湖北省2020届高三数学上学期第一次模拟考试试题理
新高考湖北省武汉一中2023届高三上学期10 月月考数学试题及答案
3.5.湖北省武汉一中2022-2023学年高三上学期10月月考数学试题一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.若z =i (3-i ),则z-|z |=()A.1+3iB.-1-3iC.-1+3iD.1-3i2.已知A ={1,2,3},B ={2,4},定义A -B ={x ∣x ∈A 且x ∉B },则A -B =()A.{1,2,3}B.{2,4}C.{1,3}D.{2}3.已知函数f (x )的导函数为f (x ),且满足f (x )=2xf (1)+ln x ,则f (1)=()A.-e B.-1C.1D.e4.设函数f (x )=1x 3+1,则下列函数中为偶函数的是()A.f (x +1)B.f (2x )C.f (x -1)D.f (x 2)5.已知a =e 0.01,b =ln1.01e ,c =2cos1.1,则()A.b >a >cB.a >b >cC.a >c >bD.c >a >b6.已知点A 、B 在单位圆上,∠AOB =34π,若OC =2OA +xOB (x ∈R ),则|OC |2的最小值是()A.2B.3C.5-22D.47.已知函数f x =2sin ωx -π12 sin ωx +5π12 0<ω<1 的图象关于点π3,0 对称,将函数f x 的图象向左平移π3个单位长度后得到函数g x 的图象,则g x 的一个单调递增区间是()A.-3π2,π2B.-π,πC.-π2,3π2D.0,2π8.已知函数f (x )=e x -1 ,x >0-x 2-2x +1,x ≤0,若方程f 2x +bf x +2=0有8个相异实根,则实数b 的取值范围()A.-4,-2B.(-4,-22)C.-3,-2D.(-3,-22)二、多项选择题:本题共4个小题,每小题5分,共20分。
2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)
2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。
2021届湖北省武汉市2020-2021学年度部分学校高三起点质量检测数学试卷【含答案】
湖北武汉市2021届高三起点质量检测数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x| x2-x-2 <0},B ={x|0 < x< 3},则A⋂B =A. (-1,2)B. (0,2)C. (-1 ,3)D. ( 0 ,3 )2.若a+i3-2i为纯虚数,则实数 a的值为A.23 B.-23 C.32 D. -323.已知命题p : 所有的三角函数都是周期函数,则, ⌝p 为A.所有的周期函数都不是三角函数B. 所有的三角函数都不是周期函数C. 有些周期函数不是三角函数D. 有些三角函数不是周期函数4.平面向量 a = ( 2 , 1 ) ,|b| = 2 ,a·b=4,则向量a, b夹角的余弦值为A.255 B.45 C.55 D.155.某学校组织三个年级的学生到博物馆参观,该博物馆设有青铜器,瓷器,书画三个场馆.学校将活动时间分为三个时间段,每个时间段内三个年级的学生参观的场馆互不相同,并且每个年级的学生在三个时间段内参观的场馆不重复,则不同的安排方法有A. 6 种B. 9 种C. 12 种D. 18 种6.过抛物线E : y2= 2x焦点的直线交E于 A, B两点,线段AB中点M到y轴距离为1,则 |AB |==A. 2B.52C . 3D. 47. 如图,点 A , B , C , M , N 为正方体的顶点或所在棱的中点,则下列各图中,不满足直线MN // 平面ABC 的是8. 我国古人认为宇宙万物是由金,木,水,火,土这五种元素构成,历史文献《尚书· 洪范》提出了五行的说法,到战国晚期,五行相生相克 的思想被正式提出这五种物质属性的相生相克关系如图所示,若从这五种物质属性中随机选取三种,则取出的三种物质属性中 ,彼此间恰好有一个相生关系和两个相克关 系的概率为 A.35 B.12 C.25 D.13二、选择题:本题共 4 小题,每小题 5 分,共 20 分 在每小题 给出的选项中,有多项符合题目要求。
精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)
故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
湖北省荆州中学宜昌一中等“荆荆襄宜四地七校2020届高三上学期期末考试 数学(理)(含答案)
“荆、荆、襄、宜四地七校考试联盟”2020届高三元月联考理 科 数 学 试 题本试卷共2页,共23题(含选考题)满分150分,考试用时120分钟★ 祝考试顺利 ★注意事项:1.答题前,考生务必将自己的姓名、班级、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用黑色中性笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡上交.一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足(1)z i i -=,则z 在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,集合2{230}A x x x =--≤|,集合2{log 1}B x x =≤|,则()U A B =I ð A .(2,3] B .φ C .[1,0)(2,3]-U D . [1,0](2,3]-U 3.已知0.20.8512,(),2log 22a b c -===,则A .c a b <<B .c b a <<C .a b c << D. b a c <<4.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )盏. A .2 B .3 C .26 D .27 5.若直线()+2=0>0>0ax by a b +、截得圆()()2221=1x y +++的弦长为2,则12a b+的最小值为 A .4 B .6 C .8 D .106.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数()21cos 21x xf x x +=-的图象大致是7.函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移______个单位长度得到.A .6π B .3π C .2πD .23π8.若向量a r 与b r 的夹角为60o ,(2,0)a =r,223a b +=r r ,则b r =A. 3 B .1 C .4 D .3 9.如图,AB 和CD 是圆O 两条互相垂直的直径,分别以OA ,OB ,OC ,OD为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是 A .21π- B .112π-C .2πD .1π 10.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是 A .7[,)6-+∞ B .5[,)3-+∞ C .5[,)4-+∞ D .4[,)3-+∞11.SC 是球O 的直径,A 、B 是该球面上两点,3AB =,30ASC BSC ∠=∠=o ,棱锥S ABC-的体积为3,则球O 的表面积为 A.4π B.8π C.16π D.32π12.关于函数()2ln f x x x=+,下列说法正确的是(1)2x =是()f x 的极小值点;(2)函数()y f x x =-有且只有1个零点; (3)1()2f x x >恒成立; (4)设函数2()()4g x xf x x =-++,若存在区间1[,][,)2a b ⊂+∞,使()g x 在[,]a b 上的值域是[(2),(2)]k a k b ++,则92ln 2(1,]10k +∈. A .(1) (2) B .(2)(4) C .(1) (2) (4) D .(1)(2)(3)(4) 二.填空题:本大题共4小题,每小题5分,共20分13.已知曲线2sin xy e x =-,则其在点(0,2)处的切线方程是 ▲ .14.已知n S 是等比数列{}n a 的前n 项和,396,,S S S 成等差数列,362a a +=,则9a = ▲ . 15.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派4位专家各自在周一、周二两天中任选一天对某县进行调研活动,则周一、周二都有专家参加调研活动的概率为 ▲ .16.在平面直角坐标系xOy 中,双曲线22221(0,0)y x a b a b -=>>的上支与焦点为F 的抛物线22(0)y px p =>交于,A B 两点.若4AF BF OF +=,则该双曲线的渐近线方程为 ▲ .A B CDO三.解答题:共70分。
2020届湖北省黄冈市高三9月调研考考试数学(理)试题Word版含答案
2020届湖北省黄冈市高三9月调研考考试数学(理)试题一、选择题1.设全集U R =,集合{|2},{||23|}x A x B x x ==-≤>1,则()U A B ð等于()A .[1,0)-B .(0,5]C .[1,0]-D .[0,5]2.下列函数中,既是偶函数,又在(,0)-∞上单调递增的是()A .2y x =B .||2x y =C .y =logD .3.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列正确的是( )A .若αα//,//n m ,则n m //B 若,αγβγ⊥⊥,则α∥βC 若βα//,//m m ,则βα//D 若,m n αα⊥⊥,则m ∥n4.函数f(x)=x 2(2x -2-x)的大致图像为( )A5.(A (B (C (D 6.函数y=a x (a >0,a ≠1)与y=x b 的图象如图,则下列不等式一定成立的是( )A .b a >0B .a+b >0C .a b >1D .log a 2>b7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的的体积为().π24+ D .π+4 8..若向量,a b 的夹角为π3,且2,1a b ==,则向量a 与向量2a b +的夹角为( )A 后不变,问几日相逢?”,意思是“今有土墙厚12.5尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多半尺,小鼠前三天每天打洞长度比前一天多一倍,三天之后每天打洞长度不变,问两鼠几天打通相逢?”两鼠相逢最快需要的天数为()A.2B.3C.4D.510.下列说法正确的个数为()②在△ABC 中,AB=1,AC=3,D 是BC 的中点,则AD BC ⋅=4③在ABC ∆中,A B <是B A 2cos 2cos >的充要条件;④已知:()min{sin ,cos }f x x x =,则()f x 的值域为A.1B.2C.3D .411.已知函数f (x )=a ln(x +1)-x 2,在区间(0,1)内任取两个数p,q,且p q,不等式恒成立,则实数a 的取值范围为 ()A . + B.(3, C. + D.12.已知函数f (x ),若关于x 的方程f (f (x ))+m=0恰有两个不等实根x 1,x 2,则4x 1+x 2的最小值为()A . B.4-4ln2 C.2-ln2 D.2+ln2二、填空题13.()f x 是定义在R 上的函数,且满足,当23x ≤≤时,()f x x =,则14上,并且和该抛物线的准线及y 轴都相切的圆的标准方程为. 15.设实数x ,y 满足条件,若目标函数z =ax +by (a >0,b >0)最大值为6,则的最小值为 16.已知数列中=1,n()=+1,n,若对任意的a,不等式<t 2+2at -1恒成立,则t 的取值范围为________三、解答题 17.已知向量p =(1,),q =()(1)若p,求-cos 2x 的值;(2)设函数f (x )= p ,将函数的图像上所有的点的横坐标缩小到原来的(纵坐标不变),再把所得的图像向左平移个单位,得到函数g (x )的图像,求g -(x )的单调增区间。
高考数学《立体几何》练习题及答案
立体几何1.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若某空间几何体的三视图如图所示,则该几何体的体积是A .2B .1C .D .【答案】B2.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D 【解析】3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积 A .与,x y 都有关 B .与,x y 都无关 C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B4.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]5.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 一个圆锥SC的高和底面直径相等,且这个圆锥SC和圆柱OM的底面半径及体积也都相等,则圆锥SC和圆柱OM的侧面积的比值为A.322B.23C.35D.45【答案】C6.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【答案】D【解析】7.[广东省三校(广州真光中学、深圳市第二中学、珠海市第二中学)2020届高三上学期第一次联考数学(理)试题] 在如图直二面角ABDC中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD的中点E,将△ABE 沿BE 翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是A.BC与平面A1BE内某直线平行B.CD∥平面A1BEC.BC与平面A1BE内某直线垂直D.BC⊥A1B【答案】D8.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D【解析】9.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 圆锥的侧面展开图是半径为R 的半圆,则该圆锥的体积为________. 【答案】33πR 10.[辽宁省本溪高级中学2020届高三一模考试数学(理)试卷]【答案】4π11.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P ∥平面1A BM ,则1C P 的最小值是________.【答案】305【解析】 【分析】由面面平行找到点P 在底面ABCD 内的轨迹为线段DN ,再找出点P 的位置,使1C P 取得最小值,即1C P 垂直DN 于点O ,最后利用勾股定理求出最小值. 【详解】取BC 中点N ,连接11,,B D B N DN ,作CO DN ⊥,连接1C O ,因为平面1B DN ∥平面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN ,当点P 与点O 重合时,1C P 取得最小值,因为11152225DN CO DC NC CO ⋅=⋅⇒==,所以221min 11130()155C P C O CO CC ==+=+=. 故1C P 的最小值是305. 【点睛】本题考查面面平行及最值问题,求解的关键在于确定点P 的位置,再通过解三角形的知识求最值.12.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知某几何体的三视图如图所示,则该几何体的外接球的半径为________.21【答案】【解析】【分析】根据三视图还原几何体,设球心为O,根据外接球的性质可知,O与PAB△和正方形ABCD中心的连线分别与两个平面垂直,从而可得到四边形OGEQ 为矩形,求得OQ和PQ后,利用勾股定理可求得外接球半径.【详解】由三视图还原几何体如下图所示:设PAB△的中心为Q,正方形ABCD的中心为G,外接球球心为O,则OQ⊥平面PAB,OG⊥平面ABCD,E为AB中点,∴四边形OGEQ为矩形,112OQ GE BC ∴===,2233PQ PE ==, ∴外接球的半径:22213R GE PQ =+=. 故答案为21. 【点睛】本题考查多面体外接球半径的求解,关键是能够根据球的性质确定球心的位置,从而根据长度关系利用勾股定理求得结果. 13.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】【解析】14.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]【答案】1 315.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,平面ABP⊥平面BCP,90APB=,M为CP的中点.求证:∠=︒,BP BC(1)AP//平面BDM;(2)BM ACP⊥平面.【解析】(1)设AC 与BD 交于点O ,连接OM , 因为ABCD 是平行四边形,所以O 为AC 中点, 因为M 为CP 的中点,所以AP ∥OM , 又AP ⊄平面BDM ,OM ⊂平面BDM , 所以AP ∥平面BDM .(2)平面ABP ⊥平面BCP ,交线为BP , 因为90APB ∠=︒,故AP BP ⊥,因为AP ⊂平面ABP ,所以AP ⊥平面BCP , 因为BM ⊂平面BCP ,所以AP ⊥BM . 因为BP BC =,M 为CP 的中点,所以BM CP ⊥. 因为AP CP P =I ,AP CP ⊂,平面ACP , 所以BM ⊥平面ACP .16.[河南省新乡市高三第一次模拟考试(理科数学)] 如图,在四棱锥ABCDV -中,二面角D BC V --为︒60,E 为BC 的中点. (1)证明:VE BC =;(2)已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为︒60,求.VA VFABCDPMABCDPMO【解析】17.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]如图,在底面是菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,点E,F分别为BC,PD的中点,设直线PC与平面AEF交于点Q.(1)已知平面PAB∩平面PCD=l,求证:AB∥l.(2)求直线AQ 与平面PCD 所成角的正弦值. 【解析】 【分析】(1)证明AB ∥平面PCD ,然后利用直线与平面平行的性质定理证明AB ∥l ; (2)以点A 为原点,直线AE 、AD 、AP 分别为轴建立空间直角坐标系,求出平面PCD 的法向量和直线AQ 的方向向量,然后利用空间向量的数量积求解直线AQ 与平面PCD 所成角的正弦值即可.【详解】(1)证明:∵AB ∥CD ,AB ⊄平面PCD ,CD ⊂平面PCD . ∴AB ∥平面PCD ,∵AB ⊂平面PAB ,平面PAB ∩平面PCD =l , ∴AB ∥l ;(2)∵底面是菱形,E 为BC 的中点,且AB =2, ∴13BE AE AE BC ==⊥,,, ∴AE ⊥AD ,又PA ⊥平面ABCD ,则以点A 为原点,直线AE 、AD 、AP 分别为x 、y 、z 轴建立如图所示空间直角坐标系,则()()()()020,002,30,300D P C E,,,,,,,,,∴()0,1,1F ,()()()()3000,11310022AE AF DC DP ===-=-u u u r u u u r u u u r u u u r,,,,,,,,,,,设平面PCD 的法向量为(),,x y z =n ,有0PD ⋅=u u u r n ,0CD ⋅=u u u rn ,得()133=,,n ,设()1AQ AC AP λλ=+-u u u r u u u r u u u r,则()()321AQ λλλ=-u u u r ,,,再设(3,,)AQ mAE n m n n AF =+=u u u r u u u r u u u r,则()3321m n nλλλ⎧=⎪=⎨⎪-=⎩,解之得23m n λ===,∴2223333AQ ⎛⎫=⎪⎝⎭u u u r ,,, 设直线AQ 与平面PCD 所成角为α,则3105sin cos ,AQ AQ AQα⋅>=<==u u u r u u u r u u u r n n n ,∴直线AQ 与平面PCD 所成角的正弦值为3105. 【点睛】本题考查直线与平面平行的判定定理以及性质定理的应用,直线与平面所成角的向量求法,合理构建空间直角坐标系是解决本题的关键,属中档题.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知三棱柱111ABC A B C -中,1AB AC AA ==,侧面11ABB A ⊥底面ABC ,D 是BC 的中点,160B BA ∠=︒,1B D AB ⊥.(1)求证:ABC △为直角三角形;(2)求二面角1C AD B --的余弦值. 