + 2(x - 3) = 547. 解方程:(5x - 3) / 2 + 1 = 3x48. 解方程:4(3 - x) - 2(2x + 1) = 1 - 3(x - 1)49. 解方程:5(2 - x) = 3(4 - 2x)50. 解方程:2(3x - 1) + 1 = 3(x + 2)这些题目将涉及线性方程、二次方程、分数方程等不同类型的解方程问题,希望您能够通过练习提高解方程的能力。

小学数学解方程10种方法,解方程其实很简单(经典集锦)

小学数学解方程10种方法,解方程其实很简单(经典集锦)

小学数学解方程10种方法,解方程其实很简单(经典集锦)小学解方程10种方法汇总一、未知数加减乘除1.形如x+a=b或x-a=b的方程。

(遇加同减,遇减同加)例1 x+7=19 遇加同减解:x+7-7=19-7 两边同时减去7X=12例2 x-6=19 遇减同加解:x-6+6=19+6 两边同时加上6x=252.利用等式解形如ax=b或x÷a=b(a不等于0)的方程。

(遇乘同除,遇除同乘)例1 7x=63 遇乘同除解:7x÷7=63÷7两边同时除以7x=9例2 x ÷7=9 遇除同乘解:x÷7×7=9×7两边同时乘以7x=633.利用等式解形如ax+b=c、ax-b=c或x÷a+b=c、x÷a-b=c(a 不等于0)的方程。

(混合运算,先加减再乘除:能计算的要先计算)例1 2x+5=29 有乘法和加法,先算加法,遇加同减解:2x+5-5=29-5 两边同时减去52x=24 遇乘同除2x÷2=24÷2两边同时除以2x=12例2 5x-6=24 有乘法和减法,先算减法,遇减同加解: 5x-6+6=24+6 两边同时加上65x=30 遇乘同除5x÷5=30÷5两边同时除以5x=6例3 x÷7+3=10 有除法和加法,先算加法,遇加同减解:x÷7+3-3=10-3 两边同时减去3x÷7=7 遇除同乘x÷7×7=7×7两边同时乘以7x=49例4 x÷10-6=9 有除法和减法,先算减法,遇减同加x÷10-6+6=9+6 两边同时加上6x÷10=15遇除同乘x÷10×10=15×10两边同时乘以10x=150二、未知数被加上或被减去;4.未知数被加上a+x=b,a+bx=c(解法同上)5.形如b-x=c、b-ax=c的方程。

初中数学一元一次、二元一次、一元二次解方程例题

初中数学一元一次、二元一次、一元二次解方程例题

一元一次方程例题解析例题1:解方程2x + 3 = 7解析:首先,从等式的两边减去3,得到2x = 4。

然后,将等式两边除以2,得到x = 2。

所以,x的解为2。

例题2:解方程5x - 7 = 12解析:首先,将等式的两边加上7,得到5x = 19。

然后,将等式两边除以5,得到x = 3.8。

所以,x的解为3.8。

例题3:解方程3x + 4 = 10解析:首先,从等式的两边减去4,得到3x = 6。

然后,将等式两边除以3,得到x = 2。

所以,x的解为2。

例题4:解方程7x - 5 = 19解析:首先,将等式的两边加上5,得到7x = 24。

然后,将等式两边除以7,得到x = 3.4。

所以,x的解为3.4。

例题5:解方程4x + 6 = 18解析:首先,从等式的两边减去6,得到4x = 12。

然后,将等式两边除以4,得到x = 3。

所以,x的解为3。

例题6:解方程9x - 7 = 25解析:首先,将等式的两边加上7,得到9x = 32。

然后,将等式两边除以9,得到x = 3.56。

所以,x的解为3.56。

例题7:解方程8x - 9 = 17解析:首先,将等式的两边加上9,得到8x = 26。

然后,将等式两边除以8,得到x = 3.25。

所以,x的解为3.25。

例题8:解方程6x + 7 = 19解析:首先,从等式的两边减去7,得到6x = 12。

然后,将等式两边除以6,得到x = 2。

所以,x的解为2。

例题9:解方程10x - 8 = 24解析:首先,将等式的两边加上8,得到10x = 32。

然后,将等式两边除以10,得到x = 3.2。

所以,x的解为3.2。

例题10:解方程11x - 9 = 30解析:首先,将等式的两边加上9,得到11x = 39。

然后,将等式两边除以11,得到x = 3.54。

所以,x的解为3.54。

例题11:解方程12x - 10 = 28解析:首先,将等式的两边加上10,得到12x = 38。

《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲例1解方程025x 2=-.分析:解一元二次方程的方法有四种,而此题用直接开平方法较好.解一元二次方程的方法有四种,而此题用直接开平方法较好.解:025x 2=-,25x 2=,25x ±=,x =±=±55. ∴5x 5x 21-==,.例2解方程2)3x (2=+.分析:如果把x +3看作一个字母y ,就变成解方程2y 2=了.了.解:2)3x (2=+,23x ±=+,23x 23x -=+=+,或, ∴23x 23x 21--=+-=,.例3解方程081)2x (42=--.分析:解此题虽然可用因式分解法、公式法来解,但还是用直接开平方法较好.较好.解:081)2x (42=-- 整理,81)2x (42=-,481)2x (2=-, 292x ±=-,∴25x 213x 21-==,.注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.例4解方程02x 3x 2=+-.分析:此题不能用直接开平方法来解,可用因式分解法或用公式法来解.此题不能用直接开平方法来解,可用因式分解法或用公式法来解. 解法一:02x 3x 2=+-,(x (x--2)(x 2)(x--1)1)==0, x -2=0,x -1=0,∴2x 1x 21==,. 解法二: ∵a =1,b =-=-33,c =2, ∴01214)3(ac 4b 22>=´´--=-,∴213x ±=.∴1x 2x21==,.注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△先计算“△”的值,若△<0<0<0,则方程无解,就不必解了.,则方程无解,就不必解了.,则方程无解,就不必解了.例5解关于x 的方程0n )n m 2x 3(m x 22=-+--.分析:先将原方程加以整理,化成一元二次方程的一般形式,注意此方程为关于x 的方程,即x 为未知数,为未知数,m m ,n 为已知数.在确定0ac 4b 2³-的情况下,利用公式法求解.利用公式法求解.解:把原方程左边展开,整理,得把原方程左边展开,整理,得0)n mn m 2(mx 3x 222=--+-.∵a =1,b =-=-3m 3m 3m,,22n mn m 2c --=, ∴)n mn m 2(14)m 3(ac 4b 2222--´´--=-22n 4mn 4m ++= 0)n 2m (2³+=.∴2)n 2m (m 3x 2++=2)n 2m (m 3+±=.∴nm x n m 2x 21-=+=,. 注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2-的值,然后求解.但解字母系数方程时要注意:系数方程时要注意:(1)(1)(1)哪个字母代表未知数,也就是关于哪个未知数的方程;哪个字母代表未知数,也就是关于哪个未知数的方程;(2)(2)不要把一元二次方程一般形式中的不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;混淆;(3)(3)(3)在在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,开平方时,可能会出现两种情况,但根号前有正负号,已包已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.例6用配方法解方程x 73x 22=+.分析:解一元二次方程虽然一般不采用配方法来解,但配方法的方法本身重要,要记住.重要,要记住.解:x 73x 22=+,23x 27x 2=+-,0234747x 27x 22=+÷øöçèæ-÷øöçèæ+-2, 162547x 2=÷øöçèæ-, ∴4547x ±=-. ∴21x3x21==,. 注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方.边就配成了一个二项式的完全平方.例7不解方程,判别下列方程的根的情况:不解方程,判别下列方程的根的情况:(1)04x 3x 22=-+;(2)y 249y 162=+;(3)0x 7)1x (52=-+.分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=D 的值的符号就可以了.符号就可以了.解:(1)(1)∵∵a =2,b =3,c =-=-44, ∴041)4(243ac 4b 22>=-´´-=-. ∴方程有两个不相等的实数根.∴方程有两个不相等的实数根. (2)(2)∵∵a =1616,,b =-=-242424,,c =9, ∴09164)24(ac 4b 22=´´--=-. ∴方程有两个相等的实数解.∴方程有两个相等的实数解.(3)(3)将方程化为一般形式将方程化为一般形式0x 75x 52=-+,05x 7x 52=+-.∵a =4,b =-=-77,c =5, ∴554)7(ac 4b 22´´--=- =4949--100 =-=-51<051<051<0..∴方程无实数解.∴方程无实数解.注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.例8已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.的值.分析:根据韦达定理a cx x abxx2121=×-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.求出方程的另一根.但方法不如第一种.解:设另一根为2x ,则,则56x 25k x 222-=×-=+,,∴53x 2-=,k =-=-77.即方程的另一根为53-,k 的值为-的值为-77. 注意:一元二次方程的两根之和为a b -,两根之积为a c.例9利用根与系数的关系,求一元二次方程01x 3x 22=-+两根的两根的 (1)(1)平方和;平方和;平方和;(2)(2)(2)倒数和.倒数和.倒数和.分析:已知21x x 23xx2121-=×-=+,.要求.要求(1)(1)2221x x +,(2)21x 1x 1+,关键是把2221x x +、21x 1x 1+转化为含有2121x x x x ×+、的式子.的式子.因为两数和的平方,等于两数的平方和加上这两数积的2倍,即ab 2b a )b a (222++=+,所以ab 2)b a (b a 222-+=+,由此可求出,由此可求出(1)(1)(1).同样,可用.同样,可用两数和与积表示两数的倒数和.两数和与积表示两数的倒数和.解:(1)(1)∵∵21x x 23x x 2121-=×-=+,,∴212212221x x 2)x x (x x -+=+÷øöçèæ--÷øöçèæ-=212232149+= 413=; (2)211221x x x x x 1x 1+=+ 2123--==3.注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.倒数和变成两根的和与积,其变形的方法主要运用乘法公式.例10已知方程0m x 4x 22=++的两根平方和是3434,求,求m 的值.的值.分析:已知34x x 2m x x 2x x 22212121=+=×-=+,,,求m 就要在上面三个式子中设法用222121x x x x ++和来表示21x x ,m 便可求出.便可求出.解:设方程的两根为21x x 、,则,则2mx x 2x x 2121=×-=+,.∵212212221x x 2)x x (x x -+=+, ∴)x x ()x x (x x 2222122121+-+=34)2(2--==-=-303030..∵2mxx 21=,∴m =-=-303030..注意:解此题的关键是把式子2221x x x x+变成含2121x x x x 、+的式子,从而求得m 的值.的值.例11求一个一元二次方程,使它的两个根是2、1010..分析:因为任何一元二次方程都可化为因为任何一元二次方程都可化为((二次项系数为1)0q px x 2=++的形式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=×-=+,.将p 、q 的值代入方程0q px x 2=++中,即得所求方程0x x x )x x (x 21212=×++-.解:设所求的方程为0q px x 2=++.∵2+1010=-=-=-p p ,2×1010==q ,∴p =-=-121212,,q =2020..∴所求的方程为020x 12x 2=+-.注意:以21x x 、为根的一元二次方程不止一个,为根的一元二次方程不止一个,但一般只写出比较简单的一但一般只写出比较简单的一个.个.例12已知两个数的和等于8,积等于9,求这两个数.,求这两个数. 分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-这个方程的一次项系数就应该是-88,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.它的根,即是这两个数.解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x 2=++.∵qx x p 8xx2121=×-==+,,∴方程为09x 8x 2=+-.解这个方程得74x 74x21-=+=,,∴这两个数为7474-+和.例13如图22-2-122-2-1,在长为,在长为32m 32m,宽为,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2m 540,那么道路的宽度应是多少?那么道路的宽度应是多少?分析:设道路的宽度为x m ,则两条道路的面积和为,则两条道路的面积和为2x x 20x 32-+. 题中的等量关系为:草地面积+道路面积=长方形面积.题中的等量关系为:草地面积+道路面积=长方形面积.解:设道路的宽度为x m ,则,则,则 2032x x 20x 325402´=-++. 0100x 52x 2=+-,(x (x--2)(x 2)(x--50)50)==0, x -2=0,x -5050==0, ∴50x 2x21==,.∵x =50不合题意,不合题意, ∴取x =2.答:道路的宽度为2m 2m..注意:两条道路重合了一部分,重合的面积为2x .因此计算两条道路的面积和时应减去重合面积2x .例14某钢铁厂去年1月份钢的产量为5000吨,吨,33月份上升到7200吨,求这两个月平均每月增长的百分率是多少?这两个月平均每月增长的百分率是多少?分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(15000(1++x)x),,增长两次后的产量是2)x 1(5000+,….增长n 次后的产量b 是n )x 1(5000b +=.这就是重要的增长率公式.这就是重要的增长率公式.解:设平均每月增长的百分率为x .则.则7200)x 1(50002=+,2536)x 1(2=+,56x 1±=+,∴22x 20x 21.,.-==(不合题意,舍去不合题意,舍去)). 答:平均每月增长的百分率是20%20%..注意:解方程时,由1+x 的值求x ,并舍去负值.,并舍去负值.。

