4.8方程例7-例9
青岛版五年级数学上册第四单元【解简易方程的方法及难点归纳】

青岛版五年级数学上册第四单元【解简易方程的方法及难点归纳】青岛版五年级数学上册:解简易方程的方法及难点归纳方程、方程的解、解方程、等式的基本性质是本文的重点概念(详见“知识点汇总”)。
解方程就是要运用等式的基本性质,对方程的左右两边同时进行运算,以求出方程的解(即如同“X=6”的形式)。
解方程就好像是要把复杂的绳结解开,因此一般要按照绳结形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
以下内容除了标明的外,全都是正确的方程题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
例如:x+5=14,解:x+5-5=14-5,x=9;x-6=7,解:x-6+6=7+6,x=13;3x=18,解:3x÷3=18÷3,x=6;x÷4=5,解:x÷4×4=5×4,x=20.难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程例如:16-x=9,解:16-x+x=9+x,x+9=16,x+9-9=16-9,x=7.24÷x=4,解:24÷x×x=4×x,4x=24,4x÷4=24÷4,x=6.两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
例如:10+x-6=20,解:x+(10-6)=20,x+4=20,x+4-4=20-4,x=16;x÷4×8=9.6,解:x×(8÷4)=9.6,2x=9.6,2x÷2=9.6÷2,x=4.8或x÷4×8=9.6,解:x÷(4÷8)=9.6,x÷0.5=9.6,x÷0.5×0.5=9.6×0.5,x=4.8.如果含有两级运算,就“逆着运算顺序”同时变化,如含有未知数的一边是“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
浙教版七年级数学上册第5章 一元一次方程应用专题复习学案(附答案)

浙教版七年级数学上册第5章一元一次方程应用复习学案◆考点六:一元一次方程的应用:典例精讲:例7.一个三位数,百位上的数字比十位上的数字大4,个位上的数字比十位上的数字大2,这个三位数恰好是去掉百位上的数字后的两位数的21倍,求这个三位数.变式训练:已知一个三位数,个位上的数字是十位上数字的2倍还多1,百位上的数字是个位和十位数字的和,把这个三位数的个位数字与百位数字交换位置,得到一个新三位数,原三位数与新三位数的差为99,求原三位数.典例精讲:例8.某酒店客房部有三人间、双人间客房,收费标准如表:为吸引游客,实行团体入住五折优惠措施.现有一个100人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费6040元,则旅游团住了三人普通间和双人普通间客房各多少间?变式训练:某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x超过2000时,甲厂的收费为元,乙厂的收费为元;(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?典例精讲:例9.为发展校园足球运动,学校决定购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50 元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100 套队服和a 个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?变式训练:目前节能灯在各地区基本普及使用,某商场计划用3800元购进甲、乙两种节能灯共120只,这两种节能灯的进价、售价如下表:(1)(2)全部售完这120只节能灯后,该商场共获利多少元?典例精讲:例10.已知甲、乙两人均从400米的环形跑道的A处出发,各自以每秒6米和每秒8米的速度在跑道上跑步.(1)若两人同时出发,背向而行,则经过秒钟两人第一次相遇;若两人同时出发,同向而行,则经过秒钟乙第一次追上甲.(2)若两人同向而行,乙在甲出发10秒钟后去追甲,经过多少时间乙第二次追上甲.(3)若让甲先跑10秒钟后乙开始跑,在乙用时不超过100秒的情况下,乙跑多少秒钟时,两人相距40米.变式训练:甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?典例精讲:例11.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?变式训练:1.信息技术课上,老师让七年级学生练习打字,要求限时40分钟打完﹣篇文章.