【解析】(1)取AB 中点O ,连接OD ,1B O ,易知1ABB △为等边三角形,从而得到1B O AB ⊥,结合1B D AB ⊥,可根据线面垂直判定定理得到AB ⊥平面1B OD ,由线面垂直的性质知AB OD ⊥,由平行关系可知AB AC ⊥,从而证得结论;(2)以O 为坐标原点可建立空间直角坐标系,根据空间向量法可求得平面1ADC 和平面ADB 的法向量的夹角的余弦值,根据所求二面角为钝二面角可得到最终结果. 【详解】(1)取AB 中点O ,连接OD ,1B O ,在1ABB △中,1AB B B =,160B BA ∠=︒,1ABB ∴△是等边三角形, 又O 为AB 中点,1B O AB ∴⊥,又1B D AB ⊥,111B O B D B =I ,11,B O B D ⊂平面1B OD ,AB ∴⊥平面1B OD ,OD ⊂Q 平面1B OD ,AB OD ∴⊥, 又OD AC ∥,AB AC ∴⊥, ∴ABC △为直角三角形.(2)以O 为坐标原点,建立如下图所示的空间直角坐标系:令12AB AC AA ===,则()1,2,0C -,()1,0,0A -,()0,1,0D ,()1,0,0B ,()10,0,3B ,()11,0,3BB ∴=-u u u v ,()0,2,0AC =u u u v ,()1,1,0AD =u u u v,()1111,2,3AC AC CC AC BB =+=+=-u u u u v u u u v u u u u v u u u v u u u v,设平面1ADC 的法向量为(),,x y z =m ,10230AD x y AC x y z ⎧⋅=+=⎪∴⎨⋅=++=⎪⎩u u u v u u u u v m m ,令1x =,则1y =-,3z =,()1,1,3∴=-m , 又平面ADB 的一个法向量为()0,0,1=n ,315cos ,5113∴<>==++m n , Q 二面角1C AD B --为钝二面角,∴二面角1C AD B --的余弦值为15-.【点睛】本题考查立体几何中垂直关系的证明、空间向量法求解二面角的问题,涉及到线面垂直判定定理和性质定理的应用;证明立体几何中线线垂直关系的常用方法是通过证明线面垂直得到线线垂直的关系.19.[江西省宜春市上高二中2020届高三上学期第三次月考数学(理)试题]20.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]21.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【解析】22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PCD⊥平面ABCD,2AB=,1BC=,2PC PD==,E为PB中点.(1)求证:PD∥平面ACE;(2)求二面角E AC D--的余弦值;(3)在棱PD上是否存在点M,使得AM⊥BD?若存在,求PMPD的值;若不存在,说明理由.【解析】(1)设BD交AC于点F,连接EF. 因为底面ABCD是矩形,所以F为BD中点 . 又因为E为PB中点,所以EF∥PD.因为PD ⊄平面,ACE EF ⊂平面ACE ,所以PD ∥平面ACE.(2)取CD 的中点O ,连接PO ,FO .因为底面ABCD 为矩形,所以BC CD ⊥.因为PC PD =,O CD 为中点,所以,PO CD OF ⊥∥BC ,所以OF CD ⊥. 又因为平面PCD ⊥平面ABCD ,PO ⊂平面,PCD 平面PCD ∩平面ABCD =CD . 所以PO ⊥平面ABCD ,如图,建立空间直角坐标系O xyz -, 则111(1,1,0)(0,1,0)(1,1,0),(0,0,1),(,,)222A C B P E -,,, 设平面ACE 的法向量为(,,)x y z =m ,131(1,2,0),(,,)222AC AE =-=-u u u r u u u r , 所以20,2,0,131.00222x y x y AC z y x y z AE -+=⎧⎧=⎧⋅=⎪⇒⇒⎨⎨⎨=--++=⋅=⎩⎩⎪⎩u u u v u u u v m m 令1y =,则2,1x z ==-,所以2,11=-(,)m .平面ACD 的法向量为(0,0,1)OP =u u u r ,则6cos ,OP OP OP⋅<>==-⋅u u u r u u u r u u u r m m |m |. 如图可知二面角E AC D --为钝角,所以二面角E AC D --的余弦值为66-. (3)在棱PD 上存在点M ,使AM BD ⊥.设([0,1]),(,,)PM M x y z PD=∈λλ,则,01,0PM PD D =-u u u u r u u u r λ(,).因为(,,1)(0,1,1)x y z -=--λ,所以(0,,1)M --λλ. (1,1,1),(1,2,0)AM BD =---=--u u u u r u u u r λλ.因为AM BD ⊥,所以0AM BD ⋅=u u u u r u u u r .所以12(1)0λ--=,解得1=[0,1]2∈λ. 所以在棱PD 上存在点M ,使AM BD ⊥,且12PM PD =。
湖北省黄冈市2025届高三上学期9月调研考试(一模)数学试题含答案
黄冈市2024年高三年级9月调研考试数学(答案在最后)本试卷共4页,19题.全卷满分150分.注意事项:1.答题前,先将自己的姓名、准考证号,考场号,座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷,草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷,草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将答题卡上交.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.若集合{}{}2|280,,|A x x x x B y y x =--<==∈∈Z R,则A B =()A.{}0,1,2,3 B.{}1,2,3 C.{}0,1 D.{}0【答案】A 【解析】【分析】解二次不等式得出集合A ,利用函数的值域得出集合B ,再由交集的定义得出答案.【详解】∵2280x x --<,∴()()420x x -+<,∴24-<<x ,又∵Z x ∈,∴{}1,0,1,2,3A =-,0y x =≥,∴0y ≥,即{}0B y y =≥,∴{}0,1,2,3A B ⋂=.故选:A 2.复数i 21iz -=+,则z 的虚部为()A.3i 2 B.32C.32-D.3i2-【答案】B 【解析】【分析】根据复数的除法运算,化简复数z ,进而可求虚部.【详解】()()()()i 21i i 213i 13i 1i 1i 1i 222z ----+====-+++-,故z 的虚部为32,故选:B3.若3sin 3cos 022ππαα⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,则tan2α=()A.43-B.43C.34-D.34【答案】D 【解析】【分析】由诱导公式计算出tan α,在代入正切二倍角公式即可.【详解】原方程可化为1cos 3sin 0tan 3ααα-+=⇒=,故222tan 33tan 211tan 419ααα===--.故选:D4.若向量()()2,0,3,1a b == ,则向量a在向量b 上的投影向量为()A.5B.93,55⎛⎫ ⎪⎝⎭C.,55⎛ ⎝⎭D.()5,1【答案】B 【解析】【分析】按照投影向量的计算公式求解即可.【详解】解:因为向量()()2,0,3,1a b ==,则向量a在向量b 上的投影向量为:2693||cos ,(3,1)(,)1055||||||||b a b b a b a a b b b b b b ⋅⋅⋅<>⋅=⋅=⋅=⋅=.故选:B5.若0,0m n >>,且3210m n +-=,则32m n+的最小值为()A.20B.12C.16D.25【答案】D 【解析】【分析】利用3232()(32)m n m n m n+=++,结合基本不等式可求和的最小值.【详解】因为3210m n +-=,所以321m n +=,所以32323266(1()(32)94n m m n m n m n m n m n+=+⨯=++=+++13131225≥+=+=,当且仅当66n m m n =,即15m n ==时取等号,所以32m n+的最小值为25.故选:D.6.已知ABC V 的内角,,A B C 所对的边分别为,,a b c ,π,33A b ==,下面可使得ABC V 有两组解的a 的值为()A.332B.3C.4D.e【答案】D 【解析】【分析】根据sin b A a b <<,即可得到答案.【详解】要使得ABC V 有两组解,则sin b A a b <<,又π,33A b ==,得到32a <<,故选:D.7.设()(),h x g x 是定义在R 上的两个函数,若1212,,x x x x ∀∈≠R ,有()()()()1212h x h x g x g x -≥-恒成立,下列四个命题正确的是()A.若ℎ是奇函数,则()g x 也一定是奇函数B.若()g x 是偶函数,则ℎ也一定是偶函数C.若ℎ是周期函数,则()g x 也一定是周期函数D.若ℎ是R 上的增函数,则()()()H x h x g x =-在R 上一定是减函数【答案】C 【解析】【分析】根据已知条件,依据函数的奇偶性,通过反例,可判断AB ;根据周期性的定义可判断C ,根据函数单调性的定义,结合不等式的性质可判断D【详解】对于A ,令(),()1h x x g x ==,对1212,,x x x x ∀∈≠R 可得()()12121211()()h x h x x x g x g x -=-≥-=-;而此时()g x 不是奇函数,故错误;对于B ,令(),()1h x x g x ==,()g x 是偶函数,对1212,,x x x x ∀∈≠R 可得()()12121211()()h x h x x x g x g x -=-≥-=-,此时ℎ为奇函数,故错误;对于C ,设ℎ的周期为T ,若1212,,x x x x ∀∈≠R ,有()()()()1212h x h x g x g x -≥-恒成立,令1x x T =+,2x x =,则()()()()h x T h x g x T g x +-≥+-,因为()()h x T h x +=,所以()()0g x T g x +-≤,所以()()g x T g x +=,所以函数=也是周期函数,故正确;对于D ,设12x x <,ℎ是上的增函数,所以()()12h x h x <,又()()()()1212h x h x g x g x -≥-即为121221()()()()()()h x h x g x g x h x h x -<-<-即为1122()()()()h x g x h x g x -<-,所以函数()()y h x g x =-也都是上的单调递增函数,故错误.故选:C8.已知向量4,8,2a b a b a b c +==⋅=-= ,且1n c -= ,则n 与c 夹角的最大值为()A.π6B.π4C.π3D.5π12【答案】A 【解析】【分析】先得到,a b 的夹角为2π3θ=,设()4,0a =,(b =-,故(c = ,设(),n x y = ,由1n c -= 得到()(2211x y -+=,设1cos ,sin x y ββ=+=+,设,n c 夹角为α,表达出cos α=,换元后得到3cos 44q qα=+,由对勾函数性质得到其值域,从而确定cos 2α⎤∈⎢⎥⎣⎦,得到夹角最大值.【详解】因为cos a b a b θ⋅=⋅ ,所以16cos 8θ=-,解得1cos 2θ=-,故2π3θ=,设()4,0a =,(b =-,则(2a bc +== ,设(),n x y =,则(1,n c x y -=-- ,则1n c -=,即()(2211x y -+=,设1cos ,sin x y ββ=+=+,设,n c夹角为α,则cos n c n c α⋅==⋅ ,令cos t ββ+=,则[]π2sin 2,26t β⎛⎫=+∈- ⎪⎝⎭,则cosα=[]1,3q =∈,则252q t -=,则2254332cos 2444q q q q q q α-++====+,其中344q y q=+在q ⎡∈⎣上单调递减,在q ⎤∈⎦上单调递增,当q =344q y q =+取得最小值,最小值为2,当1q =或3时,344qy q=+取得最大值,最大值为1,故3cos ,1442q q α⎤=+∈⎥⎣⎦,由于cos y α=在[]0,π上单调递减,故π0,6α⎡⎤∈⎢⎥⎣⎦,n 与c夹角的最大值为π6.故选:A【点睛】平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+ D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c a b c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD10.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象过点()0,1A 和()()00,20B x x ->,且满足min AB =,则下列结论正确的是()A.π6ϕ=B.π3ω=C.当1,14x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 值域为[]0,1 D.函数()y x f x =-有三个零点【答案】AD 【解析】【分析】A 选项,把()0,1A 代入解析式,得到π6ϕ=;B 选项,根据()()00,20B x x ->为函数的最低点及min AB =,由勾股定理得到方程,求出02x =,从而得到13224T T <<,把()2,2B -代入解析式,得到2π3ω=;C 选项,整体法求出函数值域;D 选项,画出()f x 与y x =的函数图象,根据交点个数得到零点个数.【详解】A 选项,把()0,1A 代入得2sin 1=ϕ,1sin 2ϕ=,因为π2ϕ<,所以π6ϕ=,A 正确;B 选项,()()00,20B x x ->为函数的最低点,min AB ==02x =,负值舍去,则13224T T <<,其中2πT ω=,故π3π24ω<<,故π2sin 226ω⎛⎫+=- ⎪⎝⎭,πsin 216ω⎛⎫+=- ⎪⎝⎭,由于π3π24ω<<,所以7ππ5π2663ω<+<,故π3π622ω+=,解得2π3ω=,B 错误;C 选项,()2ππ2sin 36f x x ⎛⎫=+⎪⎝⎭,1,14x ⎡⎤∈-⎢⎥⎣⎦时,2ππ5π0,366x ⎡⎤+∈⎢⎥⎣⎦,故2ππ1sin ,1362x ⎛⎫⎡⎤+∈-⎪⎢⎥⎝⎭⎣⎦,()[]2ππ2sin 1,236f x x ⎛⎫=+∈- ⎪⎝⎭,C 错误;D 选项,画出()f x 与y x =的函数图象,如下:两函数有3个交点,故()y x f x =-有三个零点,D 正确.故选:AD11.已知()()32231f x x x a x b =-+-+,则下列结论正确的是()A.当1a =时,若()f x 有三个零点,则b 的取值范围是()0,1B.当1a =且()0,πx ∈时,()()2sin sin f x f x<C.若()f x 满足()()12f x f x -=-,则22a b -=D.若()f x 存在极值点0x ,且()()01f x f x =,其中10x x ≠,则01322x x +=【答案】ABD 【解析】【分析】对于A ,将1a =代入求导求极值,有三个零点,则令极大值大于零,极小值小于零即可;对于B ,利用sin y x =的性质,得到20<sin 1,0<sin 1x x <<且2sin sin x x >,再利用()f x 在区间()0,1上的单调性,即可求解;对于C ,根据()()12f x f x -=-,推断函数的对称性,进而可以求得22b a -=,即可判断结果;对于D ,利用导数在函数单调性中的应用,得到12a >-,进而可得200661a x x =-+,令012x x t +=,结合()()01f x f x =,再化简即可得到答案.【详解】对于选项A ,当1a =时,()3223f x x x b =-+,()2666(1)f x x x x x '=-=-,由()6(1)0f x x x '=->,得到0x <或1x >,由()6(1)0f x x x '=-<,得到01x <<,所以()3223f x x x b =-+单调递增区间为(),0-∞,()1,+∞;减区间为()0,1,故()f x 在0x =处取到极大值,在1x =处取到极小值,若()f x 有三个零点,则(0)0(1)10f b f b =>⎧⎨=-<⎩,得到01b <<,故选项A 正确,对于选项B ,当()0,πx ∈时,20<sin 1,0<sin 1x x <<,又2sin sin sin (1sin )0x x x x -=->,即2sin sin x x >,由选项A 知,()f x 在区间()0,1上单调递减,所以()()2sin sin f x f x <,故选项B 正确,对于选项C ,因为()()12f x f x -=-,即()()12f x f x -+=,所以()f x 关于点1,12⎛⎫⎪⎝⎭中心对称,又()()32231f x x x a x b =-+-+的定义域为R ,所以()111123112842f a b =⨯-⨯+⎛⎫⎝⨯-+⎭=⎪,整理得到22b a -=,所以选项C 错误,对于选项D ,因为()()32231f x x x a x b =-+-+,所以()2661f x x x a '=-+-,由题有3624(1)0a ∆=-->,即12a >-,由()20006610f x x x a '=-+-=,得到200661a x x =-+,令012x x t +=,则102x t x =-,又()()01f x f x =,所以()()002=-fx f t x ,得到()()32320000002312(2)3(2)12()x x a x b t x t x a t x b -+-+=---+--+,整理得到220000(3)(626391)0x t x t tx t x a -+--++-=,又200661a x x =-+,代入化简得到20(3)(23)0x t t --+=,又012x x t +=,10x x ≠,所以00130x t x x -=-≠,得到230t -+=,即01322x x t +==,所以选项D 正确,故选:ABD.【点睛】关键点点晴:本题的关键在于选项D ,利用导数在函数单调性中的应用,得到12a >-,进而可得200661a x x =-+,再通过令012x x t +=,结合条件得到()()002=-f x f t x ,再代入()()32231f x x x a x b =-+-+,化简得到20(3)(23)0x t t --+=,从而解决问题.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}22|log ,|14x A x x m B x x -⎧⎫=<=≤⎨⎬-⎩⎭,若“x A ∈”是“x B ∈”的充分不必要条件,则实数m 的取值范围是______.【答案】(],2-∞【解析】【分析】根据“x A ∈”是“x B ∈”的充分不必要条件,明确集合A ,B 的关系,列不等式求解实数m 的取值范围.【详解】由2log x m <⇒02m x <<.所以()0,2mA =;由214x x -≤-⇒2104x x --≤-⇒2404x x x --+≤-⇒204x ≤-⇒4x <.所以(),4B ∞=-.因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊆且A B ≠.所以24m ≤⇒2m ≤.故答案为:(],2-∞13.已知()f x 是定义在R 上的奇函数,()2f x +为偶函数.当02x <<时,()()2log 1f x x =+,则()101f =______.【答案】1-【解析】【分析】根据函数的奇偶性确定函数的周期,再利用对数运算计算即可.【详解】由题意可知()()()(),22f x f x f x f x =--+=-+,所以()()()()()()()22248f x f x f x f x f x f x f x -+=--=+⇒+=-⇒+=,所以()f x 的一个正周期为8,即()()()()()2101511log 111f f f f ==-=-=-+=-.故答案为:1-14.已知函数()sin 1f x x x =-+,若关于x 的不等式()()e e22xxf ax f a x +--+>的解集中有且仅有2个正整数,则实数a 的取值范围为________.【答案】54324e 3e a ≤<【解析】【分析】原不等式的解集有且只有两个整数解等价于()11e 32x x x x a-<≥-的解集中有且仅有两个正整数,利用导数讨论后者的单调性后可求参数的取值范围.