人教版九年级数学上册《21一元二次方程 公式法 课件

人教版九年级数学上册《21一元二次方程   公式法  课件

将a,b,c 代入式子
x b
b2 4ac .
2a
就得到方程的根,这个式子叫做一元二次方程的求根公
式,利用它解一元二次方程的方法叫做公式法,由求根公式
可知,一元二次方程最多有两个实数根.
注意 用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0); 2.b2-4ac≥0.
探究新知
求根公式的推导
任何一个一元二次方程都可以写成一般形式
ax2+bx+c=0
能否也用配方法得出它的解呢?
用配方法解一般形式的一元二次方程
ax2+bx+c=0 (a≠0).
解: 移项,得 ax2 bx c,
方程两边都除以a x2 b x c ,
a
a
配方,得
x2
b a
x
b 2a
2
c a
典例精析
例6:若关于x的一元二次方程kx2-2x-1=0有两个不相等的
实数根,则k的取值范围是( B )
A.k>-1
B.k>-1且k≠0
C.k<1
D.k<1且k≠0
解析:由根的判别式知,方程有两个不相等的实数根,
则b2-(4a2c)>20,4同k 时0要求二次项系数不为0,

,k≠0.解得k>-1且k≠0,故选B.
∴方程有两个相等的实数根.
例7:不解方程,判断下列方程的根的情况.
(3) 7y=5(y2+1).
解:(3)方程化为:5y2-7y+5=0, ∴b2-4ac=(-7)2-4×5×5=-51<0.
∴方程有两个相等的实数根.

解一元一次方程(第2课时)-2022-2023学年七年级数学上册课件(苏科版)

解一元一次方程(第2课时)-2022-2023学年七年级数学上册课件(苏科版)
=0.5x+2


去分母:6(20x-10)-5(10x+30)=30(0.5x+2)
去括号:120x-60-50x-150=15x+60
移项:120x-50x-15x=60+60+150
合并同类项:55x=270

系数化为1:x=

例6 解下列方程
+ −
(3)
=1
. .
+ −
再去括号:3x-2x+14=54-3x
移项:3x-2x+3x=54-14
合并同类项:4x=40
系数化为1:x=10
02
方程的概念
方程的解
知识精讲
若方程中有分母呢~
自然又要先去分母啦~
+ −
Q1:如何去分母呢?以“ + =2”为例~


操作:等式两边同时乘以6—分母的最小公倍数
依据:等式性质2

例10
− − − −
解方程:
+
=
+




【分析】
每个分数线上下之间都有统一的联系:
分子=分母+(1+x)
2021-x=2020+(1-x)
2019-x=2018+(1-x)
2020-x=2019+(1-x)
2018-x=2017+(1-x)


解:移项: { [ ( x+1)+1]+1}=2


移项: ( x+1)=5


去分母: [ ( x+1)+1]+1=4

苏教版五年级下册数学第一单元期中考前指导--学生版

苏教版五年级下册数学第一单元期中考前指导--学生版

苏教版五年级下册数学第一单元期中考前指导第一单元简易方程第一部分知识点梳理1.方程的意义:含有未知数的等式,叫做方程。

2.方程与等式的关系:a.等式表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

b.等式包括方程,等式的范围比方程的范围大;一切方程都是等式,但等式不一定是方程。

3.等式的性质:1.等式两边同时加上或者减去同一个数,等式仍然成立;2.等式两边同时乘或除以同一个不等于0的数,等式仍然成立。

4.解方程的解和解方程的含义与区别:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。

例如,当x=80时,20+x=100的等号左右两边相等。

而方程的解是指求出这个未知数的演算过程。

我们以前做过的一些求未知数的题目,实际上就是解方程。

方程的解是解方程的过程中的一部分,它们既有联系,又有区别。

注意:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯.解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数5.解已知数量甲比数量乙的几倍多(或少)几和数量甲,求数量乙的实际问题,可设数量乙为x,根据数量乙×倍数±几=数量甲,列出形如ax±b=c的方程进行解答形如ax±b=c的方程,根据等式的性质解题,具体解题方法及书写格式如下:解: ax=c±bx=(c±b)÷a2.用形如ax÷b=c的方程解决实际问题,这类方程的具体解题方法及书写格式如下:解: ax÷b×b = c×bax = bcx = bc÷a第二部分例题讲解及相关练习例1、有一批苹果放在甲、乙两个筐中都没放满,如果把甲筐苹果倒入乙中,乙还能再装10个;如果把乙筐苹果全部倒入甲中,乙还剩20个。