已知小宝独立打完这篇文章需要50分钟,而小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?2.小敏和小强到某厂参加社会实践,该厂用白板纸做包装盒.设计每张白板纸裁成盒身3个或者盒盖5个,且一个盒身....恰好能做成一个包装盒.设裁成盒身的白板纸有x张,回答下列问题.....和两个盒盖(1)若有11张白板纸.①请完成下表.②求最多可做几个包装盒.(2)若仓库中已有4个盒身,3个盒盖和23张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖.当盒身与盒盖全部配套用完时,可做多少个包装盒?(3)若有n张白板纸(70≤n≤80),先把一张白板纸适当套裁出3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖.当盒身与盒盖全部配套用完时,n的值可以是__________.巩固提升:1.某超市店庆促销,某种书包原价为每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A. 0.8x-10=90B. 0.08x-10=90C. 90-0.8x=10D. x-0.8x-10=902. 如图,水平桌面上有一个内部装有水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40 cm,50 cm,现将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板的厚度,则根据图中的数据,可知隔板抽出后水面静止时,箱内的水面高度为( )A. 43 cmB. 44 cmC. 45 cmD. 46 cm3.某书店为配合该市开展的“我读书,我快乐”读书活动推出一种优惠卡,每张卡售价为20元,凭卡购书可享受8折优惠﹒小芳同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元﹒若此次小芳同学不买卡直接购书,则她需付款多少元?()A﹒140元 B﹒150元 C﹒160元 D﹒200元4.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元5.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.26.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.20137.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?8.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?9.某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其他主要参考数据如下:(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;(2)若A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?10.为了保障我国海外维和部队和官兵的生活,现需通过A港口、B港口分别调运100吨和50吨生活物资,已知该物资在甲仓库存有80吨,乙仓库存有70吨,从甲、乙两仓库运送物资到每个港口的费用(元/吨)如下表所示:(1)如果从甲、乙两仓库运送物资到两个港口的总费用为1920元,则需要从甲仓库运送多少吨物资到A港口?(2)根据(1)求出的结果,请你说出此时的调运方案﹒11.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒,40盒乒乓球时,去哪家商店购买更合算?答案◆考点六:一元一次方程的应用: 典例精讲:例7.解析:设十位上的数为x ,则百位数字为x+4,个位数字为x+2, 由题意得:100(x+4)+10x+x+2=21(10x+x+2), 解得:x=3,x+4=7,x+2=5, ∴这个三位数为735变式训练:解析:设这个三位数的十位数字为x ,则个位为()12+x ,百位为()13+x 由题意得:()()[]99131012100121013100=++++-++++x x x x x x 解得:1=x答:这个三位数为:413典例精讲:例8.