【详解】设()()1sin g x f x x x =-=-,则()()()1sin g x f x x x g x -=--=-+=-,而()g x 的定义域为R ,故()g x 为R 上的奇函数,()cos 10g x x =-≤'(不恒为零),故()g x 为R 上的单调减函数,又()()e1e210xxf ax f a x -+--+->即为:()()e e 20x x g ax g a x +--+>,也就是()()ee2xxg ax g a x >+-,故e e 2x x ax a x <+-,故()1e 2xa x x -<-的解集中有且仅有两个正整数,若0a ≤,则当3x ≥时,()1e 012xa x x -≤<≤-,此时不等式的解集中有无数个正整数解,不合题意;若0a >,因为()111e 12a ->-,()221e 22a ->-,故()1e 2xa x x -<-的解集中不会有1,2,其解集中的正整数解必定大于等于3,不妨设3x ≥,则11e 2x x x a-<-的解集中有且仅有两个正整数,设()1e ,32x x s x x x -=≥-,()()()22231991e e 022x x x s x x x ≥-+-+=-'>-,故()s x 在[)3,+∞上为增函数,由题设可得45411e 42511e 52a a -⎧<⎪⎪-⎨-⎪≥⎪-⎩,故54324e 3e a ≤<,故答案为:54324e 3e a ≤<.【点睛】思路点睛:不等式解集中的正整数解的个数问题,可通过参变分离转化水平的动直线与确定函数图像的位置关系来处理.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.设n S 为数列{}n a 的前n 项和,满足()*1n n S a n =-∈N.(1)求证:1(2n n a =;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)证明见解析(2)1235111()(3232n n n --+-⋅【解析】【分析】(1)根据题意,得到2n ≥时,可得111n n S a --=-,两式相减得12n n a a -=,得到数列{}n a 为等比数列,即可得证;(2)由(1)求得21111()()24n n n S --+=,结合等比数列的求和公式,即可求解.【小问1详解】解:因为数列{}n a 的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{}n a 构成首项为12,公比为12的等比数列,所以{}n a 的图象公式为1111(()222n n n a -=⋅=.【小问2详解】解:由(1)知1()2n n a =,可得11()2n n S =-,所以222111111()]12()()1()(22224[1n n n n n n S -=-⋅=+=-+-,则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++--- 1235111()()3232n n n --=+-⋅.16.函数()2sin cos cos ,0f x x x x ωωωω=⋅+>,函数()f x 的最小正周期为π.(1)求函数()f x 的单调递增区间以及对称中心;(2)将函数()f x 的图象先向右平移π8个单位,再向下平移12个单位,得到函数()g x 的图象,在函数()g x 图象上从左到右依次取点122024,,,A A A ⋯,该点列的横坐标依次为122024,,,x x x ⋯,其中1π4x =,()*1π3n n x x n +-=∈N ,求()()()122024g x g x g x ++⋯+.【答案】(1)增区间为3πππ,π,88k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,对称中心为为ππ1,,282l l ⎛⎫-∈ ⎪⎝⎭Z .(2)4【解析】【分析】(1)利用三角变换可得()12πsin 2224f x x ω⎛⎫=++ ⎪⎝⎭,结合周期可求1ω=,再利用整体法可求单调增区间和对称中心.(2)根据图象变换可得()sin 22g x x =,根据其周期性和特殊角的三角函数值可求()()()122024g x g x g x ++⋯+的值.【小问1详解】()11cos 212πsin 2222224x f x x x ωωω+⎛⎫=+=++ ⎪⎝⎭,因为()f x 的最小正周期为π,故2ππ2ω=,即1ω=,所以()12πsin 2224f x x ⎛⎫=++ ⎪⎝⎭,令πππ2π22π,242k x k k -≤+≤+∈Z ,故3ππππ,88k x k k -≤≤+∈Z ,故()f x 的增区间为3πππ,π,88k k k ⎡⎤-+∈⎢⎥⎣⎦Z .令π2π,Z 4x l l +=∈,则ππ,28l x l =-∈Z ,故()f x 图象的对称中心为ππ1,,282l l ⎛⎫-∈ ⎪⎝⎭Z .【小问2详解】由题设有()11ππsin 22222442g x x x ⎛⎫=-+-+= ⎪⎝⎭,则()g x 的周期为π,而3π3π3n n x x +-=⨯=,故()()3n n g x g x +=,而()()12πππ2π,2432234g x g x g ⎛⎫⎛⎫==+=+=- ⎪ ⎪⎝⎭⎝⎭,()3π2ππ4πsin 432234g x g ⎛⎫⎛⎫=+=+=- ⎪ ⎝⎭⎝⎭,故()()()()()()()()12202412123674g x g x g x g x g x g x g x g x ⎡⎤++⋯+=++++⎣⎦222222674242444⎛⎫=-+--= ⎪ ⎪⎝⎭17.已知函数()()()232ln 34f x a x x a x a =+-+∈R ,(1)若曲线()y f x =在点()()1,1f 处的切线方程为()f x x b =-+,求a 和b 的值;(2)讨论()f x 的单调性.【答案】(1)12a =,74b =-(2)答案见解析【解析】【分析】(1)先对函数求导,结合导数的几何意义与斜率关系即可求解;(2)结合导数与单调性关系对a 的范围进行分类讨论即可求解.【小问1详解】()()232ln 34f x a x x a x =+-+,则23()32a f x x a x '=+--.曲线()y f x =在点()()1,1f 处的切线方程为()f x x b =-+,则()3112f a '=-=-,解得12a =,由()9114f ab =--=-+,解得74b =-,【小问2详解】()()232ln 34f x a x x a x =+-+,函数定义域为()0,∞+,则()()32223()322x a x a f x x a x x --'=+--=,令()0f x '=,解得2x =或23a x =,若0a ≤,则当(0,2)x ∈时,()0f x '<,()f x 单调递减,当(2,)x ∈+∞时,()0f x '>,()f x 单调递增,若0<<3a ,则当2,23a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减,当20,3a x ⎛⎫∈ ⎪⎝⎭和(2,)x ∈+∞时,()0f x '>,()f x 单调递增,若3a =,则()0f x '≥在(0,)+∞上恒成立,()f x 单调递增,若3a >,则当232,x a ∈⎛⎫ ⎪⎝⎭时,()0f x '<,()f x 单调递减,当(0,2)x ∈和,23x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增,综上所述,当0a ≤时,()f x 的单调递增区间为(2,)+∞,单调递减区间为(0,2),当0<<3a 时,()f x 的单调递增区间为20,3a ⎛⎫ ⎪⎝⎭和(2,)+∞,单调递减区间为2,23a ⎛⎫ ⎪⎝⎭,当3a =时,()f x 的单调递增区间为(0,)+∞,无单调递减区间,当3a >时,()f x 的单调递增区间为(0,2)和2,3a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为2,23a ⎛⎫ ⎪⎝⎭.18.在ABC V 中,角,,A B C 所对的边分别为,,a b c .(1)证明:1cos sin tan 2sin 1cos A A A A A-==+;(2)若,,a b c 成等比数列.(i )设b q a=,求q 的取值范围;(ii )求tantan 22A C 的取值范围.【答案】(1)证明见解析(2)(i)11,22⎛⎫ ⎪ ⎪⎝⎭;(ii)13,32⎡⎫⎪⎢⎪⎣⎭【解析】【分析】(1)利用二倍角公式及同角三角函数的平方关系证明即可;(2)(i )利用三角形三边关系建立不等式组解不等式即可;(ii )利用第一问及第二问第一小问的结论,结合正余弦定理、对勾函数的单调性计算即可.【小问1详解】易知(),,0,πA B C ∈,所以sin 0,sin 0,cos 0,1cos 0,1cos 022A A A A A ≠≠≠-≠+≠,则对于2112sin 1cos 2tan sin 22sin cos 22A A A A A A ⎛⎫-- ⎪-⎝⎭==,即左侧等式成立,又()()22sin 1cos 1cos 1cos A A A A =-=-+,两侧同时除以()1cos sin A A +,所以1cos sin sin 1cos A A A A-=+,即右侧等式成立,证毕;【小问2详解】(i )由题意,设公比为q ,知2,b aq c aq ==,根据三角形三边关系知:22222201110q q q a aq aq q q a aq aq q q aq aq a q >⎧+>⎧⎪⎪+>+>⎪⎪⇒⎨⎨+>+>⎪⎪⎪⎪+>>⎩⎩,解之得11,22q ⎛⎫∈ ⎪ ⎪⎝⎭(ii )由(1)及正弦定理、余弦定理知:222222221sin 1cos 2tan tan 221cos sin 12a b c A C A C a a c b a aq aq ab c b a A C c a c b a aq aq bc+---+-+-=⋅=⋅==+-++-+++222122111111q q q q q q q q q+-==-=-++++++,由对勾函数的性质知:()11f q q q =++在51,12⎛⎫- ⎪ ⎪⎝⎭上单调递减,在511,2⎛⎫ ⎪ ⎪⎝⎭上单调递增,所以())111f q q q ⎡=++∈⎣,则2131,1321q q ⎡⎫-∈⎪⎢⎪⎣⎭++,即tan tan 22A C 的取值范围为13,32⎡⎫⎪⎢⎪⎣⎭.19.已知定义在()0,∞+的两个函数,()()()1sin sin,0a f x x g x x a x=⋅=>.(1)证明:()sin 0x x x <>;(2)若()sin a h x x x =-.证明:当1a >时,存在()00,1x ∈,使得()00h x >;(3)若()()f x g x <恒成立,求a 的取值范围.【答案】(1)证明见解析(2)证明见解析(3)(]0,1【解析】【分析】(1)当1x ≥显然成立,当01x <<,构造函数利用导数证明sin x x <即可;(2)先求得()h x '在0,1单调递减,且()010h '=>,()010h '=>即可得;(3)sin x 与1sin x 异号,1x ≥时,()()f x g x <显然成立,只考虑∈0,1时,1sin sin a x x x ⋅<,()0a >,根据01a <≤,1a >分类利用(1)(2)结论判断即可.【小问1详解】当1x ≥时,sin x x <显然成立,当01x <<时,sin sin x x =.即证()sin ,0,1x x x <∈,设()()sin ,0,1x x x x ϕ=-∈,()1cos 0x x ϕ'=-≥,所以在0,1上单调递增,()()00x ϕϕ>=,故()sin ,0,1x x x <∈,综上可知:()sin 0x x x <>;【小问2详解】当1a >时,()sin a h x x x =-,()1cos a h x x ax --'=,当∈0,1时,cos x 单调递减,1a ax -单调递增,故()h x '在0,1单调递减,又()010h '=>,()010h '=>,所以()h x '在0,1存在唯一零点,记为0x ,所以ℎ在()00,x 单调递增,在()0,1x 单调递减,所以()00h x >,证毕.【小问3详解】由()()f x g x <,0x >,即1sin sin,0a x x x x ⋅<>,若sin x 与1sin x 异号,显然成立,只考虑sin x 与1sin x 同号,又1x =时,2sin 1命题成立;1x >时,11sin sin a x x x >≥⋅,命题成立,故只需考虑∈0,1时,1sin sin a x x x ⋅<,()0a >①,若01a <≤,11sin sin sin sin sin a x x x x x x x⋅=⋅≤<<,(用(1)的结论)①式成立,若1a >,取*N m ∈,01m x >,取()1010,12π2x x m =∈⎛⎫+ ⎪⎝⎭,则:1111111sin sin sin sin 2π=sin 2a x x m x x x ⎛⎫⋅=⋅+> ⎪⎝⎭,(用(2)的结论)故①不成立,综上:a 的取值范围为:(]0,1.。
湖北省武汉市2025届高三上学期十月月度检测数学试卷含答案
2024-2025学年度十月月度检测数学试题(答案在最后)时限:120分钟满分:150分命题人:一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合1{(,)|||},(,)|||A x y y x B x y y x ⎧⎫====⎨⎬⎩⎭,则A B = ()A.{1,1}-B.{(1,1),(1,1)}- C.(0,)+∞ D.(0,1)【答案】B 【解析】【分析】先解方程组,得出点的坐标即可得出交集.【详解】,1y x y x ⎧=⎪⎨=⎪⎩,解得1,1x y =⎧⎨=⎩,或1,1x y =-⎧⎨=⎩,所以{(1,1),(1,1)}A B =- ,故选:B .2.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由当21,n k k =+∈N 时,′≥0,可得()(2)nf x x =-是增函数,即可得到答案.【详解】由()(2)nf x x =-,得()1(2)n f x n x --'=,则当21,n k k =+∈N 时,′≥0,()(2)nf x x =-是增函数,当1n =时,可得()f x 是增函数;当()f x 是增函数时,21,n k k =+∈N ,故“1n =”是“()f x 是增函数”的充分不必要条件.3.函数()sin cos f x a x b x =+图像的一条对称轴为π3x =,则a b =()A.B. C.3D.3-【答案】A 【解析】【分析】直接利用对称性,取特殊值,即可求出a b.【详解】由()()sin cos 0f x a x b x ω=+>的图象关于π3x =对称,可知:2π(0)(3f f =,即sin0cos0=s 3o 2π3i 2πn c s a b a b ++,则a b=故选:A .4.已知随机变量()2~2,N ξσ,且(1)()P P a ξξ≤=≥,则19(0)x a xa x+<<-的最小值为()A.5B.112 C.203D.163【答案】D 【解析】【分析】根据正态分布的对称性求得a ,利用基本不等式求得正确答案.【详解】根据正态分布的知识得12243a a +=⨯=⇒=,则03,30x x <-,19119139(3)103333x x x x x a x x x x x -⎛⎫⎛⎫+=+-+=++ ⎪ ⎪---⎝⎭⎝⎭1161033⎛≥+= ⎝,当且仅当393x x x x -=-,即34x =时取等.故选:D5.已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象关于原点对称,则()f x 的图象的对称轴可以为().A.π12x = B.π6x =C.π3x =D.5π12x =【答案】D【分析】根据题意找到函数的对称点得()π03f x f x ⎛⎫+-= ⎪⎝⎭,结合特殊值法计算得a =角公式化简得()π2sin 23f x x ⎛⎫=-⎪⎝⎭,最后整体替换计算得到结果;【详解】由题意可得()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称,即对任意x ∈R ,有()π03f x f x ⎛⎫+-=⎪⎝⎭,取0x =,可得()π300322a f f ⎛⎫+=+=⎪⎝⎭,即a =.故()πsin22sin 23f x x x x ⎛⎫=-=- ⎪⎝⎭,令ππ2π32x k -=+,k ∈Z ,可得()f x 的图象的对称轴为5ππ122k x =+,k ∈Z .故选:D .6.设37a =,ln 2b =,3sin 7c =,则()A.b c a >>B.a c b>> C.a b c>> D.b a c>>【答案】D 【解析】【分析】构造函数()πsin (0)2f x x x x =-<<,利用导数探讨单调性并比较,a c ,再利用对数函数单调性比较大小即得.【详解】当π02x <<时,令()sin f x x x =-,求导得()1cos 0f x x '=->,则函数()f x 在π(0,)2上单调递增,有()(0)0f x f >=,即有sin x x >,因此33sin 77a c =>=,显然13ln 2ln 27b a =>=>=,所以b a c >>.故选:D7.已知函数()222cos (sin cos )(0)f x x x x ωωωω=-->的图象关于直线π12x =轴对称,且()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,则ω的值为()A.12B.1C.32D.2【答案】C 【解析】【分析】先由三角恒等变换化简解析式,再由对称轴方程解得36,2k k ω=+∈Z ,再由()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值得ω范围,建立不等式求解可得.【详解】()()2222cos sin 2sin cos cos f x x x x x x ωωωωω=--+22cos sin21cos2sin2x x x x ωωωω=+-=+π24x ω⎛⎫=+ ⎪⎝⎭,因为()f x 的图象关于直线π12x =轴对称,所以πππ1264f ω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故ππππ,642k k ω+=+∈Z ,即36,2k k ω=+∈Z ,当ππ22π42x m ω+=-+,m ∈Z ,0ω>,即当3ππ,8m x m ωω=-+∈Z 时,函数()f x 取得最小值,当1m =时,5π8x ω=为y 轴右侧第1条对称轴.因为()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,所以5ππ83ω≥,即158ω≤,故由3150628k <+≤,解得11416k -<≤,k ∈Z故0k =,得32ω=.故选:C.8.定义在R上的奇函数()f x ,且对任意实数x 都有()302f x f x ⎛⎫--+=⎪⎝⎭,()12024e f =.若()()0f x f x '+->,则不等式()11e xf x +>的解集是()A.()3,+∞ B.(),3-∞ C.()1,+∞ D.(),1-∞【答案】C【解析】【分析】由()f x 是奇函数,可得()f x '是偶函数,得到()()0f x f x +'>,令()()e xg x f x =,得到()0g x '>,得出()g x 在R 上单调递增,再由()302f x f x ⎛⎫--+= ⎪⎝⎭,求得()f x 的周期为3的周期函数,根据()12024ef =,得到()2e g =,把不等式转化为()()12g x g +>,结合函数的单调性,即可求解.【详解】因为()f x 是奇函数,可得()f x '是偶函数,又因为()()0f x f x '+->,所以()()0f x f x +'>,令()()e x g x f x =,可得()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,所以()g x 在R 上单调递增,因为()302f x f x ⎛⎫--+=⎪⎝⎭且()f x 是奇函数,可得()()23f x f x f x ⎛⎫+=-=-⎪⎝⎭,则()()3333[()()222f x f x f x f x +=++=-+=,所以()f x 的周期为3的周期函数,因为()()()12024674322e f f f =⨯+==,所以()212e e eg =⨯=,则不等式()11e xf x +>,即为()1e 1e xf x ++>,即()()12g x g +>,又因为()g x 在R 上单调递增,所以12x +>,解得1x >,所以不等式()11ex f x +>的解集为()1,+∞.故选:C .二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列等式成立的是()A.()21sin15cos152︒-︒=B.22sin 22.5cos 22.52︒-︒=-C.1cos28cos32cos62cos582︒︒-︒︒=-D.(3tan10cos502︒︒=-【答案】AB 【解析】【分析】应用倍角正余弦、和差角正余弦公式及诱导公式化简求值,即可判断各项的正误.【详解】A :()21sin15cos1512sin15cos151sin 302︒-︒=-︒︒=-︒=,成立;B:22sin 22.5cos 22.5cos 452︒-︒=-︒=-,成立;C :cos 28cos32cos62cos58cos 28cos32sin 28sin 32cos(2832)︒︒-︒︒=︒︒-︒︒=︒+︒1cos602=︒=,不成立;D:(sin102sin 50cos50sin100tan10cos50cos50cos10cos10cos10︒-︒-︒︒-︒︒-︒=⋅︒=︒︒︒cos101cos10︒=-=-︒,不成立.故选:AB10.已知抛物线()2:20C y px p =>,过C 的焦点F 作直线:1l x ty =+,若C 与l 交于,A B 两点,2AF FB =,则下列结论正确的有()A.2p =B.3AF =C.t =或-D.