专题7.2 二元一次方程组的应用【十一大题型】(举一反三)-2023-2024学年七年级数学下册举一

专题7.2 二元一次方程组的应用【十一大题型】(举一反三)-2023-2024学年七年级数学下册举一

专题7.2 二元一次方程组的应用【十一大题型】【华东师大版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 配套问题】 (3)【题型4 年龄问题】 (4)【题型5 销售问题】 (4)【题型6 分配问题】 (5)【题型7 几何图形问题】 (7)【题型8 数字问题】 (8)【题型9 古代问题】 (9)【题型10 方案问题】 (10)【题型11 图表问题】 (11)【题型1 行程问题】【例1】(2023春·山东临沂·七年级统考期末)甲、乙两人在400米的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过200秒甲第一次追上乙,求甲、乙两人的平均速度.【变式1-1】(2023春·江苏连云港·七年级统考期末)我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.【变式1-2】(2023春·河北廊坊·七年级廊坊市第四中学校考期中)琪琪沿街匀速行走,发现每隔12min从背后驶过一辆7路公交车,每隔6min从迎面驶来一辆7路公交车.假设每辆7路公交车行驶速度相同,而且7路公交车总站每隔固定时间发一辆车.问:(1)7路公交车行驶速度是琪琪行走速度的倍.(2)7路公交车总站每间隔min发一辆车.【变式1-3】(2023春·湖南娄底·七年级统考期末)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,则他从家里到学校需10分钟,从学校到家里需15分钟.(1)小华家离学校多远?(2)小华从家里到学校到达中点的时间与小华从学校到家里到达中点的时间会一样吗?如果不一样,哪种情况所花的时间更多?请通过计算说明理由.【题型2 工程问题】【例2】(2023春·安徽芜湖·七年级校考期末)自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过小时水池的水刚好注满.【变式2-1】(2023春·四川泸州·七年级泸县五中校考期中)制造某种产品,1人用机器,3人靠手工,每天可制造60件;2人用机器,2人靠手工,每天可制造80件.3人用机器,1人靠手工,每天可制造多少件产品?【变式2-2】(2023春·湖南常德·七年级统考期末)玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需要6周完成,共需装修费5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设工作总量为1,甲公司的每周工作效率为m,乙公司每周的工作效率为n,根据题意列出关于m、n的二元一次方程组.(2)如果从节约时间的角度考虑,应选哪家公司?请说明理由.(3)如果从节约开支的角度考虑,应选哪家公司?请说明理由.【变式2-3】(2023春·河北邯郸·七年级统考期中)有一块面积为180亩的荒地需要绿化,甲工程队绿化若干天后,因有急事,剩余工作由乙工程队完成,已知甲工程队每天绿化8亩,乙工程队每天绿化12亩,一共用20天完成.(1)设甲工程队绿化m天,乙工程队绿化n天,依题意可列方程组:______.(2)设甲工程队绿化荒地x亩,乙工程队绿化荒地y亩,请列方程组求甲、乙两工程队分别绿化荒地的亩数.【例3】(2023春·全国·七年级期末)张氏包装厂承接了一批纸盒加工任务,用如图①所示的长方形和正方形纸板作侧面和底面,做成如图①所示的竖式与横式两种上面无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需正方形纸板___________张(直接填空),需长方形纸板___________张(直接填空).(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(要求列二元一次方程组解决此问题)3.(2023秋·山东济南·七年级校考期末)列方程组解应题某校为7年级寄宿学生安排宿舍,每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,求该年级寄宿的学生人数和宿舍间数?【变式3-1】(2023春·山东菏泽·七年级统考期中)一套餐桌有一张桌子和六把椅子组成.如果1立方米木料可以制作10张桌子,或制作15把椅子.现有15立方米的木料,请你设计一下,用多少立方米的木料做桌子,多少立方米的木料做椅子,恰好配套成餐桌?【变式3-2】(2023春·广东江门·七年级统考期末)用铁皮材料做罐头盒,每张铁皮可制盒身30个,或制盒底50个,一个盒身与两个盒底配成一套.现有33张铁皮材料,分别用多少张制盒身、盒底,才能保证既恰好用完铁皮材料,又使盒身和盒底正好配套?【变式3-3】(2023秋·安徽滁州·七年级校考开学考试)一工厂有60名工人,要完成1200套产品的生产任务,每套产品由4个A型零件和3个B型零件配套组成,每个工人每天能加工6个A型零件或者3个B型零件.现将工人分成两组,每组分别加工一种零件,并要求每天加工的零件正好配套.(1)工厂每天应安排多少名工人生产A型零件?每天能生产多少套产品?(2)现工厂要在20天内完成1200套产品的生产,决定补充一些新工人,这些新工人只能独立进行A型零件的加工,且每人每天只能加工4个A型零件.①设每天安排x名熟练工人和m名新工人生产A型零件,求x的值(用含m的代数式表示)①请问至少需要补充多少名新工人才能在规定期限完成生产任务?【例4】(2023春·全国·七年级专题练习)5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁.那么现在这对母女的年龄分别是多少?【变式4-1】(2023春·七年级课时练习)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【变式4-2】(2023秋·湖南永州·七年级校考开学考试)甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁.”则今年甲的年龄为岁,乙的年龄为岁.【变式4-3】(2023春·福建泉州·七年级统考期末)南安英都拔拔灯是国家级非物质文化遗产之一,因疫情原因停办了好几年,今年正月又重新举行,吸引了众多的海内外游客参与.其中一位34岁的男子带着他的两个孩子参与了拔拔灯活动,下面是记者与两个孩子的对话:记者:两位小朋友,你们几岁了?这么小就来拔拔灯了.妹妹:我比哥哥少4岁;哥哥:两年后,妹妹年龄的3倍与我的年龄相加.恰好等于爸爸的年龄;根据对话内容,请你用方程(组)的知识帮记者求出今年哥哥和妹妹的年龄.【题型5 销售问题】【例5】(2023春·山东泰安·七年级统考期末)2020年1月底,武汉爆发“新冠”疫情,并开始向全国蔓延,出于防疫的需求,医用口罩迅速成为紧俏物资.某药店为解市民的燃眉之急,先后两次采购了A、B两种型号的医用口罩进行销售.已知这两种型号的医用口罩进货情况如表:(1)问A,B两种型号的口罩的进货单价各是多少元?(2)销售中发现B型口罩的销量明显好于A型,药店在计划第三次采购时,决定购进B型口罩的箱数比A 型口罩的箱数的2倍还多10箱,在采购总价不超过90000元的情况下,最多能购进多少箱B型口罩?【变式5-1】(2023春·重庆·七年级重庆市育才中学校考期中)向日葵水果店推出甲乙两种礼盒,甲礼盒中有樱桃1千克,枇杷0.5千克,香梨1千克,乙礼盒中有樱桃1千克,枇杷0.5千克,哈密瓜1千克,已知樱桃每千克30元,甲礼盒每盒100元,乙礼盒每盒98元,当然,顾客也可根据需要自由搭配,小陶用1100元买乙礼盒和自由搭配礼盒(香梨1千克,枇杷1千克,哈密瓜1千克)若干盒,则小陶一共可买礼盒个.【变式5-2】(2023春·黑龙江大庆·七年级校考期末)某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.①求A,B型两种台灯每台售价分别是多少元?①若按照第二次购进A,B型两种台灯的价格再购进一次,将再次购进的台灯全部售出后,要想使获得的利润为1000元,求有哪几种购进方案?【变式5-3】(2023秋·全国·七年级统考期末)为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,2004年秋季有5000名农民工子女进入主城区中小学学习,预计2005年秋季进入主城区中小学学习的农民工子女比2004年有所增加,其中小学增加20%,中学增加30%,这样,2005年秋季将新增1160名农民工子女在主城区中小学学习.(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2005年新增加的1160名中小学学生共免收多少“借读费”?(2)如果小学每增加40名学生需配备2名教师,中学每增加40名学生需配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生增加的人数计算,一共需要配备多少名中小学教师?【题型6 分配问题】【例6】(2023春·北京海淀·七年级北京育英中学校考期末)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?【变式6-1】(2023春·广西桂林·七年级校考期中)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车,2名熟练工和3名新工人每月可安装14辆电动汽车(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?【变式6-2】(2023春·浙江·七年级期末)杭州某公司准备安装完成6000辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,求a的值.【变式6-3】(2023春·吉林长春·七年级统考期末)问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m根竹签,n个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).【题型7 几何图形问题】【例7】(2023春·江苏苏州·七年级校联考阶段练习)把长都是宽的两倍的1个大长方形纸片和4个相同的小长方形纸片按图①、图①方式摆放,则图①中的大长方形纸片未被4个小长方形纸片覆盖部分的面积为cm2.【变式7-1】(2023春·江苏常州·七年级统考期末)在长为18m,宽为15m的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,则其中一个小长方形花圃的面积为()A.10m2B.12m2C.18m2D.28m2【变式7-2】(2023春·河南新乡·七年级校考阶段练习)如图,在长方形ABCD中,放入6个形状、大小都相同的小长方形,所标尺寸如图所示.(1)小长方形的长和宽各是多少?(2)求阴影部分的面积.【变式7-3】(2023春·山西·七年级统考期中)小敏通过观察发现,生活中很多产品的包装都是长方体,她从家里找了一个长方体包装盒,将其展开后,得到如图所示的示意图,根据示意图中的数据可得原长方体的体积为cm3.【题型8 数字问题】【例8】(2023春·河北唐山·七年级统考期中)某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数.(1)列一元一次方程求解.(2)如果设原两位数的十位数字为x,个位数字为y,列二元一次方程组.(3)检验(1)中求得的结果是否满足(2)中的方程组.【变式8-1】(2023春·重庆沙坪坝·七年级重庆市第七中学校校考期末)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.三阶幻方的填写规则是将9个不同的整数填入方格中,使得每行、每列、每条对角线上的三个数之和都相等.(1)如图1所示幻方,求x的值;(2)如图2所示幻方,求a,b的值;(3)如图3所示幻方,若m,n为正整数,直接写出一共有多少种填法,并把其中一种幻方填写完整.【变式8-2】(2023秋·辽宁铁岭·七年级统考阶段练习)在《最强大脑》节目中,有很多具有挑战性的比赛项目,其中《幻图圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;①外圆两直径上的四个数字之和相等;则图中外圆周上空白圆圈内填,内圆周上空白圆圈内填内应填.【变式8-3】(2023春·山东潍坊·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!【题型9 古代问题】【例9】(2023秋·安徽滁州·七年级校联考期中)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每1只各重多少斤?”请列方程组解答上面的问题.【变式9-1】(2023春·湖北武汉·七年级校考阶段练习)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是()尺.A.5B.8C.32D.36【变式9-2】(2023春·江西南昌·七年级统考期末)《九章算术》是我国古代第一部数学专著,书中记载了这样一个问题:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等水稻3捆,加稻谷6斗,与下等水稻10捆相当.下等水稻5捆,加稻谷1斗,与上等水稻2捆相当.问上等水稻、下等水稻每捆各有稻谷多少斗?【变式9-3】(2023秋·安徽·七年级校联考阶段练习)《九章算术》中有这样一道题,原文如下:今有上禾六秉,损实一斗八升,当下禾一十秉.下禾十五秉,损实五升,当上禾五秉.问:上、下禾实一秉各几何?大意为:今有上禾6束,减损其中之“实”1斗8升,与下禾10束之“实”相当;下禾15束,减损其中之“实”5升,与上禾5束之“实”相当.问上、下禾每1束之实各为多少?(10升为1斗)【题型10 方案问题】【例10】(2023春·湖南株洲·七年级校考期末)某电器超市销售每台进价为200元,170元的A、B两种型号的电风扇.如表所示是近2周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号电风扇的销售单价;(2)超市销售完A、B两种型号的电风扇共25台,能否实现利润为1200元的目标?请说明理由.(3)一家公司打算花费4000元同时购买A、B两种型号的电风扇若干台,请你为该公司设计不同的购买方案.【变式10-1】(2023秋·福建漳州·七年级校考阶段练习)某公司接到240台空调的安装任务.由于时间紧,该公司没有足够的熟练工人,故决定招聘一批新工人.根据以往安装经验可知,1名熟练工人和2名新工人每天一共可以安装8台空调;2名熟练工人和3名新工人每天一共可以安装14台空调.(1)求每名熟练工人和新工人每天分别可以安装多少台空调?(2)若该公司原有m名熟练工人,现计划招聘n名新工人(m,n均为正整数),为保证刚好用12天完成安装任务,你认为该公司有哪几种招聘方案?【变式10-2】(2023春·湖北荆州·七年级统考期末)荆州作为荆楚文化根脉所在,是楚文化发祥地.首届楚文化节于2023年3月至4月在荆州举办.为更好展现荆州,荆州市特推出A、B两种不同明信片套盒和单张明信片.已知一种A套盒和一种B套盒总价13元,2种A套盒和3种B套盒总价31元;单张明信片1元/张.(1)请求出A、B两种套盒的单价各是多少元?(2)某顾客计划用200元购买这三种商品共127件,如果资金刚好全部用完,问有几种购买方案?【变式10-3】(2023春·广东广州·七年级执信中学校考期中)杂交水稻的发展对解决世界粮食不足问题有着重大的贡献,某超市购进A、B两种大米销售,其中两种大米的进价、售价如下表:(1)该超市在3月份购进A、B两种大米共70袋,进货款恰好为1800元.①求这两种大米各购进多少袋;①据3月份的销售统计,两种大米的销售总额为900元,求该超市3月份已售出大米的进货款为多少元.(2)超市决定在4月份销售A、B两种大米共盈利100元(A,B两种品种都有购进),请你帮助设计一下进货方案,并写出来.【题型11 图表问题】【例11】(2023春·浙江嘉兴·七年级校联考阶段练习)流感期间,小李家购买防护用品的收据如表,有部分数据因污染无法识别,根据表格,解决下列问题:(1)小李家此次购买的酒精喷剂和医用口罩各多少件?(2)小李家计划再次购买消毒水和酒精喷剂共15件,且总价刚好490元,则消毒水购买多少件?(3)小李家准备用270元再次购买消毒纸巾和医用口罩,在270元刚好用完的条件下,有哪些购买方案?【变式11-1】(2023春·河南新乡·七年级统考期末)如图,2个塑料凳子叠放在一起的高度为60cm,4个塑料凳子叠放在一起的高度为80cm,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起时的高度为()A.120cm B.130cm C.140cm D.150cm【变式11-2】(2023秋·甘肃武威·七年级校考开学考试)课余活动中,小杰、小明和小丽一起玩飞镖游戏,飞镖盘上A区域所得分值和B区域所得分值不同,每人投5次飞镖,其落点如图所示,已知小杰和小明的5次飞镖总分分别为39分和43分,小丽的5次飞镖总分为分.【变式11-3】(2023春·浙江温州·七年级校联考期中)根据以下素材,完成任务.。