解析:设三人普通间住了x 间,则双人普通间住了23100x-间, 由题意得:604014023100150=⨯-+⨯xx 解得:16=x答:旅游团住了三人普通间16间,双人普通间客房26间变式训练:解析:(1)若x 不超过2000时,甲厂的收费为元,乙厂的收费为(1.5x )元, 故答案为:0.5x +1000,1.5x ;(2)若x 超过2000时,甲厂的收费为元,乙厂的收费为2000×1.5+0.25(x ﹣2000)=0.25x +2500元,故答案为:1000+0.5x ,0.25x +2500;(3)当x =8000时,甲厂费用为1000+0.5×8000=5000元, 乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元; (4)当x ≤2000时,1000+0.5x =1.5x ,解得:x =1000;当x >2000时,1000+0.5x =0.25x +2500,解得:x =6000; 答:印刷1000或6000本证书时,甲乙两厂收费相同典例精讲:例9.解析:(1)设每个足球的定价是x 元,则每套队服是()50+x 元, 由题意得:()x x 3502=+,解得:100=x , 答每套队服是150元,每个足球是100元(2)到甲商场购买所化的费用为:1400010010100100100150+=⎪⎭⎫⎝⎛-+⨯a a (元) 到乙商场购买所化的费用为:150********.0100150+=⋅⨯+⨯a a (元) (3)当在两家商场购买一样合算时,150008014000100+=+a a , 解得:50=a所以购买的足球数等于50个时,则在两家商场购买一样合算, 当购买的足球数多于50个时,则到乙商场购买合算, 当购买的足球数少于50个时,则到甲商场购买合算变式训练:解析:(1)设购进甲种节能灯x 只,则购进乙种节能灯(120-x )只. 由题意得25x +45(120-x )=3800, 解得x =80,120-x =40.答:购进甲种节能灯80只,乙种节能灯40只. (2)80×(30-25)+40×(60-45)=1000(元).答:全部售完这120只节能灯后,该商场共获利1000元.典例精讲:例10.解析:(1)400÷(6+8)=7200(秒); 400÷(8﹣6)=200(秒). 故答案为:7200;200. (2)设经过x 秒时乙第二次追上甲, 根据题意得:8x ﹣6x=400+6×10, 解得:x=230.答:经过230秒钟乙第二次追上甲.(3)设经过y 秒时甲乙两人相距40米, 甲、乙同向而行时,|6(10+y )﹣8y|=40, 解得:y=10或y=50;甲、乙背向而行时,6(10+y )+8y=400n ﹣40或6(10+y )+8y=400n+40; 解得:750200-=n y 或710200-=n y , ∵y ≤100, ∴7150=y 、7190、50、7390、7550、7590. 答:当甲、乙同向而行时,乙跑10秒或50秒时,两人相距40米;当甲、乙背向而行时,乙跑7150、7190、50、7390、7550或7590秒时,两人相距40米.变式训练:解析:(1)设经过x 小时两车相距540千米, 由题意得80x +120x =540-240,解得23=x . 答:经过23小时两车相距540千米.(2)设经过y 小时快车可追上慢车. 由题意得120y -80y =240,解得y =6. 答:经过6小时快车可追上慢车. (3)设经过z 小时两车相距300千米. 由题意得120z -80z =300-240.解得z =23. 答:经过23小时两车相距300千米.典例精讲:例11.解析:设该小组共有x 名同学,由题意得,()14024408=-+x x . 解得:4=x答:该小组共有4名同学变式训练:1.解析:设小贝加入后打x 分钟完成任务, 根据题意得:(30+x )×501+301x=1, 解得:x=7.5. ∵7.5+30=37.5<40, 所以他能在要求的时间打完.2.解析:(1)①填表如下:②解:由题意得2×3x =5(11-x ),解得x =5.∴3x =15. 答:最多可做成15个包装盒.(2)解:设用y 张白板纸裁成盒身,由题意得2×(3y +4)=3+5(23-y ),解得y =10.∴3y +4=34. 答:可做成34个包装盒. (3)79.巩固提升:1.解析:设某种书包原价每个x 元,根据题意列出方程解答即可. 设某种书包原价每个x 元, 可得:0.8x ﹣10=90,故选择A2.解析:设长方形的宽为x 公分,抽出隔板后之水面高度为h 公分,长方形的长为130+70=200(公分),由题意得:()()hx x x ⨯⨯=⨯++⨯+2005029070402110130解得:h =44, 故选择B3.解析:设小芳同学不买卡直接购书需付书款x 元, 由题意,得x -(20+0.8x )=10, 解得x =150,即小芳同学不买卡直接购书需付书款150元,故选:B ﹒4.解析:设两件衣服的进价分别为x 、y 元,根据题意得:120﹣x=20%x ,y ﹣120=20%y ,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C .5.