线段AB 中点的横坐标为54【答案】ABD 【解析】【分析】由直线:1l x ty =+,可知焦点1,0,得p 的值和抛物线方程,可判断A 选项;直线方程代入抛物线方程,由韦达定理结合2AF FB =,求出,A B 两点坐标和t 的值,结合韦达定理和弦长公式判断选项BCD.【详解】抛物线()2:20C y px p =>的焦点F 在x 轴上,过F 作直线:1l x ty =+,可知1,0,则12p=,得2p =,A 选项正确;抛物线方程为24y x =,直线l 的方程代入抛物线方程,得2440y ty --=.设1,1,2,2,由韦达定理有124y y t +=,124y y =-,2AF FB =,得122y y=-,解得12y y =-=12y y ==,124y y t=+,则4t =或4t =-,C 选项错误;则1212,2x x ==,线段AB 中点的横坐标为121252242x x ++==,D 选项正确;12192222AB x x p =++=++=,2293332AF AB ==⨯=,B 选项正确.故选:ABD.11.已知()00,P x y 是曲线33:C x y y x +=-上的一点,则下列选项中正确的是()A.曲线C 的图象关于原点对称B.对任意0x ∈R ,直线0x x =与曲线C 有唯一交点PC.对任意[]01,1y ∈-,恒有012x <D.曲线C 在11y -≤≤的部分与y 轴围成图形的面积小于π4【答案】ACD 【解析】【分析】将x ,y 替换为x -,y -计算即可判断A ;取0x =,可判断有三个交点即可判断B ;利用函数3y x x =-的单调性来得出300y y -的取值范围,再结合()3f x x x =+的单调性进行求解即可判断C ;利用图象的对称性和半圆的面积进行比较即可判断D .【详解】A .对于33x y y x +=-,将x ,y 替换为x -,y -,所得等式与原来等价,故A 正确;B .取0x =,可以求得0y =,1y =,1y =-均可,故B 错误;C .由330000x x y y +=-,[]01,1y ∈-,函数3y x x =-,故213y x '=-,令2130y x '=-=,解得:13x =±,在1,3x ⎡∈--⎢⎣⎦,,13⎤⎥⎣⎦时,0'<y ,函数单调递减,在,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,0'>y ,函数单调递增,所以300,99y y ⎡-∈-⎢⎣⎦,又因为()3f x x x =+是增函数,15289f ⎛⎫=>⎪⎝⎭,所以有012x <,故C 正确;D .当[]00,1y ∈时,3300000x x y y +=-≥,又320002x x x +≥,32000022y y y y -≤-,所以22000x y y ≤-.曲线22x y y =-与y 轴围成半圆,又曲线C 的图象关于原点对称,则曲线C 与y 轴围成图形的面积小于π4,故D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分)12.若π,02α⎛⎫∈- ⎪⎝⎭,且πcos2cos 4αα⎛⎫=+ ⎪⎝⎭,则α=__________.【答案】π12-【解析】【分析】化简三角函数式,求出1sin 42πα⎛⎫+= ⎪⎝⎭,根据π,02α⎛⎫∈- ⎪⎝⎭即可求解.【详解】由πcos2cos 4αα⎛⎫=+⎪⎝⎭,得()22cos sin cos sin 2αααα-=-.因为π,02α⎛⎫∈- ⎪⎝⎭,所以cos sin 0αα-≠,则cos sin 2αα+=,则1sin 42πα⎛⎫+= ⎪⎝⎭.由π,02α⎛⎫∈- ⎪⎝⎭,得πππ,444α⎛⎫+∈- ⎪⎝⎭,则ππ46α+=,解得π12α=-.故答案为:π12-.13.海上某货轮在A 处看灯塔B ,在货轮北偏东75︒,距离为A 处看灯塔C ,在货轮的北偏西30︒,距离为海里C 处,货轮由A 处向正北航行到D 处时看灯塔B 在东偏南30︒,则灯塔C 与D 处之间的距离为______海里.【答案】【解析】【分析】由正弦定理和余弦定理求解即可.【详解】如图:由题意75DAB ∠=︒,903060ADB ∠=-︒=︒,所以180756045DBA ∠=︒-︒-︒=︒,在ABD △中,由正弦定理sin sin AD AB ABD ADB =∠∠,即306sin 45sin 60AD =︒︒,所以60AD =,在ADC △中,30DAC ∠=︒,所以20CD =.故答案为:14.若存在实数m ,使得对于任意的[],x a b ∈,不等式2πsin cos 2sin 4m x x x m ⎛⎫+≤-⋅ ⎪⎝⎭恒成立,则b a -取得最大值时,sin2a b+=__________.【答案】2【解析】【分析】以m 为变量,结合一元二次不等式的存在性问题可得1sin 22x ≤,解不等式结合题意得[]()7ππ,π,π,1212a b k k k ⎡⎤⊆-+∈⎢⎥⎣⎦Z ,由此可得答案.【详解】因为2πsin cos 2sin 4m x x x m ⎛⎫+≤-⋅ ⎪⎝⎭恒成立,即2π2sin sin cos 04m x m x x ⎛⎫--⋅+≤ ⎪⎝⎭恒成立,若存在实数m ,使得上式成立,则2πΔ4sin 4sin cos 04x x x ⎛⎫=--≥ ⎪⎝⎭,则πΔ22cos 22sin 222sin 22sin 224sin 202x x x x x ⎛⎫=---=--=-≥ ⎪⎝⎭,可得1sin 22x ≤,可得7ππ2π22π,66k x k k -≤≤+∈Z ,解得7ππππ,1212k x k k -≤≤+∈Z ,由[]()7ππ,π,π,1212a b k k k ⎡⎤⊆-+∈⎢⎥⎣⎦Z ,则b a -取得最大值时()7πππ,π,1212a k bk k =-=+∈Z ,此时()7ππππ1212sin sin ,222k k a b k -+++==∈Z .故答案为:2.【点睛】关键点点睛:双变量问题的解题关键是一次只研究其中一个变量,本题先以m 为变量,转化为存在性问题分析求解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知函数()π4sin cos 6f x x x ⎛⎫=+ ⎪⎝⎭,x ∈R .(1)求函数()f x 的单调减区间;(2)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值与最小值.【答案】(1)π2ππ,π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦(2)()min 2f x =-,()max 1f x =【解析】【分析】(1)根据三角恒等变换化简函数()f x ,再根据正弦函数的单调性结合整体思想即可得解;(2)由x 的范围求得π26x +的范围,再根据正弦函数的性质即可得解.【小问1详解】解:()2π314sin cos 4sin cos sin cos 2sin 622f x x x x x x x x x ⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭1πcos212sin2cos212sin 21226x x x x x ⎛⎫⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,令ππ3π2π22π,262k x k k +≤+≤+∈Z ,解得π2πππ63k x k +≤≤+,所以函数()f x 的单调减区间为π2ππ,π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦;【小问2详解】解:因为π02x ≤≤,所以ππ7π2666x +≤≤,所以1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,于是π12sin 226x ⎛⎫-≤+≤ ⎪⎝⎭,所以()21f x -≤≤,当且仅当π2x =时,()f x 取最小值()min π22f x f ⎛⎫==- ⎪⎝⎭,当且仅当ππ262x +=,即π6x =时,()f x 取最大值()max π16f x f ⎛⎫== ⎪⎝⎭.16.已知0b >,函数2()((ln )1)f x x x x bx =---在点()(1,)1f 处的切线过点()0,1-.(1)求实数b 的值;(2)证明:()f x 在()0,∞+上单调递增;(3)若对())1,1(x f x a x ∀≥≥-恒成立,求实数a 的取值范围.【答案】(1)1b =(2)证明见解析(3)(,1]-∞【解析】【分析】(1)先求导函数再写出切线方程代入点得出参数值;(2)求出导函数1()2ln 2f x x x x'=+--,再根据导函数求出()(1)10f x f ''≥=>即可证明单调性;(3)根据函数解析式分1x =和1x >两种情况化简转化为ln x x a -≥恒成立,再求()ln (1)h x x x x =->的单调性得出最值即可求出参数范围.【小问1详解】()f x 的定义域为1(0,),()2ln()2f x x bx x'+∞=+--,故(1)1ln f b '=-,又(1)0f =,所以()f x 在点(1,(1))f 处的切线方程为(1ln )(1)y b x =--,将点(0,1)-代入得1ln 1b -=,解得1b =.【小问2详解】由(1)知2()(1)ln f x x x x x =---,则1()2ln 2f x x x x'=+--,令1()()2ln 2g x f x x x x '==+--,则22221121(1)(21)()2x x x x g x x x x x---+'=--==,当01x <<时,()0,()g x g x <'单调递减;当1x >时,()0,()g x g x >'单调递增,所以()(1)10f x f ''≥=>,所以()f x 在(0,)+∞上单调递增.【小问3详解】对())1,1(x f x a x ∀≥≥-恒成立,即对1,(1)(1)ln (1)x x x x x a x ∀≥---≥-恒成立,当1x =时,上式显然恒成立;当1x >时,上式转化为ln x x a -≥恒成立,设()ln (1)h x x x x =->,则11()10x h x x x'-=-=>,所以()h x 在(1,)+∞上单调递增;所以()(1)1h x h >=,故1a ≤,所以实数a 的取值范围为(,1]-∞.17.在ABC V 中,设内角A ,B ,C 所对的边分别为,,a b c .(1)2b a =+,4c a =+,是否存在正整数a *N ,且ABC V 为钝角三角形?若存在,求出a ;若不存在,说明理由.(2)若4,a b c D ===为BC 的中点,E ,F 分别在线段,AB AC 上,且90EDF ︒∠=,CDF θ∠=()090θ︒︒<<,求DEF 面积S 的最小值及此时对应的θ的值.【答案】(1)存在,4a =(2)12-【解析】【分析】(1)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值;(2)由正弦定理可得出()sin 60DF θ=+︒,()sin 150DE θ=︒-,再利用三角形的面积公式和两角和与差的正弦公式化简即可求得结果.【小问1详解】假设存在正整数a 满足题设.ABC V 为钝角三角形,因为a b c <<,所以C 为钝角,根据题设,2b a =+,4c a =+,由余弦定理222cos 2a b c C ab+-=,所以()222(2)(4)1cos 022a a a C a a ++-+-<=<+,得24120a a --<,解得26a -<<.因为**a ∈N N ,所以1a =或4a =,当1a =时,ABC V 不存在,故存在4a =满足题设.所以4a =【小问2详解】如图,因为()90,090EDF CDF θθ∠=︒∠=︒<<︒,所以90BDE θ∠=︒-.在CDF V 中,因为()2sin60sin 60DF θ=︒+︒,所以()3sin 60DF θ=+︒在BDE V 中,因为()2sin 60sin 150DE θ=︒︒-,所以()sin 150DE θ=︒-.所以()()132sin 60sin 150S θθ=⨯+︒︒-,设()()()sin 60sin 150f θθθ=+︒︒-,()090θ︒<<︒,所以11()sin cos cos sin 2222f θθθθθ⎛⎫⎛⎫=++ ⎪⎪⎪⎪⎝⎭⎝⎭2213cos cos sin 444θθθθ+=++化简可得:()1sin 242f θθ=+所以1122S =-当45θ=︒时,S取得最小值12-18.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率22e =,点,P Q 分别是椭圆的右顶点和上顶点,POQ 的边PQ上的中线长为2.(1)求椭圆的标准方程;(2)过点(2,0)H -的直线交椭圆C 于,A B 两点,若11AF BF ⊥,求直线AB 的方程;(3)直线12,l l 过右焦点2F ,且它们的斜率乘积为12-,设12,l l 分别与椭圆交于点,C D 和,E F .若,M N 分别是线段CD 和EF 的中点,求OMN 面积的最大值.【答案】(1)2212x y +=(2)220x y -+-或220x y ++=(3)8【解析】【分析】(1)根据POQ △的边PQ上中线为2得PQ ==,再联立2222,2c e a b c a ===+即可求解;(2)设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立直线AB 与椭圆方程得1212,x x x x +,再由11AF BF ⊥,即110AF BF ⋅= ,最后代入即可求解;(3)设直线1l 的方程为(1)y k x =+,则直线2l 的方程为1(1)2y x k =-+,分别与椭圆方程联立,通过韦达定理求出中点,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =- 整理后利用基本不等式即可得到面积的最值.【小问1详解】由题意,因为(,0),(0,)P a Q b ,POQ △为直角三角形,所以PQ ==.又2222,2c e a b c a ===+,所以1,1a b c ===,所以椭圆的标准方程为2212x y +=.【小问2详解】由(1)知,1(1,0)F -,显然直线AB 的斜率存在,设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立2212(2)x y y k x ⎧+=⎪⎨⎪=+⎩消去y 得,2222(12)8820k x k x k +++-=,所以22222(8)4(12)(82)8(12)0k k k k ∆=-+-=->,即2102k <<.且22121222882,1212k k x x x x k k-+=-=++,因为11AF BF ⊥,所以110AF BF ⋅= ,所以1122(1,)(1,)0x y x y ------=,即12121210x x x x y y ++++=,所以1212121(2)(2)0x x x x k x k x +++++⋅+=,整理得2221212(12)()(1)140k x x k x x k ++++++=,即22222228(1)(82)(12)()1401212k k k k k k k +-+-+++=++,化简得2410k -=,即12k =±满足条件,所以直线AB 的方程为1(2)2y x =+或1(2)2y x =-+,即直线AB 的方程为220x y -+=或220x y ++=.【小问3详解】由题意,2(1,0)F ,设直线1l 的方程为(1)y k x =+,3344(,),(,)C x y D x y ,则直线2l 的方程为1(1)2y x k=-+,5566(,),(,)E x y F x y ,联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222)202142(-=+-+x k x k k ,所以22343422422,1212k k x x x x k k -+==++所以23422,212M x x k x k +==+2(1)12M M k y k x k =-=-+所以2222(,)1212k k M k k -++,同理联立22121(1)2x y y x k ⎧+=⎪⎪⎨⎪=--⎪⎩消去y 得222(12)2140k x x k +-+-=,所以2565622214,1212k x x x x k k -+==++所以5621,212N x x x k +==+21(1)212N N k y x k k =--=+所以221(,)1212k N k k ++,即MN 的中点1(,0)2T .所以221121||11||||||12412212282||||OMN M N k k S OT y y k k k k =-==⨯=⨯+++ ,当且仅当12||||k k =,即22k =±时取等号,所以OMN的面积最大值为8.【点睛】关键点点睛:本题考查待定系数法求椭圆的标准方程,直线与椭圆综合应用问题,利用基本不等式求最值,第三问的解题关键是分类联立直线12,l l 与椭圆方程,求出,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =- 整理后利用基本不等式得到面积的最值..19.正整数集{}1,2,3,,3A m m m m n =++++ ,其中,m n +∈∈N N .将集合A 拆分成n 个三元子集,这n 个集合两两没有公共元素.若存在一种拆法,使得每个三元子集中都有一个数等于其他两数之和,则称集合A 是“三元可拆集”.(1)若1,3m n ==,判断集合A 是否为“三元可拆集”,若是,请给出一种拆法;若不是,请说明理由;(2)若0,6m n ==,证明:集合A 不是“三元可拆集”;(3)若16n =,是否存在m 使得集合A 是“三元可拆集”,若存在,请求出m 的最大值并给出一种拆法;若不存在,请说明理由.【答案】(1)是,拆法见解析(2)证明见解析(3)答案见解析【解析】【分析】(1){}2,3,4,,10A = ,可拆成{}{}{}10,7,39,5,48,6,2、、或{}10,6,4、{}{}9,7,28,5,3、;(2)三元可拆集”中所有元素和为偶数,A 中所有元素和为19181712⨯=,与和为偶数矛盾;(3)可以拆成16个三元子集,将这16个三元子集中的最大的数依次记为12316,,,,a a a a ,利用等差数列求和得到1231616648a a a a m ++++≤+ ,结合1231624588a a a a m ++++=+ ,得到不等式,求出152m ≤,当7m =时写出相应的集合A 以及具体拆法,得到答案.【小问1详解】是,{}2,3,4,,10A = ,可拆成{}{}{}10,7,39,5,48,6,2、、或{}10,6,4、{}{}9,7,28,5,3、;【小问2详解】对于“三元可拆集”,其每个三元子集的元素之和为偶数,则“三元可拆集”中所有元素和为偶数;而{}1,2,3,4,,18A = ,A 中所有元素和为19181712⨯=,与和为偶数矛盾,所以集合A 不是“三元可拆集”;【小问3详解】{}1,2,3,,48A m m m m =++++ 有48个元素,可以拆成16个三元子集,将这16个三元子集中的最大的数依次记为12316,,,,a a a a ,则()()()()1231648474633a a a a m m m m ++++≤++++++++ ()28116166482m m +⨯==+;另一方面,A 中所有元素和为()249484811762m m +⨯=+,所以212316481176245882m a a a a m +++++==+ ,所以2458816648m m +≤+,解得152m ≤,即7m ≤;当7m =时,{}8,9,10,,55A = ,可拆为{}{}55,40,1554,38,16、、{}{}{}{}{}{}53,39,1452,35,1751,31,2050,37,1349,25,2448,26,22、、、、、、{}{}{}{}{}{}47,29,1846,27,1945,34,1144,23,2143,33,1042,30,12、、、、、、{}{}41,32,9,36,28,8(拆法不唯一);综上所述,m 的最大值是7.【点睛】关键点点睛:集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数的性质,数列知识等进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决.。
湖北省2020高三八校第一次联考理数
2O20届高三八校第一次联考
数 学(理科)
2019.U
命题学校:华师一附中 命题人:王文莹 审题人:张丹 黄进林
注意事项:
l. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮
夹.充分不必要条件 B。 必要不充分条拌 C.充 要条件
D.既不 充分也不必要 条恪
9.鲁 班锁是中国古代传统土本建筑中常用的国定结合器 ,也是广泛流抟于申国∷民闯的智力玩具 ,它起源于古
代中国建筑首创的榫卯结构。这种三维的拼插器具 内部的凹凸部分(即 榫卵结构)啮合 ,外 观看上去是严
丝合缝的十字几何体 ,其上下 、左右、蓠后完全对称 ,十分巧班 鲁斑锬的种类各式各样 |其 中以最常见的六
c.互_互 22
#互 D. 2.