第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题

第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题

221第八章 微 分 方 程本章主要通过几个具体的例子,说明微分方程的应用问题,并介绍一些基本概念及几种常用的微分方程的解法.第一节 微分方程的基本概念例1 自由落体运动 自由落体运动是指物体在仅受到地球引力的作用下,初速度为零的运动.根据牛顿第二定律:ma F =,它的运动路程)(t s s =大小的变化规律可表示为:m g dtsd m =22. 且还满足0)0(,0)0(='=s s ,即⎪⎩⎪⎨⎧='==(2) 0)0(,0)0((1) 22s s g dt sd对(1)两边积分,得 1C gt dtds+=, (3) 对(3)两边积分,得21221C t C gt s ++=, (4) 这里21,C C 都是任意常数.将(2)代入(4),得0,012==C C . 故自由落体运动路程的规律为221gt s =. (5) 这是微分方程应用的最早一个例子.例2 Malthus 人口模型 英国人口学家马尔萨斯(Malthus T R 1766-1834)根据百余年的人口统计资料,于18世纪末提出著名的人口模型.该模型假设人口的净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与当时的人口数成正比.设时刻t 的人口为)(t x ,净相对增长率为r ,我们将)(t x 当作连续变量考虑,开始时(0=t )的人口数量为0x ,即0)0(x x =.按照Malthus 理论,于是)(t x 满足如下方程为:⎪⎩⎪⎨⎧==(7).)0((6), 0x x rx dt dx其中r 为常数.(6)称为Malthus 人口模型. 对(6)整理,得r d t xdx=. (8) 对(8)两边积分,得rt Ce t x =)(, (9)222将(7)代入(9),得0x C =,故人口增长规律为rt e x t x 0)(=. (10)如果0>r ,(10)表明人口将以指数规律无限增长.特别地,当∞→t 时,+∞→)(t x ,这似乎不可能. 这个模型可以与19世纪以前欧洲一些地区的人口统计数据很好地吻合,但是当后来人们用它与19世纪的人口资料比较时,误差较大.例3 Logistic 模型 荷兰生物数学家V erhulst 引入常数m x 表示自然资源和环境条件所能容许的最大人口,并假定净相对增长率等于⎪⎪⎭⎫⎝⎛-m x t x r )(1,即净相对增长率随着)(t x 增加而减少.因为随着人口的增加,自然资源,环境条件等因素对人口继续增长的阻滞作用越来越显著.如果人口较少时(相对于资源而言)人口增长率还可以看作常数.当人口增加到一定数量后,增长率就会随着人口的继续增加而逐渐减少.这正是对Malthus 人口模型中人口的固定净相对增长率的修正.这样,Malthus 人口模型(6)变为:⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=(12). )0((11), )()(10x x t x x t x r dt dx m该模型的解为()rtm me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110, (13)易看出,当+∞→t 时,m x t x →)(.这个模型称为Logistic 模型,其结果经计算与实际情况比较吻合.此模型在很多领域有着较广泛的应用.例4 广告模型 在当今这个信息社会中,广告在商品推销中起着极其重要的作用.当生产者生产出一批产品后,便会考虑到广告的大众性和快捷性,利用广告促销作用更快更多地卖出产品.那么,广告与促销到底有何关系?广告在不同时期的效果如何?下面建立独家销售的广告模型来研究.该模型假设:商品的销售速度会因做广告而增加,但当商品在市场趋于饱和时,销售速度将趋于极限值,这时,销售速度将开始下降;自然衰减是销售速度的一种性质,商品销售速度的变化率随商品的销售率的增加而减少.设)(t s 为t 时刻商品的销售速度,M 表示销售速度的上限;0>λ为衰减因子常数,即广告作用随时间增加,而自然衰减的速度;)(t A 为t 时刻的广告水平(以费用表示).建立方程为:⎪⎩⎪⎨⎧=-⎪⎭⎫⎝⎛-⋅⋅=(15) )0((14) )()(1)(0s s t s M t s t A p dtds λ 其中p 为响应函数,即)(t A 对)(t s 的影响力,p 为常数.223由假设知,当销售进行到某个时刻时,无论怎样作广告,都无法阻止销售速度的下降,故选择如下广告策略:⎩⎨⎧>≤≤=ττt t A t A 00)(, 其中A 为常数.在[]τ,0时间内,设用于广告的花费为a ,则τaA =,代入(14),有ττλa p s a M p dt ds ⋅=⎪⎭⎫ ⎝⎛⋅++, 令τλa M p b ⋅+=; τpac =. 则有c bs dtds=+. (16) 解(16),得bcke t s bt+=-)( , (17) 其中k 为任意常数.将(15)代入(17),得()bt bt e s e bct s --+-=01)(, (18) 当τ>t 时,由)(t A 的表达式,则(14)为s dtdsλ-=. (19) 其解为()t e t s t s -=τλ)()(. (20) 这样,联合(18)与(20),得到()()⎪⎩⎪⎨⎧>≤≤+-=---τττττλt e s t e s e bct s btbt )(01)(0. (21)其图形如图8-1.224图8-1上述四个例子中的关系式(1)、(6)、(11)和(14)都含有未知函数的导数,它们都是微分方程.一般地,凡是含有自变量、自变量的未知函数以及未知函数的导数(或微分)的方程,都叫做微分方程.如果微分方程中,自变量的个数只有一个,则称之为常微分方程;自变量的个数为两个或两个以上,则称之为偏微分方程.本章只讨论常微分方程.微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶.例如方程(6)、(11)和(14)是一阶微分方程;方程(1)是二阶微分方程. 一般地,n 阶微分方程的形式是,,(y x F )(,,n y y ')=0 (22)其中2+n F 是个变量的函数.这里必须指出,在方程(22)中,)(n y 必须出现的,而)1(,,,,-'n y y y x 等变量则可以不出现.例如n 阶微分方程01)(=+n y中,除)(n y 外,其他变量都没有出现.如果能从方程(22)中解出最高阶导数,得微分方程),,,,()1()(-'=n n y y y x f y (23)以后我们讨论的微分方程都是这种已解出最高阶导数的方程或能解出最高阶导数的方程,且(23)式右端的函数在所讨论的范围内连续.由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数(解微分方程),就是说,找出这样的函数,把这函数代入微分方程能使该方程成为恒等式.这个函数就叫做该微分方程的解.确切地说,设函数)(x y ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,0)](,),(),(,[)(≡'x x x x F n ϕϕϕ那么函数)(x y ϕ=就叫做微分方程(22)在区间I 的解.由前面的例子,可知函数(4)和(5)都是微分方程(1)的解;函数(9)和(10)都是微分方程(6)的解;函数(13)是微分方程(11)的解;函数(21)是微分方程(14)的解.如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.例如,函数(9)是微分方程(6)的解,它含有一个任意常数,而方程(6)是一阶的,所以函数(9)是微分方程(6)的通解;函数(4)是方程(1)的解,它含有两个任意常数,而方程(1)是二阶的,所以函数(4)是方程(1)的通解.在利用微分方程求解实际问题时,所得到的含有任意常数的通解因其具有不确定性而不能满足需要,通常还要根据问题的实际背景,加上某些特定的条件,确定通解中的任意常数.用来确定通解中任意常数值的条件叫做初始条件.例1中的条件(2),例2中的条件(7)等,便是初始条件.一般地,设微分方程中的未知函数为)(x y y =,如果微分方程是一阶的,通常用来确定任意常数的初始条件是,00y y x x ==时,或写成 00y yx x ==.225其中0x 、0y 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的初始条件是:,00y y x x ==时,0y y '=', 或写成 00y yx x ==,0y y x x '='=. 其中00,y x 和0y '都是给定的值. 由初始条件确定了通解中的任意常数的解,就叫做微分方程的特解.例如(5)式是方程(1)满足条件(2)的特解;(10)式是方程(6)满足条件(7)的特解. 微分方程的解所对应的几何图形叫做微分方程的积分曲线.通解的几何图形是一族积分曲线,特解所对应的几何图形是一族积分曲线中的一条.第二节 变量分离方程从本节开始,我们将在微分方程基本概念的基础上,从求解最简单的微分方程—可分离变量的微分方程入手,从易到难地介绍一些微分方程的解法.形如)()(y x f dxdyϕ= (1) 的方程,称为变量分离方程.其中)(x f 和)(y ϕ分别是x 和y 的连续函数.下面说明方程(1)的求解方法.如果0)(≠y ϕ,我们可将方程(1)改写成dx x f y dy)()(=ϕ 这样,变量就“分离”开来了,两边积分,得到方程(1)的通解C dx x f y dy+=⎰⎰)()(ϕ (2) 这里我们把积分常数C 明确写出来,而把)(y dy ϕ⎰,dx x f )(⎰分别理解为)(1y ϕ,)(x f 的某一个原函数. 如果存在0y ,使0)(0=y ϕ,直接代入方程(1),可知0y y =也是(1)的解.如果它不包含在方程的通解(2)中.必须予以补上.例1 求微分方程xy dxdy2= (3) 的通解.226解 方程(3)是变量分离方程,变量分离后得xdx ydy2=, 两端积分⎰⎰=xdx y dy2,得 12ln C x y +=, 从而 2112x C C x e e e y ±=±=+,因1Ce ±仍是任意常数,把它记作C ,得到2x Ce y =. (4)此外,0=y 显然也是方程(3)的解,如果在(4)中允许0=C ,则0=y 也就包含在(4)中,因此,(3)的通解便是方程(4),其中C 是任意常数.例2 解方程0)1(=++dy x xydx . (5) 解 变量分离,得 dx x xy dy 1+-=, 两边积分,得dx x xy dy 1+-=⎰⎰, ⎰⎰⎪⎭⎫ ⎝⎛+--=+-+-=dx x dx x x y 111111ln , 1ln 1ln ln C x x y +-=+-, 1ln 1lnC x x y+-=+, x Ce x y-=+1(1C C ±=), 故所求方程的通解为x e x C y -+=)1(. (6)此外,0=y 显然也是方程(5)的解,而0=y 包含在(6)中,因此,方程(6)是(5)的通解,其中C 是任意常数.例3 解Malthus 人口模型:227rx dtdx=, 0)0(x x =. 解 变量分离,得rdt xdx=, 两边积分,得C rt x ln ln +=,rt Ce t x =)(,因初始条件()00x x =,所以0x c =,故满足初始条件的解为rt e x t x 0)(= .第三节 齐次方程形如)(xydx dy ϕ= (1) 的方程,称为齐次方程.这里)(u ϕ是u 的连续函数.例如:0)2()(22=---dy xy x dx y xy ,是齐次方程,因为)(21)(2222xy x yxy xyx y xy dx dy --=--=. 下面说明方程(1)的求解方法. 作变量变换,令xyu =, (2) 即ux y =,于是dxdu x u dx dy +=, (3) 将(2)和(3)代入方程(1),则原方程变为)(u dxduxu ϕ=+, 即 u u dxdux -=)(ϕ. 变量分离,得xdxu u du =-)(ϕ,两边积分,得228⎰⎰=-x dxu u du )(ϕ.求出积分后,再用xy代替u ,便得所给齐次方程的通解. 