解析:设两人相遇的次数为x , 依题意有:100452100=+⨯x 解得x=4.5,∵x 为整数,∴x 取4.故选:B .6.解析:设中间数为x ,则另外两个数分别为x ﹣1、x+1,∴三个数之和为(x ﹣1)+x+(x+1)=3x .根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=67232(舍去),x=672,x=671. ∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D .7.解析:设城中有x 户人家,依题意得:x+3x =100 解得x=75.答:城中有75户人家.8.解析:设甲种零件制作x 天,乙种零件制作(30-x )天由题意得:200x × 3=2×150(30-x )解得:x=10所以30-x=30-10=20答:甲种零件制作10天,乙种零件制作20天9.解析:(1)设本市与A 市之间的路程是x 千米,由题意得200·80x +20·x +900-(200·100x +15·x +2000)=1100, 解得x =400.答:本市与A 市之间的路程是400千米.(2)选择汽车的总费用=200⎪⎭⎫ ⎝⎛+1.380s +20s +900=(22.5s +1520)元, 选择火车的总费用=200⎪⎭⎫ ⎝⎛+2100s +15s +2000=(17s +2400)元, 令22.5s +1520=17s +2400,解得s =160.故当s =160时,选择火车和汽车运输所需总费用相同.10.解析:设从甲仓库运送x 吨物资到A 港口,则从乙仓库运送(100-x )吨到A 港口,从甲仓库运送(80-x )吨物资到B 港口,从乙仓库运送50-(80-x )=(x -30)吨到B 港口,由题意,得14x +20(100-x )+10(80-x )+8(x -30)=1920,化简并整理,得-8x +640=0,解得x =80,答:需要从甲仓库运送80吨物资到A 港口;(2)当x =80时,100-x =20,x -30=50,故此时调配方案为:将甲仓库的80吨全部运送到A 港口,从乙仓库运送20吨到A 港口,乙仓库余下的50吨全部运送到B 港口﹒11.解析:(1)设该班购买乒乓球x 盒.根据题意,得甲:100×5+(x -5)×25=(25x +375)元,乙:0.9×100×5+0.9x ×25=(22.5x +450)元,当甲=乙时,25x +375=22.5x +450,解得x =30.答:当买30盒乒乓球时,两种方法付款一样.(2)买20盒时:甲25×20+375=875(元),乙22.5×20+450=900(元),选甲;买40盒时:甲25×40+375=1 375(元),乙22.5×40+450=1 350(元),选乙.答:买20盒乒乓球时,甲店更合算;买40盒乒乓球时,乙店更合算.。
2024年秋季新人教版七年级上册数学教学课件 第五章 一元一次方程 综合专题

海起飞,9 天到南海,现野鸭从南海、大雁从北海同
时起飞,问经过多少天相遇 ? 设经过 x 天相遇,根据
题意可列方程为
(A )
A.(17
+1 9
)x=1
C.(9-7)=1
B.(17
-1 9
)x=1
D.(9+7)=1
例2 (连云港)元朝朱世杰所著的《算学启蒙》中,记载
了这样一道题:良马日行二百四十里,驽马日行一百
五十里,驽马先行一十一日,问良马几何日追及之?其
大意是:快马每天行 240 里,慢马每天行 150 里,慢
马先行 12 天,快马几天可追上慢马?若设快马 x 天可
追上慢马,由题意得
( D)
A.
x =x+2 240 150
B.24x0
=x 150
-12
C.240(x-12)=150x D.240x=150(x+12)
例3 (荔湾区期末)爸爸与小明在足球场上进行耐力训练, 他们在 400 米的环形跑道上从同一起点沿同一方向同时 出发进行绕圈跑,爸爸跑完一圈时,小明才跑完半圈, 4 分钟时爸爸第一次追上小明.请问: (1) 小明与爸爸的速度各是多少? (2) 再过多少分钟后,爸爸在第二次追上小明前两人相距 50 米?
5x-5-1=4x-4+1 解得 x=3.
(2) 将 x=3+2=5 代入第一个方程得 12-m=-m-2. 解得 m=22. 2
类型三:求含字母参数的方程的解
例4 (汉阳区期末)已知关于 x 的一元一次方程 x+1=
2x+a 的解为 x=-1,那么关于 y 的一元一次方程
(y+2)+1=2(y+2)+a 的解是
解:45÷3=15(人). 设从甲处调往乙处 x 人,则从甲处调往丙处 (15-x) 人. 依题意,得:15+x=1.5×(15+15-x), 解得:x=12. 所以 15-x=3.