2i
le 2已 . 知集合X={元
元
>
— l 2}
,Y={兀臣无 +
-
6
氢0},则(C RX)
nY=
A.[-3,-ln2)
B.[-2,-ln2]
C.[-3,-ln2] . D.[-ln2,2]
s
3.已知等差数列la.. I的前n项和为S几 ,且al 产3�a , 4 成公比为q的等比数列,则q等千
s:=竿 在ΔABC中 ,角 从B、 C所对边的长分别为 c、 ;、ε,壹肾 ÷+c°
(1)求 踹
的值;
(动 若△JBC的 面积 s〓 ÷,△A:C的 外接圆的直径为 1,求 △ABε 的周长 工。
18.(1z分 )
湖北省百校大联盟2020届高三10月联考数学(理)-含答案
湖北省百校大联盟2020届高三10月联考数学(理)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间为120分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容,集合与常用逻辑用语,函数与导致,三角函数。
一、选择题:本大题共12小题,共60分,在每小题给出的四个选项中,只有一项是符合求的。
、 1.若集合{}121M x x =--≤<,{}2680M x x x =-+<则,M N ⋃=A. (]2,3B. ()2,3C. [)1,4D. ()1,42.命题“存在一个偶函数,其值域为R ”的否定为A.所有的偶函数的值域都不为RB.存在一个偶函数,其值域不为RC.所有的奇函数的值域不为RD.存在一个奇函数,其值域不为R3.函数()ln f x x =的定义域为A. [)1,-+∞B. [)()1,00,-⋃+∞C. [),1-∞-D.[)()1,00,-⋃+∞4.若10b a =,且a 为整数,则“b 能被 5整除”是“a 能被 5整除的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.将曲线2sin 45y x π⎛⎫=+ ⎪⎝⎭上的每个点的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的对称轴方程为A. ()3808k x k ππ=-+∈Z B. ()3202k x k ππ=-+∈Z C. ()3808k x k ππ=+∈ZD. ()3808k x k ππ=+∈Z6.图中的4片中叶子由曲线2y x =与曲线2y x =围成,则每片叶子的面积为A.16B.C. 13D.237.下列不等式正确的是A. 3sin130sin 40log 4>>B. tan 226ln 0.4tan 48<<C. ()cos 20sin 65lg11-<<D. 5tan 410sin 80log 2>>8.函数()22cos xx x f x e-=在上的图象大致为[],ππ-A. B.C. D.9.已知cos 270.891≈)cos72cos18+的近似值为A.1.77B.1.78C.1.79D.1.8110.已知定义在R 上的函数()f x 满足()()2f x f x =-,且()f x 的图象关于点(3,0)对称,当12x ≤≤时,()()32log 43f x x x =++,则16092f ⎛⎫=⎪⎝⎭A.-4B.4C.-5D.511.函数()f x =的值域为A. ()2,2-B. ()1,1-C. [)2,0-D. (),2-∞-12.若函数()()3220f x x axa =-<在6,23a a +⎛⎫⎪⎝⎭上有最大值,则a 的取值范围 A. [)4,0-B. (],4-∞-C. [)2,0-D. [),2-∞-二、填空题:本大题共4小题,每小题5分,共20分,把答案写在答题卡的相应位置。
2020届高三数学第一次月考试题 文(含解析)新 人教
2019学年第一学期九月测试卷高三数学(文科)一、选择题(每小题5分,共60分)1. 设集合M={1,2,3,4,5,6},N={1,4,5,7},则M∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】B【解析】则2. ( )A. B. C. D. -【答案】A【解析】试题分析:选C.考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3. 下列函数中,是偶函数且在上为增函数的是( )A. B. C. D.【答案】A【解析】由选项可看出四个函数中D为奇函数,所以排除D,在ABC三个选项中,A函数为增函数,B函数为减函数,C函数既有增区间又有减区间.故选A.4. 若已知函数f(x)= , 则的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=故选:D5. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】即得解得故选D6. 下列说法中,正确的是()A. 命题“若,则”的否命题为“若,则”B. 命题“存在,使得”的否定是:“任意,都有”C. 若命题“非”与命题“或”都是真命题,那么命题一定是真命题D. ""是" "的充分不必要条件【答案】C【解析】对于A,命题“若,则”的否命题为“若a≤b,则”;∴A 不正确;对于B,命题“存在x∈R,使得”的否定是:“任意x∈R,都有”;∴B不正确;对于C,若命题“非p”是真命题则P是假命题,命题“p或q”是真命题,那么命题q一定是真命题,∴C正确;对于D,∴推不出. ∴D不正确故选:C.7. 设a=,,则a,b,c的大小关系是( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c【答案】D【解析】,所以故选D8. 函数f(x)=2x-6+lnx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】,所以函数在上递增,又,所以函数的零点只有1个故选A点睛:本题是零点存在性定理的考查,先确定函数的单调性,在判断特殊点处的函数值有正负变化即得解.9. 函数y=Asin(ωx+φ)在一个周期内的图象如图所示,则此函数的解析式为( )A. B.C. D.【答案】B【解析】由图知A=2,又,此函数的解析式是故选B.10. 若=,则cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】==,故选C11. 函数y= (0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】又所以函数在上递减,在上递增,故选D点睛:函数中有绝对值的要去掉绝对值,写成分段函数,根据单调性即可以选出选项.12. 已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题(每小题5分,共20分)13. 已知=2, 则=______【答案】3【解析】,故答案为314. 函数f(x)=的单调递增区间为________.【答案】【解析】根据复合函数的单调性,内外层函数同则增异则减的原则,f(x)=的递增区间为的递减区间,但要注意定义域,所以f(x)=的递增区间为................故答案为点睛:研究复合函数的单调性:先把复合函数分成内外两层,根据内外层函数单调性相同,复合函数增,内外层函数单调性相异,复合函数减,即同则增异则减,做题时还要注意定义域.15. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则=________.【答案】-2【解析】由f(x+4)=f(x)得f(x)的周期为4,所以又f(x)在R上是奇函数,所以故答案为-2.点睛:函数奇偶性,周期性结合求函数值的问题,先利用周期性,把变为再利用奇偶性根据已知很容易出结果.16. 若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是________.【答案】(-∞,]【解析】2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,则a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.三、解答题(共6小题,共70分,解答应写出必要的文字说明、计算过程或证明步骤)17. (10分) 化简求值:(1) ; (2) .【答案】(1) 4 ; (2)【解析】试题分析:(1)主要是对数运算性质的考查(2)主要是三角恒等变换的二倍角公式,两角和与差的余弦公式的考查.试题解析:(1)原式= (2)原式=18. (12分)(1)已知sinα=- ,且α为第四象限角,求tanα的值;(2)已知cos且都是锐角,求的值【答案】(1)(2)【解析】试题分析:(1)由α为第四象限角,根据同角基本关系的平方关系得的值,商式关系得出.(2) cos,是锐角得出sin,又都是锐角,,得出,根据得出结果.试题解析:(1)为第四象限角,(2) 因为是锐角,所以sin=又都是锐角,,=,则cos=cos19. (12分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.【答案】(1)35 (2) a≤-6,或a≥4【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.试题解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.20. (12分)已知.f(x)=sin x cos x-cos2x+(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.【答案】(1)(k∈Z) (2)【解析】试题分析:(1)先对函数f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+化简得f(x)=sin,令sin=0,得=kπ(k∈Z)解得对称中心(2)0≤x≤所以-≤2x-≤,根据正弦函数图像得出值域.试题解析:(1)f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+=sin2x-cos2x=sin,所以f(x)的最小正周期为π.令sin=0,得=kπ(k∈Z),所以x= (k∈Z).故f(x)图象对称中心的坐标为 (k∈Z).(2)因为0≤x≤,所以-≤2x-≤,所以≤sin≤1,即f(x)的值域为.点睛:本题重点考查三角函数式的恒等变换,正弦型函数的最小正周期,正弦型函数的对称中心,及函数在某一定义域下的值域,是高考的常见题型,在求值域时要运用整体的思想.21. (12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为l:y=3x+1,且当x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.试题解析:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0,①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②由①②,解得a=2,b=-4.由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=.当x变化时,f′(x),f(x)的取值及变化情况如下表所示:所以y=f(x)在[-3,1]上的最大值为13,最小值为.点睛:已知切线方程求参数问题,利用切线斜率,切点在切线上也在曲线上这两点即可求出字母值.函数的极值问题要注意对应的导值为0,且在此点的左右函数有单调性变化.22. (12分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.【答案】(1)见解析(2) (0,1)【解析】试题分析:(1)先求导数,再根据导函数符号是否变化进行讨论:若,则,在单调递增;若,导函数先正后负,函数先增后减;(2)由(1)知函数有最大值条件为,且最大值为,转化为解不等式,先化简,再利用导数研究函数单调性及零点,确定不等式解集试题解析:解:(Ⅰ)的定义域为若,则,所以在单调递增若,则当时,;当时,。
高三数学上学期第一次月考试题 文扫描 试题
HY中学2021届高三数学上学期第一次月考试题文〔扫描版〕创作人:历恰面日期:2020年1月1日一中第一期联考文科数学答案命题、审题组老师 杨昆华 彭力 杨仕华 王佳文 张波 毛孝宗 丁茵 易孝荣 江明 李春宣一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBCDADDCAAB1. 解析:由题意,因为集合{}1>=x x A ,所以=B A {}31<<x x ,选B . 2. 解析:因为2i 12i i i)i)(1(1i)i(1i 1i 2+=-=-+-=+,选C . 3. 解析:18=0.4540,选B . 4. 解析:由得54)cos(-=--αβα,即54cos )cos(-==-ββ,又πβ(∈,)23π,所以0sin <β,且53cos 1sin 2-=--=ββ,选C .5. 解析:在长、宽、高分别为2,1,1的长方体中截得该三棱锥A DBC -,那么最长棱为2222116AB =++=,选D .6. 解析:对于B ,函数的周期是π,不是π4;对于C ,函数在3π=x 时不取最值;对于D ,当∈x 65(π-,)6π时,34(32ππ-∈+x ,)32π,函数不是单调递增,选A . 7. 解析:因为()()11f x f x -=+,所以()f x 的图象关于直线1x =对称,选D .8. 解析:由垂径定理可知直线CM 的斜率为2-,所以直线CM 的方程是)2(21--=+x y ,即032=-+y x ,选D .9. 解析:设外接球的半径为R ,因为PA ⊥平面ABC ,所以BC PA ⊥,又BC AB ⊥,所以BC PB ⊥,设PC 的中点为O ,易知:OA OB OC OP ===,故O 为四面体P ABC -的外接球的球心,又2PA AB BC ===,所以22AC =,23PC =,半径3R =,四面体P ABC -的外接球的外表积为()24312ππ=,选C .10. 解析:由()y f x =,()01f =-排除B ,()f x 是偶函数排除C,()20f =和()40f =排除D ,选A .11. 解析:由题设得3=ab,2)(12=+=a b e ,所以b e a +2362322323322=≥+=+=aa a a ,选A . 12. 解析:由余弦定理及22b ac a -=得,22222cos b a c ac B a ac =+-=+,所以有2cos c a B a =+,因此sin 2sin cos sin C A B A =+,故有()sin 2sin cos sin A B A B A +=+,即()sin sin A B A =-,因为三角形ABC 为锐角三角形,所以A B A =-,即2B A =,所以022A π<<,所以04A π<<,又3B A A +=,所以32A ππ<<,所以63A ππ<<,综上,64A ππ⎛⎫∈ ⎪⎝⎭, 所以()sin sin 22cos 2,3sin sin B At A A A===∈,选B .二、填空题13. 解析:由22a b a b -=+解得0a b ⋅=,所以向量a 与b 夹角为90︒. 14. 解析:N=126+146+96+136=288⨯⨯⨯⨯.15. 解析:由图知,直线4z y x =-过()1,0时,4y x -有最小值1-. 16. 解析:由得()()22log 1933f x x x -=+++,所以()()6f x f x +-=,因为2lg 3⎛⎫ ⎪⎝⎭与3lg 2⎛⎫⎪⎝⎭互为相反数,所以23lg lg 632f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以3lg 22f ⎛⎫=- ⎪⎝⎭. 三、解答题〔一〕必考题17. 解:〔1〕证明:设1122n n nn a a d ---=那么122n n n a a d --= 所以1122n n n a a d ++-=,11122222n n n n n n a a da a d++--==-所以}{12n na a +-是首项为4,公比为2的等比数列. ………6分〔2〕因为{}2n n a 是等差数列,所以1221122=-=a a d ,所以11(1)22n n a a n d =+-⨯ , 所以1()22nn a n =-所以123113531222...()2()222222n n n S n n -=⨯+⨯+⨯++-+-① 2311333222...()2()22222n n n S n n +=⨯+⨯++-+-②由①-②得23111=2+2+2...2()222n n n S n +-⨯++-- 13=(n-)232n n S ++. ………12分18. 解:〔1〕 选派B 同学参加比拟适宜.理由如下:1(7580808385909295)858A x =+++++++=,1(7879818284889395)858B x =+++++++=,22222221[(7885)(7985)(8185)(8285)(8485)(8885)8B S =-+-+-+-+-+-+22(9385)(9585)]35.5-+-=,22222221[(7585)(8085)(8085)(8385)(8585)(9085)8A S =-+-+-+-+-+-+22(9285)(9585)]41-+-=,从A B x x =,22B A S S <可以看出:A ,B 两位同学的平均程度一样而B 的成绩较稳定,所以选派B 参加比拟适宜. ………7分〔2〕任选派两人有(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E 一共10种情况;所以A ,B ,C 三人中至多有一人参加英语口语竞赛有7种情况; 所以710P =. ………12分19. 解:〔1〕在直角梯形ABCD 中,2BC AD AB ⋅=,即AB ADBC AB=, 因为90DAB PBC ∠=∠=, 所以tan AB ACB BC ∠=,tan ADABD AB∠=, 所以ABD ACB ∠=∠,又因为90ACB BAC ∠+∠=, 所以90ABD BAC ∠+∠=,即AC BD ⊥图2的四棱锥1P ABCD -中,1P A AB ⊥,由题知1P A AD ⊥,那么1P A ⊥平面ABCD , 所以1BD P A ⊥,又1P AAC A =所以BD ⊥平面1P AC . ………6分(2)在图1中,因为AB =,1AD =,2BC AD AB ⋅=,所以3BC =因为PAD ∆∽PBC ∆,所以13PA AD PA PB BC ==⇒=,即1P A = 由〔1〕知1P A ⊥平面ABCD ,那么1C P BD V -1P CBD V -=1P CBD V -=111111133332324CBD S P A BC AB P A ∆⋅⋅=⨯⋅⋅=⨯⨯=. ………12分20. 解:〔1〕由椭圆定义知,224AF BF AB a ,又222AF BF AB ,得43ABa ,l 的方程为y x c ,其中22c a b .设11(,)A x y ,22(,)B x y ,将y x c 代入22221x y a b 得,2222222()2()0a b x a cx a c b . 那么212222-a c x x a b ,2221222)a cb x x a b (.因为直线AB 的倾斜角为4π,所以212122()4ABx x x x ,由43AB a 得,222443a ab a b ,即222a b .所以C的离心率2222c a b e a a. ………6分 (2) 设AB 的中点为0,0()N x y ,由〔1〕知,2120222--23x x a c c x a b ,003cy x c .由PA PB 得,PN 的斜率为-1,即001-1y x ,解得,3c ,32a ,3b .所以椭圆C 的方程为221189x y . ………12分21. 解:〔1〕()f x 的定义域为(,)-∞+∞,因为()e x f x a '=+,由(0)0f '=,得1a =-, 所以()e 2x f x x =--,由()e 10x f x '=->得0x >,由()e 10x f x '=-<得0x <,所以()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ………6分 (2) 因为0x >,所以()e 1e 1xxm x -<+可化为e 1e 1x x x m +<-,令e 1()e 1x x x F x +=-,那么()2e (e 2)()e 1x x x x F x --'=-, 由〔1〕得()e 2x f x x =--在(0,)+∞上单调递增,而(1)e 30f =-<,2(2)e 40f =->,所以()f x 在(1,2)上存在唯一的0x , 使0()0f x =,所以()F x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增, 所以0()F x 是()F x 00e 20x x --=得00e 2x x =+, 所以00000000e 1(2)1()11e 1x x x x x F x x x +++===++-, 又因为012x <<,所以02()3F x <<,所以[]max 2m =. ………12分 〔二〕选考题:第22、23题中任选一题做答。
2020届高考数学(理)一轮必刷题 专题32 数列的综合问题(解析版)
考点32 数列的综合问题1.(北京市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n,则A n=.莞的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则B n,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(新疆乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为A.B.C.D.【答案】D【解析】由a n+1﹣a n2,所以数列{a n}是等差数列,且公差是2,{b n}是等比数列,且公比是2.又因为=1,所以a n =+(n ﹣1)d =2n ﹣1. 所以b 2n ﹣1=•22n ﹣2=22n ﹣2.设,所以=22n ﹣2,所以4,所以数列{∁n }是等比数列,且公比为4,首项为1.由等比数列的前n 项和的公式得:其前10项的和为(410﹣1).故选:D .3.(安徽省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .B .C .D .【答案】B 【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列{}n a 的前n 项和为n S ,3123S a a =+,则42S S =( ) A .2 B .3C .4D .5【答案】B 【解析】由3123S a a =+可得312a a =,所以22q =,又因为2123434421212113a a a a a a S q S a a a a ++++==+=+=++,所以选B.5.(湖南省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( ) A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,3,9,27,81,243x x x x x x ,则由几何概型得,消费88 元以上者抽中一等奖的概率1392781243364x P x x x x x x ==+++++ ,故选C. 6.(湖北省钟祥市2019届高三高考第一次模拟考试理)对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______.【答案】20 【解析】由题可知0n S >,当1n >时,1111[()]2n n n n n S S S S S --=-+-化简可得2211n n S S --=,当22111,1n S a === 所以数列2{}n S 是以首项和公差都是1的等差数列,即2n n S n S =∴=又1n >时,22nS =<<=记12121111S S S S =++一方面21]1)20S >-=>另一方面1(21)]11)21S <+++-=+=所以2021S << 即[]20S = 故答案为207.(北京市朝阳区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】243 3402 【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块, 则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列, 所以,a n =9+(n -1)×9=9n , 所以,a 27=9×27=243, 前27项和为:1272727()27(9243)22a a S ++===3402.格谦教育收集整理,更多优惠资料请搜索淘宝店铺:格谦教育 https://8.(江苏省南京师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9【解析】分析:将a n +a n+1+a n+2=15中n 换为n+1,可得数列{a n }是周期为3的数列.求出a 2,a 1,即可得到a 2018详解:由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.9.(湖北省武昌2018届元月调研考试)对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________.【答案】100. 【解析】 设序列的首项为,则序列,则它的第n 项为,因此序列A 的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故。
高考数学《平面解析几何》练习题及答案
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
湖北省部分省级示范性重点中学教科研协作体2020届高三统一联合考试●数学(理科)
湖北省部分省级示范性重点中学教科研协作体2020届高三统一联合考试数学(理科)试题本试卷分第Ⅰ卷(选择题60分)和第Ⅱ卷(非选择题90分)两部分,满分150分,考试时间120分钟.════════════★祝考试顺利★═══════════注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在.试题卷...、草稿纸上答题无效.........4.考试结束后,务必将试卷和答题卡一并上交.第Ⅰ卷(选择题满分60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确的答案填涂在答题卡上。