例1 解方程dxdyxydx dy x y =+22. 解 原方程可写成1)(222-=-=xy x y xxy y dx dy , 因此是齐次方程.令,u xy=则 dxdu x u dx dy ux y +==,, 于是原方程变为12-=+u u dx du x u ,即 1-=u u dx du x . 变量分离,得xdx du u =-)11(,两端积分,得x C u u ln ln =+-,或写为 C u xu +=ln . 以xy代入上式中的u ,便得所给方程的通解为 C xyy +=ln . 例2 求解方程y xy dxdyx=+2 )0(<x . 解 将方程改写为xy x y dx dy +=2 )0(<x ,这是齐次方程. 以u xy =及u dx duu dx dy +=代入,则原方程变为 u dxdux 2=, (4) 分离变量,得到xdxudu =2,229两边积分,得到(4)的通解C x u +-=)l n (,即()[]2ln C x u +-=. )0)(l n (>+-C x 这里C 是任意常数. (5)此外,方程(4)还有解 0=u ,注意,此解并不包括在通解(5)中.代回原来的变量,即得原方程的通解[]2)l n (C x x y +-= )0)(l n (>+-C x 及解0=y .第四节 一阶线性微分方程一、一阶线性微分方程形如)()(x Q y x P dxdy=+ (1) 的方程,叫做一阶线性微分方程,因为它对于未知函数y 及其导数是一次方程.如果0)(≡x Q 则方程(1)称为齐次的;如果)(x Q 不恒等于零,则方程(1)称为非齐次的.当0)(≡x Q 时,(1)可写成0)(=+y x P dxdy(2) 方程(2)叫做对应于非齐次线性方程(1)的齐次线性方程.(2)是变量分离方程,变量分离后得dx x P ydy)(-=, 两边积分,得⎰+-=1ln )(ln C dx x P y ,由此得)(,1)(C C Ce y dxx P ±=⎰=- (3)式(3)是所求的齐次线性方程(2)的通解.这里C 是任意常数.下面我们来讨论求非齐次线性方程(1)的通解的方法.不难看出,(2)是(3)的特殊情形,两者既有联系又有差异.因此可以设想它们的解也应该有一定的联系.我们试图利用方程(2)的通解(3)的形式去求出方程(1)的通解.显然,如果(3)中C 恒保持常数,它必不可能是(1)的解.我们设想:在(2)中,将常数C 换成x 的待定函数)(x u ,使它满足方程(1),从而求出)(x u .该方法称为常数变易法.为此,令⎰=-dx x P ue y )( , (4) 于是 ⎰-⎰'=--dx x P dx x P e x uP e u dxdy)()()(. (5)将(4)和(5)代入方程(1)得230)()()()()()(x Q ue x P e x uP e u dx x P dx x P dx x P =⎰+⎰-⎰'---,即 )()(x Q e u dx x P =⎰'-,⎰='dxx P e x Q u )()(. 两边积分,得 ⎰+⎰=C dx e x Q u dxx P )()(.把上式代入(4),便得非齐次线性方程(1)的通解⎪⎭⎫⎝⎛+⎰⎰=⎰-C dx e x Q e y dxx P dx x P )()()(. (6)将(6)式改写成两项之和⎰⎰⎰+⎰=--dx e x Q e Ce y dx x P dx x P dx x P )()()()(. 上式右端第一项是对应的齐次线性方程(2)的通解,第二项是非齐次线性方程(1)的一个特解.由此可知,一阶非齐次线性方程通解等于对应的齐次方程的通解与非齐次方程的一个特解之和.例 1 求方程25)1(12+=+-x x y dx dy 的通解.解 这是一个一阶非齐次线性方程.先求对应的齐次方程的通解.012=+-y x dx dy , 变量分离,得12+=x dxy dy , 两边积分,得 1ln 1ln 2ln C x y ++=,即 2)1(+=x C y (1C C ±=).用常数变易法,把()x u C 换成,即令2)1(+=x u y , (7)那么 )1(2)1(2+++'=x u x u dxdy, 代入所给非齐次方程,得21)1(+='x u .两边积分,得 C x u ++=231(32). 在把上式代入(7)式,即得所求方程的通解为⎥⎦⎤⎢⎣⎡+++=C x x y 232)1(32)1(.231例2 求方程1)1()1(++=-+n x x e ny dxdyx 的通解,这里n 为常数. 解: 将方程改写为 n x x e y x ndx dy )1(1+=+-, (8)首先,求齐线性方程 01=+-y x ndx dy 的通解,从dx x n y dy 1+=得到齐线性方程的通解为 n x C y )1(+=.其次,应用常数变易法求非齐线性方程的通解.为此,在上式中把C 看成为x 的待定函数)(x u ,即n x x u y )1)((+=, (9)微分之,得到)()1()1()(1x u n n x dxx du dx dy n n -+++=. (10) 以(9)及(10)代入(8),得到x e dx x du =)(, 积分之,求得 C e x u x ~)(+=,因此,以所求的)(x C 代入(9),即得原方程的通解)~()1(C e x y x n ++=. 这里C ~是任意常数 二 、 伯努利方程形如n y x Q y x P dxdy)()(=+ )1,0(≠n (11) 的方程叫做伯努利方程.当0=n 或1=n 时,这是线性微分方程.当1,0≠≠n n 时,这方程不是线性的,但是通过变量的代换,便可把它化为线性的.事实上,以n y 除方程(10)的两边,得)()(1x Q y x P dxdyyn n=+--. (12) 容易看出,上式左端第一项与)(1ny dxd -只差一个常数因子n -1,因此,我们令 n y z -=1,那么dxdy y n dx dz n --=)1(. 用)1(n -乘方程(12)的两端,再通过上述变换便得线性方程)()1()()1(x Q n z x P n dxdz-=-+.232求出这方程的通解后,以z y n 代-1,便可得到伯努利方程(11)的通解.此外,当0>n 时,方程还有解0=y .例3 求方程2)(ln y x a xydx dy =+, 的通解.解 以2y 除方程的两边,得x a y xdx dy y ln 112=+--. 即 x a y xdx y d ln 1)(11=+---.令1-=y z ,则上述方程成为x a z xdx dz ln 1-=-, 这是一个线性方程,它的通解为⎥⎦⎤⎢⎣⎡-=2)(ln 2x a C x z .以1-y 代z ,故得所求方程的通解为1)(ln 22=⎥⎦⎤⎢⎣⎡-x a C yx .此外,方程还有解0=y .在上节中,对于齐次方程⎪⎭⎫⎝⎛='x y y ϕ,我们通过变量变换xu y =,把它化为变量可分离的方程,然后分离变量,经积分求得通解.在本节中,对于一阶非齐次线性方程)()(x Q y x P y =+',我们通过解对应的齐次线性方程找到变量变换⎰=-dxx P ue y )(,利用这一代换,把非齐次线性方程化为变量可分离的方程,然后经积分求得通解.对于伯努利方程n y x Q y x P y )()(=+',我们通过变量变换z yn=-1,把它化为线性方程,然后按线性方程的解法求得通解,可见,以上方程都是通过变量变换化为可求解方程来求解的,该方法适合很多特殊方程求解.233第五节 可降阶的高阶微分方程从这一节起,我们讨论二阶及二阶以上的微分方程,即所谓的高阶微分方程,对于有些高阶微分方程,我们可以通过变量变换将它化成较低阶的方程来求解.下面以二阶微分方程为例来介绍:二阶微分方程的一般形式为0),,,(='''y y y x F或者),,(y y x f y '=''一般来说,二阶微分方程要比一阶微分方程的求解复杂一些.但是对于某些二阶微分方程来说,如果我们能设法作变量代换把它从二阶降至一阶,那么就有可能应用前面几节中所讲的方法来求出它的解了.下面介绍三种容易降阶的二阶微分方程的求解方法. 一、()x f y =''型的微分方程形如)(x f y ='' (1)的方程,右端仅含有自变量x .两端同时积分一次,就化为一阶方程1)(C dx x f y +='⎰再积分一次,得到通解21])([C dx C dx x f y ++=⎰⎰一般地对())(x f y n =求解,只需对方程两端积分n 次. 例1 求解方程x e x y -+=''2s i n .解 对所给的方程连续积分两次,得12cos 21C e x y x +--='-, 212sin 41C x C e x y x +++-=-所求的通解为212s i n 41C x C e x y x +++-=-. 例2 求微分方程x ey xc o s 2-='''.的通解.解 对所给方程连续积分三次,得C x e y x+-=''sin 212, 22cos 41C Cx x e y x+++=',23432212sin 81C x C x C x e y x ++++= ⎪⎭⎫ ⎝⎛=21C C .所求的通解为32212sin 81C x C x C x e y x ++++=.二、),(y x f y '=''型的微分方程形如),(y x f y '='' (2)的方程,右端不显含未知函数y .这时,只要令,p y ='那么p dxdpy '=='' 而方程(2)就化为),(p x f p ='.这是一个关于变量p x 、的一阶微分方程,再按一阶方程求解.设其通解为),(1C x p ϕ=.但是dxdyp =,因此又得到一个一阶微分方程 ),(1C x dxdyϕ=. 对它进行积分,便得方程(2)的通解为⎰+=21),(C dx C x y ϕ.例3 求微分方程y x y x '=''+2)1(2,满足初始条件,10==x y 30='=x y的特解.解 所给方程是),(y x f y '=''型的.令,p y ='代入方程并分离变量后,有dx x x p dp 212+=. 两边积分,得C x p ++=)1ln(ln 2,235即 )1(21x C y p +='=. ()C e C ±=1 由条件30='=x y ,得31=C ,所以 )1(32x y +='. 两边再积分得 233C x x y ++=. 又由条件,10==x y 得12=C ,于是所求的特解为133++=x x y .三、),(y y f y '=''型的微分方程形如),(y y f y '='' (3)的方程,其中不明显地含自变量x .这时,只要令p y =',并利用复合函数的求导法则把y ''化为对y 的导数,即dydppdx dy dy dp dx dp y =⋅=='' 这样方程(3)就成为),(p y f dydpp=. 这是一个关于变量p y ,的一阶微分方程,再按一阶微分方程求解.设它的通解为 ),(1C y p y ϕ==', 分离变量并积分,便得方程(3)的通解为⎰+=21),(C x C y dyϕ.例4 求微分方程02='-''y y y的通解.解 所给方程是),(y y f y '=''型的.令 p y =',则236dydp p y ='', 代入原方程,得02=-p dydpyp. 在0≠y 、0≠p 时,约去p 并分离变量,得ydyp dp =. 两边积分,得C y p +=ln ln ,即 y C p 1=,或y C y 1'= )(1C e C ±=. 再分离变量并两端积分,便得所求方程的通解为2'1ln C x C y +=,或 xC1e C y 2= )2'=(2C e C ±.第六节 二阶线性微分方程一、二阶常系数齐次线性微分方程二阶齐次线性微分方程的形式为0)()(=+'+''y x Q y x P y . (1)如果)()(x Q x P y y 、的系数、'均为常数,则(1)式为0=+'+''qy y p y , (2)其中q p 、是常数,则称(2)为二阶常系数齐次线性微分方程.如果q p 、不全为常数,称(1)为二阶变系数齐次线性微分方程.下面我们主要研究二阶常系数齐次线性微分方程的解法.关于方程(2),我们不加证明地给出二阶常系数齐次线性微分方程的有关定理: 定理1 (解的叠加定理)如果21y y 、是方程(2)的两个解,那么2211y C y C y +=也是(2)的解,其中21,C C 是任意常数.237定理2 如果21y y 、是方程(2)的两个不成比例的特解(即常数≡/21y y ),则2211y C y C y +=就是方程(2)的通解,其中21,C C 是任意常数.