数学解方程50题(打印版)

数学解方程50题(打印版)解方程是数学中的重要概念,能够帮助我们找到未知数的值。
下面是50个解方程的例题,供您练和巩固解方程的能力。
1. 解方程:3x + 5 = 202. 解方程:2(x - 4) = 103. 解方程:5(2x + 3) = 354. 解方程:4x - 3 = 5x + 25. 解方程:8 - 3(x + 2) = 96. 解方程:2(3x - 1) - 4 = 147. 解方程:3(5x + 2) - 1 = 148. 解方程:(2x + 1) / 3 = 59. 解方程:6 - 2(4x + 1) = 010. 解方程:3(x - 2) + 4 = 2x + 711. 解方程:2x + 3 = 4x - 512. 解方程:3(2x - 1) = 4 - 2x13. 解方程:2(x + 3) = 4x - 214. 解方程:5(2x + 1) = 3x - 215. 解方程:3x + 4 = 2(x + 1)16. 解方程:4(3x - 2) - 5 = 2x + 317. 解方程:(2x + 3) / 4 = 718. 解方程:3(4x - 1) = 5 - 2x19. 解方程:6 - 2(3x + 4) = 1020. 解方程:2(2x + 5) + 3 = 4x + 721. 解方程:3x - 2 + 5 = 12 + 2x22. 解方程:5(2x - 3) - x = 723. 解方程:6 - 3(4x + 5) = 924. 解方程:4(2x + 1) - 3(3x - 2) = 525. 解方程:6(x + 2) + 4 = 5 - 2x26. 解方程:3(4x - 1) = 2(3 - x) + 127. 解方程:(2x - 3) / 5 = 728. 解方程:4(2x + 3) = 5(3 - x)29. 解方程:6 - 3(2x + 4) = 5x30. 解方程:2(3x - 1) = 4(2x + 3) - 131. 解方程:3(2x - 1) + 4 = 5 - 3x32. 解方程:4(3 - 2x) + 2x = 4 - 2(3x + 1)33. 解方程:5(x + 3) - 2 = 8(2 - x)34. 解方程:4x + 5 - 7 = 6 - x + 935. 解方程:6(3 - 2x) + 2 = 8 - 4x36. 解方程:3(4x + 1) - 2x = 6(1 - 3x)37. 解方程:(6x - 3) / 4 = 1 - 2x38. 解方程:4(2 - x) + 3(2x - 1) = 1539. 解方程:8 - 5(2 - x) = 2(x - 1)40. 解方程:5(2x - 3) - 3 = 2(3x - 2)41. 解方程:3x + 4 = 2(3 - 2x)42. 解方程:4(2x + 1) - 3(x - 2) = 543. 解方程:5(2 - x) + 3(x + 1) = 744. 解方程:6 - 3x = 4x + 745. 解方程:4(3 - 2x) - 2(2 - x) = 1 - 3x46. 解方程:3(4x + 1) + 2(x - 3) = 547. 解方程:(5x - 3) / 2 + 1 = 3x48. 解方程:4(3 - x) - 2(2x + 1) = 1 - 3(x - 1)49. 解方程:5(2 - x) = 3(4 - 2x)50. 解方程:2(3x - 1) + 1 = 3(x + 2)这些题目将涉及线性方程、二次方程、分数方程等不同类型的解方程问题,希望您能够通过练习提高解方程的能力。
小学数学解方程10种方法,解方程其实很简单(经典集锦)

小学数学解方程10种方法,解方程其实很简单(经典集锦)小学解方程10种方法汇总一、未知数加减乘除1.形如x+a=b或x-a=b的方程。
(遇加同减,遇减同加)例1 x+7=19 遇加同减解:x+7-7=19-7 两边同时减去7X=12例2 x-6=19 遇减同加解:x-6+6=19+6 两边同时加上6x=252.利用等式解形如ax=b或x÷a=b(a不等于0)的方程。
(遇乘同除,遇除同乘)例1 7x=63 遇乘同除解:7x÷7=63÷7两边同时除以7x=9例2 x ÷7=9 遇除同乘解:x÷7×7=9×7两边同时乘以7x=633.利用等式解形如ax+b=c、ax-b=c或x÷a+b=c、x÷a-b=c(a 不等于0)的方程。
(混合运算,先加减再乘除:能计算的要先计算)例1 2x+5=29 有乘法和加法,先算加法,遇加同减解:2x+5-5=29-5 两边同时减去52x=24 遇乘同除2x÷2=24÷2两边同时除以2x=12例2 5x-6=24 有乘法和减法,先算减法,遇减同加解: 5x-6+6=24+6 两边同时加上65x=30 遇乘同除5x÷5=30÷5两边同时除以5x=6例3 x÷7+3=10 有除法和加法,先算加法,遇加同减解:x÷7+3-3=10-3 两边同时减去3x÷7=7 遇除同乘x÷7×7=7×7两边同时乘以7x=49例4 x÷10-6=9 有除法和减法,先算减法,遇减同加x÷10-6+6=9+6 两边同时加上6x÷10=15遇除同乘x÷10×10=15×10两边同时乘以10x=150二、未知数被加上或被减去;4.未知数被加上a+x=b,a+bx=c(解法同上)5.形如b-x=c、b-ax=c的方程。