)1.已知集合22{(,)|(-3-4cos )(-5-4sin )4,}A x y x y R q q q =+=Î,{(,)|34-190}B x y x y =+=.记集合P A B =Ç,则集合P 所表示的轨迹的长度为A.B.C.D.2.已知复数z 满足z z=4 且z+z z =0+,则2019z 的值为A.-1B.20192-C.1D.201923.在ABC △中,内角,,A B C 的对边分别为,,a b c .若,且O 为ABC △的外心,G 为ABC △的重心,则OG 的最小值为1- B.5256-1 D.10526-4.在ABC △所在的平面上有三点,,P Q R 满足PA PB PC AB ++= ,QA QB QC BC ++= ,RA RB RC CA ++= ,则PQR ABC S S △△的值为A.12 B.13 C.14 D.15)4a B p =+5c =5.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为A.41pB.42pC.43pD.44p6.南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式121210()n n n n f x a x a x a x a x a --=+++++…的值的算法,即将()f x 改写成如下形式:1210()((()))n n n f x a x a x a a x a --=+++++……,首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值,这种算法至今仍是比较先进的算法,将秦九韶算法用程序框图表示如图,则在空白的执行框内应填入A.i v vx a =+B.()i v v x a =+C.i v a x v =+D.()i v a x v =+7.著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如函数的图象大致是 A.B.C. D.2()()1x x x e e f x x --=-8.中华人民共和国的国旗是五星红旗,旗面左上方缀着五颗黄色五角星,四颗小星环拱在一颗大星之后,并各有一个角尖正对大星的中心点,象征着中国共产党领导下的革命人民大团结和中国人民对党的衷心拥护.五角星可以通过正五边形连接对角线得到,如图所示,在正五边形ABCDE 内部任取一点,则该点取自阴影部分的概率为A.514- B.251)4- C.351)4- D.451)4-9.已知函数2()(1)x f x e x =+,令'1()() f x f x =,'1()()n n f x f x +=,若记数列2{}2n n n a c b -的前n 项和为n S ,则下列选项中与2019S 的值最接近的是A.32 B.53 C.74 D.9510.已知函数,有下述四个结论:①是偶函数;②在上单调递减;③当时,有;④当时,有;其中所有真命题的编号是A.①③ B.②④ C.①③④ D.①④11.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,F F ,点O 为坐标原点,点P 在双曲线的右支上,且满足122F F OP =.若直线与双曲线只有一个交点,则双曲线的离心率为235612.已知函数,,记若至少有三个零点,则实数的取值范围是A. B. C. D.2()()x n n n n f x e a x b x c =++,()(cos 1)cos 2cos (cos 1)f x x x q q =+++()f x ()42p p ,7()5f x <23[]34p p q Î,C 2PF {}()min ()()h x f x g x =,,32()(32)8127f x ax a x x a =---++()ln g x x =a ()h x 1()10-¥-,1()8+¥,11[)108-,11[108-,()f x 23[]34p p q Î,'14()5f x <C第Ⅱ卷(非选择题满分90分)二、填空题(本大题共4小题,每小题5分,共20分.请在答题卷的相应区域答题.............)13.已知,x y 均为正数,则2226x y x y +++的最大值是__________.14.在中美组织的暑假中学生交流会结束时,中方组织者将孙悟空、猪八戒、沙和尚、唐三藏、白龙马的彩色陶俑各一个送给来中国参观的美国中学生汤姆、杰克、索菲娅,每个人至少一个,且猪八戒的彩色陶俑不能送给索菲娅,则不同的送法种数为__________.15.已知椭圆的左右焦点分别为12,F F ,点P 为椭圆上不与左右顶点重合的动点,设,分别为的内心和重心.当直线的倾斜角不随着点P 的运动而变化时,椭圆的离心率为__________.16.已知函数,当[0,1] x Î时,仅在1x =处取得最大值,则实数的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.请.在答题卷的相应区域答题............第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知数列{}n a 的中11a =,22a =,且满足.(1)求数列{}n a 的通项公式;(2)设,记数列{}n b 的前项和为,若求的最小值.18.(本小题满分12分)如图所示,菱形ABCD 与正三角形BCE 的边长均为2,它们所在的平面互相垂直,DF ABCD ^平面且3DF =(1)求证:EF ABCD 平面;(2)若ABC BCE Ð=Ð,求二面角A BF E --的余弦值.22221(0)x y C a b a b +=>>:G 32()2(31)1f x ax a x =+-+I 12PF F △IG C ()f x C a 11111n i i i n n a a a =++=++å112020n T +<,211(1)n n n n n a b a a ++-=n n T n19.(本小题满分12分)已知点是平面内的动点,定点,定直线与轴交于点,过点作于点,且满足.(1)求动点的轨迹的方程;(2)过点作两条互相垂直的直线和,分别交曲线于点和点.设线段和线段的中点分别为和,记线段的中点为,点为坐标原点,求直线的斜率的取值范围.20.(本小题满分12分)已知函数122()(ln 2)1x e f x a x x x-=++--在定义域(0,2)内有两个极值点.(1)求实数a 的取值范围;(2)设1x 和2x 是()f x 的两个极值点,求证:.21.(本小题满分12分)冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:方式一:逐份检验,则需要检验次.方式二:混合检验,将其中份血液样本分别取样混合在一起检验.若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.现取其中份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.(1)若,试求关于的函数关系式;(2)若与干扰素计量相关,其中是不同的正实数,满足且都有.(i )求证:数列{}n x 为等比数列;(ii)当时,采用混合检验方式可以使得样本需要检验的总次数的的最大值.1l x =-:E (1,0)F EP EF FP FQ ×=× x (,)P x y Q PQ l ^P t OK AB ,C D ,A B K M k MN N CD O 2l 1l F 12ln ln ln 0x x a ++>P t ()*2k k N k Î且 n 1.k +k ()p f k =2x 1x ()01p p <<p 12 ()2n x x x n ,,…,≥k 12()()E E x x =n x 131121212222 1n n i i n i x x x e x x x x +--⋅=-=-∑()*2n N n ∀∈≥11x =1p =-k k k k k ()*2k k N k Î且 p ()*n n N Î(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B 铅笔在答题卡上将所选题目后的方框涂黑.22.(本小题满分10分)[选修4-4:坐标系与参数方程]已知在平面直角坐标系xoy 中,曲线C 的参数方程为22211( )1t x t t t y t ì+ï=ï-íï=ï-î为参数.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(1)求曲线C 和直线l 的直角坐标方程;(2)若直线l 交曲线C 于,A B 两点,交x 轴于点P ,求11PA PB+的值.23.(本小题满分10分)[选修4-5:不等式选讲]已知函数()121f x x x =--+.(1)求不等式()4f x £的解集;(2)若,,a b c 均为正数,求证:()a b c f x b c c a a b£+++++.5cos()34p r q +=。
专题15 复数的四则运算(解析版)
专题15 复数的四则运算一、单选题1.若复数Z 满足()·1 2z i i -=(i 是虚数部位),则下列说法正确的是 A .z 的虚部是-i B .Z 是实数C .z =D .2z z i +=【试题来源】江苏省盐城市滨海中学2020-2021学年高三上学期迎八省联考考前热身 【答案】C【分析】首先根据题意化简得到1z i =-,再依次判断选项即可.【解析】()()()22122211112i i i i iz i i i i ++====---+-. 对选项A ,z 的虚部是1-,故A 错误. 对选项B ,1z i =-为虚数,故B 错误.对选项C ,z ==C 正确.对选项D ,112z z i i +=-++=,故D 错误.故选C 2.已知复数1z i =+(i 为虚数单位),则1z在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(文) 【答案】D【分析】由复数的运算化简1z,再判断复平面内对应的点所在象限. 【解析】因为()()11111122i i z i i -==-+-,所以1z 在复平面内对应的点11 ,22⎛⎫- ⎪⎝⎭在第四象限.故选D3.已知复数1z i =+(i 为虚数单位),则1z在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(理)【答案】D 【分析】化简复数1z,利用复数的几何意义可得出结论. 【解析】因为()()11111112i i z i i i --===++-,所以1z在复平面内对应的点的坐标为11,22⎛⎫- ⎪⎝⎭,在第四象限.故选D . 4.设复数z 满足11zi z+=-,则z = A .i B .i - C .1D .1i +【试题来源】山东省威海市2020-2021学年高三上学期期末 【答案】B【分析】利用除法法则求出z ,再求出其共轭复数即可【解析】11zi z+=-得()11z i z +=-,即()()()()111111i i i z i i i i ---===++-,z i =-,故选B. 5.(1)(4)i i -+= A .35i + B .35i - C .53i +D .53i -【试题来源】安徽省皖西南联盟2020-2021学年高三上学期期末(文) 【答案】D【分析】根据复数的乘法公式,计算结果.【解析】2(1)(4)4453i i i i i i -+=-+-=-.故选D 6.设复数z 满足()11z i i -=+,则z 的虚部为. A .1- B .1 C .iD .i -【试题来源】安徽省芜湖市2020-2021学年高三上学期期末(文) 【答案】B【分析】利用复数的除法化简复数z ,由此可得出复数z 的虚部.【解析】()11z i i -=+,()()()211111i iz i i i i ++∴===--+, 因此,复数z 的虚部为1.故选B . 7.若复数z 满足21zi i=+,则z = A .22i + B .22i - C .22i --D .22i -+【试题来源】安徽省芜湖市2020-2021学年高三上学期期末(理) 【答案】C【分析】求出()2122z i i i =+=-+,再求解z 即可. 【解析】()2122z i i i =+=-+,故22z i =--,故选C. 8.将下列各式的运算结果在复平面中表示,在第四象限的为A .1ii + B .1ii +- C .1i i-D .1i i--【试题来源】河南省湘豫名校2020-2021学年高三上学期1月月考(文) 【答案】A【分析】对A 、B 、C 、D 四个选项分别化简,可得. 【解析】由11ii i+=-在第四象限.故选A . 【名师点睛】(1)复数的代数形式的运算主要有加、减、乘、除及求低次方根; (2)复数除法实际上是分母实数化的过程.9.若复数z 满足()z 1i i +=- (其中i 为虚数单位)则复数z 的虚部为A .12-B .12C .12i -D .12i【试题来源】安徽省马鞍山市2020-2021学年高三上学期第一次教学质量监测(文) 【答案】A【分析】先由已知条件利用复数的除法运算求出复数z ,再求其虚部即可. 【解析】由()z 1i i +=-可得()()()111111222i i i z i i i ----===--+-,所以复数z 的虚部为12-,故选A 10.复数z 满足()212()z i i -⋅+=(i 为虚数单位),则复数z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】宁夏吴忠市2021届高三一轮联考(文) 【答案】D【分析】先计算复数221z i i=++,再求其共轭复数,即可求出共轭复数对应的点,进而可得在复平面内对应的点所在的象限. 【解析】由()()212z i i -⋅+=得()()()()21212211112i i z i i i i i ---====-++-, 所以1z i =+,1z i =-.所以复数z 在复平面内对应的点为()1,1-, 位于第四象限,故选D .11.已知复数z 满足(2)z i i -=(i 为虚数单位),则z = A .125i-+ B .125i-- C .125i- D .125i+ 【试题来源】安徽省名校2020-2021学年高三上学期期末联考(文) 【答案】A【分析】由已知可得2iz i=-,再根据复数的除法运算可得答案. 【解析】因为(2)z i i -=,所以()()()2122225i i i i z i i i +-+===--+.故选A . 12.已知复数3iz i-=,则z =A .4 BCD .2【试题来源】江西省吉安市“省重点中学五校协作体”2021届高三第一次联考(文) 【答案】B【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【解析】因为()()()3331131i i i i z i i i i -⋅----====--⋅-,所以z ==B .【名师点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属于基础题. 13.复数z 满足:()11i z i -=+,其中i 为虚数单位,则z 的共轭复数在复平面对应的点的坐标为 A .0,1 B .0,1 C .1,0D .()1,0【试题来源】江西宜春市2021届高三上学期数学(理)期末试题 【答案】A【分析】先由()11i z i -=+求出复数z ,从而可求出其共轭复数,进而可得答案【解析】由()11i z i -=+,得21i (1i)2ii 1i (1i)(1+i)2z ++====--, 所以z i =-,所以其在复平面对应的点为0,1,故选A 14.已知复数312iz i+=-,则z =A .1 BCD .2【试题来源】湖南省岳阳市平江县第一中学2020-2021学年高二上学期1月阶段性检测 【答案】B【分析】利用复数的除法法则化简复数z ,利用复数的模长公式可求得z .【解析】()()()()2312337217121212555i i i i i z i i i i +++++====+--+,因此,z ==B . 15.设复1iz i=+(其中i 为虚数单位),则复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】江苏省南通市如皋市2020-2021学年高三上学期期末 【答案】A【分析】利用复数的除法化简复数z ,利用复数的几何意义可得出结论. 【解析】()()()1111111222i i i i z i i i i -+====+++-,因此,复数z 在复平面内对应的点位于第一象限.故选A .16.已知(1)35z i i +=-,则z = A .14i - B .14i -- C .14i -+D .14i +【试题来源】江苏省盐城市一中、大丰高级中学等四校2020-2021学年高二上学期期末联考 【答案】B【分析】由复数的除法求解.【解析】由题意235(35)(1)3355141(1)(1)2i i i i i i z i i i i -----+====--++-.故选B 17.复数(2)i i +的实部为 A .1- B .1 C .2-D .2【试题来源】浙江省绍兴市上虞区2020-2021学年高三上学期期末 【答案】A【分析】将(2)i i +化简即可求解.【解析】(2)12i i i +=-+的实部为1-,故选A .18.已知i 是虚数单位,(1)2z i i +=,则复数z 所对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】山东省德州市2019-2020学年高一下学期期末 【答案】D【分析】利用复数的运算法则求解复数z ,再利用共轭复数的性质求z ,进而确定z 所对应的点的位置.【解析】由(1)2z i i +=,得()()()()2121211112i i i i z i i i i -+====+++-, 所以1z i =-,所以复数z 所对应的点为()1,1-,在第四象限,故选D .【名师点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式. 19.若复数2iz i=+,其中i 为虚数单位,则z =A B C .25D .15【试题来源】重庆市南开中学2020-2021学年高二上学期期末 【答案】B【分析】先利用复数的除法运算法则化简复数2iz i=+,再利用复数模的公式求解即可. 【解析】因为()()()21212222555i i i i z i i i i -+====+++-,所以z ==,故选B . 20.52i i-= A .152i--B .52i-- C .152i- D .152i+ 【试题来源】江西省吉安市2021届高三上学期期末(文) 【答案】A【分析】根据复数的除法的运算法则,准确运算,即可求解. 【解析】由复数的运算法则,可得()5515222i i i ii i i ----==⨯.故选A .21.设复数z 满足()1z i i R +-∈,则z 的虚部为 A .1 B .-1 C .iD .i -【试题来源】湖北省2020-2021学年高三上学期高考模拟演练 【答案】B【分析】根据复数的运算,化简得到()11(1)z i i a b i +-=+++,根据题意,求得1b =-,即可求得z 的虚部,得到答案.【解析】设复数,(,)z a bi a b R =+∈,则()11(1)z i i a b i +-=+++,因为()1z i i R +-∈,可得10b +=,解得1b =-,所以复数z 的虚部为1-.故选B . 22.若复数151iz i-+=+,其中i 为虚数单位,则z 的虚部是 A .3 B .3- C .2D .2-【试题来源】安徽省淮南市2020-2021学年高三上学期第一次模拟(文) 【答案】A【分析】先利用复数的除法运算,化简复数z ,再利用复数的概念求解.【解析】因为复数()()()()1511523111i i i z i i i i -+--+===+++-, 所以z 的虚部是3,故选A. 23.若m n R ∈、且4334im ni i+=+-(其中i 为虚数单位),则m n -= A .125- B .1- C .1D .0【试题来源】湖北省部分重点中学2020-2021学年高三上学期期末联考 【答案】B【分析】对已知进行化简,根据复数相等可得答案.【解析】因为()()()()433443121225343434916i i i ii m ni i i i +++-+====+--++, 根据复数相等,所以0,1m n ==,所以011m n -=-=-.故选B .24.若复数z满足()36z =-(i 是虚数单位),则复数z =A.32-B.32- C.322+D.322-- 【试题来源】湖北省荆州中学2020-2021学年高二上学期期末 【答案】A【分析】由()36z =-,得z =,利用复数除法运算法则即可得到结果.【解析】复数z满足()36z +=-,6332z --=====-∴+,故选A .25.若复数2i()2i+=∈-R a z a 是纯虚数,则z = A .2i - B .2i C .i -D .i【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(理) 【答案】D【分析】由复数的除法运算和复数的分类可得结果. 【解析】因为2i (2i)(2i)22(4)i2i (2i)(2i)5+++-++===-+-a a a a z 是纯虚数, 所以22040a a -=⎧⎨+≠⎩,则1a =,i =z .故选D .26.复数12z i =+,213z i =-,其中i 为虚数单位,则12z z z =⋅在复平面内的对应点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】江苏省G4(苏州中学、常州中学、盐城中学、扬州中学)2020-2021学年高三上学期期末联考 【答案】D【分析】根据复数的乘法法则,求得55z i =-,即可求得答案. 【解析】由题意得122(2)(13)25355i i i i i z z z =+-=-==--⋅, 所以12z z z =⋅在复平面内的对应点为(5,-5)位于第四象限,故选D27.复数2()2+∈-R a ia i 的虚部为 A .225+aB .45a - C .225a -D .45a +【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(文) 【答案】D【分析】由得数除法运算化为代数形式后可得. 【解析】因为2i (2i)(2i)22(4)i 2i (2i)(2i)5+++-++==-+-a a a a ,所以其虚部为45a +.故选D . 28.复数z 满足()12z i i ⋅+=,则2z i -=ABCD .2【试题来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查(文) 【答案】A【分析】先利用除法化简计算z ,然后代入模长公式计算.【解析】()1i 2i z ⋅+=变形得22222221112-+====++-i i i i z i i i ,所以2121-=+-=-==z i i i i A .29.i 是虚数单位,若()17,2ia bi ab R i-=+∈+,则ab 的值是 A .15- B .3- C .3D .15【试题来源】山东省菏泽市2020-2021学年高三上学期期末 【答案】C【分析】根据复数除法法则化简得数后,由复数相等的定义得出,a b ,即可得结论.【解析】17(17)(2)2147132(2)(2)5i i i i i i i i i ------===--++-, 所以1,3a b =-=-,3ab =.故选C . 30.复数3121iz i -=+的虚部为 A .12i -B .12i C .12-D .12【试题来源】江西省赣州市2021届高三上学期期末考试(理) 【答案】C【分析】由复数的乘除法运算法则化简为代数形式,然后可得虚部.【解析】231212(12)(1)1223111(1)(1)222i i i i i i i z i i i i i ---++--=====-+--+, 虚部为12-.故选C . 31.若复数z 满足(1)2i z i -=,i 是虚数单位,则z z ⋅=AB .2C .12D .2【试题来源】内蒙古赤峰市2021届高三模拟考试(理) 【答案】B【分析】由除法法则求出z ,再由乘法法则计算.【解析】由题意222(1)2()11(1)(1)2i i i i i z i i i i ++====-+--+, 所以(1)(1)2z z i i ⋅=-+--=.故选B . 32.若23z z i +=-,则||z =A .1 BCD .2【试题来源】河南省(天一)大联考2020-2021学年高三上学期期末考试(理) 【答案】B【分析】设(,)z a bi a b R =+∈,代入已知等式求得,a b 后再由得数的模的定义计算. 【解析】设(,)z a bi a b R =+∈,则22()33z z a bi a bi a bi i +=++-=-=-,所以以331a b =⎧⎨-=-⎩,解得11a b =⎧⎨=⎩,所以==z B .33.复数z 满足(2)(1)2z i i -⋅+=(i 为虚数单位),则z = A .1 B .2CD 【试题来源】宁夏吴忠市2021届高三一轮联考(理) 【答案】C【分析】先将复数化成z a bi =+形式,再求模. 【解析】由(2)(1)2z i i -⋅+=得2211z i i i-==-+,所以1z i =+,z ==C .34.已知a R ∈,若()()224ai a i i +-=-(i 为虚数单位),则a = A .-1 B .0 C .1D .2【试题来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测 【答案】B【分析】将()()22ai a i +-展开可得答案.【解析】()()()222444ai a i a a i i +-=+-=-,所以0a =,故选B.35.已知i 为虚数单位,且复数3412ii z+=-,则复数z 的共轭复数为 A .12i -+ B .12i -- C .12i +D .1 2i -【试题来源】湖北省孝感市应城市第一高级中学2020-2021学年高二上学期期末【答案】D【分析】根据复数模的计算公式,以及复数的除法运算,求出z ,即可得出其共轭复数. 【解析】因为3412i i z+=-,所以512z i =-,则()()()512512121212i z i i i i +===+--+, 因此复数z 的共轭复数为1 2i -.故选D . 36.已知复数i()1ia z a +=∈+R 是纯虚数,则z 的值为 A .1 B .2 C .12D .-1【试题来源】江西省赣州市2021届高三上学期期末考试(文) 【答案】A【分析】根据复数除法运算化简z ,根据纯虚数定义求得a ,再求模长. 【解析】()()()()11121122a i i a i a a z i i i i +-++-===+++-是纯虚数,102102a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得1a =-,所以z i ,1z =.故选A . 37.设复数11iz i,那么在复平面内复数31z -对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(理) 【答案】C【分析】利用复数的除法法则化简复数z ,再将复数31z -化为一般形式,即可得出结论.【解析】()()()21121112i ii z i i i i ---====-++-,3113z i ∴-=--, 因此,复数31z -在复平面内对应的点位于第三象限.故选C . 38.已知复数13iz i-=+(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】江西省南昌市新建区第一中学2020-2021学年高二上学期期末考试(理) 【答案】D【分析】将复数化简成z a bi =+形式,则在复平面内对应的点的坐标为(),a b ,从而得到答案.【解析】因为1(1)(3)24123(3)(3)1055i i i i z i i i i ----====-++-, 所以z 在复平面内对应的点12(,)55-位于第四象限,故选D.39.若复数2(1)34i z i+=+,则z =A .45 B .35C .25D 【试题来源】成都市蓉城名校联盟2020-2021学年高三上学期(2018级)第二次联考 【答案】C 【分析】先求出8625iz -=,再求出||z 得解. 【解析】由题得()()()()212342863434343425i i i i iz i i i i +-+====+++-,所以102255z ===.