在这里我们之所以要求21,y y 不成比例,是因为如果有21Cy y =,那么就可推出()2212211y C C C y C y C y +=+=,即通解2211y C y C y +=中的两个任意常数变成一个.根据定理2,要求(2)的通解,只要设法先求出它的两个解21,y y ,且常数≡/21y y ,则2211y C y C y +=就是方程(2)的通解.仔细观察方程(2)可知,它的解应该具有各阶导数都只相差一个常数因子的性质,因此我们推测方程(2)的解是指数函数.取rx e y =(r 为常数),选取适当的r ,使它满足方程(2),则rx e y =就是方程(2)的解. 将rx e y =代入方程(2),得到0)(2=++rx e q pr r .由于0≠rxe,所以02=++q pr r . (3)由此可见,只要r 满足代数方程(3),函数rx e y =就是微分方程(2)的解.我们把代数方程(3)叫做微分方程(2)的特征方程.特征方程(3)是一个二次代数方程,其中r r 、2的系数及常数项恰好依次是微分方程(2)中y y '''、及y 的系数.特征方程(3)的两个根21r r 、可以用公式2422,1qp p r -±-=求出.它们有三种不同的形式:(i )当042>-q p 时,21,r r 是两个不相等的实根:2421q p p r -+-=,2422q p p r ---=(ii )当042=-q p 时,21,r r 是两个相等的实根:221pr r -==238(iii )当042<-q p 时,21,r r 是一对共轭复根:,1βαi r += ,2βαi r -=其中 ,2p-=α 242p q -=β. 相应地,微分方程(2)的通解也就有三种不同的情形.分别讨论如下: (ⅰ)特征方程有两个不相等的实根:21r r ≠. 微分方程(2)有两个解x r x r e y e y 2121==、,并且12y y 不是常数,因此微分方程(2)的通解为 x r x r e C e C y 2121+=.(ⅱ)特征方程有两个相等的实根:21r r =. 这时,微分方程(2)有一个解.11x r e y =下面求出微分方程(2)的另一个解2y ,并且要求12y y 不是常数. 设)(12x u y y =,)(12x u e y x r =即,代入微分方程(2),可得 0)(=''x u因为这里只要得到一个不为常数的解,所以不妨选取x u =,由此得到微分方程(2)的另一个解.21x r xe y =从而微分方程(2)的通解为x r x r xe C e C y 1121+=即 ()xr e x C C y 121+=(ⅲ) 特征方程有一对共轭复根:)0(,21≠-=+=ββαβαi r i r . 这时,微分方程(2)有两个解()()x i xi e y ey βαβα-+==21, ,并且12y y 不是常数.但它们是复值函数形式.为了得出实值函数形式,我们先利用欧拉公式θθθsin cos i ei +=,21,y y 把改写为()),sin (cos 1x i x e e e e y x x i x x i ββαβαβα+=⋅==+ ())sin (cos 2x i x e e e e y x x i x x i ββαβαβα-=⋅==--.239由于复值函数21y y 与之间成共轭关系,因此,取它们的和除以2就得到它们的实部;取它们的差除以2i 就得到它们的虚部.根据方程(2)有关解的定理,所以实值函数,cos )(21211x e y y y x βα=+=x e y y i y x βαsin )(21212=-=还是微分方程(2)的解,且x xe xe y y x x βββααcot sin cos 21==不是常数,所以微分方程(2)的通解为)sin cos (21x C x C e y x ββα+=.综上所述,求二阶常系数齐次线性微分方程0=+'+''qy y p y , 的通解的步骤如下:第一步 写出微分方程(2)的特征方程02=++q pr r . 第二步 求出特征方程(3)的两个根21,r r .第三步 根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解:例1 求微分方程032=-'-''y y y 的通解. 解 所给微分方程的特征方程为0322=--r r ,其根3,121=-=r r 是两个不相等的实根,因此所求通解为x x e C e C y 321+=-.例2 求方程0222=++s dt dsdts d 满足初始条件2400-='===t t s s 、的特解.解 所给微分方程的特征方程为2400122=++r r ,其根121-==r r 是两个相等的实根,因此所求微分方程的通解为t e t C C s -+=)(21,将初始条件2400-='===t t s s、代入通解,得41=C ,22=C于是所求特解为t e t s -+=)24(.例3 求微分方程052=+'-''y y y 的通解. 解 所给方程的特征方程为,0522=+-r r其根i r 212,1±=为一对共轭复根.因此所求通解为)2sin 2cos (21x C x C e y x +=.二、二阶常系数非齐次线性微分方程二阶常系数非齐次线性微分方程的一般形式是),(x f qy y p y =+'+'' (4) 其中q p 、是常数,0)(≠x f .当0)(=x f 时,(4)可写为0=+'+''qy y p y . (5)叫作方程(4)对应的二阶常系数齐次线性微分方程.关于方程(4)的通解,我们不加证明地给出如下定理:定理3 如果*y 是方程(4)的一个特解,Y 是方程(4)对应的齐次方程(5)的通解,则方程(4)的通解为*+=y Y y .由上述定理3可知,求二阶常系数非齐次线性微分方程(4)的通解,归结为求对应的齐次线性方程(5)的通解和非齐次方程(4)本身的一个特解.由于二阶常系数齐次线性微分方程的通解的求法已得到解决,所以这里只需讨论求二阶常系数非齐次线性微分方程的一个特解*y 的方法.本节介绍当方程(4)中的()x f 取两种常见形式时求*y 的方法.这种方法的特点是不用积分就可以求出*y 来,这种方法叫做待定系数法.)(x f 的两种形式是241(1)x m e x P x f λ)()(=,其中λ是常数,)(x P m 是x 的一个m 次多项式:m m m m m a x a x a x a x P ++⋅⋅⋅++=--1110)(.(2)]sin )(cos )([)(x x P x x P e x f n l x ωωλ+=,其中ωλ、是常数,)()(x P x P n l 、分别是x 的l 次、n 次多项式,其中有一个可为零.下面分别介绍)(x f 为上述两种形式时*y 的求法.1.)()(x P e x f m x λ=型我们知道,方程(4)的特解*y 是使(4)成为恒等式的函数.怎样的函数能使(4)成为恒等式呢?因为(4)式右端)(x f 是多项式)(x P m 与指数函数x e λ的乘积,而多项式与指数函数乘积的导数仍然是同一类型,因此,我们推测x e x Q y λ)(=*(其中)(x Q 是某个多项式)可能是方程(4)的特解.把"'***y y y 及、代入方程(4),然后考虑能否选取适当的多项式)(x Q ,使x e x Q y λ)(=*满足方程(4).为此将,)(x e x Q y λ=*[])()(x Q x Q e yx '+='*λλ, [])()(2)(2x Q x Q x Q e yx ''+'+="*λλλ 代入方程(4)并消去x e λ,得 )()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ. (6)推导可知如下结论:如果x m e x P x f λ)()(=,则二阶常系数非齐次线性微分方程(4)具有形如x m k e x Q x y λ)(=* (7)的特解,其中)(x Q m 是与)(x P m 同次m (次)的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为10、或2. 上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(7)式中的k 是特征方程含根λ的重复次数(即若λ不是特征方程的根,k 取为0;若λ是特征方程的s 重根,k 取为s ).例1 求微分方程1332+=-'-''x y y y 的一个特解.解 这是二阶常系数非齐次线性微分方程,且函数)(x f 是x m e x P λ)(型(其中0,13)(=+=λx x P m ).与所给原方程对应的齐次线性微分方程为032=-'-''y y y ,242它的特征方程为0322=--r r .有两个实根3,121=-=r r ,由于这里0=λ不是特征方程的根,所以应设特解为10b x b y +=*.把它代入原方程,得13323100+=---x b b x b ,比较两端x 同次幂的系数,得⎩⎨⎧=--=-13233100b b b 由此求得31,110=-=b b .于是求得一个特解为 31+-=*x y . 例2 求微分方程x xe y y y 265=+'-''的通解.解 所给方程也是二阶常系数非齐次线性微分方程,且型是x m e x P x f λ)()((其中)2,)(==λx x P m . 与所给原方程对应的齐次线性微分方程为065=+'-''y y y ,它的特征方程为0652=+-r r ,有两个实根3,221==r r ,于是与所给方程对应的齐次方程的通解为x x e C e C Y 3221+=.由于2=λ是特征方程的单根,所以应设*y 为x e b x b x y 210)(+=*,把它代入所给原方程,得x b b x b =-+-10022,比较等式两端同次幂的系数,得⎩⎨⎧=-=-0212100b b b , 解得1,2110-=-=b b .因此求得一个特解为243x e x x y 2)121(--=*. 从而所求的通解为 x x x e x x e C e C y 223221)2(21+-+=. 2.[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型 应用欧拉公式和方程(4)有关解的定理,不加证明地可得如下结论:如果[]x x P x x P e x f n l x ωωλsin )(cos )()(+=,则二阶常系数非齐次线性微分方程(4)的特解可设为]s i n c o s )([)2()1(x R x x R e x y m m x k ωωλ+=* (8)其中)(),()2()1(x R x R m m 是m 次多项式,},max{n l m =,而ωλi k +按(或ωλi -)不是特征方程的根、或是特征方程的单根依次取为10或.上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(8)式中的k 是特征方程中含根ωλi +(或ωλi -)的重复次数.例3 求微分方程x x y y 2cos =+''的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且属于[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型(其中0)(,)(,2,0====x P x x P n l ωλ).与所给方程对应的齐次方程为0=+''y y ,它的特征方程为012=+r ,有两个复根i r i r -==21,,由于这里i i 2=+ωλ不是特征方程的根,所以应设特解为x d cx x b ax y 2sin )(2cos )(+++=*.把它代入所给方程,得x x x a d cx x c b ax 2cos 2sin )433(2cos )433=++-+--(.比较两端同类项的系数,得⎪⎪⎩⎪⎪⎨⎧=--=-=+-=-0430304313a d c c b a , 由此解得 94,0,0,31===-=d c b a . 于是求得原方程的一个特解为244 x x x y 2sin 942cos 31+-=*. 以上我们主要介绍了二阶线性微分方程的解法,该方法可以推广到高阶线性微分方程.。