初中数学一元一次、二元一次、一元二次解方程例题

一元一次方程例题解析例题1:解方程2x + 3 = 7解析:首先,从等式的两边减去3,得到2x = 4。
然后,将等式两边除以2,得到x = 2。
所以,x的解为2。
例题2:解方程5x - 7 = 12解析:首先,将等式的两边加上7,得到5x = 19。
然后,将等式两边除以5,得到x = 3.8。
所以,x的解为3.8。
例题3:解方程3x + 4 = 10解析:首先,从等式的两边减去4,得到3x = 6。
然后,将等式两边除以3,得到x = 2。
所以,x的解为2。
例题4:解方程7x - 5 = 19解析:首先,将等式的两边加上5,得到7x = 24。
然后,将等式两边除以7,得到x = 3.4。
所以,x的解为3.4。
例题5:解方程4x + 6 = 18解析:首先,从等式的两边减去6,得到4x = 12。
然后,将等式两边除以4,得到x = 3。
所以,x的解为3。
例题6:解方程9x - 7 = 25解析:首先,将等式的两边加上7,得到9x = 32。
然后,将等式两边除以9,得到x = 3.56。
所以,x的解为3.56。
例题7:解方程8x - 9 = 17解析:首先,将等式的两边加上9,得到8x = 26。
然后,将等式两边除以8,得到x = 3.25。
所以,x的解为3.25。
例题8:解方程6x + 7 = 19解析:首先,从等式的两边减去7,得到6x = 12。
然后,将等式两边除以6,得到x = 2。
所以,x的解为2。
例题9:解方程10x - 8 = 24解析:首先,将等式的两边加上8,得到10x = 32。
然后,将等式两边除以10,得到x = 3.2。
所以,x的解为3.2。
例题10:解方程11x - 9 = 30解析:首先,将等式的两边加上9,得到11x = 39。
然后,将等式两边除以11,得到x = 3.54。
所以,x的解为3.54。
例题11:解方程12x - 10 = 28解析:首先,将等式的两边加上10,得到12x = 38。
《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲例1解方程025x 2=-.分析:解一元二次方程的方法有四种,而此题用直接开平方法较好.解一元二次方程的方法有四种,而此题用直接开平方法较好.解:025x 2=-,25x 2=,25x ±=,x =±=±55. ∴5x 5x 21-==,.例2解方程2)3x (2=+.分析:如果把x +3看作一个字母y ,就变成解方程2y 2=了.了.解:2)3x (2=+,23x ±=+,23x 23x -=+=+,或, ∴23x 23x 21--=+-=,.例3解方程081)2x (42=--.分析:解此题虽然可用因式分解法、公式法来解,但还是用直接开平方法较好.较好.解:081)2x (42=-- 整理,81)2x (42=-,481)2x (2=-, 292x ±=-,∴25x 213x 21-==,.注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.例4解方程02x 3x 2=+-.分析:此题不能用直接开平方法来解,可用因式分解法或用公式法来解.此题不能用直接开平方法来解,可用因式分解法或用公式法来解. 解法一:02x 3x 2=+-,(x (x--2)(x 2)(x--1)1)==0, x -2=0,x -1=0,∴2x 1x 21==,. 解法二: ∵a =1,b =-=-33,c =2, ∴01214)3(ac 4b 22>=´´--=-,∴213x ±=.∴1x 2x21==,.注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△先计算“△”的值,若△<0<0<0,则方程无解,就不必解了.,则方程无解,就不必解了.,则方程无解,就不必解了.例5解关于x 的方程0n )n m 2x 3(m x 22=-+--.分析:先将原方程加以整理,化成一元二次方程的一般形式,注意此方程为关于x 的方程,即x 为未知数,为未知数,m m ,n 为已知数.在确定0ac 4b 2³-的情况下,利用公式法求解.利用公式法求解.解:把原方程左边展开,整理,得把原方程左边展开,整理,得0)n mn m 2(mx 3x 222=--+-.∵a =1,b =-=-3m 3m 3m,,22n mn m 2c --=, ∴)n mn m 2(14)m 3(ac 4b 2222--´´--=-22n 4mn 4m ++= 0)n 2m (2³+=.∴2)n 2m (m 3x 2++=2)n 2m (m 3+±=.∴nm x n m 2x 21-=+=,. 注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2-的值,然后求解.