故选C. 40.设复数11iz i,那么在复平面内复数1z -对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(文) 【答案】C【分析】先求出z i =-,11z i -=--,即得解.【解析】由题得21(1)21(1)(1)2i i iz i i i i ---====-++-, 所以11z i -=--,它对应的点的坐标为(1,1)--, 所以在复平面内复数1z -对应的点位于第三象限.故选C. 二、多选题1.已知m ∈R ,若6()64m mi i +=-,则m =A .B .1-CD .1【试题来源】2021年高考一轮数学(理)单元复习一遍过 【答案】AC【分析】将6()m mi +直接展开运算即可.【解析】因为()()66661864m mi m i im i +=+=-=-,所以68m =,所以m =故选AC . 2.设复数z 满足1z i z+=,则下列说法错误的是 A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 【试题来源】2021年新高考数学一轮复习学与练 【答案】AB【分析】先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【解析】由题意得1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误;在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确.故选AB 【名师点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.3.已知复数122z =-,则下列结论正确的有 A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 【试题来源】山东新高考质量测评联盟2020-2021学年高三上学期10月联考 【答案】ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【解析】因为111312244z z ⎛⎫⎛⎫-+=+= ⎪⎪⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫=-⎪⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222zzz z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选ACD .【名师点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易. 4.下面是关于复数21iz =-+的四个命题,其中真命题是A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-【试题来源】福建省龙海市第二中学2019-2020学年高二下学期期末考试 【答案】ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项. 【解析】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选ABCD .【名师点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题. 5.若复数351iz i-=-,则A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 【试题来源】2021年新高考数学一轮复习学与练 【答案】AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出. 【解析】()()()()351358241112i i i iz i i i i -+--====---+,z ∴==,z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确,故选AD .6.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是A .z 的实部为2B .z 的虚部为1C .z i =D .||z =【试题来源】2021年新高考数学一轮复习学与练 【答案】AC【分析】根据复数的运算及复数的概念即可求解.【解析】因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =,故AC 错误,BD 正确.故选AC. 7.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 【试题来源】湖北省六校(恩施高中、郧阳中学、沙市中学、十堰一中、随州二中、襄阳三中)2020-2021学年高三上学期11月联考 【答案】BC【分析】分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误.【解析】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确; 对于C 选项,22cos sin 1z θθ=+=,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误.故选BC . 8.已知非零复数1z ,2z 满足12z z R ∈,则下列判断一定正确的是 A .12z z R +∈B .12z z R ∈C .12z R z ∈D .12z R z ∈【试题来源】重庆市南开中学2020-2021学年高二上学期期中 【答案】BD【分析】设12,(,,,)z a bi z c di a b c d R =+=+∈,结合选项逐个计算、判定,即可求解. 【解析】设12,(,,,)z a bi z c di a b c d R =+=+∈,则()()12()()z z a bi c di ac bd ad bc i =++=-++,则0ad bc +=,对于A 中,12()()z z a bi c di a c b d i +=+++=+++,则12z z R +∈不一定成立,所以不正确;对于B 中,12()()ac bd ad bc z R i z =-+∈-一定成立,所以B 正确; 对于C 中,()()()()2122()()a bi c di a bi ac bd ad bc i R c di c di c z di z c d+-++--==∈++-+=不一定成立,所以不正确;对于D 中,()()()()2122()()a bi c di a bi ac bd ad bc iR c di c di c z di z c d ++++++==∈--++=一定成立,所以正确.故选BD .9.已知复数()()()32=-+∈z a i i a R 的实部为1-,则下列说法正确的是 A .复数z 的虚部为5- B .复数z 的共轭复数15=-z i C.z =D .z 在复平面内对应的点位于第三象限【试题来源】辽宁省六校2020-2021学年高三上学期期中联考 【答案】ACD【分析】首先化简复数z ,根据实部为-1,求a ,再根据复数的概念,判断选项. 【解析】()()()()23232323223z a i i a ai i i a a i =-+=+--=++-,因为复数的实部是-1,所以321a +=-,解得1a =-, 所以15z i =--,A .复数z 的虚部是-5,正确;B .复数z 的共轭复数15z i =-+,不正确;C .z ==D .z 在复平面内对应的点是()1,5--,位于第三象限,正确.故选ACD 10.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位),下列说法正确的是() A .复数z 在复平面上对应的点可能落在第二象限 B .cos z θ=C .1z z ⋅=D .1z z+为实数 【试题来源】山东省菏泽市2021届第一学期高三期中考试数学(B )试题 【答案】CD【分析】利用复数对应点,结合三角函数值的范围判断A ;复数的模判断B ;复数的乘法判断C ;复数的解法与除法,判断D . 【解析】复数cos sin ()22z i ππθθθ=+-<<(其中i 为虚数单位),复数z 在复平面上对应的点(cos ,sin )θθ不可能落在第二象限,所以A 不正确;1z ==,所以B 不正确;22·(cos sin )(cos sin )cos sin 1z z i i θθθθθθ=+-=+=.所以C 正确;11cos sin cos sin cos()sin()2cos cos sin z i i i z i θθθθθθθθθ+=++=++-+-=+为实数,所以D 正确;故选CD11.已知i 为虚数单位,下面四个命题中是真命题的是 A .342i i +>+B .24(2)()a a i a R -++∈为纯虚数的充要条件为2a =C .()2(1)12z i i =++的共轭复数对应的点为第三象限内的点D .12i z i +=+的虚部为15i 【试题来源】2020-2021年新高考高中数学一轮复习对点练 【答案】BC【分析】根据复数的相关概念可判断A ,B 是否正确,将()2(1)12z i i =++展开化简可判断C 选项是否正确;利用复数的除法法则化简12iz i+=+,判断D 选项是否正确. 【解析】对于A ,因为虚数不能比较大小,故A 错误;对于B ,若()242a a i ++-为纯虚数,则24020a a ⎧-=⎨+≠⎩,解得2a =,故B 正确;对于C ,()()()211221242z i i i i i =++=+=-+,所以42z i =--对应的点为()4,2--位于第三象限内,故C 正确;对于D ,()()()()12132225i i i i z i i i +-++===++-,虚部为15,故D 错误.故选BC . 12.已知复数(12)5z i i +=,则下列结论正确的是A .|z |B .复数z 在复平面内对应的点在第二象限C .2z i =-+D .234z i =+【试题来源】河北省邯郸市2021届高三上学期期末质量检测【答案】AD【分析】利用复数的四则运算可得2z i =+,再由复数的几何意义以及复数模的运算即可求解.【解析】5512122121212()()()()i i i z i i i i i i -===-=+++-,22,||34z i z z i =-==+ 复数z 在复平面内对应的点在第一象限,故AD 正确.故选AD13.已知i 是虚数单位,复数12i z i -=(z 的共轭复数为z ),则下列说法中正确的是 A .z 的虚部为1B .3z z ⋅=C .z =D .4z z +=【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考【答案】AC 【分析】利用复数的乘法运算求出122i z i i-==--,再根据复数的概念、复数的运算以及复数模的求法即可求解. 【解析】()()()12122i i i z i i i i ---===---,所以2z i =-+, 对于A ,z 的虚部为1,故A 正确;对于B ,()2225z z i ⋅=--=,故B 不正确;对于C ,z =C 正确;对于D ,4z z +=-,故D 不正确.故选AC14.早在古巴比伦时期,人们就会解一元二次方程.16世纪上半叶,数学家得到了一元三次、一元四次方程的解法.此后数学家发现一元n 次方程有n 个复数根(重根按重数计).下列选项中属于方程310z -=的根的是A.12 B.12-+ C.122-- D .1【试题来源】江苏省苏州市2020-2021学年高二上学期1月学业质量阳光指标调研【答案】BCD【分析】逐项代入验证是否满足310z -=即可.【解析】对A,当122z =+时, 31z -31122i ⎛⎫+- ⎪ ⎪⎭=⎝21112222⎛⎫⎛⎫+⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21121344i ⎛⎫=++⋅ ⎪⎛⎫+- ⎪ ⎝ ⎭⎭⎪⎪⎝12112⎛⎫=-+⋅⎛⎫+- ⎪ ⎪⎝⎭⎪ ⎪⎝⎭2114⎫=-+-⎪⎪⎝⎭ 13144=--- 2=-,故3120z -=-≠,A 错误; 对B,当12z =-时,31z -3112⎛⎫-+- ⎪ ⎪⎝⎭=211122⎛⎫⎛⎫-⋅-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=2113124242i ⎛⎫=-+⋅ ⎪ ⎪⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭1221122⎛⎫-⎛⎫=--⋅ ⎪+ - ⎪ ⎪⎝⎭⎪⎝⎭21142⎛⎫=-- ⎪ ⎪⎝⎭ 13144=+- 0=,故310z -=,B 正确; 对C,当12z =-时,31z-31122⎛⎫--- ⎪ ⎪⎝⎭=21112222⎛⎫⎛⎫--⋅--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21131442i ⎛⎫=++⋅ ⎪ ⎪⎛⎫--- ⎪ ⎪⎝⎭⎝⎭12112⎛⎫-⎛⎫=-+⋅ ⎪- - ⎪ ⎪⎝⎭⎪⎝⎭2114⎫=--⎪⎪⎝⎭13144=+-0=,故310z -=,C 正确; 对D ,显然1z =时,满足31z =,故D 正确.故选BCD .15.已知复数()()122z i i =+-,z 为z 的共轭复数,则下列结论正确的是A .z 的虚部为3iB .5z =C .4z -为纯虚数D .z 在复平面上对应的点在第四象限【试题来源】湖南师范大学附属中学2020-2021学年高二上学期期末【答案】BCD【分析】先根据复数的乘法运算计算出z ,然后进行逐项判断即可.【解析】因为()()12243z i i i =+-=+,则z 的虚部为3,5z z ===,43z i -=为纯虚数,z 对应的点()4,3-在第四象限,故选BCD .三、填空题1.已知复数z 满足(1)1z i i ⋅-=+(i 为虚数单位),则z =_________.【试题来源】上海市松江区2021届高三上学期期末(一模)【答案】1【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解析】由(1)1z i i ⋅-=+,得21(1)1(1)(1)i i z i i i i ++===--+,所以1z =.故答案为1. 2.i 是虚数单位,复数1312i i-+=+_________. 【试题来源】天津市七校2020-2021学年高三上学期期末联考【答案】1i +【分析】分子分母同时乘以分母的共轭复数12i -,再利用乘法运算法则计算即可. 【解析】()()()()22131213156551121212145i i i i i i i i i i i -+--+-+-+====+++--.故答案为1i +. 3.若复数z 满足方程240z +=,则z =_________.【试题来源】上海市复旦大学附属中学2020-2021学年高二上学期期末【答案】2i ±【分析】首先设z a bi =+,再计算2z ,根据实部和虚部的数值,列式求复数..【解析】设z a bi =+,则22224z a b abi =-+=-,则2240a b ab ⎧-=-⎨=⎩,解得02a b =⎧⎨=±⎩,所以2z i =±,故答案为2i ±. 4.复数21i-的虚部为_________. 【试题来源】上海市上海交通大学附属中学2020-2021学年高二上学期期末【答案】1【分析】根据分母实数化,将分子分母同乘以分母的共轭复数1i +,然后即可判断出复数的虚部. 【解析】因为()()()2121111i i i i i +==+--+,所以复数的虚部为1,故答案为1. 5.若复数z 满足(12)1i z i +=-,则复数z 的虚部为_________.【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考 【答案】35【分析】根据复数的除法运算法则,求出z ,即可得出结果.【解析】因为(12)1i z i +=-,所以()()()()112113213121212555i i i i z i i i i -----====--++-, 因此其虚部为35.故答案为35. 6.复数34i i+=_________. 【试题来源】北京市东城区2021届高三上学期期末考试【答案】43i -【分析】分子和分母同乘以分母的共轭复数,整理后得到最简形式即可. 【解析】由复数除法运算法则可得, ()343434431i i i i i i i i +⋅+-===-⋅-,故答案为43i -. 7.已知复数(1)z i i =⋅+,则||z =_________.【试题来源】北京市西城区2020-2021学年高二上学期期末考试【分析】根据复数的运算法则,化简复数为1z i =-+,进而求得复数的模,得到答案.【解析】由题意,复数(1)1z i i i =⋅+=-+,所以z == 8.i 是虚数单位,复数73i i-=+_________. 【试题来源】宁夏银川一中2020-2021学年高二上学期期末考试(文)【答案】2i -【分析】根据复数除法运算法则直接计算即可. 【解析】()()()()27372110233310i i i i i i i i i ----+===-++-.故答案为2i -. 9.设复数z 的共轭复数是z ,若复数143i z i -+=,2z t i =+,且12z z ⋅为实数,则实数t 的值为_________.【试题来源】宁夏银川一中2020-2021学年高二上学期期末考试(理) 【答案】34【分析】先求出12,z z ,再计算12z z ⋅即得解. 【解析】由题得14334i z i i-+==+,2z t i =-, 所以12(34)()34(43)z z i t i t t i ⋅=+-=++-为实数, 所以3430,4t t -=∴=.故答案为34【名师点睛】复数(,)a bi a b R +∈等价于0b =,不需要限制a .10.函数()n nf x i i -=⋅(n N ∈,i 是虚数单位)的值域可用集合表示为_________. 【试题来源】上海市上海中学2020-2021学年高二上学期期末【答案】{}1【分析】根据复数的运算性质可函数的值域.【解析】()()1111nn n n n n n n f x i i i i i i i i --⎛⎫=⋅⋅⋅⋅= ⎪⎝=⎭==,故答案为{}1. 11.已知()20212i z i +=(i 为虚数单位),则z =_________.【试题来源】河南省豫南九校2021届高三11月联考教学指导卷二(理)【分析】由i n 的周期性,计算出2021i i =,再求出z ,求出z .【解析】因为41i =,所以2021i i =,所以i 12i 2i 55z ==++,所以z z == 【名师点睛】复数的计算常见题型:(1) 复数的四则运算直接利用四则运算法则;(2) 求共轭复数是实部不变,虚部相反;(3) 复数的模的计算直接根据模的定义即可.12.若31z i =-(i 为虚数单位),则z 的虚部为_________. 【试题来源】江西省上饶市2021届高三第一次高考模拟考试(文) 【答案】32-【分析】利用复数的除法化简复数z ,由此可得出复数z 的虚部. 【解析】()()()313333111122i z i i i i i +==-=-=-----+,因此,复数z 的虚部为32-. 故答案为32-. 13.设i 为虚数单位,若复数z 满足()21z i -⋅=,则z =_________. 【试题来源】江西省上饶市2020-2021学年高二上学期期末(文)【答案】2i +【分析】利用复数的四则运算可求得z ,利用共轭复数的定义可求得复数z .【解析】()21z i -⋅=,122z i i ∴=+=-,因此,2z i =+.故答案为2i +. 14.已知i 是虚数单位,则11i i+=-_________. 【试题来源】湖北省宜昌市2020-2021学年高三上学期2月联考【答案】1【分析】利用复数的除法法则化简复数11i i +-,利用复数的模长公式可求得结果. 【解析】()()()21121112i i i i i i i ++===--+,因此,111i i i +==-.故答案为1. 15.i 是虚数单位,复数103i i=+____________. 【试题来源】天津市南开中学2020-2021学年高三上学期第四次月考【答案】13i +【分析】根据复数的除法运算算出答案即可.【解析】()()()()10310313333i i i i i i i i i -==-=+++-,故答案为13i +. 16.在复平面内,复数()z i a i =+对应的点在直线0x y +=上,则实数a =_________.【试题来源】北京市丰台区2021届高三上学期期末练习【答案】1【分析】由复数的运算法则和复数的几何意义直接计算即可得解.【解析】2()1z i a i ai i ai =+=+=-+,其在复平面内对应点的坐标为()1,a -, 由题意有:10a -+=,则1a =.故答案为1.17.已知复数z 满足()1234i z i +=+(i 为虚数单位),则复数z 的模为_________.【试题来源】江苏省苏州市2020-2021学年高二上学期1月学业质量阳光指标调研【分析】求出z 后可得复数z 的模.【解析】()()3412341121255i i i i z i +-+-===+,5z == 18.复数1i i-(i 是虚数单位)的虚部是_________. 【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】1-【分析】先化简复数得1i 1i i-=--,进而得虚部是1-【解析】因为()()221i i 1i i i 1i i i--==--=--, 所以复数1i i-(i 是虚数单位)的虚部是1-.故答案为1-. 19.已知i 是虚数单位,复数11z i i =+-,则z =_________. 【试题来源】山东省青岛市2020-2021学年高三上学期期末【答案】2【分析】根据复数的除法运算,化简复数为1122z i =-+,再结合复数模的计算公式,即可求解. 【解析】由题意,复数()()111111122i z i i i i i i --=+=+=-+----,所以2z ==.故答案为2. 20.计算12z ==_______. 【试题来源】2021年高考一轮数学(理)单元复习一遍过【答案】-511【分析】利用复数的运算公式,化简求值.【解析】原式1212369100121511()i ==+=-+=--. 【名师点睛】本题考查复数的n次幂的运算,注意31122⎛⎫-+= ⎪ ⎪⎝⎭,()212i i +=, 以及()()612211i i ⎡⎤+=+⎣⎦,等公式化简求值. 四、双空题1.设32i i 1ia b =++(其中i 为虚数单位,a ,b ∈R ),则a =_________,b =_________. 【试题来源】浙江省绍兴市嵊州市2020-2021学年高三上学期期末【答案】1- 1- 【分析】利用复数的除法运算化简32i 1i 1i=--+,利用复数相等的定义得到a ,b 的值,即得解. 【解析】322(1)2211(1)(1)2i i i i i a bi i i i ----===--=+++-,1,1a b ∴=-=-. 故答案为-1;-1.2.已知k ∈Z , i 为虚数单位,复数z 满足:21k i z i =-,则当k 为奇数时,z =_________;当k ∈Z 时,|z +1+i |=_________.【试题来源】2020-2021学年【补习教材寒假作业】高二数学(苏教版)【答案】1i -+ 2【分析】由复数的运算及模的定义即可得解.【解析】当k 为奇数时,()()2211k k k i i ==-=-, 所以1z i -=-即1z i =-+,122z i i ++==; 当k 为偶数时,()()2211k k k i i ==-=,所以1z i =-,122z i ++==;所以12z i ++=.故答案为1i -+;2.3.若复数()211z m m i =-++为纯虚数,则实数m =_________,11z=+_________. 【试题来源】浙江省金华市义乌市2020-2021学年高三上学期第一次模拟考试【答案】1 1255i - 【分析】由题可得21010m m ⎧-=⎨+≠⎩,即可求出m ,再由复数的除法运算即可求出.【解析】复数()211z m m i =-++为纯虚数,21010m m ⎧-=∴⎨+≠⎩,解得1m =,。
截面问题(含详细解析)
几何体截面问题①定义:一个几何体和一个平面相交所得到的平面图形(包含它的内部)叫做这个几何体的截面. 截面不唯一,好的截面应包含几何体的主要元素!②画法:常通过“作平行线”或“延长直线找交点”作出完整的截面,作截面是立体几何非常重要的研究课题.③思想:作截面是研究空间几何体的重要方法,它将陌生空问题转化为熟悉的平面问题!技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