第3章 解一元一次方程(一)知识点精讲精练 初中数学人教版七上课件

第3章  解一元一次方程(一)知识点精讲精练 初中数学人教版七上课件
2. 移项的依据 移项的依据是等式的性质1,在方程的两边加(或减)同一 个适当的整式,使含未知数的项集中在方程的一边,常数项 集中在另一边.
3. 解简单的一元一次方程的步骤 (1)移项:把含有未知数的项移到等号一边,把常数项移 到等号另一边; (2)合并同类项:把方程变形为 ax=b(a,b 为常数,且 a≠0)的形式;
(3)系数化为1:得到方程的解 x b . a
【例 5】解下列方程:
(1) x 3 1 x 4 ; 2
解:移项,得 x 1 x 4 3 . 2
合并同类项,得 3 x 1. 2
系数化为 1,得 x 2 . 3
移项→合并同类项→系数化为1
(2) 1 x 6 10x 9 . 7
3m3 5 m2 1 m 2 2m3 3 m2 5 m 3 的值.
2 3
23
解:由题意得 m 2 1,且 m 3 0 ,即 m 3 .
3m3 5 m2 1 m 2 2m3 3 m2 5 m 3
2 3
23
3m3 5 m2 1 m 2 2m3 3 m2 5 m 3
× ⑥
5
3
; 2
y
不是整式
√ × ⑦ 4(t-1)=2(3t+1);
⑧ 3(x-1)-3=3x-6.
化简:-6=-6
A.1个
B.2个
C.3个
D.4个
【巩固】
1. 方程 2x-1=3x+2 的解为( D )
A.x=1
B.x=-1
C.x=3
D.x=-3
【巩固】
2. 已知 m 3x m 2 1 0 是关于 x 的一元一次方程,试求出
(2) x 2 x 16 1. 5
解:合并同类项,得 3 x 15 . 5

小学五年级数学教案 列方程解决简单的实际问题9篇

小学五年级数学教案 列方程解决简单的实际问题9篇

小学五年级数学教案列方程解决简单的实际问题9篇列方程解决简单的实际问题 1[导读]初学列方程解决简单的实际问题,数量关系即使隐蔽一些,对于五年级的学生来说用算术方法解决都不太困难。

相反地,学生会认为列方程解决实际实际问题写的字太多,太麻烦,会以为这是多此一举,这是学生学习本课内容时一般都会存在的心理障碍教学内容苏教版五年级下册第8~11页,例7及相应的试一试,练一练,练习二第5~7题教学目标1.使学生在具体情景中,根据题中数量间的相等关系,能正确列方程解决简单的实际问题,掌握方程解决实际问题的思考方法。

2.使学生在经历将实际问题抽象成方程的过程中,积累将现实问题数学化的经验,进一步感受方程的思想方法和应用价值。

3.通过学习,进一步培养学生独立思考,主动与他人合作,自觉检验的良好习惯。

重点难点理解列方程解决实际问题的基本思考方法。

教具准备多媒体课件教学环节㈠导入谈话:我们已经认识了方程,学会了解只含有加、减或乘、除法一步计算的方程。

那学习方程有什么用呢?用处可大了!在你今后的学习中,特别是到了中学、大学阶段,会经常用到方程。

在实际生活中,用方程、解方程的方法也能把一些分析数量关系比较困难的问题,很容易地用列方程、解方程的办法解决。

这节课我们来学习列方程解决简单的实际问题。

板书课题:列方程解决简单的实际问题。

初学列方程解决简单的实际问题,数量关系即使隐蔽一些,对于五年级的学生来说用算术方法解决都不太困难。

相反地,学生会认为列方程解决实际实际问题写的字太多,太麻烦,会以为这是多此一举,这是学生学习本课内容时一般都会存在的心理障碍。

鉴于此,教师进行这样的学习动员,从今后的数学学习和解决生活问题两个方面阐述学习新知识的必要性,对于克服上述心理障碍会起到作用㈡自主探索,合作交流;对比归纳,掌握方法 1.指导观察,明确题意,列式解答。