但解字母系数方程时要注意:系数方程时要注意:(1)(1)(1)哪个字母代表未知数,也就是关于哪个未知数的方程;哪个字母代表未知数,也就是关于哪个未知数的方程;(2)(2)不要把一元二次方程一般形式中的不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;混淆;(3)(3)(3)在在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,开平方时,可能会出现两种情况,但根号前有正负号,已包已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.例6用配方法解方程x 73x 22=+.分析:解一元二次方程虽然一般不采用配方法来解,但配方法的方法本身重要,要记住.重要,要记住.解:x 73x 22=+,23x 27x 2=+-,0234747x 27x 22=+÷øöçèæ-÷øöçèæ+-2, 162547x 2=÷øöçèæ-, ∴4547x ±=-. ∴21x3x21==,. 注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方.边就配成了一个二项式的完全平方.例7不解方程,判别下列方程的根的情况:不解方程,判别下列方程的根的情况:(1)04x 3x 22=-+;(2)y 249y 162=+;(3)0x 7)1x (52=-+.分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=D 的值的符号就可以了.符号就可以了.解:(1)(1)∵∵a =2,b =3,c =-=-44, ∴041)4(243ac 4b 22>=-´´-=-. ∴方程有两个不相等的实数根.∴方程有两个不相等的实数根. (2)(2)∵∵a =1616,,b =-=-242424,,c =9, ∴09164)24(ac 4b 22=´´--=-. ∴方程有两个相等的实数解.∴方程有两个相等的实数解.(3)(3)将方程化为一般形式将方程化为一般形式0x 75x 52=-+,05x 7x 52=+-.∵a =4,b =-=-77,c =5, ∴554)7(ac 4b 22´´--=- =4949--100 =-=-51<051<051<0..∴方程无实数解.∴方程无实数解.注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.例8已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.的值.分析:根据韦达定理a cx x abxx2121=×-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.求出方程的另一根.但方法不如第一种.解:设另一根为2x ,则,则56x 25k x 222-=×-=+,,∴53x 2-=,k =-=-77.即方程的另一根为53-,k 的值为-的值为-77. 注意:一元二次方程的两根之和为a b -,两根之积为a c.例9利用根与系数的关系,求一元二次方程01x 3x 22=-+两根的两根的 (1)(1)平方和;平方和;平方和;(2)(2)(2)倒数和.倒数和.倒数和.分析:已知21x x 23xx2121-=×-=+,.要求.要求(1)(1)2221x x +,(2)21x 1x 1+,关键是把2221x x +、21x 1x 1+转化为含有2121x x x x ×+、的式子.的式子.因为两数和的平方,等于两数的平方和加上这两数积的2倍,即ab 2b a )b a (222++=+,所以ab 2)b a (b a 222-+=+,由此可求出,由此可求出(1)(1)(1).同样,可用.同样,可用两数和与积表示两数的倒数和.两数和与积表示两数的倒数和.解:(1)(1)∵∵21x x 23x x 2121-=×-=+,,∴212212221x x 2)x x (x x -+=+÷øöçèæ--÷øöçèæ-=212232149+= 413=; (2)211221x x x x x 1x 1+=+ 2123--==3.注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.倒数和变成两根的和与积,其变形的方法主要运用乘法公式.例10已知方程0m x 4x 22=++的两根平方和是3434,求,求m 的值.的值.分析:已知34x x 2m x x 2x x 22212121=+=×-=+,,,求m 就要在上面三个式子中设法用222121x x x x ++和来表示21x x ,m 便可求出.便可求出.解:设方程的两根为21x x 、,则,则2mx x 2x x 2121=×-=+,.∵212212221x x 2)x x (x x -+=+, ∴)x x ()x x (x x 2222122121+-+=34)2(2--==-=-303030..∵2mxx 21=,∴m =-=-303030..