1.【云南省昆明市2019-2020学年高三下学期1月月考数学】某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为为4π,则该球的半径是( )A .2B .4C .D .【答案】B【解析】设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即截面圆的周长可得42r ππ=,得2r =,故由题意知(222R r =+,即(222216R=+=,所以4R =,故选:B .2.如图,已知三棱锥V ABC -,点P 是VA 的中点,且2AC =,4VB =,过点P 作一个截面,使截面平行于VB 和AC ,则截面的周长为( )A .12B .10C .8D .6【答案】D 【解析】如图所示,设AB 、BC 、VC 的中点分别为D,E,F ,连接PD,DE,EF,PF. 由题得PD||VB,DE||AC,因为,PD DE ⊆平面DEFP,VB,AC 不在平面DEFP 内, 所以VB||平面DEFP,AC||平面DEFP, 所以截面DEFP 就是所作的平面.由于11||,||,,22PD VB EF VB PD VB EF VB ===, 所以四边形DEFP 是平行四边形, 因为VB=4,AC=2,所以PD=FE=2,DE=PF=1, 所以截面DEFP 的周长为2+2+1+1=6. 故选:D3.【2020届广东省东莞市高三期末调研测试理科数学试题】已知球O 是正四面体A BCD -的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( ) A .89π B .1118πC .512π D .49π 【答案】A【解析】由题,设平面α为过E 的球O 的截面,则当OE ⊥平面α时,截面积最小, 设截面半径为r ,球的半径为R ,则222r R d =-,因为正四面体棱长为a ,设过点A 垂直于平面BCD 的直线交平面BCD 于点M ,则DM =,令AM h =,OM x =,则x h R =-,在Rt AMD V 中,222AM DM AD +=,即222h a ⎫+=⎪⎪⎝⎭,则3h a =,在Rt OMD V 中,222DM OM R +=,即222x R ⎫+=⎪⎪⎝⎭,则22213a R R ⎫+-=⎪⎪⎝⎭,解得R =,则x ==, 在Rt OED △中,222OE OM EM =+,因为点E 在线段BD 上,3BD BE =,设BC 中点为N ,则2DM MN =, 所以211333EM BN BC a ===,在Rt OED △中,222OE OM EM =+,即2222111372d a a ⎫⎛⎫=+=⎪ ⎪⎪⎝⎭⎝⎭,所以22221124729r a a a ⎛⎫=-= ⎪ ⎪⎝⎭,因为2a BC ==, 所以289r =,所以截面面积为289S r ππ==, 故选:A4.【2020届福建省福州市高三适应性练习卷数学理科试题】在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O , 记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =, 则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+.在ABC V 中,取AC 的中点为E ,连接11,O D O E , 则1132O E AB ==,124DE AC ==,所以1O D =在1Rt OO D V 中,OD = 由题意得到当截面与直线OD 垂直时,截面面积最小, 设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2R π, 所以21216R π-π=π,228R =, 球的表面积为2112R 4π=π. 故选:C.5.【2020届重庆南开中学高三第五次教学质量检测考试数学文科试题】正三棱锥P ABC -,Q 为BC 中点, PA =,2AB =,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为( )A .13,45ππ⎡⎤⎢⎥⎣⎦B .12,23ππ⎡⎤⎢⎥⎣⎦C .[],2ππD .3,2ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】因为正三棱锥P ABC -,PB PC PA ===2AC BC AB ===,所以222PB PA AB +=,即PB PA ⊥,同理PB PC ⊥,PC PA ⊥, 因此正三棱锥P ABC -可看作正方体的一角,如图,记正方体的体对角线的中点为O ,由正方体结构特征可得,O 点即是正方体的外接球球心,所以点O 也是正三棱锥P ABC -外接球的球心,记外接球半径为R ,则2R ==,因为球的最大截面圆为过球心的圆, 所以过Q 的平面截三棱锥P ABC -的外接球所得截面的面积最大为2max 32S R ππ==;又Q 为BC 中点,由正方体结构特征可得122OQ PA ==;由球的结构特征可知,当OQ 垂直于过Q 的截面时,截面圆半径最小为1r ==,所以2min S r ππ==.因此,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为3,2ππ⎡⎤⎢⎥⎣⎦.故选:D.6.【2020届湖北省部分重点中学高三第二次联考数学试卷理科试题】如图,已知四面体ABCD 的各条棱长均等于4,E ,F 分别是棱AD 、BC 的中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .B .4C .D .6【答案】B【解析】将正四面体补成正方体如图,可得EF ⊥平面CHBG ,且正方形边长为由于EF α⊥,故截面为平行四边形MNKL ,且4KL KN +=, 又//KL BC ,//KN AD ,且AD BC ⊥, ∴KN KL ⊥, ∴MNKLS KN KL =⋅Y 242KN KL +⎛⎫≤= ⎪⎝⎭,当且仅当2KL KN ==时取等号, 故选:B .7.已知正方体1111ABCD A B C D -的边长为2,边AB 的中点为M ,过M 且垂直1BD 的平面被正方体所截的截面面积为( )A .2B C .D .【答案】A【解析】如图,连结111,,,AC CB AB BC ,易知11CB BC ⊥,111CB D C ⊥,又1111BC D C C ⋂=,则1CB ⊥平面11BC D ,故11CB BD ⊥,同理可证明CA ⊥平面1BDD ,则1CA BD ⊥,又1CA CB C =I ,故1BD ⊥平面1ACB .取BC 的中点E ,1BB 的中点F ,易知平面//MEF 平面1ACB , 所以1BD ⊥平面MEF ,即MEF V 为所求截面.易知MEF V 为正三角形,边长ME ==故12MEF S ==V 故选:A.8.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,设过P ,Q ,R 的截面与面11ADD A ,以及面11ABB A 的交线分别为l ,m ,则l ,m 所成的角为( )A .90︒B .30°C .45︒D .60︒【答案】D【解析】因为,在正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,取11C D ,1DD ,1BB 的中点分别为G ,F ,E ,连接FG , FQ ,QP ,PE ,ER ,RG ,根据正方体的特征,易知,若连接PG ,EF ,RQ ,则这三条线必相交于正方体的中心,又////GR EF QP ,所以P ,Q ,R ,G ,F ,E 六点必共面,即为过P ,Q ,R 的截面;所以EP 即为直线m ,FQ 即为直线l ;连接1AB ,1AD ,11B D ,因为1//EP AB ,1//FQ AD ,所以11B AD ∠即为异面直线EP 与FQ 所成的角,又因为正方体的各面对角线都相等,所以11AB D V 为等边三角形, 因此1160B AD ∠=︒.故选:D.9.【2020届山西省吕梁市高三上学期第一次模拟考试数学(理)试题】如图四面体A BCD -中,2,AD BC AD BC ==⊥,截面四边形EFGH 满足//EF BC ;//FG AD ,则下列结论正确的个数为( ) ①四边形EFGH 的周长为定值 ②四边形EFGH 的面积为定值 ③四边形EFGH 为矩形④四边形EFGH 的面积有最大值1A .0B .1C .2D .3【答案】D【解析】因为//EF BC EF ⊄,平面BCD ,所以//EF 平面BCD ,又平面EFGH I 平面BDC GH =,所以//EF GH .同理//FG EH ,所以四边形EFGH 为平行四边形, 又AD BC ⊥,所以四边形EFGH 为矩形.所以③是正确的;由相似三角形的性质得EF AF FC FGBC AC AC AD==,, 所以EF FG AF FCBC AD AC AC+=+,2BC AD ==,所以2EF FG +=, 所以四边形EFGH 的周长为定值4,所以①是正确的;212EFGHEF FG S EF FG ⨯⎛⎫=⨯≤= ⎪⎝⎭,所以四边形EFGH 的面积有最大值1,所以④是正确的.因为①③④正确.故选:D10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A .4B C .4D 【答案】A【解析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 11.【云南省曲靖市2019-2020学年高三第一次教学质量检测数学文科试题】在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为( ) A .43B .94C .92D .3【答案】B【解析】设截面分别与棱,,,AD BD BC AC 交于点,,,E F G H .由直线//AB 平面EFGH , 且平面ABC I 平面EFGH GH =,平面ABD ⋂平面EFGH EF = 得//GH AB ,//EF AB ,所以//GH EF ,同理可证//EH FG ,所以四边形EFGH 为平行四边形, 又3AB BD AD CD ====,4AC BC ==, 可证得AB CD ⊥,四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,01x <<, 则3FG x =,()31HG x =-,于是2199(1)9,0124EFGH S FG HG x x x x ⎛⎫=⋅=-=--+<< ⎪⎝⎭当12x =时,四边形EFGH 的面积有最大值94. 故选:B. 二、填空题12.【新疆维吾尔自治区乌鲁木齐市2019-2020学年高三第一次诊断性测试数学文试题】 如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别为11,,AB AD B C 的中点,给出下列命题:①异面直线EF 与AG 所成的角的余弦值为6;②过点E 、F 、G 作正方体的截面,所得的截面的面积是③1A C ⊥平面EFG④三棱锥C EFG -的体积为1其中正确的命题是_____________(填写所有正确的序号)【答案】①③④【解析】取11C D 的中点为点H ,连接GH 、AH ,如图1所示,因为//EF GH ,所以AGH ∠就是异面直线EF 与AG 所成的角易知在AGH V 中,3,AG AH GH ===2cos 36AGH ∠==,①正确;图1 图2 图3矩形EFGH 即为过点E 、F 、G 所得正方体的截面,如图2所示,易知EF EG ==所以EFGH S ==分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立如图3所示直角坐标系,则(2,0,2),(2,1,0),A E(1,0,0),(1,2,2)F G ,1(2,2,2),(1,1,0),(1,1,2)AC FE EG =--==-u u u r u u u r u u u r , 因为110,0AC FE AC EG ⋅=⋅=u u u r u u u r u u u r u u u r ,所以11,A C EF A C EG ⊥⊥,又EF ⊂平面EFG , EG ⊂平面EFG 且EF EG E =I ,所以1A C ⊥平面EFG ,故③正确134(111212)22EFC S =-⨯⨯+⨯+⨯=V ,1113G ECF EFC V S C C -=⋅=V ,④正确. 故答案为:①③④13.如图所示,在长方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:①四棱锥11B BED F -的体积恒为定值;②对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得//CG 平面1EBD ; ③O 为底面ABCD 对角线AC 和BD 的交点,在棱1DD 上存在点H ,使//OH 平面1EBD ; ④存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值.其中为真命题的是____________________.(填写所有正确答案的序号)【答案】①③④【解析】①111111112B BED F B BED B BFD B BED V V V V ----=+=,又三棱锥11B BED -为三棱锥11E BB D -,则底面11BB D 不变,且因为1//CC 平面11BB D ,故点E 到底面11BB D 的距离即三棱锥11E BB D -底面的高不变,故三棱锥11E BB D -的体积不变,所以四棱锥11B BED F -的体积不变,恒为定值,故①正确;②当点E 在点C 处时,总有CG 与平面1EBD 相交,故②错误;③由O 为底面ABCD 对角线AC 和BD 的交点,则12DO DB =,设H 为1DD 的中点,则在1D DB V 中1//OH D B ,所以//OH 平面1EBD ,故③正确;④四边形1BED F 的周长为()012C BE ED =+,则分析1BE ED +即可,将矩形11BCC B 沿着1CC 展开使得B 在DC 延长线上时,此时B 的位置设为P ,则线段1D P 与1CC 的交点即为截面平行四边形1BED F 的周长取得最小值时唯一点E ,故④正确;故答案为:①③④14.【2020届河南省驻马店市高三上学期期末数学(文科)试题】 在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______.【答案】【解析】如图,在正方体1111ABCD A B C D -中,记AB 的中点为N ,连接1,,MC CN NA , 则平面1A MCN 即为平面α.证明如下:由正方体的性质可知,1A M NC P ,则1A ,,,M CN N 四点共面, 记1CC 的中点为F ,连接DF ,易证DF MC ⊥.连接EF ,则EF MC ⊥, 所以MC ⊥平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥,NC MC C =I ,则DE ⊥平面1A MCN , 所以平面1A MCN 即平面α,且四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形,其对角线1AC =,MN =12S =⨯=故答案为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高三数学上学期第一次模拟考试试题 理注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{}|3B x y x ==-,A B =( )A .[)1,+∞B .[]1,3C .(]3,5 D .[]3,52.34i 34i12i 12i+--=-+( ) A .4-B .4C .4i -D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( )A .2π3B .3π4C .π3D .π45.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5B .6C .7D .87.如图,正方体1111ABCD A B C D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 所成角的余弦值为338.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数, 令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( )A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( ) A .ππ()3sin()24g x x =+ B .ππ()3sin()24g x x =- C .ππ()2sin()24g x x =+ D .ππ()2sin()24g x x =- 12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72π B .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 . 14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 . 15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()3sin a c b ab C +=+.(1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD . (1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率3O 是坐标原点,且1||||6OB F B ⋅= (1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23xf x x e =--,()f x '为()f x 的导数,证明:(1)()f x '在区间[π,0]-上存在唯一极大值点; (2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率.①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.2020届湖北名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由已知可得[]1,5A =,[)3,B =+∞,则[3,5]A B =.2.【答案】D【解析】由复数的运算法则可得:()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-. 3.【答案】D【解析】对于选项A :2019年14~月的业务量,3月最高,2月最低,差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B :2019年14~月的业务量同比增长率分别为55%,53%,62%,58%, 均超过50%,在3月最高,所以B 是正确的;对于选项C :2019年2、3、4月快递业务量与收入的同比增长率不一致, 所以C 是正确的. 4.【答案】C【解析】∵12|2|e e -=121443e e +-⋅=,∴1212e e ⋅=, ∴121cos ,2e e <>=,∴12π,3e e <>=.5.【答案】B【解析】1()cos 1x x e f x x e +=⋅-的定义域为(,0)(0,)-∞+∞,∵11()cos()cos ()11x x x x e e f x x x f x e e --++-=-⋅=-⋅=---,∴函数1()cos 1x x e f x x e +=⋅-奇函数,排除A 、D ,又因为当0x +→时,cos 0x >且101x x e e +>-,所以1()cos 01x x e f x x e +=⋅>-,故选B . 6.【答案】C【解析】由题设知,斐波那契数列的前6项之和为20,前7项之和为33, 由此可推测该种玫瑰花最可能有7层. 7.【答案】C【解析】易知四边形AEOF 为平行四边形,所以直线EF ,AO 相交; 直线EF ,1BB 是异面直线;直线EF ,1BB 所成角的余弦值为3,故选项C 正确. 8.【答案】B【解析】第一次循环,4S =,1i =; 第二次循环,2S =,2i =; 第三次循环,4S =,1i =; 第四次循环,2S =,2i =.可知S 随i 变化的周期为2,当2019i =时,输出的2S =. 9.【答案】C【解析】∵()f x 是R 上的奇函数,且满足(2)()f x f x +=-, ∴(2)()f x f x +=-,∴函数()f x 的图象关于1x =对称,∵函数()f x 在区间[1,2]是减函数,∴函数()f x 在[1,1]-上为增函数,且(2)(0)0f f ==, 由题知1c =-,2b =,01a <<,∴()()()f c f b f a <<. 10.【答案】A【解析】设双曲线C 的左焦点为1F ,21126AF AF a AF =+=+,∴216AB AF AB AF +=++=115559AB AF BE F E +++≥+==. 11.【答案】C【解析】由已知,得3(,)2R A ,则(1,)RP A =--,(1,)RQ A =-, 于是213RP RQ A ⋅=-=,得2A =,又51222T =-,∴4T =,2ππ2T ω==, 由π12π22k ϕ⋅+=,k ∈Z 及π||2ϕ<,得π4ϕ=-,故ππ()2sin()24f x x =-, 因为()g x 与()f x 的图象关于1x =对称,则ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+. 12.【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O ,记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =,则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+,在ABC △中,取AC 的中点为E ,连接1O D ,1O E , 则1132O E AB ==,124DE AC ==,∴113O D =. 在1OO D Rt △中,213OD x =+,由题意得到当截面与直线OD 垂直时,截面面积最小,设此时截面圆的半径为r ,则2222225(13)12r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2πR ,∴212ππ40πR +=,228R =,球的表面积为24π112πR =.(或将三棱锥补成长方体求解).二、填空题:本大题共4小题,每小题5分.13.【答案】2【解析】1()ln ax f x a x x-'=+,(1)11f a '=-=,∴2a =. 14.【答案】9【解析】设等差数列{}n a 的公差为d ,由711S S =,可得1176111071122a d a d ⨯⨯+=+, 即12170a d +=,得到1217d a =-, 所以211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+, 由10a >可知1017a -<,故当9n =时,n S 最大. 15.【答案】314【解析】观察八卦图可知,含3根阴线的共有1卦,含有3根阳线的共有1卦,含有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为123328C C 3C 14+=. 16.【解析】设AF a =,BF b =, 则2a bd +=,222222cos AB a b ab AFB a b ab =+-∠=++,∴d AB ==≤=, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)π3;(2)5+ 【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=,所以有()sin cos 13sin sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos 13sin B B +=, 即3sin cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭, 又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =. (2)因为113sin 33222ac B ac =⋅=,所以12ac =, 又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得513a =+. 18.【答案】(1)证明见解析;(2)6. 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥, 在EOF △中,3,6,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥,又ACOF O =,∴OE ⊥平面ACF .(2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O , 由(1)可知(1,1,1)EO =-是面AFC 的一个法向量, 设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则|||cos ||cos ,|3||||EO EO EO θ⋅=<>==⋅n nn ,sin 3θ∴=, ∴二面角E AF C --角的正弦值为319.【答案】(1)22132x y +=;(2)10x±+=. 【解析】(1)设椭圆C 的焦距为2c ,则c a =,∴a =, ∵222abc =+,∴b=,又1OB F B⋅OB b =,1F B a =,∴ab =2=1c =,∴a =b =22132x y +=.(2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=,∴1212(1)(1)0x x y y --+=,∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t tt -+-+=++,∴22t =,∴t =. ∴l 的方程为10x ±+=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23xf x x e '=---.令1π()2sin()23xg x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵xy e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()023g e e -'-=----=->, ∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<, 即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23xf x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点,()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e-'-=----=->, π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>, 因此,()f x 在[π,0]-上有且仅有一个零点.21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-.【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,16P =, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分; 二是两轮有一轮甲得0分,有一轮甲得1分, ∴12211117C ()()662636P =⨯+=, 经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分,∴322122233331111111()C ()()C ()()C ()()6626263P =+++.②由11i i i i P aP bP cP +-=++,知1111i i i a cP P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-, ∴6(1)7a b =-,1(1)7c b =-,∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i i i i P P P P +--=-, ∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=,∴01021111(1)1166()()()(1)15616n n n n nP P P P P P P P --=+-+-++-==--. 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[10,]2. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C 0y -=. (2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C 的距离为1d ==<,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为d r +=,则点P 到曲线2C 距离的取值范围为[10,]2. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥, ∴当65b =,3325a b =-=时,22a b +的最小值为95, ∴2295a b +≥.(2)∵0a >,0b >,23a b +=,∴3≥908ab <≤,当且仅当322a b ==时,取等号,∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116,∴3381416a b ab +≤.。