⑴出示例7情景图。

师:看画面中你获得那些信息?从“小刚跳高成绩比小军少0.06米”中你知道其中含有什么数量关系吗?小组交流列出不同的数量关系式:(生答师板书)①小军的成绩﹣小刚的成绩=0.06米②小军的成绩﹣0.06米=小刚的成绩③小刚的成绩﹢0.06米=小军的成绩师评价:同学们真爱动脑筋,想出这么多的等量关系式,都符合题意,真了不起!⑵引导学生分析各数量关系,并根据数量关系①列方程。

初中数学方程分类1

初中数学方程分类1

一、 列方程解应用题行程类问题路程=时间×速度 (s=t ×v)时间=路程÷速度 (t= s v ) 速度=路程÷时间(v= s t) 例1 甲、乙两列火车每列各长180米,如果两列车相对行驶,从车头相遇到车尾离开共需12秒钟;如果两列车同向行驶,那么从甲的车头遇到乙的车尾,直到甲的车尾超过乙的车头共需60秒钟,假定列车的速度不变,试求甲、乙两列车的速度?解:设乙的速度为每秒x 米,则甲的速度为每秒(180×212-x-x )米,由题意得: 60×[ (180×212-x-x) -x]=180×2 解方程,得:x=12 180×212 -12=18 答:甲、乙两列车的速度分别为每秒18米、每秒12米。

分析:当两列火车相对行驶时,属于相遇问题,此时的相等关系为:甲12秒行驶的路程 +乙12秒行驶的路程 = 两列火车的长,当两列火车同向行驶是,属于追及问题,此时相等关系为:甲60秒行驶的路程 — 乙60秒行驶的路程 = 两列火车长,由于以上两个相等关系列出方程。

Ⅰ 追击类问题例 甲、乙两人从相距18千米的两地同时出发,相向而行,1 45 小时后相于遇;如果甲比先走23小时,那么乙出发1 12小时后两人相遇,求两人的速度各是多少? 分析:V 甲=x 千米/小时 V 乙=y 千米/小时T 甲=1 45 小时 相遇点 T 乙=1 45小时T 甲=23 小时 T 甲= 1 12 小时 T 乙=1 12 小时 解:设甲的速度为x 千米/小时,乙的速度为y 千米/小时,根据题意,列方程组,得:x ×1 45 + y ×1 45=18 x ×23 + x ×1 12 + y ×1 12=18 从而解得:x=4 12 y=512例2 某校师生到距离学校20千米的公路旁植树,甲班师生骑自行车先走45分钟后,乙班师生乘汽车出发,结果两班师生同时到达。

五年级上册数学解方程例8例9讲解

五年级上册数学解方程例8例9讲解

题目:五年级上册数学解方程例8例9讲解一、解方程例8讲解1. 题目:某数与7的和等于18,这个数是多少?2. 解题思路:设这个数为x,根据题目可得方程式x+7=18,接下来通过移项和约去变量解得x=18-7=11。

3. 解题步骤:(1)设这个数为x;(2)写出方程式:x+7=18;(3)移项,化简方程得:x=18-7=11;(4)检验得解。

4. 解题过程展示:(1)x+7=18(2)x=18-7(3)x=11(4)检验:11+7=185. 解题总结:解方程的关键是把题目中的信息转化成代数式,进而解得未知数的值。

在解题的过程中要注重细节,避免计算错误。

二、解方程例9讲解1. 题目:某数的5倍减去25等于55,这个数是多少?2. 解题思路:设这个数为x,根据题目可得方程式5x-25=55,接下来通过移项和约去变量解得x=(55+25)/5=16。

3. 解题步骤:(1)设这个数为x;(2)写出方程式:5x-25=55;(3)移项,化简方程得:5x=55+25;(4)约去变量,解得x=16。

4. 解题过程展示:(1)5x-25=55(2)5x=55+25(3)x=80/5(4)x=165. 解题总结:解方程时,要注意移项和约去变量的步骤。

另外,解得的根必须符合原方程,通过检验来确认解的正确性。

以上是五年级上册数学解方程例8和例9的讲解,通过这两个例题的解析,希望能够帮助同学们更好地理解和掌握解方程的方法和技巧。

解方程作为数学中的重要内容,需要同学们在平时功课中多加练习,加深对知识点的理解,为以后的学习打下坚实的基础。

解方程是数学中的一个重要内容,也是数学学习的重要技能。

通过解方程,能够求解未知数的值,这在实际生活中具有很大的应用价值。

在解方程的过程中,需要运用代数式的知识,进行移项、化简方程等操作,从而得到正确的解。

接下来,我们将继续介绍解方程的更多例题和解题方法。

解方程例10讲解:1. 题目:某数的一半加上8等于14,这个数是多少?2. 解题思路:设这个数为x,根据题目可得方程式x/2+8=14,接下来通过移项和约去变量解得x=12。

2024(新插图)人教版五年级数学上册第4课时解方程(2)-课件

2024(新插图)人教版五年级数学上册第4课时解方程(2)-课件

花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
➢ He who falls today may rise tomorrow.
孩春 子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,




我们,还在路上……
[教材P70 练习十五 第4题 ]
4.用方程表示下面的等量关系,并求出方程的解。
(1)x加上35等于91
(2)x的3倍等于57。
x+35=91 解:x+35-35=91-35
3x=57 解: 3x÷3=57÷3
x=56
x=19
(3)x减3的差是6。
x-3=6 解: x-3+3=6+3
x=9
(4)x除以8等于1.3。 x÷8=1.3
x+3.2=4.6
x-1.8=4
解:x+3.2-3.2=4.6-3.2 x=1.4
解:x-1.8+1.8=4+1.8 x=5.8
巩固提高
1.解下列方程。[教材P68 做一做 第1题 ]
1.6x=6.4
x÷7=0.3
解:1.6x÷1.6=6.4÷1.6 x=4
解:x÷7×7=0.3×7 x=2.1
巩固提高
等式两边加上相同的式子, 左右两边仍然相等。
方程左边=20-x =20-11 =9 =方程右边
所以,x=11是方程的解。
解方程时要注意: ①先写“解”和“:”; ②依据等式的性质解方程; ③等号要对齐;

解下列方程x+4.8=7.2x-6.5=3.2x8=0.46x+

解下列方程x+4.8=7.2x-6.5=3.2x8=0.46x+

题目2.解下列方程.x+4.8=7.2x-6.5=3.2x÷8=0.46x+18=483(x+2.1)=10.512x-9x=8.720-x=96.3÷x=7(x-3)÷2=7.5答案解析分析(1)根据等式的性质,两边同减去4.8即可;(2)根据等式的性质,两边同加上6.5即可;(3)根据等式的性质,两边同乘8即可;(4)根据等式的性质,两边同减去18,再同时除以6即可;(5)根据等式的性质,两边同除以3,再同时减去2.1;(6)先将方程变成3x=8.8,再根据等式的性质,两边同除以3即可;(7)根据等式的性质,两边同加上x,再减去9即可;(8)根据等式的性质,两边同乘x,再同时除以7即可;(9)根据等式的性质,两边同乘2,再加上3即可.解答解:(1)x+4.8=7.2 x+4.8-4.8=7.2-4.8 x=2.4(2)x-6.5=3.2 x-6.5+6.5=3.2+6.5 x=9.7(3)x÷8=0.4 x÷8×8=0.4×8 x=3.2(4)6x+18=48 6x+18-18=48-18 6x=30 6x÷6=30÷6 x=5(5)3(x+2.1)=10.5 3(x+2.1)÷3=10.5÷3 x+2.1=3.5 x+2.1-2.1=3.5-2.1 x=1.4(6)12x-9x=8.7 3x=8.7 3x÷3=8.7÷3 x=2.9(7)20-x=9 20-x+x=9+x 9+x-9=20-9 x=11(8)6.3÷x=7 6.3÷x×x=7x 7x÷7=6.3÷7 x=0.9(9)(x-3)÷2=7.5 (x-3)÷2×2=7.5×2 x-3=15 x-3+3=15+3 x=18.点评在解方程时应根据等式的性质,即等式两边同加上、同减去、同乘上或同除以某一个数(0除外),等式的两边仍相等,同时注意“=”上下要对齐.。

九年级数学上册第2章一元二次方程第7课时用因式分解法求解一元二次方程课堂导练习题课件新版北师大版

九年级数学上册第2章一元二次方程第7课时用因式分解法求解一元二次方程课堂导练习题课件新版北师大版

6.方程x(x﹣2)+x﹣2=0的解是( D ) A.2 B.﹣2,1 C.﹣1 D.2,﹣1
7.解方程2(x﹣3)2﹣3x(x﹣3)=0的最适当
的方法应是( D )
A.直接开平方法 B.配方法
C.公式法
D.因式分解法
巩固提高
8.选择合适的方法解下列方程: (1)2x2-5x+2=0;
x1=2,x2=
若围成一个正方形,则它的边长是10 cm,
故它的面积是100 cm2.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月24日星期四2022/3/242022/3/242022/3/24 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独立 思考的人,给那些具有锲而不舍的人。2022年3月2022/3/242022/3/242022/3/243/24/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/242022/3/24March 24, 2022
谢谢观赏
You made my day!
我们,还在路上……
例2用因式分解法解方程: 7x(3-x)=4(x-3).
解:原方程化为7x(3-x)-4(x-3)=0,
因式分解,得(x-3)(-7x-4)=0,
于是得x-3=0或-7x-4=0,
x1=3,x2=-
4 7
.
变式练习
2.用因式分解法解方程: x(x2)2x0. x1=2,x2=-1
精典范例
例3 用因式分解法解方程: 9(x-2)2=4(x+1)2.
解:原方程化为9(x-2)2-4(x+1)2=0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档