注意:解此题的关键是把式子2221x x x x+变成含2121x x x x 、+的式子,从而求得m 的值.的值.例11求一个一元二次方程,使它的两个根是2、1010..分析:因为任何一元二次方程都可化为因为任何一元二次方程都可化为((二次项系数为1)0q px x 2=++的形式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=×-=+,.将p 、q 的值代入方程0q px x 2=++中,即得所求方程0x x x )x x (x 21212=×++-.解:设所求的方程为0q px x 2=++.∵2+1010=-=-=-p p ,2×1010==q ,∴p =-=-121212,,q =2020..∴所求的方程为020x 12x 2=+-.注意:以21x x 、为根的一元二次方程不止一个,为根的一元二次方程不止一个,但一般只写出比较简单的一但一般只写出比较简单的一个.个.例12已知两个数的和等于8,积等于9,求这两个数.,求这两个数. 分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-这个方程的一次项系数就应该是-88,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.它的根,即是这两个数.解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x 2=++.∵qx x p 8xx2121=×-==+,,∴方程为09x 8x 2=+-.解这个方程得74x 74x21-=+=,,∴这两个数为7474-+和.例13如图22-2-122-2-1,在长为,在长为32m 32m,宽为,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2m 540,那么道路的宽度应是多少?那么道路的宽度应是多少?分析:设道路的宽度为x m ,则两条道路的面积和为,则两条道路的面积和为2x x 20x 32-+. 题中的等量关系为:草地面积+道路面积=长方形面积.题中的等量关系为:草地面积+道路面积=长方形面积.解:设道路的宽度为x m ,则,则,则 2032x x 20x 325402´=-++. 0100x 52x 2=+-,(x (x--2)(x 2)(x--50)50)==0, x -2=0,x -5050==0, ∴50x 2x21==,.∵x =50不合题意,不合题意, ∴取x =2.答:道路的宽度为2m 2m..注意:两条道路重合了一部分,重合的面积为2x .因此计算两条道路的面积和时应减去重合面积2x .例14某钢铁厂去年1月份钢的产量为5000吨,吨,33月份上升到7200吨,求这两个月平均每月增长的百分率是多少?这两个月平均每月增长的百分率是多少?分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(15000(1++x)x),,增长两次后的产量是2)x 1(5000+,….增长n 次后的产量b 是n )x 1(5000b +=.这就是重要的增长率公式.这就是重要的增长率公式.解:设平均每月增长的百分率为x .则.则7200)x 1(50002=+,2536)x 1(2=+,56x 1±=+,∴22x 20x 21.,.-==(不合题意,舍去不合题意,舍去)). 答:平均每月增长的百分率是20%20%..注意:解方程时,由1+x 的值求x ,并舍去负值.,并舍去负值.。
人教版九年级数学上册《21一元二次方程 公式法 课件

将a,b,c 代入式子
x b
b2 4ac .
2a
就得到方程的根,这个式子叫做一元二次方程的求根公
式,利用它解一元二次方程的方法叫做公式法,由求根公式
可知,一元二次方程最多有两个实数根.
注意 用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0); 2.b2-4ac≥0.
探究新知
求根公式的推导
任何一个一元二次方程都可以写成一般形式
ax2+bx+c=0
能否也用配方法得出它的解呢?
用配方法解一般形式的一元二次方程
ax2+bx+c=0 (a≠0).
解: 移项,得 ax2 bx c,
方程两边都除以a x2 b x c ,
a
a
配方,得
x2
b a
x
b 2a
2
c a
典例精析
例6:若关于x的一元二次方程kx2-2x-1=0有两个不相等的
实数根,则k的取值范围是( B )
A.k>-1
B.k>-1且k≠0
C.k<1
D.k<1且k≠0
解析:由根的判别式知,方程有两个不相等的实数根,
则b2-(4a2c)>20,4同k 时0要求二次项系数不为0,
即
,k≠0.解得k>-1且k≠0,故选B.
∴方程有两个相等的实数根.
例7:不解方程,判断下列方程的根的情况.
(3) 7y=5(y2+1).
解:(3)方程化为:5y2-7y+5=0, ∴b2-4ac=(-7)2-4×5×5=-51<0.
∴方程有两个相等的实数根.